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ABSTRACT 

Bio-inspired energy models compute motion following the 
guidelines suggested by the neurophysiological studies of V1 
and MT areas of monkeys and human behaviour that use neural 
populations to extract the local motion structure through local 
competition of MT like cells. In this paper we present a neural 
structure that works as dynamic filter on the top of this MT 
layer for image segmentation and can take advantage of the 
neural population coding in the cortical processing areas. The 
test bed application addressed in this work is an automatic 
watch up system for overtaking situations seen from the rear-
view mirror. The ego-motion of the host car induces a global 
motion pattern whereas an overtaking vehicle produces a 
motion pattern highly contrasted with this global ego-motion 
field. We described how a simple neural processing scheme can 
take full advantage of this motion structure for segmenting 
overtaking cars in this scenario. 

 
INTRODUCTION 

Motion processing is a relevant task for the survival 
challenge of most of living beings therefore their visual systems 
have specific areas for motion processing [1]. Primary visual 
areas are modeled using spatio-temporal receptive filters to 
compute motion [2, 3, 4] as suggested by neuro-physiological 
data [5].  

We use an energy model based on the work of Simoncelli 
and Heeger (S&H) that has strong neurophysiological bases. 
They modeled how the cortical areas (V1 and MT cells) can 
extract the motion structure through neural local computation 
and competition. With this model they obtained results that 
agreed with neuro-physiological data [4, 6]. The output layer 
uses neural velocity population coding, which is inefficient 
compared with more mathematical based algorithms but 
represents and advantage if the post-processing is done through 
neural computation as presented in this paper.  

The MT cells are highly sensitive to a very specific 
movement direction and speed. This characteristic is based on a 

high interconnectivity among the cortical layers. Hence it 
produces smooth and homogeneous motion patterns. We 
propose a post-processing structure that takes advantage of 
these properties. Motion estimation based on local operators is 
normally very noisy and requires further post-processing before 
addressing any segmentation. In this paper we describe how a 
simple connectivity pattern facilitates the neural computation of 
noisy motion information. This connection pattern makes 
individual cells behave as dynamic filters that are sensitive to 
more reliable movement features than simple spatio-temporal 
correlations. 

This post-processing layer is composed by cells that collect 
the output activity from MT cells sensitive to similar motion 
primitives. We also describe how this can enhance the 
capability of segmenting rigid body motion by connecting MT 
cells of local neighbourhoods throughout the visual field. 

 The application of this neural processing strategy in real 
world problems is also illustrated. In particular, promising 
results have been obtained for an overtaking car segmentation 
task. This problem is currently being addressed by many 
application driven research groups [7]. Besides, in this scenario 
the motion processing plays an important role, since an 
overtaking car exhibits a forward motion pattern clearly 
contrasted against the global backward motion pattern observed 
in the rear-view mirror due to the ego-motion of the host car. 

VELOCITY ESTIMATION USING A NEURONAL 
COMPUTATION SCHEME 

 
The Simoncelli & Heeger model [4, 6], consists of two 

primary stages corresponding to cortical areas V1 and MT. The 
computation in these layers is highly parallel and regular. 

A linear model is used for V1 simple cells that exhibit 
specific selectivity for stimulus orientation and spatial 
frequency.  

 1 Copyright © #### by ASME 
BIS8.1 1 of 6

mailto:eros@atc.ugr.es
mailto:smota}@atc.ugr.es


A basic set of tuned V1 neurons covers a wide range of 
spatio-temporal frequencies with low overlapping. Each V1 
neuron squares and normalizes its inputs. The next neural layer 
models V1 complex cells. They receive afferents from V1 
simple cells distributed over a local spatial region, sharing the 
same space-time orientation and phase. This forms the V1 
complex cells receptive field. In this way V1 complex cells 
compute a weighted sum of these inputs. In other models 
energy neurons are modeled using quadrature Gabor filters [8, 
9]. Our approach uses receptive filters based on third Gaussian 
derivatives and spatial pooling as suggested by Simoncelli et al 
[4], (see Fig. 1).   

