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ABSTRACT 

The ability of the human’s ear-brain system 
in recognising distinctive sound patterns has 
been used to develop a non-destructive 
testing system that is able to evaluate the 
strength class of material. The work 
involves the development of the most 
appropriate and effective configuration of 
devices and software to observe the 
response of specimens of wood 
composites to externally induced 
excitation of sound in form of white noise. 
This system predicts the strength class, 
and eventually the elastic and strength 
properties, of the specimens non-
destructively. The unique sound spectral 
response of each group of specimens is 
captured by a microphone, filter and 
amplifier system that mimics the human 
‘ear’. The ‘brain’ is made up of a computer 
with an adaptive neuro -fuzzy analysis 
capability. The net amplitude readings of 
the spectral response changes according to 
the species and the frequency levels but 
generally higher density specimens absorb 
more sound energy resulting in lower 
readings. Virtual specimens were generated 
using Weibull distribution to enhance the 
training and validation, and it was found to 
be appropriate for the biological material 
being evaluated. Fuzzy inference model of 
sound response of the wood composites has 
successfully been used to classify them 
according to their density ranking.  
 

1 INTRODUCTION 

The human’s ear and brain works seamlessly as a 
system to provide auditory capability and also the 
sense of physical balance. The vestibulocochlear 

and vestibular nerves carries impulses for both 
hearing and balance from the ear to the brain. The 
normal effective frequency range of sound waves 
that humans can hear is between 20 and 20,000 Hz. 
Loudness is the force of sound waves against the 
ear and it is measured in decibels (dB). 
 
The brain recognises the unique features  of sound 
passed though the ear by repetitive and adaptive 
learning. As such, the human’s ear-brain system 
also has the capability in learning unique features 
of sound passed through a material (Fig.1). The 
resulting features of sound depend on the 
physical properties of the material such as 
density and biological properties such as the cell 
structure. The human biological system may not 
have the capability to exactly quantify the 
properties, but through learning and 
familiarisation, in hearing the unique sound 
features that pass through the material, the  type 
of material can be recognised. The methodology 
of this work was inspired by this capability, but 
nevertheless, the full hidden biological function of 

Fig. 1.   The human's Ear-Brain system  
 
the ear-brain system cannot be exactly engineered 
due to its complexity. 
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This paper describes the development of an 
intelligent system, based upon existing knowledge 
and technology, in evaluating the strength 
properties of wood composite without causing 
permanent damage to the tested specimens. The 
work involves the development of the most 
appropriate and effective configuration of 
devices and software to observe the response of 
specimens to externally induced excitation of 
sound and vibration, and this configuration is 
used as a system to predict the strength class, and 
eventually the elastic and strength properties 
non-destructively. These findings can be applied 
as a quality control to the general production line 
since it will be possible for the expected strength 
of each specimen to be stamped directly on its 
surface without the need to perform destructive 
test on only some representative samples of the 
production batch. This can expedite the 
classification of the products into their strength 
class prior to packaging and shipment, and 
interested parties would have greater confidence 
in the materials that are being used. 
 
 
2 NON-DESTRUCTIVE TESTING 

AND APLLICATION OF SOFT 
COMPUTING 

 
To determine the strength properties of a 
material, it has to be tested either by destructive 
or non-destructive method. Destructive method is 
usually done on certain percentage of 
representative specimens of a population of a 
material. The specimens are subjected to physical 
force that would cause damage and render the 
specimens to be useless after the testing is done. 
Due to several uncertainties in production the 
strength properties of the whole batch of material 
have to be modified by statistical reduction that 
takes into account the standard deviation of the 
tested specimens. Usually the reduction in 
strength is determined by using the exclusion 
limit formula: 
 

σtxEL −=     (1) 

 
where  EL is the exclusion limit of the strength 

values, x  is the mean strength values, t is the  
Student’s t value and σ is the standard deviation 
of the tested specimens. The exclusion limit 
value, which are the lower exclusion limit, are to 
be taken as the characteristic strength of the 
material that shall be used in engineering design.  
As the variability of the material increases the 
standard deviation, σ, will also increase; and the 
resulting characteristic strength will be lower. To 

achieve higher reliability more specimens have to 
be tested to reduce the standard deviation. This 
practice is not favourable to be done on 
expensive or scarce material, and to material 
produced from depleting natural resources.  
 
