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ABSTRACT 
This paper describes some of the basic principles and motivations 
underlying our brain-computer interface design.  Our intent is to 
abstractly describe multi-rate filtering and orthogonal subspace 
decomposition appropriate for processing electroencephalographic 
data and identify some of the constraints imposed on the interface 
when considering a user with amyotrophic lateral sclerosis .  Using an 
additive Gaussian noise model, orthogonal filter bank decomposition 
using a custom basis vector is demonstrated as an effective means for 
identification of events in an electroencephalogram.   

INTRODUCTION 
The University of Victoria Assistive Technology Team, 
(UVATT) is developing a non-invasive brain-computer 
interface, (BCI) to provide persons with a means to 
communicate when all other conventional methods have failed.  
More broadly, the technology under development may also be 
used to detect and characterize  electrical parameters within the 
human brain associated with specific behavioural function.  It is 
our hope that the signal processing approach discussed will 
improve assessment of conditions such as epilepsy, 
Huntington’s disease, amyotrophic lateral sclerosis , (ALS, also 
known as motor neurone disease), and mult iple sclerosis  in the 
clinical environment by providing for improved quantitative 
measures. 
 
Studies investigating neural disorders have been helpful in 
directing our BCI research and identifying candidate users  and 
processing methods.  Quantitative EEG, (QEEG) methods have 
suggested alpha band power, (7–12Hz) measured from the 
central scalp region (C3, C4, CZ, International 10-20 System 
electrodes) in persons with ALS decreases as the disease 
progresses [1] while other electrode sites do not exhibit this 
behavior.  ALS has been of particular interest since this disease 
directly involves cortical motor neurons and therefore 
motivates development of a Brain-Computer Interface 
abstraction that does not necessarily rely on motor related EEG 
signals .  Epilepsy is of interest as the impulse-like 
characteristics and theories relating to ionic sinks [2] provide 
clues to better understand the nature of EEG and how the EEG 
relates to the activity of neuronal functional units within the 
cortex.  Eleptiform activity and non-stationary contributions to 
the EEG suggest signal processing methods that provide 
consideration for non-stationarity processes are better suited for 
this class of data than those methods that assume strong, wide-
sense stationarity.   

 
There are drawbacks to the use of scalp EEG to estimate user 
behaviour.  Signal attenuation and low-pass filtering effects 
have created difficulties for measuring high frequency neural 
activity.  Secondly, source localization has remained difficult as 
tissue impedances involved in the system are inconsistent in 
varied directions.  One alternative to EEG, functional magnetic 
resonance imaging, (fMRI) measures haemodynamic response 
[3] to neural activity.  Transient neural activity however can not 
be appropriately characterized by this method as fMRI requires 
integration times of approximately 1 second.  
Magnetoencephalography, (MEG) may be used as an 
alternative to EEG for examining high frequency brain activity 
however the financial barrier and physical size of the 
equipme nt make this  technology inaccessible and unattractive 
for a BCI.  Given these considerations, the scalp EEG is the 
most appropriate non-invasive interface to detect  neural events.   
 
In most clinical EEG settings, non-invasive techniques employ 
the International 10-20 Electrode System or a subset thereof.  
Typically, the signal-to-noise ratio obtained by the hardware is 
no greater than 90dB.  The sampling rate for digital systems 
varies between 200 and 500 samples per second.  Classically, 
EEG measured from the scalp is considered to have an upper 
frequency limit well below 100 Hz [4].  The signals examined 
in clinical analysis are generally between 10uV and 100uV as 
measured from a good scalp connection. Discrimination, 
identification, and signal processing parameters are commonly 
adjusted by the technician to make features of interest visible to 
the operator.  When examining band-passed EEG, it is not 
always clear if one is examining a true narrow band oscillation 
or simply band-pass filtered white noise because noise power 
estimates are generally not used or not available. 
 
Commonly a physiological response to a stimulus is used in 
conjunction with EEG to characterize neural activity within the 
brain.  This evoked response testing employs ensemble 
averaging techniques to construct a clear picture of the 
electrical activity associated with the stimulus event.  Ensemble 
averaging however assumes signal and noise stationarity [5] 
and a signal feature occurrence time-locked to the stimulus 
event. Variability in the response-time to a stimulus [4] and the 
contribution of non -Gaussian interfering processes reduce the 
potential quality of the result of evoked response testing using 
ensemble averaging trials as potential details are averaged out 
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of the result.  Simply ensemble averaging EEG data therefore 
may not be the best means to extract weak features from EEG. 
 
