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ABSTRACT

Different kinds of visual sub–structures (such as homogeneous,
edge-like and junction-like patches) can be distinguished by the
intrinsic dimensionality of the local signals. The concept of in-
trinsic dimensionality has been mostly exercised using discrete
formulations. A recent work [KF03,FK03] introduced a continuous
definition and showed that the inherent structure of the intrinsic
dimensionality has essentially the form of a triangle. The current
study work analyzes the distribution of signals according to the con-
tinuous interpretation of intrinsic dimensionality and the relation to
orientation and optic flow features of image patches. Among other
things, we give a quantitative interpretation of the distribution of
signals according to their intrinsic dimensionality that reveals spe-
cific patterns associated to established sub-structures in computer
vision. Furthermore, we link quantitative and qualitative properties
of the distribution of optic-flow error estimates to these patterns.

1 INTRODUCTION

Natural images are dominated by specific local sub-
structures, such as homogeneous patches, edges, corners, or
textures. Sub-domains of Computer Vision have extracted
and analyzed such sub-structures in edge detection (see,
e.g., [Can86]), junction classification (see, e.g., [Roh92])
and texture interpretation (see, e.g., [RH01]).

The intrinsic dimension (see, e.g., [ZB90,Fel02]) has
proven to be a suitable descriptor that distinguishes such sub-
structures. Homogeneous image patches have an intrinsic
dimension of zero (i0D); edge-like structures are intrinsi-
cally 1-dimensional (i1D) while junctions and most textures
have an intrinsic dimension of two (i2D). The association
of intrinsic dimension to a local image structure has been
done mostly by a discrete classification [ZB90,Fel02,J9̈7].
A continuous definition of intrinsic dimensionality has been
recently given in [KF03,FK03]. There, it has also been
shown that the topological structure of intrinsic dimension
essentially has the form of a triangle which is spanned by
two axis corresponding to origin and line variance. In this
paper, we will use this continuous definition to investigate
the structure of the distribution of signals in natural images

according to their intrinsic dimensionality. More specifically,
we will show that;

D0 i0D signals split into two clusters. One peak correspond-
ing to saturated or dark patches and a Gaussian-shaped
cluster corresponding to image noise at homogeneous
but unsaturated/non–black image patches.

D1 For i1D signals, there exists a concentration of signals
in a stripe-shaped cluster corresponding to high origin
variance (high amplitude) and low line variance. This
reflects the importance of an orientation criterion that
is based on local amplitude and orientation information
(see, e.g., [PIK90]).

D2 In contrast to the i0D and i1D cases, there exists no
such thing like a corner cluster for i2D signals in the
distribution of local signals which indicates that it is
rather difficult to formulate a local criterion to detect
corners in natural images.

Thus, the continuous formulation of intrinsic dimension
allows for a more precise characterization of established sub-
structures in terms of their statistical manifestation in natural
images. As a consequence, properties and inherent problems
of classical computer vision algorithms can be reflected, and
the limits of local signal processing can be made explicit.

The property of optic flow estimation at homogeneous
image patches, edges, and corners has been discussed exten-
sively (see, e.g., [BFB94,MB00]). In general, it is acknowl-
edged that;

A0 Optic flow estimates at homogeneous image patches is
unreliable due to the fact that the lack of structure makes
it impossible to find correspondences in consecutive
frames.

A1 Optic flow at edge-like structures faces the aperture
problem such that only the normal flow can be computed
for these structures.

A2 Only optic flow estimation at i2D structures can lead to
true optic flow estimates.

1

BIS3-2 1 of 7



In this paper, we investigate these claims more closely.
We will show that the continuous formulation of intrinsic
dimensionality allows for a more quantitative investigation
and characterization of the quality of optic flow estimation
depending on local signal structures. More specifically, we
will show that;

Q0 There exist significantly more horizontal and vertical
structures in natural images. However, the strength of
the dominance of these structures depends crucially on
the intrinsic dimension. Furthermore, we show that the
distribution of orientations is directly reflected in the
distribution of the estimates of optic–flow directions.

Q1 Optic flow can be estimated reliably when looking at the
normal flow in the stripe-shaped cluster in the i1D signal
domain. This suggests that edges are a strong source of
reliable information when the aperture problem is taken
into account.

