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ABSTRACT 
In [3] it was demonstrated for the first time that crossing 
minimization of bipartite graphs can be used to perform 
unsupervised clustering. In this paper, we will present the 
detailed analysis of the bipartite graph model used to perform 
unsupervised clustering as in [1, 2, 3]. We will also discuss the 
effect of data discretization, followed by simulation results 
demonstrating the noise immunity of the technique.  

 
INTRODUCTION 
Our ability and capacity to generate, record and store 
multidimensional, apparently unstructured data is increasing 
rapidly in the areas of natural, life and social sciences. Finding 
that valuable piece of information in a mountain of data is a 
hard problem. But when you know that you are looking for a 
needle, finding it in the haystack is easy, as compared to when 
you don’t know what you should be looking for, such as 
existence of hidden patterns and relationships in data, the 
formal study of such problems is called Data Mining. Data 
mining problems for large data sets can only be attempted using 
automatic means. One such interesting Data mining problem is 
called clustering. Clustering is a process of partitioning a set of 
(data or objects) in a set of meaningful sub-classes or clusters.  
 
There are several techniques and methods for clustering such as 
Hierarchical, Partition, Graph theoretic, Agglomerative, 
Artificial Neural Networks and also Simulated Annealing. In 
[3] it was shown for the first time that graph drawing technique 
i.e. crossing minimization can be successfully used for 
unsupervised clustering. Plain crossing minimization technique 
(CMH) when used for crossing minimization has limited 
application because of deterioration in the presence of noise. 
Therefore, in [3] a recursive technique (CRA_CMH) was also 
proposed resulting in high noise immunity. Both techniques as 
well as meta techniques [1] using [4] since than have been used 
to successfully mine biological and agriculture data. 

NOMENCLATURE 
Knowledge Representation, Information Theoretic 

Approaches, Statistical and Numerical  Aspects. 

2.0 DEFINITIONS, AND MODEL FORMULATION  
 
The input data for a clustering problem is typically given in one 
of the two forms [11]: 
 

• Data matrix (or object-by-variable structure) is an n × 
p matrix, where corresponding to each of the n objects 
there are p variables, also called measurements or 
attributes. Usually n >> p. 

 
• Similarity (or dissimilarity) matrix (or object-by-object 

structure) S is an n × n symmetric matrix, which 
contains the pair-wise similarity (or dissimilarity) that 
is usually computed from p for all pairs of n objects.  

 
Let the given data matrix to consist of interval scaled variables. 
Using the given data matrix a similarity matrix S is generated 
using Pearson’s Correlation defined as: 
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In the context of our problem, X and Y are two rows of the data 
matrix.  
 
Let S correspond to the matrix representation of a weighted 
bipartite graph, such that the vertices correspond to the rows of 
the data matrix, and the edge weight w is the pair-wise 
correlation between the rows such that -1 ≤ w ≤ 1. For working 
with weighted graphs, weighted MH may be used (problem 
10.2 [6]), however, in this study we will be using the CMH 
developed for simple graphs. To get a simple graph from a 
weighted graph, we will keep only those edges in S for which 
the correlation is higher than a reasonable threshold based on 
the problem itself. This consequently converts S to a binary 
similarity matrix denoted by SB.  Note that the transformation 
of S to SB results in removal of weak and un-interesting 
correlations, even noise. However, the disadvantage being, this 
can also result in loss of actual data too, as we can not 
differentiate between noise and data, especially for positive 
correlations.  
 
Let the bipartite graph (bi-graph) corresponding to SB be 
denoted by GB, most likely GB will not consist of pure clusters 
and zero noise. To facilitate defining our model, we first 
assume that we have a similarity matrix that consists of pure 
disjoint clusters and zero noise. We denote such a similarity 
matrix by S*B and the corresponding bi-graph by G*B(V0, V1, 
E). G*B is a union of Ki, j i.e. bipartite graph cliques, and V0, V1 
is the bipartition of vertices such that V0 ∩ V1 = ∅. E is the 
edge set such that e = |E|. As we are considering one-way 
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clustering, therefore, i = j and n = |V1| = |V0| and density of GB 
denoted by δ i.e. δ(GB) = e/n2.  
 