Conversely, non-destructive method can be 
applied on every sample of the population or a 
larger percentage of the population since the 
specimens will not be destroyed and can be used 
again. Non-destructive testing offers a better 
alternative such that strength values can be 
assigned to each individual specimen, thereby 
improving the reliability of material usage. 
Moreover, non-destructive testing also permits 
evaluation of individual pieces without damage due 
to overloading (Bodig, 1982). 

 
But for biological based material such as wood 
composite, linear model will not be the right 
choice to predict its strength, since the 
production of trees are affected by many natural 
factors such as soil type, soil constituents, 
sunlight intensity, water supply, genetic 
inheritance and final processing method. Due to 
this, biological based material tends to possess 
properties of high variability. To apply non-
destructive testing based on linear assumption of 
the material’s behaviour can be problematic since 
a linear model is not suitable to be used.  
 
Soft computing offers a better alternative to 
conventional mathematical means for solving 
highly complex and computationally intensive 
problems. Artificial neural networks (ANNs) learn 
by adjusting the weights in the interconnections of 
layers while fuzzy inference systems (FIS) use 
fuzzy if-then rules to map the relationship between 
input and output data. For a strength classification 
of highly variable biological material a model-
free application of fuzzy logic, neural network or 
hybrid of both approaches i.e. neuro-fuzzy can 
prove to be a more effective solution. To allow 
the degree of the membership of the fuzzy model 
to be tuned through adaptation, the learning 
capability of ANN is incorporated into the 
Sugeno fuzzy model. The same concept of 
adaptive networks as in ANN that computes 
gradient vectors systematically gave birth to 
adaptive neuro-fuzzy inference system (ANFIS) 
as proposed by Jang (1992). 
 
Fuzzy logic uses simple rules to describe the 
system of interest rather than analytical 
equations, thus it is easy to be applied in 
classification work. System based on fuzzy logic 
possesses the ability to reach distinct decisions 
even though there are overlapping and noise 
contaminated data. The combination of neural 
network and fuzzy logic enables the system to 
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learn and improve its performance based on past 
data. A neuro-fuzzy approach can be used to 
incorporate pattern recognition capabilities of 
neural networks with modeling advantages of the 
rule based fuzzy logic. This combination 
significantly improves the classifier’s 
performance and provides a mechanism to 
incorporate past observations into the 
classification process. For a neural network 
scheme the training process builds the system, 
but in a neuro-fuzzy scheme the system is built 
by fuzzy logic definitions and then it is refined 
using neural network-type training.  Also for a 
neuro-fuzzy system, extensive training from the 
beginning does not necessarily give high 
performance, but future data collection can be 
used to refine the system further (Liu and 
Chandrasekar, 2000 ). 
 
Wu, et al. (1990) stated that the conventional 
method of postulating the property of material 
would only work when the presumed 
mathematical model fitted the behaviour of the 
material. The model would only be true when all 
of the assumptions were also true. The limitation 
with conventional method is that the 
mathematical model might not be able to 
encompass complex material behaviour. 
 

3 METHODOLOGY 

The system prototype as shown in Fig. 2 was made 
up of a soundproof box to isolate the internal part 
from surrounding noise interference. Sound in 
form of white noise was generated using the digital 
signal analyser through a piezoelectric transducer. 
The sound was imparted onto the flat surface of 
one side of the specimen. A microphone, which 
could be considered as the ‘ear’, was used to 
capture the remnant sound that passed through the 
specimen. The weak signal was boost up using a 
signal amplifier before being passed to the digital 
signal analyser for hardware signal processing. The 
system’s ‘brain’ consisted of a computer for 
software signal processing including fast-Fourier 
transformation (FFT), and Matlab’s ANFIS 
toolbox for data analysis.   
 