Q2 The quality of optic flow estimation is higher for i2D
signals. However, in analogy to the lack of a cluster
for i2D signals, there exists a continuous signal domain
(covering also sub-areas of i0D and i1D signals) for
which a higher quality in the optic flow estimation
can be achieved. The increase of the quality, on the
other hand, is only slight which suggests that the role
of i2D structures for motion estimation might be not
as important as suggested by some authors (see, e.g.,
[MB00]). Another possibility is that the specific optic
flow algorithm that we have chosen gives sub–optimal
results at i2D signals.

These results support the above-mentioned statements
(A0)-(A2) about optic flow estimation. However, by making
use of a continuous understanding of intrinsic dimension-
ality, these statements can be made quantitatively more
specific in terms of (1) characterization of sub-areas for
which they hold and (2) the strength of these statements. Our
analysis suggests a strong relationship between the distribu-
tion of the signals in the continuous intrinsic dimensionality
space and properties of optic flow estimation.

The outline of the paper is as follows: In section 2,
we introduce the concept of intrinsic dimensionality in its
continuous definition as first formulated in [KF03,FK03] and
we shortly describe our multi-modal image representation in
which orientation and optic flow are coded. In section 3, we
investigate the distribution of local image patches according
to their intrinsic dimensionality and discuss its consequences
for image processing. In section 4, we look at the statistics
of orientation in natural images while in section 5, we look
at the statistics of optic flow and the error of optic flow
estimation.

2 INTRINSIC DIMENSIONALITY AND
MULTI-MODAL PRIMITIVES

Intrinsic Dimensionality: In image processing, the intrinsic
dimensionality has been used to characterize local image
patches according to their homogeneousness, edge-ness or
junction-ness. The term intrinsic dimensionality is itself
much more general.

Accordingly, when looking at the spectral representation
of a local image patch (see figure 1a,b), we see that the
energy of an intrinsically zero-dimensional signal is con-
centrated in the origin (figure 1b-top), the energy of an
intrinsically one-dimensional signal is concentrated along a
line (figure 1b-middle) while the energy of an intrinsically
two-dimensional signal varies in more than one dimension
(figure 1c-bottom).

(a) (b)

(c) (d)

Fig. 1. Illustration of intrinsic dimensionality. (a) Three image
patches for three different intrinsic dimensions. (b) The local
spectra of the patches in (a), from top to bottom: i0D, i1D, i2D. (c)
The topology of intrinsic dimensionality. (d) The primitives shown
on an image used in our analysis. Red, green and blue colors show
i0D, i1D and i2D primitives, respectively.

In image processing, the intrinsic dimensionality was
introduced by [ZB90] and was used to formalise a discrete
distinction between edge-like and junction-like structures.
This corresponds to a classical interpretation of local image
signals in computer vision. A large variety of edge and
corner extraction algorithms have been developed over the
last 20 years, and their role in artificial as well as biological
systems has been discussed extensively [KD82]. The three
kinds of signals have quite specific characteristics and prob-
lems that have been addressed in different contexts.

Recently, it has been shown [KF03,FK03] that the topo-
logical structure of the intrinsic dimensionality must be un-
derstood as a triangle that is spanned by two measures: origin
variance and line variance. The origin variance describes the
deviation of the energy from a concentration at the origin
while the line variance describes the deviation from a line
structure (see figure 1b and 1c).

The triangular topological structure of the intrinsic dimen-
sion is counter-intuitive, in the first place, since it realizes
a two-dimensional topology in contrast to a linear one-
dimensional structure that is expressed in the discrete count-
ing 0, 1 and 2. More importantly, as shown in [KF03,FK03],
this triangular interpretation allows for a continuous formu-
lation of intrinsic dimensionality in terms of 3 confidences
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assigned to each discrete case. This is achieved by first
computing two measurements of origin and line variance.
These two measurements define a point in the triangle (see
figure 1c). The bary-centric coordinates (see, e.g., [Cox69])
of this point of the triangle directly lead to a definition of
three confidences that add up to one. These three confidences
reflect the volume of the 3 areas constituted by the points (see
figure 1c).