Let a bi-graph drawing (or layout) of G*B be obtained by 
placing the vertices of V0 and V1 on distinct locations on two 
horizontal lines y = 1 i.e. TOP (top partition) and y = 0 i.e. BOT 
(bottom partition) in the XY-plane, respectively. The vertices of 
every clique are located on consecutive and identical x-
coordinates for TOP and BOT. Now drawing each edge with 
one straight-line segment which connects the points on y = 0 
and y = 1 where the end vertices of the edges were placed. This 
will result in a bi-graph drawing, in which only those edges 
intersect, that belong to the same clique. Let ϕ* be the 
corresponding bi-graph drawing and the order of vertices in the 
bipartitions V0 and V1 is denoted by π*0 and π*1, respectively. 
Note that for Ki, j (as a convention) we assume that the vertices 
in bi-partition i will be placed in TOP and the vertices in j will 
be placed in BOT. For more on graph drawing reader is referred 
to [12]. 
 
Now we take the first step towards non-ideal data sets and 
“contaminate” G*B by randomly adding edges (white noise) 
between v ∈ V0 (i.e. TOP) and u ∈ V1 (i.e. BOT) with 
probability αE < ½ , similarly, edges are randomly removed 
(white noise) from each of Ki, j with probability αI < ½ resulting 
in GB such that αE = αI. As a second step towards non-ideal 
data sets, the vertices in each bipartition of GB are now 
randomly permuted. The effect of these operations on SB would 
be replacement of 1’s by 0’s and 0’s by 1’s (the original 0’s not 
the converted 0’s) with given probabilities followed by 
permutation of rows/columns. This is explained with the help of 
the following graph drawings. 
 
Figure-1(a) shows a GB with n = 16 and e = 112.  

 
Figure-1(a): GB = K8,8 ∪ K4,4 ∪ K4,4  with 856 crossings 

 

 
Figure-1(b): Permuted K8,8 ∪ K4,4 ∪ K4,4  with 1,908 

crossings  
Figure-1(b) shows the GB shown in Fig-1(a) with vertices 
randomly permuted, this being one of the steps towards non-
ideal data sets.  
 
Breakdown point β i.e. the minimum proportion of outliers 
(noise) in a data set that could make an estimator unbounded 
[8] or the infimum of the proportion of data elements which can 
be changed without resulting in an arbitrarily-large change in 

the estimator, taken over all finite data sets X drawn from the 
underlying distribution. 
 
Let the order of vertices in the bipartitions V0 and V1 of GB 
(corresponding to the generated similarity matrix) be denoted 
by π0 and π1, respectively. Let Φ(G) denote the set of all 
possible bi-graph drawings of the bi-graph GB, there will be a 
total of n! such drawings for one-way clustering. Now we 
define the optimum clustering problem: given a bi-graph GB 
(V0, V1, E) find ϕ* among Φ (G) with relative1 permutation of 
vertices π*0 and π*1.  
 
Let G’B denote the isomorphic graph as a result of using 
CRA_CMH on GB and the corresponding bi-graph drawing be 

ϕ’. S’B is a visualization of the clustering solution generated 
after running CRA_CMH on G’B. Note that for n and e in 
hundreds ϕ (similar to Figure-1(b)) is visually meaningless and 
only SB makes sense. However, when n and e are in thousands, 

screen resolutions prohibit displaying SB completely and then 
only extracted results are meaningful. 

3.0 DATA DISCRETIZATION 
 
For the data sets being considered, an attribute is either 
categorical or numeric. Values of a categorical attribute are 
discrete. Values of a numeric attribute are either discrete or 
continuous. Discretization is the process of partitioning 
continuous variables/attributes into categories. For large data 
sets, discretization results in a reduced representation of the 
data set that is much smaller in volume yet produces the same 
(or almost the same) analytical results. In the context of our 
problem, weighted graph corresponding to S will always be a 

clique with quadratic edges. Working with S will force us to 
consider each and every edge of the un-discretized graph, hence 
a highly undesirable Ω(n2) time complexity. Thus the viable 
way out is discretization of S leading to SB. 
 