Techniques for estimating and removing muscle interference 
utilizing wavelet decomposition and independent component 
analysis  have been proposed [6,7,8]  and are currently being 
evaluated.  Muscle activity measured by electromyography, 
(EMG) generally contains spectra as high as 2 kHz.  When 
examining slow cortical potentials below 0.1 Hz, cable 
movements are a particular nuisance given the high gain of the 
EEG amplifiers as any cable movement or room vibration 
introduces artifacts.  The usual method to reduce cable 
movement interference is set the lower cut-off frequency to 
some value above DC.  A processing scheme addressing each 
of these noise sources without affecting detection of EEG 
features is highly desirable. 
 
A demand for neural-controlled prosthetics, empirical 
assessment of motor control disabilities, and evaluation of 
human response to multi-media stimuli are attracting increasing 
interest and may come to drive the development of BCI 
technology.  Industry [9,10] has already fostered corporate 
investment in technologies requiring implanted electrodes for 
their brain-computer interface design for humans.  
 
A non-invasive but effective measurement system is of interest 
as the risks and costs associated with implant surgery are not 
always acceptable.  Low data-rate, non-invasive BCIs have 
been developed by various researchers [11,12,13,14,15,16].  
These groups have constructed multi-electrode scalp 
measurement devices utilizing standard EEG hardware that 
give the user simple control of a computer.  In most cases, these 
devices rely on signals (evoked response, motor preparation 
peaks, alpha waves , and slow cortical potentials ) that have been 
known to the clinical community for years.  High data-rate, low 
error-rate, and cognitive control are our basic design 
parameters.   
 
Our BCI design approach considers human neural physiology 
directly, utilizing fundamental centre theory models  supporting 
compact neural representation of specific function, and 
characteristic tissue differences identified originally by 
Brodmann and further narrowed by functional imaging 
research.  It is our hypothesis that these compact neural 
functions may be discerned in a signal-space characterized by 
ionic return paths mediated by glial cell arrangements. Glial 
cells outnumber neurons 10:1 and provide for the structure of 
these return paths [17].   
 
Movement of a particular limb can generally be correlated with 
specific activity in motor areas  however limitations to 
somatotopic organization exist as areas controlling a particular 
simple behaviour may overlap extensively with a different 
behaviour.  When considering movement of thumb versus 
fingers in primates, somatotopic overlap and multiple limb 
representation exists in the primary motor cortex [18]. We 
extend this animal model to somatotopic organization in 
humans.  Since our objective is not to specifically localize brain 
function but to discern characteristics from a signal-space 
perspective, we hope to differentiate between activation of 
neural networks in a common area and circumvent the 

problematic procedure of mapping signal sources to a canonical 
human brain .  Surface electrode location and hemispheric 
dominance are still considered, however we view these as 
signal-to-noise parameters.   
 
In developing a BCI we are interested in identifying a particular 
cognitive behaviour and not necessarily to differentiate between 
the physiological processes driving the behaviour.  Thus, our 
task is to map features of the signal-space to a particular 
cognitive neuropsychological state.  To facilitate an 
implementation that can detect feature events in real-time, 
allow for detection of features at multiple scales, provide good 
feature localization, and transform the data to better meet 
statistical assumptions, we have directed our attention to signal 
processing methods utilizing multi-rate filter bank 
decomposition and wavelet domain analysis.   
 
The remainder of this paper is sectioned into the following 
parts.  First, our early investigation and generation of signal 
models is provided for background.  A description of the 
proposed EEG feature selection using blind deconvolution from 
which to derive a basis and the orthogonalization method to 
generate the basis is subsequently provided.  Implementation of 
the orthogonalization of an arbitrary EEG component and filter 
bank noise removal is demonstrated.  Finally, discussion of the 
signal processing methods and concluding remarks are 
provided. An illustration of the overall EEG feature selection 
methodology and real-time implementation of the feature 
detector is given in Figure 2. 

NOMENCLATURE 
Electroencephalography (EEG), Quantitative EEG (QEEG), 
Wavelet, Independent Component Analysis  (ICA) , Blind 
Deconvolution, Brain-Computer Interface (BCI), Orthonormal 
Basis, University of Victoria Assistive Technology Team 
(UVATT), Slow Cortical Potential (SCP), Magneto 
encephalography (MEG), Functional magnetic resonance 
imaging (fMRI). 