For this work, wood composites specimens 
designated as KE, MS, MSP species were tested 
to observe the capability of the system to 
categorise them into their appropriate strength 
class. The specimens were each having gross 
dimensions of 34 cm x 34 cm x 0.46 cm (width x 
length x thickness). The frequencies of the sound 
that passed through the specimens were between 0 
Hz to 25 kHz.  FFT was done in real time to 
produce spectral parameters of each specimen in 
the frequency domain. 

 

Sample
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Fig. 2.  The Ear-Brain analogy-The system 

prototype 
 

 
4 VIRTUAL SPECIMEN GENERATION 

BY WEIBULL DISTRIBUT ION 
 

The work of Waloddi Weibull (1939) gave birth 
to the Weibull distribution that is widely 
accepted as an appropriate analytical tool for 
modeling the breaking strength of materials. 
Current usage also includes reliability and 
lifetime modeling.  Bodig (1982) mentioned that 
a normal distribution give both positive and 
negative values due to it having infinite tails in 
both directions, but for properties such as 
strength of material negative values gives no 
meaning. Many simulation input quantities must 
be positive to make sense. 
 
The Weibull probability density function (pdf) is 
expressed as  
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where γ is the shape parameter, µ is the location 
parameter and α is the scale parameter. The 
typical shape of the distribution appropriate for 
the material tested for this work is as shown in 
Fig.3.  

Since the amount of actual wood composite 
specimens to be tested in this work was limited, 
the fuzzy inference system (FIS) model obtained 
after training will not be robust enough to 
encompass the range (or known also as the 
universe of discourse) of the strength properties 
of the material. 
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Fig.3   Weibull distribution of amplitude 
values for each frequency per species with 
implementation of Lmin and Lmax tolerance. 

 
 
Therefore a systematic method of data generation 
was made by applying Weibull distribution to 
produce virtual specimen data that would 
augment the limited amount of actual data. The 
Weibull parameters were determined from the 
spectral data of amplitude of frequency of each 
species. To reduce the possibility of lengthy 
computation time due to the ‘curse of 
dimensionality’ only amplitudes values of three 
frequencies were chosen. The frequencies were 
11500, 11625 and 11750 Hz., and they were 
chosen after being found to show significant 
difference among the three species. There were 
10 original specimens for each species that gave 
10 amplitude readings for each frequency. For 
each species and frequency these 10 
corresponding  amplitude readings were fitted 
into a Weibull distribution and their Weibull 
parameters were determined. The procedure was 
done to generate virtual specimen for training as 
well as validation data set. 
  
Due to its nature, the generation of the virtual 
specimen using Weibull distribution will create  
two tails, one below the minimum and one above 
the maximum of the actual amplitude values of 
each frequency. In these tails are the virtual 
specimens that fall outside of the range of the 
amplitude values found by testing of the original 
specimens, but are valid specimens since the 
behaviour of the whole population besides the 
tested sample is assumed to follow the Weibull 
distribution. During training of the ANFIS, 
however, not all of the generated virtual 
specimens can be included because it was found 
that there would be large error during validation.    
 

Using only the data that lies between the 
maximum and minimum amplitude of each 
frequency would produce fuzzy inference system 
that is only valid specifically in that range. As a 
compromise, two tolerance values, Lmin and 
Lmax, were introduced to set the range of values 
to be extracted from the total generated virtual 
specimens (Fig.3). These tolerance values were 
adjusted to produce the best prediction when the 
fuzzy inference model is tested with the real 
amplitude data obtained from the exp eriment.  
 

5 Results and Discussion 

In order to observe the feature of the sound that 
was projected onto the specimens the following 
steps were performed: 

1) With no specimen placed between the 
piezoelectric transducer and the microphone, the 
amplitude readings corresponding to every 
frequency of the sound produced by the white 
noise were recorded. These values were denoted 
as AMP_ref to represent the reference reading of 
the microphone. 

2) With a specimen placed between the 
piezoelectric transducer and the microphone, the 
amplitude readings corresponding to every 
frequency of the sound produced by the white 
noise were recorded. These values were denoted 
as Amp, to represent the corresponding readings 
of the microphone for the specimen being tested. 

3) The difference between two amplitude 
readings of AMP and AMP_ref was then 
calculated. 
 