3.1 Discretization Methods 
There are basically three major axis of discretization (i) static 
vs. dynamic (ii) local vs. global and (iii) supervised s. 
unsupervised. As our work deals with unsupervised clustering, 
hence we will not consider supervised discretization methods 
such as Fuzzy discretization, Entropy Minimization 
discretization etc instead consider unsupervised discretization 
i.e. making use of information about the distribution of values 
of attributes without class information. For a detailed 
comparison of different discretization methods see [13]. The 
discretization methods of our interest are discussed in the 
subsequent sub-sections. 
 
3.1.1 Equal Width Discretization (EWD) 
EWD divides the number line between vmin and vmax into k 
intervals of equal width. Thus the intervals have width w = (vmax 
-  vmin)/k and the cut points are at vmin + w; vmin + 2w… vmin + (k 

                                                           
1 Relative: vertices may change positions within a clique, but not across 

the cliques. 
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- 1)w. k is a user predefined parameter and is set as 2 in our 
work.  
 
3.1.2 Equal Frequency Discretization (EFD) 
EFD divides the sorted values into k intervals so that each 
interval contains approximately the same number of instances. 
Thus each interval contains n=k (possibly duplicated) adjacent 
values. k is a user predefined parameter and is set as 2 in our 
work.  
 
Both methods surprisingly work well in practice. One reason 
could be that discretization usually assumes discretized 
attributes having Dirichlet priors, and ‘Perfect Aggregation’ of 
Dirichlets can ensure that discretization appropriately 
approximates the distribution of a numeric attribute. 

4.0 CROSSING MINIMIZATION HEURISTICS 
 
Crossing minimization problem has been studied for over two 
decades, and its two variants i.e. one-layer and two layers are 
known to be NP-Complete problems. For a detailed study od 
different types of crossing minimization heuristics see [12].  
 
4.1.1 Median Heuristic (MH) 
It reorders the vertices on the changeable layer (BOT if TOP is 
fixed or vice-versa) according to the median weight [9]  
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where v is a vertex on the changeable layer, d is the number of 
vertices adjacent to vertex v, and w1,..., wd is the sequence of 
vertices adjacent to v on the fixed layer ordered according to 
the position P. We have slightly modified it to ensure integer 
medians for fast (worst case linear time) sorting, and redefined 
it as follows: 
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4.1.2 MaxSort Heuristic  
It reorders the vertices on the changeable layer according to the 
MaxSort weight [4]  
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where v is a vertex on the changeable layer, adj(v) is the set of 
neighbors of v on the fixed layer, and P(w) is the position of w 
on the fixed layer. In this work, instead of using MaxSort i.e. 
sorting on maximum value, we will use its concept MinSort 
(MS) i.e. sorting on minimum value, as it provides better results 
as compared to MaxSort. Sorting on minimum value but in 
descending order is called MinSortReverse (MSR). A variation 
used is MinSort Star (MS*) where vertices with same MinSort 
weight are sorted in ascending order based on |adj(v)|. 

5.0 OUTCOME OF CMH FOR CLUSTERING UNDER 
DIFFERENT NOISE CONDITIONS 
 
In section 5.1 we will formally prove the optimality of one of 
the CMH i.e. MH for pure clusters i.e. αE = αI = 0. In section 
5.2 we will discuss the performance of CMH when both αE and 
αI are >0.  
 
5.1 Optimality of CMH for clustering under noiseless 
conditions 
 
The following theorems are applicable both for one-way as well 
as two-way clustering, for one-way clustering |V1|  = |V0| = n 
i.e. rows of data matrix and p = q. Although in this section we 
will discuss MH, but similar reasoning can be used to show the 
optimality of Barycenter (BC) and MS for a union of Kp, q.  
 
Theorem 1 

For a Kp, q the median of each vertex in the BOT will be 





2
p

 

and in TOP it will be 




2
q

. 