Multi–modal Primitives: In our research over the last 5
years [KLW04], we have designed a novel image repre-
sentation in terms of multi-modal Primitives (see figure 2).
They represent a condensed representation of local image
structure in terms of visual attributes that are also found
in the first stages of human visual processing (see figure
2). These Primitives are a functional abstraction of hyper-
columnar structures found in the first cortical area of the
human visual system [HW69]. These Primitives carry, beside
the 3 confidences for the three intrinsic dimensions of a
local signal also other attributes such as orientation, contrast
transition, colour and optic flow.

Fig. 2. Left: Image sequence and frame. Middle: Schematic repre-
sentation of the multi-modal Primitives. Right: Extracted Primitives
at positions with high amplitude.

Orientation: The local orientation associated to a Primitive is
computed using a recently developed filter approach, called
the monogenic signal [FS01]. The orientation is computed
by interpolating across the orientation information of the
whole image patch to achieve a more reliable estimate.
Optic Flow: There exist a large variety of algorithms
that compute the local displacement in image sequences.
[BFB94] have divided them into 4 classes: differential
techniques, region-based matching, energy based methods
and phase-based techniques. After some comparison [J0̈2],
we decided to use the well-known optic flow technique
[NE86]. This algorithm is a differential technique in which,
however, in addition to the standard gradient constraint
equation, an anisotropic smoothing term is supposed to
lead to better flow estimation at edges (for details see
[NE86,BFB94,AWS00]).

3 STATISTICS OF INTRINSIC
DIMENSIONALITY

We use a set of 7 natural sequences with 10 images each
(see figure 3). We compute 831727 Primitives in total. For

Fig. 3. Some of the image sequences used in our analysis. The first
3 images are from one of the sequences (the starting image, the
middle image and the last image). Other figures are the images from
other sequences.

the processing of each Primitive, we compute a measure
for the origin and line variance (for details see [KF03]).
This corresponds to one point in the triangle of figure 1c.
Hence, taking all Primitives into account, we can display
the distribution of these points in this triangular structure.
This distribution is shown in figure 4a. As there exist large
differences in the histogram, the logarithm is shown.

The distribution shows two main clusters. The peak close
to the origin corresponds to low origin variance. It is visible
that most of the signals that have low origin variance have
high line variance. These correspond to nearly homogeneous
image patches. Since the orientation is almost random for
such homogeneous image patches, it causes high line vari-
ance. There is also a small peak existent at position

�
	��	��
that corresponds to saturated/black image patches. The other
cluster is for high origin variance signals with low line
variance, corresponding to edge-like structures. The form of
this cluster is a small horizontal stripe rather than a peak.
There is a smooth decrease while approaching to the i2D
area of the triangle. That means that there exists no cluster
for corner-like structures like the ones for homogeneous
image patches or edges. Along the origin variance axis, a
continuous gap is observed. This gap suggests that there are
no signals with zero variance. This is due to the fact that there
is at least noise included in the image which causes some line
variance.

We also see from the figure that there are far more
i0D signals than i1D or i2D signals. So, we have much
more homogeneous structures than edge-like or junction-
like structures. Besides, it is clear that there are more i1D
structures than i2D structures in natural images. The percent-
ages of i0D, i1D and i2D structures are %86, %11 and %3,
respectively. For computing these percentages, the intrinsic
dimensionality of a Primitive is determined by taking the
intrinsic dimension which has the highest confidence. Figure
1d shows a natural scene on which Primitives are shown.
Due to space constraints, only a small portion of an image
in a sequence is shown. The percentages of i0D, i1D and
i2D structures are clearly reflected in the figure.

The results described above are taken from Primitives
for which the position has been regularly sampled on a
hexagonal grid. However, the position of an edge or a corner
must be defined according to the internal structure of the
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(a)

(b)

Fig. 4. Logarithmic plot of the distribution of intrinsic dimension-
ality. (a) The distribution when the positions of the Primitives
are not modified according to iD. (b) The distribution when the
positions are modified according to iD (See text for details of this
modification).

signal. For example, we want an edge-like Primitive to
be placed directly on the edge; or, for a corner, in which
a certain number of lines intersect, we want to have the
Primitive placed on the intersection. We can achieve this
positioning by making use of the local amplitude information
in the image depending on the intrinsic dimensionality (for
details, see [KFW04]). Note also that features such as phase
and the optic flow depends on this positioning. When we
determine the position of the Primitives for edges and corner-
like structures accordingly, we get the distribution shown
in figure 4b. It is qualitatively similar to the distribution
achieved with regular sampling. However, since the position
is determined depending on the local amplitude, there is a
shift towards positions with higher amplitude that constitute
the gaps at the border between i0D and the i1D and l2D
signals. In the later stages of our analysis, we adopted this
positioning.