PRELIMINARY WORK 
Self-initiated neural physiological function as well as function 
evoked by external sources bring about predictable changes in 
measured EEG.  In past work, we have demonstrated subjects 
can cognitively modulate the EEG measured at their scalp [10].  
In all cases examined in this preliminary study , persons with 
mid-term ALS were able to modulate the 7–12Hz band of their 
EEG from the PZ electrode.  Figure 1 illustrates the modulated 
EEG of one of the subjects.  The model used to justify this 
detector is given as )()()( twtxtq += , where )(tw is the white 
noise component and )(tx is a single frequency represented as 

)cos( ϕω +t with a random frequency, phase, and probability of 
occurrence. 
 
We’ve since generalized our model so that it can be applied to a 
wider range of EEG components and can account for non-
Gaussian interferers.  The models to be considered in current 
and future work are defined as 
 

)()()()( tntwtxtq ++=  and (1) 
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)()()()}(),({)( tmtntwtrtxtq in +++= ∑h  (2) 
 
where )(tw  is the white noise component visible at all 
frequencies including those greater than the highest non-
Gaussian process in a sampled EEG spectrum, )(tn  represents 
proximal cortical interferers modeled as additive non-Gaussian 
interference, )(tm  includes muscle noise contributions, )(tx  is 
the feature of interest, )(tri  and {.}nh  model nonlinear 
thalamic excitation and inhibition of cortical areas [16].  Each 
interfering component has some random probability of 
occurrence. 

 
Figure 1: The plotted results of simple alpha-band power 
measurements from the PZ electrode of a person with mid-
term ALS.  RMS power and frequency was measured using a 
sliding 1 second Hanning window cosine matched filter 
arrangement.  Data were collected at 200 samples per second.  
Subjects were asked to close their eyes and then relax and 
visualize clouds, or actively solve mathematical problems 
without feedback.  The figure illustrates a test of 
approximately 5 minutes with 4 active segments and 5 relaxed 
segments. 
 
Since an EEG record, )(tq is not necessarily stationary over an 
analysis window that includes both short duration and long 
duration events, multi-resolution analysis is more appropriate 
than Fourier analysis using a fixed window size.  If only a 
single analysis window is used, and both long-duration and 
short-duration processes are of interest, the minimum window 
size is constrained to include the longest duration feature of 
interest.  By using a large window to accommodate the long-
duration feature, the statistical contributions of the short-
duration features may be de-emphasized.  Multi-resolution 
analysis implemented using filter bank decomposition provides 
an efficient method to process features of varied duration and 
provide for good time localization of these features.  
Additionally, the basis used in the multi-resolution filter bank 
analysis need not be a Fourier basis.  A basis more suitable for 
detection of features in EEG may be selected for the 
decomposition, and may be derived from the EEG itself. 

FEATURE SELECTION 
Candidate basis functions for a real-time detector may be 
identified by applying blind deconvolution to EEG collected 
under controlled conditions.  Blind deconvolution employing 
ICA exploits the property that component independence implies 
these components are also uncorrelated.  Independence also 
implies a possibility of factorization by nonlinear correlation 
[19], as is demonstrated by Equation 3 and Equation 4.   
 
Given the nonlinear transformations and combination of two 
random vectors x and y, the expected value may be written as 
Equation 3 where ),( yxp is the joint probability function. 
 

∫∫= yxyxygxgygxg ddp ),()()()]()([? 2121  (3) 

 
If the joint probability can be factored as )()(),( yxyx ppp = , 
then x and y are statistically independent [5].  Given statistical 
independence and the nonlinear transforms )(1 xg  and 

)(2 yg we can factor the nonlinear correlation )]()([ 21 ygxgΕ  as 
in Equation 4. 
 

)]([)]([)()()()()]()([ 212121 ygxgyyygxxxgygxg ΕΕ==Ε ∫ ∫ dpdp

(4) 
 
Using the ICA format, Asz = , independence of the source 
components s  is therefore sufficient to solve for the inverse of 
A.  Since independence infers factorization of the nonlinear 
correlation and the data contains high order statistical 
properties, statistics beyond 2nd order may be used to separate 
signal components [19,20].  The nonlinear operation through 
which the high order statistical properties are generated should 
be tailored to the data in question [19].  
 