Proof: 
Every vertex in BOT is of degree q, and each vertex in BOT 

will have an edge with the vertex at the 
thp






2
 position i.e. the 

median position in the TOP and numbered 





2
p

. By virtue of 

this adjacency, the median of each vertex in the BOT will 

be 





2
p

. Similarly, the median of each vertex in the TOP will 

be 





2
q

. ♦ 

 
Theorem 2 
For an optimum permutation of vertices for a union of Kp, q i.e. 
G*B the medians of vertices are in ascending order in both TOP 
and BOT partitions. 
Proof:  
Consider a union of C cliques i.e. Kp, q with vertices randomly 
permuted in TOP and BOT partitions. Let the vertices in TOP 
be numbered first sequentially from left-to-right. From 
Thereom-1, there will be C unique median values in the BOT, 
such that all identical median values will belong to the same 
clique. Sorting the vertices on their medians will place all 
vertices belonging to a cluster at consecutive positions. Now 
vertices in BOT are numbered 1 through n, starting from left to 
right and then sorting the vertices in TOP based on their median 
position. Again from Thereom-1, there will be C unique 
medians in the TOP, such that all identical medians will belong 
to the same clique.  
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Consider a clique Ki, j whose vertices are now numbered in the 
TOP and occupy consecutive positions 1 through i. The j 
vertices of Ki, j in BOT will also be at consecutive positions 1 

through j and their median value will be 




2
i

. Now consider 

the next set of i’ vertices in TOP belonging to clique Ki’, j’ . The 
vertices in the top will be numbered from i + 1 to i’ and 

adjacent to vertices in BOT with median 
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iii , inductively all vertices in the BOT 

have their medians in ascending order. When this is true, 
numbering vertices in BOT will result in vertices in TOP with 
medians in ascending order. Further numbering of vertices in 
TOP and BOT will not bring any change in their respective 
positions, indicating an optimal permutation of vertices in TOP 
and BOT. ♦ 
 
Theorem 3 
For a union of Kp, q if all the medians of vertices are in 
ascending order in TOP and BOT, then it is an optimum 
permutation. 
 
Proof:  
Let the vertices in TOP be numbered sequentially from left-to-
right, such that the first clique picked for numbering is Ki, j and 
its first vertex is assigned number 1. For the medians of vertices 
in BOT to be in ascending order, the j vertices belonging to Ki, j 
must occupy the first j positions. These positions can only be 
ensured to remain fixed, if their median is the smallest. This in 
turn can only be ensured, if the i vertices of Ki, j occupy the first 
i positions in TOP. Without loss of generality, extending this 
argument, vertices of all cliques are placed, such that there are 
no crossings between edges belonging to different cliques. 
Further numbering of vertices in TOP and BOT will not bring 
any change in their respective positions. This is an optimum 
permutation of vertices in TOP and BOT as it can not be 
optimized. ♦ 
 
Theorem 4      
A permutation of union of Kp, q is optimum ⇔ All the vertices 
of the union of Kp, q are sorted in ascending order of their 
medians. 
 
Proof: Follows from theorem 2 and 3. ♦ 
Theorem 5      
MH terminates with an optimum permutation of a union of Kp, 

q. 
 
Proof:  
Follows from above theorems and the MH. ♦ 

Figure-1(b) shows a GB that consist of three permuted cliques 
i.e. K8,8 ∪ K4,4 ∪ K4,4. Figure-1(a) shows the outcome of 
running any of the CMH resulting in G’B.  
 
5.2 Performance of CMH for clustering under noise 
Consider GB that is a union of cliques with both αE and αI > 0 
resulting in corruption of the representative value of each 
vertex. The effect of noise can be minimized (even eliminated), 
if the true representative value of each vertex can be estimated 
in the presence of noise. In other words, given a set of points in 
uni-dimensional space, find a point which best describes the 
set. When dealing with problems such as above, it is important 
to consider the issue of robustness: how much does the 
representative value changes if some of the data is disturbed? 
An example of a non-robust estimator is the mean. If any point 
in the data set is placed at infinity, the mean will literally shift 
to infinity; same is true for maximum and minimum values. 
This explains the relatively poor performance of BC and MS 
under noisy conditions when used for clustering. 
 
Theorem 6      
For asymptotically large n, MH redraws GB into G*B with very 
high probability, if probability of white noise i.e. α < 0.5 (i.e. 
αE =  αI  < 0.5). 
 
Proof: 
From theorems 1 and 2 when α = 0, a cluster corresponds to all 
vertices that have the same representative value; therefore, any 
CMH groups the vertices belonging to a clique. Permuting the 
vertices may change the representative value of every vertex, 
however, all the vertices corresponding to a clique will still 
have the same representative value, thus G*B is recovered in 
just two iterations of any CMH.  
 