4 DISTRIBUTION OF ORIENTATION DE-
PENDING ON INTRINSIC DIMENSION-
ALITY

The distribution of the orientation on the image sequences
and the quantitative differences depending on the intrinsic
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Fig. 5. Orientation distribution depending on iD. The first image
shows the total distribution.

dimensionality of the Primitives are shown in figure 5.
Here, we define a signal to be inD (where n is 0, 1 or
2) if the associated confidence is the highest. We see that
orientation of i1D signals shows strong peaks at horizontal
and vertical structures (i.e., for the values

	
, ����� and � ).

This has been already known (see, e.g., [Krü98]). However,
the statistics in figure 5 for the i0D and i2D cases show
the quantitative dependency of this statement for signals
with different intrinsic dimension: These peaks are much
weaker for the i0D and i2D case. Indeed, neither for a
completely homogeneous image patch nor for a corner,
the concept of orientation is defined at all. However, the
continuous formulation of intrinsic dimensionality prevails
that as dominance of horizontal and vertical orientations can
be found also for i0D and i2D signals. This means that
orientation is a meaningful concept also for some non-i1D
signals. This also stresses the advantages of a continuous
understanding of intrinsic dimensionality.

5 OPTIC FLOW AND INTRINSIC DIMEN-
SIONALITY

The distribution of magnitude and direction of the optic
flow vectors is shown in figure 6. The quantitative errors
in calculation of optic flow are shown in 8a-f using three
different measurements.

The distribution of direction varies significantly with the
intrinsic dimensionality. The distribution of the direction
of optic flow vectors of i1D signals directly reflects the
statistics of orientation. Since only the normal flow can be
computed for pure i1D signals, the dominance of horizontal
and vertical orientations (see section 4) leads to peaks at
horizontal and vertical flow. The statistics of the true flow
can be expected to be nearly homogeneous since in the
sequences, a translational forward motion is dominant that
leads to an isotropic flow field (see, e.g., [LBv99]). The fact
that basically there exits a direct quantitative equivalence of
the statistics of line structures, and the statistics of optic flow
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directions reflects the seriousness of the aperture problem. In
contrast, the distribution of direction of optic flow vectors of
i0D and i2D signals is nearly homogeneous.
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Fig. 6. Optic flow distributions depending on ID. The left two
images show total distributions.

We now analyze the errors of the optic flow estimation
depending on the intrinsic dimension. For this, we need to
compare the computed flow with a ground truth. We used for
our investigations the Brown Range Image Database (brid),
a database of 197 range images collected by Ann Lee, Jing-
gang Huang and David Mumford at Brown University (see
also [HLM00]). The range images are recorded with a laser
range-finder. Each image contains ����������� 	 measurements
with an angular separation of

	�� ��� degree. The field of view
is � 	 degree vertically and �� �! degree horizontally. The
distance of each point is calculated from the time of flight of
the laser beam, where the operational range of the sensor is
��"#� 	�	 m. The laser wavelength of the laser beam is

	�� !�$&% in
the near infrared region. Thus, the data of each point consist
of 4 values, the distance, the horizontal angle and the vertical
angle in spherical coordinates and a value for the reflected
intensity of the laser beam (see figure 7). The knowledge
about the 3D data structure allows for a simulation of a
moving camera in a scene and can therefore be used to
estimate the correct flow for nearly all pixel positions of a
frame of an image sequence.

The error of optic flow calculation is displayed in a his-
togram over the iD triangle (see figure 8). When calculating
the error, three different error functions were used: Let ' be
the estimated and ( be the correct optic flow vector; then, the
angular error is computed by ) � ' � ( �+*-,/.10�23�5476 89 4 9 :;9 8 9 � (figure
8b,e); the magnitudal error using ) � ' � ( �<*=,/>�2��@? ' ? " ? ( ? �

Fig. 7. Sequences that we have used in the statistics of error
estimates. The first three images are from the same sequences (the
starting image, the middle image and the last image). Other images
are from other sequences.