The degree to which results obtained from blind deconvolution 
are compatible with an orthonormal filter bank decomposition 
will be the focus of future work. A description of orthogonal 
filter bank decomposition and theory in terms of differentiating 
between generators from a signal-space and function-space 
perspective follows.   

SIGNAL-SPACE DECOMPOSITION 
 
Given that 1+jW  and 1+jV  are orthogonal components of jV  in 

Equation 5, where 1+jV  is the scaling or aggregate space, and 

1+jW  is the detail space, the detail space may be viewed as the 

difference between jV  and 1+jV where ⊕  indicates an 
orthogonal relation.   Equation 5 and Equation 6 demonstrate 
the recursive relationship between spaces. 
 

11 ++ ⊕= jjj WVV  
(5) 

 
3321 ++++ ⊕⊕⊕= jjjjj VWWWV  (6) 
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Between each subspace decomposition, jV  into 1+jV  and 

1+jW , the input vector is decimated by 2 providing for 
orthogonality of scale . Scale increases with j while time 
increases with t and shifts with k.  A particular subspace is 
denoted by its j-k  coordinate.  In terms of function spaces, 
function f(t) contained in 1+jV  is f(2t) in the subspace jV .  If a 

function f(t) is in 1+jV , then all it’s translates f(t-k) and 

translations of it’s dilations  f(2t-k) are in jV .  This property is 
known as shift invariance and provides for orthogonality 
between translates.  Extending the function )(tf  to an arbitrary 
basis function for a given scale j and translation k, the 
relationship is as )2(2)()( 2/ ktttf jj

jkjk −== ϕϕ , where 

)2( ktj −ϕ  is the normalized arbitrary basis function and 2/2 j  
is a scaling factor between scales j for a dyadic decomposition.  
A function decomposition and the corresponding expansion at a 
particular scale is given as Equation 7.  A complete expansion 
is demonstrated as  Equation 8. 
 

∑
∞

∞−

= )()( tatf jkjkj ϕ  
 

(7) 

...)2(2)()()( 2/1
100 +−+−+−= ∑∑∑

k
k

k
k

k
kjk ktWbktWbktatf ϕ  

(8) 
 
Given the properties of shift invariance and dyadic 
decomposition, each space is orthogonal to the next  in both 
time and scale.  The wavelet domain resultant represents each 
time and scale as a discrete quantity of energy. 
 

 
Figure 2: Block diagram illustrating off-line feature selection 
using blind deconvolution and orthogonal basis generation to 
create a custom basis, and the relation to real-time feature 
detection using subspace decomposition. 

GENERATING A CUSTOM BASIS 
A custom basis vector was generated using the Broyden – 
Fletcher – Goldfarb – Shanno, (BFGS) [21] minimization 
algorithm combined with a polyphase matrix to generate basis 

coefficients .  This was used instead of Gramm-Schmidt 
orthogonalization as the polyphase representation generates 
double-shift orthogonal FIR coefficients  suitable for a dyadic 
decomposition filter bank [22].  The orthonormal basis 
generation is illustrated in Figure 3 and related to the overall 
system in Figure 2.  All calculations and plots were done using 
MATLAB.   
 
A cascade of rotation and delay matrices was used to constrain 
the optimization to generate an orthonormal structure.  The 
filter bank cascade algorithm [22] was then used to generate the 
coefficients corresponding to a particular filter bank 
decomposition level.  Each matrix in the cascade was restricted 
to orthogonality by the arrangement of functions within the 
each rotation matrix.  The cascade of orthogonal matrices was 
restricted to orthogonality [22] by constraining the rotation 
angles, lφφφ ,..,, 10  in the cascade to sum to 4/π .  
 
Using notation from [22], the polyphase matrix for the 
complete lattice arrangement is given as Equation 9 and 
Equation 10.  The function )(zΛ  is a diagonal delay matrix.  

The factor )1(−Λ  was included to mu ltiply the components of 
the odd phase of the high-pass filter by (–1).  Components 

0..RRl  represent rotation matrices. A single rotation with one 

delay is noted as   )()( zRzH p Λ= ll  where l  is a rotation angle 

index for the cascade of rotation matrices.  Equation 11 and 
Equation 12 demonstrate the relationship between the FIR filter 
coefficient vectors, c and d, and the polyphase matrix. 
 