The test and analysis were initially done on only 
the highest density species, KE, and the lowest 
density species, MSP. These observed readings 
were then scrutinised visually by graphical 
method to detect any significant difference found 
between the species.  As shown in Fig. 4, the 
significant difference could only be observed in 
the frequency range of 10000 to 15000 Hz. 
Species KE showed lower amplitude valleys and 
peaks as compared to species MSP. The most 
probable reason was because species KE was 
much denser than MSP such that the tighter 
packed molecules absorbed more sound energy. 
A more detailed graphical representation, i.e. 
narrowing to the frequency range of 10000 to 
15000 Hz, of the response of the two species is as 
shown in Fig. 5. 
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Fig. 4.  The frequency domain of white noise 

imparted on two species of timber 
 
It is noted that the amplitude readings of KE is 
generally below the amplitude readings of MSP. 
Using this feature alone it was envisaged that a 
dividing boundary line could be drawn in 
between the two species amplitude readings. 
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Fig. 5. A detailed frequency and amplitude 

response for two species 
 
For initial analysis to observe the possibility of 
separation between the species by neuro-fuzzy 
approach the following steps were done. The 
frequency and the extra prior knowledge, i.e. the 
expected strength class, were used as the inputs 
while the net amplitude readings Amp -Amp_ref 
as the output .  The training consisted of 246 data 
set and the validation consisted of 82 data sets. 
At this moment only the actual data were used 
and no virtual specimen data were added. 

Gaussian membership function was used on the 
inputs. It was found that using this approach the 
network was able to separate the groups 
corresponding to their density levels very well. 
The separation line was able to go in between the 
peaks and the valleys of the species of amplitude 
versus frequency graph. 
 
The third species, MS, which had density values 
between that of species KE and MSP was then 
tested using the system. Species MS data sets 
were then added to the network, increasing the 
training data set to 369 and the validation data set 
to 123. The analysis was run again but now with 
the added species. The network was successful in 
placing the third species in between the two 
initial species. This placing coincided with 
density level of MS that fell between KE and 
MSP. The output of the network is as shown in 
Fig. 6.  

 
 

Fig. 6.  Neuro-fuzzy classification of spectral 
response of each species 

 
 
Since the inputs were frequency and strength 
class, and the output was net amplitude, the 
neuro model as shown above was not directly 
applicable to be use as a strength class predictor. 
The graphical representation of the network as in 
Fig.6 can be used to choose the region where the 
analysis could be concentrated to obtain distinct 
classification.   
 
To produce a neuro-model that could directly 
predict the strength class from net amplitude 
values, the previous training configuration was 
altered so that the inputs were vectors of net 
amplitudes of selected frequencies, and the 
output was the strength class. But since one 
specimen can only provide one amplitude value 
for each corresponding frequency the total 
amount of training and validation data was not 
adequate. Due to this, the virtual specimen data 
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that were created using the Weibull distribution 
were added. To reduce the computational time 
only amplitudes of three frequencies were chosen 
for the inputs. Data pruning was performed to 
eliminate the region where the net amplitude for 
a particular frequency of all the species tends to 
overlap. From Fig. 6 it is observed that the region 
between 12500 to 13500 Hz has a very narrow 
separation between the species, and this region 
can be eliminated. It was sufficient to actually 
choose the region between 11125 to 11750 Hz, 
inclusive, to perform the strength class 
prediction. The selected frequencies were 11500, 
11625 and 11750 Hz., and these frequencies lies 
in the region where the separation among the 
species was clearer. 
 
Each input was a column vector with each of the 
rows consisted of the net amplitude values 
corresponding to each frequency label. Each row 
was to represent reading taken from one 
specimen. The configuration is such that: 
 

Input = [ Asf ]  and  Output = [ Csf  ] 
 

where, Asf is the net amplitude value and Csf is 
the strength class of specimen s = 1,....n, with n 
representing number of actual plus virtual 
specimens, corresponding to each frequency  f = 
11500, 11625 and 11750 Hz, i.e. the three 
selected frequencies.  The network was trained 
and validated using the new configuration, and 
the number of membership function for all of the 
three frequencies was three to reflect the strength 
classes of 1, 2 and 3 for the species KE, MS and 
MSP respectively.  After the training, the model 
was then implemented into the ear-brain system 

prototype for actual online prediction task. New 
actual specimens that were not used for training 
of the system were tested, and the procedure 
similar to the training was followed. The net 
amplitude readings were calculated by getting the 
difference between the current amplitude 
readings (AMP) with the reference amplitudes 
readings (AMP_ref). The net amplitude readings 
were then implemented into the neuro-fuzzy 
model obtained from the training to give the 
output that was the strength class of the 
specimen. The accuracy of the prototype system 
was determined by simply getting the ratio of 
correct strength class prediction over the total 
number of tested specimens of the known 
strength class. 
 