MT cells are modeled combining the outputs of a set of 
direction-selective V1 complex cells, whose preferred space-
time orientations are consistent with the MT cells characteristic 
velocity. The mechanism for velocity selectivity can be 
described in the spatio-temporal domain easily. The power-
spectrum of a translational pattern lies on a plane, and the tilt of 
the plane depends on the velocity. In this way a MT cell detects 
the tilted plane with maximum response [10]. The MT cell uses 
the weighted V1 inputs and interpolates the different spatio-
temporal planes to tune their preferred plane. Different 
combinations of V1 cells can be used to form the MT receptive 
field [3, 11]. In our approach, a mechanism based on vector 
projection is used to obtain the interpolation weights.  

Finally, a Winner-Takes-All configuration among the MT 
population selects only the MT cells with higher input, i.e., the 
ones that best match the local motion pattern as shown in Fig. 
2. 

The implementation of S&H model, showed in Fig. 3, can 
be summarized in 4 steps: 

1. Compute local contrast stimulus. 
2. Model V1 simple and complex neurons, using spatio-

temporal third Gaussian derivatives and spatial pooling. 
3. Model MT neurons summing the weighted responses of 

V1 cells which lie on its characteristic plane. 
4. Compute a Winner-Takes-All to select a single cell for 

each pixel in the visual field  
Our approach uses a basic spatio-temporal set of 40 filters 

(8 spatial and 5 temporal orientations) and a single spatial scale. 
Gaussian derivatives are preferred over Gabor filters because 
they are steerable filters [12]. Only 10 convolutions are need to 
calculate the 40 spatio-temporal orientations instead of the 40 
convolutions needed for Gabor filters. With this limited set of 
V1 orientations we tune a set of 121 MT cells with different 
preferred velocities. The final system is the pyramidal structure 
shown in Fig. 4, were a population of neurons tune different 
motion patterns. 

Other important topic is the contrast dependency of energy 
models [2]. The neuron model used has the capability of auto-
normalization [8] and with the competition layer scheme this 
problem is minimized.  

One limitation for this neural structure is that it can not 
detect second order motion. Some modifications could be 
added to detect it [13], but this is out of the scope of this 
contribution. Furthermore the addressed real-world application 
requires mainly accurate translational motion processing thus 
second order motion detection is not required.   

COLLECTOR LAYER 
Now we describe a simple neural structure that can take 

advantage of the population coding at the MT layer for a 
specific application such as the segmentation of overtaking 
cars. 

The MT layer is connected to a new neural layer that we 
call Collector Layer (CL). The cells at this stage receive 
excitatory convergent many-to-one connections from the MT 
layer. The CL cells work as filters which efficiently segment 
rigid-bodies. Each CL cell is sensitive to a set of velocities V ± 
∆V from MT outputs, where ∆V represents slight variations in 
module and angle from preferred values, i.e. each CL neuron 
integrates the activity of those MT cells in a spatial 
neighbourhood that tune the characteristic velocity of this CL 
neuron 

The main task of the proposed scheme is the improvement 
of rigid-body motion detection. There are different CL neurons 
in the same area of the collector layer and each one is tuned to a 
different set of velocities. The CL is configured as a self-
competitive layer, i.e. the collector neuron that receives the 
maximum contribution in its spatial influence area inhibits the 
others and dominates in this area (Winner-Takes-All). This 
helps to detect rigid body motion. If we neglect possible 
rotations that are only of marginal importance for overtaking 
scenes, all points of a rigid body share the same speed and 
motion direction. Isolated points belonging to a rigid body that 
move with other velocities are considered noise. 

As the application addressed is focussed on discriminating 
between leftward (ego-motion) and rightward (overtaking 
vehicle) moving features, only the cortical S&H neurons that 
match these directions are connected to the Collector Layer for 
this task.  

The configuration of the collector layer neurons can 
embody another important aspect for the segmentation task: 
perspective deformations of motion patterns.  