01)1( )(...)()1()( RzRRzRzHp ΛΛ−Λ= −ll  (9) 
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1 ...
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(10) 
 
A recursive algorithm was created to generate the polyphase 
matrix and extract FIR coefficients for use with the filter bank 
cascade algorithm.  The FIR coefficients were extracted from 
odd and even components of the polyphase matrix.  
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Since the resulting objective function for minimization 
contained numerous local minima , random starting points were 
used to search for a global minimum.  To generate 30 FIR 
coefficients, the minimization problem utilized 14 rotations and 
1 scaling variable. 
 
Some constraints on the EEG feature to which we matched a 
basis  vector were necessary because the orthogonality 
constraint and the small number of rotation angles heavily 
limited possible approximation accuracy.  Care was taken in 
selecting a feature to be as sparse in details as reasonable 
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minimization would allow.  Additionally, since the basis vector 
is required to have zero mean, values that approach zero at the 
window edges, and a band-limited spectrum, the EEG feature 
vector selected for approximation was restricted to have the 
same properties. 
 
In short-form, the objective function minimized is given as 
Equation 13,  
 

]))}},,,...,,([({{ 2
141321 ARfTEF φφφφ=  (13) 

 
where R(.) is the rotation matrix operation, f(.) denotes the 
angle to FIR coefficient conversion, T(.) corresponds to the 
cascade algorithm, and E(.) is the difference between the 
approximation and the actual EEG feature as measured using 
the L-2 norm.  Scaling of the EEG feature vector by 2A  was 
required to have the minimiza tion function approach zero since 
we did not directly restrict the EEG feature vector for 
approximation to have unit norm. Since the BFGS algorithm 
itself does not constrain A  to only positive values, the scale 
factor was squared to prevent the algorithm from reversing the 
sign during the minimization process. 
 

 
Figure 3: Representative relation between the component 
algorithms necessary for the orthonormal optimization 
problem. 
 
The error function of Equation 14 measures the least squares 
difference between the current approximation, fa and the EEG 
feature to approximate, fd. 

∑
−

=

−=
1

0

2
2||][][||

N

i

ifaifdE  
 

(14) 

 
The constraint that the sum of rotation angles must add to 4/π  
for an orthogonal filter bank was made implicit to the 
unconstrained minimization algorithm by reducing fifteen 
rotation angles, 140   toϕϕ  to fourteen rotation angles.  Angle, 

0ϕ  was equated to the other fourteen angles as illustrated in 
Equation 15.  The overall transform and optimization process is 
illustrated in Figure 3.   
 

)...()4/( 1443210 ϕϕϕϕϕπϕ +++++−= . (15) 

DETECTION AND NOISE ESTIMATION 
For demonstration purposes, level-5 detail coefficients of a 
dyadic filter bank were optimized to a selected EEG feature.  

The wavelet-domain impulse response of the reconstruction 
filter is illustrated in Figure 4. For the actual implementation, 
feature detection will take place using wavelet domain 
coefficients as illustrated in Figure 2. 

 
Figure 4: The detail level-5 wavelet-domain impulse response 
of the reconstruction filter with no additive noise. 

 
Figure 5: Feature with Gaussian interference to be extracted 
by the filter bank and custom basis . 

 
Figure 6: Recovered feature using the described denoising 
method and custom basis . 
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A procedure proposed by Donoho [23], for estimating the 
power of the white Gaussian noise component of a signal and 
subtracting this estimated component was examined to 
demonstrate feature extraction from an EEG.  Donoho’s 
proposed methodology utilizes the highest detail level of a 
dyadic wavelet decomposition to estimate the power of an 
interfering white Gaussian noise process, assuming that there is 
no energy from other processes at this scale.  Once the noise 
power is estimated using the highest detail level wavelet 
coefficients, the wavelet coefficients at all scales are 
thresholded by a function of the estimated noise power.  Once 
the coefficients have been thresholded appropriately, the time-
domain signal may be re-constituted using a reconstruction 
filter bank.  Since this method requires that there is no energy 
other than that of the white Gaussian noise process at the 
highest detail level of the wavelet decomposition, a sampling 
frequency greater than four times the highest frequency of all 
non-white processes is required.  Ultimately, this method 
provides a mechanism to determine if the output of a detector is 
a result of the feature of interest or a result of background white 
noise. 
 