However, when α > 0, the representative values do change, and 
that change is dependent on the amount of noise and the 
robustness of the representative value used. For a sample of 
size n and uni-dimensional data set  the breakdown point of the 

median is 
n

n
2

1+
 for odd n or 

2
1

 for even n because at least 

half of the points in the sample need to be replaced with 
sufficiently high or sufficiently low values before the median 
would be higher or lower than any bound. Intuitively when an 
estimator of location has breakdown point β, then the estimator 
would still reveal location even if  nβ  data elements were 
corrupted.♦ 

8.0 COMPLEXITY ANALYSIS OF CRA_CMH 
In [12] it was observed that the performance of the crossing 
minimization heuristics drastically deteriorates as the graphs 
become sparser. In the context of clustering, we have observed 
that this is being more profound for MH then other heuristics, 
such as BC and MS.  
 
Among CMH studied, MH performs best clustering under 
noise, but only for relatively dense clusters, thus limiting its 
practical utility under noisy conditions and weak clusters. 
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These are some of the reasons for developing CRA_CMH i.e. 
Crossing Minimization with Recursive Application of CMH.  
 
The effect of clustering on similarity matrix is the accumulation 
of data along the diagonal, and noise across the diagonal. 
CRA_CMH works by completely dropping the “noise” 
resulting in dropping 50% of the similarity matrix. Now a CMH 
runs only on the remaining similarity matrix. This is done 
recursively, and proceeds till the resulting matrix is reduced to 
a single point, or the stopping condition occurs. The default 
stopping condition is when the density of the data part of the 
similarity becomes greater than δ(GB) or above a user specified 
threshold 
8.1 Time Complexity 
To find the median of vertices in BOT, we use the worst case 
linear time selection algorithm, for BC mean can be found in 
linear time, so is the minimum value for MS. For each vertex i, 
the time to find the median will be O(di), where di is the degree 

of vertex i. Since ed
n

i
i =∑

=1
, hence the time complexity to find 

the median of all vertices in BOT will be O(e). To ensure that 

the medians are always integer, the 




2
n th value is taken to be 

the median. Note that for the bi-graph model being considered, 
median will always be ≤ n, using counting sort to sort the 
median values takes O(n) time [6]. Thus the time complexity of 
one iteration of the MH comes to be O(max{e, n})  = O(e). The 
number of iterations taken to termination is O(1), thus the time 
complexity is O(e). Note that the number of iterations is 
dependent on the amount of noise. For δ(NDS) = 0%, only two 
iterations of MH are performed. The recurrence relation for 
CRA_CMH is as follows:  

T(n) = 2T(n/4) + 2∑
=

n

i
id

1
 

At each recursive call (after dropping noise) we have two 
problems, each of size ¼ of the original problem, so the time 
taken is 2T(n/4). At each recursive call two functions are 
performed, one is to run the MH, which running on n/4 vertices 
takes atmost e/4 steps time, and the other is the cost of 
calculating the density of the partition that also takes atmost e/4 
steps. Solving this recursion using the Master’s theorem we get 

T(n) = 4∑
=

n

i
id

1
 or 4e or O(e). Note that using median 

approximators the above time improves by a constant, but 
results in a solution that is more susceptible to noise as 
compared to the one working with exact medians. 
 
Unlike CAST [5] and MCL [7], CRA_CMH works on the 
data matrix as well as the similarity matrix, thus can also be 
used for two-way or biclustering (introduced in the 
seventies), though biclustering is not the objective of this 
work. Note that even algorithms with quadratic time 
complexities are unacceptable for most KDDM (Knowledge 
Discovery by Data Mining) applications [10], and unlike 
other solutions briefly discussed in this section, our solution 
does provide very good sub quadratic performance for 
sparse graphs [3].  

 
8.2 Space complexity 
For performance reasons, to store the graph we use a dual data 
structure which is a combination of linked lists of size O(e) and 
two 1D arrays, each of size O(n). Thus the space complexity is 
also O(e).  
 
10.0 SIMULATION RESULTS 
 
Both CRA_CMH and CAST were coded in VC++ ver. 6 and 
simulations as well as the runs on real data were performed on 
a typical PC with 512 MB RAM. 
 