It was found that the system was able to predict 
the strength class of species KE very well, i.e. 
100% correctness, and for species MSP, 80% 
correctness was achieved. However, for species 
MS, which was in between the two other species 
in terms of their density values, the correctness 
level achieved was 70%. This was obvious due to 
the reason that, by being in the middle, frequency 
response of species MS overlapped with the 
frequency response of species KE and MSP such 
that the strength class boundary was not distinct 
enough to make correct prediction. The tolerance 
limit Lmin and Lmax for each species were 
adjusted to get the optimum prediction accuracy.  
 
The outcome of the analysis and prediction is as 
shown in Table1. 
    

 
 

 
NT= 140, NV=40 

F11625, F11500, F11750 

Tolerance level Error 

Class 1 
Species KE 

Class 2 
Species MS 

Class 3 
Species MSP Training Validation 

Strength 
Class 

Prediction 
% 

 

Lmax_1 Lmin_1 Lmax_2 Lmin_2 Lmax_3 Lmin_3 Training Checking Test 1 2 3 Epoch 
0.05 0.05 0.045 0.045 0.045 0.045 0.35762 0.38219 0.40290 100 60 80 1000 
0.05 0.05 0.04 0.04 0.05 0.05 0.35434 0.38338 0.38810 100 70 70 1000 
0.05 0.08 0.04 0.04 0.08 0.05 0.35096 0.47449 0.44082 100 70 80 1000 
0.05 0.10 0.04 0.04 0.10 0.05 0.34372 0.45005 0.49733 90 50 70 1000 
0.05 0.08 0.04 0.04 0.10 0.05 0.34372 0.45005 0.49733 90 50 70 1000 
0.05 0.10 0.04 0.04 0.08 0.05 0.35078 0.44185 0.47670 100 70 80 1000 
0.05 0.10 0.04 0.04 0.08 0.05 0.35047 0.44351 0.47969 100 70 70 1800 
NT= gross number of generated virtual specimen for training before extract (per species) 
NV= gross number of generated virtual specimen for validation before extract (per species) 

 
Table 1:  Strength class prediction with the implementation of virtual specimen using Weibull distribution 
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6 CONCLUSION 

A method based on frequency-domain analysis of 
sound signal combined with classification 
capability of adaptive neuro-fuzzy inference 
system has been developed and validated. The 
accuracy of a non-destructive testing system rely 
very much on the accurate translation of the 
measured physical parameters to the required 
engineering properties that depends on certain 
assumption to the way the material behaves. 
Normally mathematical relations based on linear 
model are being used and only suitable for 
materials that have linear properties. Linear 
model to predict strength will not be the right 
choice for biological based material because they 
tend to possess properties that have high 
variability. The human’s ear and brain system is 
able to recognise by instinct certain properties of 
material if the sound response is learned and 
familiarised.  Using this ear-brain analogy, this 
work has succeeded in linking the appropriate 
hardware and software that is capable to evaluate 
the strength class of material made from 
biological elements. Only sound was passed 
through the specimens and they could be used 
again because no permanent damage was 
imposed. Soft computing offers a better alternative 
to conventional mathematical means for solving 
highly complex and computationally intensive 
problems. Virtual specimens were generated using 
Weibull distribution that was found to be 
appropriate for the material being tested. Spectral 
data of these virtual specimens were added to the 
actual specimens to enhance the training and 
validation process. These outcomes show the 
capability of the system to used sound frequency 
response in combination with neuro-fuzzy 
analysis as a means to determine the strength 
class of wood composite material non-
destructively. 
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