To demonstrate the effectiveness of this noise estima tion 
method, Donoho’s methodology was used to de-noise a feature 
of unit energy buried in white Gaussian noise of variance equal 
to 0.0059.  The filter bank and basis vector used to de-noise and 
re-constitute the non-white process was derived using the 
optimization method described previously.  The example 
feature was derived from the detail level-5 wavelet domain 
impulse response.  The basis vector used to implement the filter 
bank is an approximation derived of an arbitrary EEG feature 
using the orthogonalization algorithm described previously.  
Figure 4, Figure 5, and Figure 6 are provided to qualitatively 
illustrate the effectiveness of the de-noising process.  The Soft 
Shrinkage method [23] was used to threshold the wavelet 
coefficients based on the estimate of the power of the noise 
process at the highest detail level of the filter bank 
decomposition. 

DISCUSSION 
The filter bank orthogonal decomposition is not limited to the 
dyadic decomposition demonstrated.   The branching structure 
may be determined by such measures as maximum entropy [22] 
to reduce the energy at any given node to a predetermined 
minimum.  This strategy serves to further maximize the 
difference between a selected feature for detection and non-
white interfering processes. 
 
In constructing our basis vector, we optimized only for detail 
level-5 of the filter bank.  It is necessary to further examine the 
role convergence of the cascade algorithm plays on estimation 
of the feature of interest in non-optimized detail levels.  It may 
also prove to be more efficient to first optimize levels with a 
small number of coefficients by down -sampling the EEG 
feature to approximate and then subsequently optimize higher 
detail levels. 
 
The key reason for using filter bank decomposition of an EEG 
for feature detection is to provide multiple window sizes to 
better meet the stationarity requirements of statistical 

processing.  A detector may further evaluate the statistics of the 
EEG by examining the wavelet domain coefficients at each 
decomposition level. 
 
There are strict properties that the selected EEG feature must 
adhere to for the objective function minimization result to 
potentially qualify as a wavelet.  We hope to address this in 
future work by using blind deconvolution to search for 
statistically independent EEG components that also support the 
properties of an orthonormal wavelet.   This may not be 
completely successful however the results should point to an 
appropriate wavelet upon which a maximum entropy 
decomposition tree can be selected instead of arbitrarily 
selecting a class of Daubechies wavelet and dyadic 
decomposition. 

CONCLUSIONS 
The visual effectiveness of the filter bank de-noising and 
reconstruction of the detected feature is apparent from Figure 6.  
If we further limited reconstruction of coefficients to the detail-
5 level, artifacts in other scales would be completely removed.  
One might take this step if apriori knowledge of scale of the 
feature to be detected was available. 
 
One major drawback to the optimization method described in 
this paper is the calculation time required for our 
implementation of the polyphase matrix to FIR coefficient 
conversion.  The optimization process currently takes on the 
order of days for 80 starting points, 15 optimization variables at 
a level-5 cascade.  The time required could be reduced by 
constructing a lattice implementation of the filter bank instead 
of converting the lattice angle solutions to FIR coefficients 
during each iteration of the minimization algorithm.   
Additionally, a lattice implementation would eliminate errors 
associated with rounding [22].   
 
For the estimation of the power in the white Gaussian noise 
component of an EEG, and to appropriately include muscle 
interference, it is necessary to construct acquisition hardware 
with appropriate dynamic range and sampling frequency.  We 
are currently constructing an 8 channel, 24-bit USB EEG 
acquisition system that should have a CMR of approximately 
100 dB.   
 
Future work will evaluate the suitability of blind deconvolution 
to identify a wavelet upon which a filter bank can be 
constructed or used subsequent to a Debauches wavelet 
decomposition.  Furthermore, we will investigate whether or 
not independent signal component identification implemented 
using filter banks will truly enable us to differentiate between 
the activity of proximal neuronal functional units within the 
cortex and underlying midbrain activity as measured from scalp 
EEG. 
 
To aid in the evaluation of detection techniques, we will further 
examine how macroscopic neuronal circuits and corresponding 
ion feedback paths with the filtering effects of the scalp may be 
modeled as a transfer function with specific inputs and outputs.  
Future work will use these models to run simulations to 
determine error rates associated with a variety of detection 
schemes.  
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Aside from the research and medical applications afforded, 
following UVATT’s mandate, the efforts discussed in this 
paper will be used to construct a non-invasive, portable, BCI 
that will be available to meet the needs of disabled persons 
within our community. 
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