(figure 8c,f); and a mixture of both (see also [BFB94]) using) � ' � ( �+*-,/.10�23� 4�6 8�A �B 476 4�A �DC B 876 8�A �EC � (figure 8a,d).
Since for purely i1D signals, the aperture problem allows

for the computation of the normal flow only, we have also
computed errors with the projection of the ground truth
over the normal vectors of the Primitives. For this, we
first compute the normal vector of the Primitive using its
orientation information; the ground truth is projected over
this vector, and the error is computed between the optic flow
of the Primitive and this projected ground truth.

The combined error computed using the original ground
truth (see figure 8a) is high for signals close to the i0D corner
of the triangle as well as on the horizontal stripe from the
i0D and i1D corner. In the other parts, there is a smooth
surface that slightly decreases towards the i2D corner. This
is in accordance with the notion that optic flow estimation
at corner-like structures is more reliable than for edges and
homogeneous image patches (A2). However, in figure 8a,
it becomes obvious that the area where more reliable flow
vectors can be computed is very broad and covers also
traditional i0D and i1D signals. Furthermore, the decrease of
error is rather slight which points to the fact that the quality
of flow computation is limited in these areas, as well.

The current study makes use of a specific optic flow
algorithm [NE86]. To test whether the slight decrease of the
error for i2D signals is a property of Nagel algorithm or a
general feature of other optic flow algorithms as well, we
used the Lucas Kanade optic flow algorithm [LK81] on on
the same sequences used in our quality analysis. The results
are shown in figure 9a-f. We see from the figure 9a that the
area with low optic flow error extends to areas of i1D and
i0D signals with small changes. This suggests that this only
slight decrease is a general property of optic flow algorithms
rather than a specific property of the Nagel algorithm.

For the combined error computed using the normal ground
truth (see figure 8d), a different picture occurs. The error
is very low for a horizontal stripe from the middle point
between the i0D and i1D corners to the i1D corner. When
compared to figure 8a, this figure reflects the strength of
the aperture problem. On the other hand, it also shows the
quality of optic flow estimation when the aperture problem
is taken into account. The information for such signals can be
of great importance, since for example, constraints for global
motion estimation can be defined on line correspondences
(see, e.g., [Ros03,KW04]), i.e., correspondences that only
require normal flow. In figure 8, the angular and magnitude
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The Nagel Algorithm

(a) (b) (c)

(d) (e) (f)
Fig. 8. Qualities of the Nagel optic flow algorithm depending on iD. Color bars show the error values for corresponding colors of
corresponding graphs. (a)-(c) Errors with the optic flow ground truth. (d)-(f) Errors with the projection of the ground truth over the normal
vectors of the Primitives. (a,d) Errors computed using a mixture of magnitudes and angles. (b,e) Errors computed using angles. (c,f) Errors
computed using magnitudes.

errors are also displayed that reflect a similar behaviour,
especially visible for the angular error.

6 DISCUSSIONS
Using statistics over natural image sequences, we analyzed
the distribution of local signal patches according to their
intrinsic dimensionality. Furthermore, we investigated how
the quality of optic flow estimates and orientation of image
patches depend on intrinsic dimensionality.

A continuous understanding of the concept of intrinsic
dimension [KF03,FK03] allows for a more precise char-
acterization of established sub-structures in terms of their
statistical manifestation in natural images. The continuous
formulation of intrinsic dimensionality also allows for a
more quantitative investigation and characterization of the
quality of optic flow estimation depending on local signal
structures. We could justify and more precisely quantify gen-
erally acknowledged ideas about such estimates. Moreover,
we could also point to rather surprising results for the i2D
case.

In general, we could show that such a continuous un-
derstanding of intrinsic dimension reflects the statistical
properties in natural images: The distribution of signals in
the iD-triangle is rather smooth with some specific sub-
clusters. Besides, the quality of the flow estimates varies
continuously with the intrinsic dimension.

The statistics about the i1D case made the role of the
aperture problem explicit. The most reliable flow estimates

can be achieved for a certain subset of i1D signals. However,
then the aperture problem needs to be accounted for.
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