In this experiment we compare the performance of CRA_CMH 
as compared to plain CMH and CAST using the standard 
statistical measures of Purity (P) and Entropy (E). Figure-2(a) 
shows a SB corresponding to K64, 64 ∪ K64,64 ∪ K64,64 ∪ K32, 

32 ∪ K16, 16 ∪ K16, 16  with α= 30% (colors added for clarity). 
Figure-2(b) shows SB randomly permuted. Figure-2(c) shows 
the result of using CRA_MH with all 6 clusters extracted with 
near perfect values of P and E. Figure-2(d) is the outcome of 
using CAST, showing the two smaller clusters destroyed, and 
two largest clusters treated as a single cluster (shown by 
red/grey boundary). Results of using plain MH and BC are 
shown in Figures-2(e, f), respectively with fairly poor results. 
MH resulted in 28 clusters, while BC resulted in 36 clusters. 
Note that cluster boundaries are drawn automatically by the 
cluster extraction routines. 
 

  
Fig-2(a): Input, α = 30% Fig-2(a): Permuted input  

  
Fig-2(a): CRA_MH: P = 0.98, E = 

0.05 
Fig-2(a): CAST: P = 0.68, E = 0.34 
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Fig-2(a): MH: P = 0.86, E = 0.21 Fig-2(a): BC: P = 0.81, E = 0.29 
 
12.0 CONCLUSIONS 
We have shown that when crossing minimization paradigm is 
used for clustering of pure clusters i.e. 0% noise, perfect results 
are obtained. We then extended this idea and considered white 
noise. It was shown that why the crossing minimization using 
the MH works well for noisy data. Extending this idea to 
recursive noise removal gives very high noise immunity, and 
increases the practical utility of the technique. 

REFERENCES 
1. A. Abdullah , “Discovering pesticide application 

practices using Data Mining”, to appear in 
proceedings of the 7th International Conference on 
Precision Agriculture and Other Precision Resources 
Management, Minneapolis, USA, Jul 25-28, 2004 

 
2. A. Abdullah "Heuristics and Meta-heuristics for one-

way clustering of gene expression data", to appear in 
proceedings of the 8th World Multiconference on 
Systemics, Cybernetics and Informatics (SCI 2004) 
Orlando, USA, July 18-21, 2004 

 
3. A. Abdullah, and S. Brobst, “Clustering by recursive 

noise removal” with S. Brobst, in proceedings Atlantic 
Symposium on Computational Biology and Genome 
Informatics (CBGI'03) Cary, North Carolina, USA, 
pp. 973-977, Sep. 2003. 

 

4. A. Abdullah, "On placement of logic schematics", in 
Proc. IEEE TENCON'93, Beijing, China, pp. 885-888, 
Oct 1993. 

 
5. A. Ben-Dor, R. Shamir and Z. Yakhini, “Clustering 

Gene Expression Patterns", Journal of Computational 
Biology, vol. 6, no. ¾, pp. 281-297, 1999. 

 
6. T. H. Cormen, C. E. Leiserson and R. L. Rivest, 

Introduction to Algorithms, Pub. The MIT Press, 2000. 
 
7. S. Dongen, “Graph Clustering by Flow Simulation”, 

PhD thesis, University of Utrecht, May 2000. 
 
8. Donoho, D. L. and P. J. Huber “The notion of a 

breakdown point,” in Fetschrift for Erich L. Lehmann, 
edited by P. J. Bickel, K. A. Doksum, J. L. Hodges Jr., 
Wadsworth: Belmont, CA. 

 
 
9. P. Eades and N. Wormald. “The median heuristic for 

drawing 2-layers networks”.  
Technical Report 69, Department of Computer 
Science, University of Queensland, 1986. 

 
10. U. Fayyad and R. Uthurusamy, Data Mining and 

Knowledge Discovery in Databases. Comm. ACM, 
39(11). Pp. 24-26, Special Issue on Data Mining, 1996 

 
11. Han and Kamber, Data Mining: Concepts and 

Techniques, Pub by Morgan Kaufmann Publishers, 
August 2000 

 
12. R. Marti and M. Laguna, “Heuristics and Meta 

Heuristics for 2-layer straight line crossing 
minimization”,  Discrete Applied Mathematics, 2001 

 
13. Y. Yang, G. I Webb, “A Comparative Study of 

Discretization Methods for Naive-Bayes Classifiers”, 
the 2002 Pacific Rim Knowledge Acquisition 
Workshop, 2002. 

 
 

NC 6.3 6 of 6