Due to this effect, an overtaking vehicle although moving 
at a constant speed, seems to accelerate as it approaches, i.e. it 
is expected to move slowly when it is in the very left side of the 
image (far away) and its speed increases when it moves 
rightwards to a closer position. To reduce this effect, the 
distribution of the specialised collector neurons is non-uniform. 
The ratio of cells tuned to high speeds is lower in the left side 
of the visual field than in the right side. The opposite is done 
with cells more sensitive to slower speeds. This facilitates the 
detection of slow movements in the left side of the visual field 
and rapid movements on the right side. This reduces the effect 
of the perspective deformation. 

The same perspective problem damages the perception of 
moving solid objects, because the overtaking vehicle rear and 
front ends are moving at different speeds. That is critical for 
very close vehicles. The sensitivity of each CL cell to a set of 
characteristic speeds instead of a single one, corrects this 
perception problem. 

On the other hand, the winner neurons in a local influence 
area at CL compete locally with other winner neurons from 
other areas in the neighbourhood. This interaction facilitates the 
domination of large features and inhibits those winner neurons 
whose motion direction is different with respect to the majority 
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of the surrounding winner cells. In this way, the output 
response of this filtering neural layer (CL) will be non-zero if 
there are winner collector neurons non-inhibited by others 
winner cells (Fig. 5). In Fig. 5 C2 is inhibited by C3 because 
they have opposite direction selectivity. But C1 and C2 receive 
cross excitation because their selectivity characteristics are 
coincident. This enhances coherent patterns moving and 
reduces fuzzy estimations.   

Other property of CL neurons is a time constant that takes 
into account how the stimulus drives the onset and offset of the 
elements of this layer. If we choose this time constant to be 
long, that means that more integration time from a lasting 
motion pattern is needed to activate a neuron and make it 
dominate against previously detected patterns. This also 
improves the stability of response for translational motion 
pattern in noisy environments and reduces the velocity 
deformation due to the perspective. 

EVALUATION RESULTS 
The described neural system has been applied to four real 

overtaking sequences. The results are summarized in Fig. 6. 
The proposed neural processing scheme segments efficiently 
rigid objects that are moving in opposite horizontal directions.    

Fig. 6.a and Fig. 6.b show an overtaking sequence with a 
dark car in a sunny day recorded with a conventional CCD 
camera. The other sequences were taken with a HDR (high-
dynamic-range) camera [14]. These sequences are: an 
overtaking truck (Fig. 6.c), single overtaking car in a foggy and 
rainy day (Fig. 6.d) and a sequence of multiple overtaking cars 
(Fig.6.e) with some mist. 

Fig. 6 is distributed in columns. The left column shows an 
original image of the overtaking sequences. The middle column 
shows the S&H extracted optical flow. The arrows show the 
motion direction (arrow sizes do not contain additional 
information due to the large range of velocities present in the 
sequences) and the grey scale indicates the speed (lighter colour 
indicates faster motions). The right column shows the CL 
outputs. The segmented overtaking car is represented with a 
dark colour (rightward motion) and the background, moving to 
the opposite direction, uses bright colour.  

The receptive fields of the collector layer receive 
connections of MT neurons tuned to a cone of velocity 
directions mainly focused in horizontal motions. Due to this, as 
can be seen in the bottom part of the car in Fig. 6.b, the optical 
flow out of this cone is neglected by the collector layer. 

Some weather conditions (fog and rain) reduce the contrast 
of the sequences while the lights of the cars would easily 
saturate CCD sensors; therefore open-air applications usually 
require HDR cameras. In spite of the use of these cameras, the 
extracted optical flow is worse in adverse weather conditions 
than the one of a sunny day sequence, reducing the confidence 
of motion discrimination. Other effects that lead to worse car 
segmentation are reflections of light on the road and noisy 
artefacts produced by the rain.   

The high dynamic range camera generates 32 bits precision 
while our model works with 8 bit-depth. This precision 
restriction induces other artefacts that lead to wrong velocity 
estimations that are very significant in low contrast sequences 
such as shown in Fig. 6.d. Nevertheless, the proposed neural 

computing scheme efficiently deals with all these artefacts in 
overtaking scenarios. 

CONCLUSIONS 
This paper describes a bio-inspired system used to segment 

objects through motion energy extraction. A post-processing 
layer (the collector layer) filters the motion information of MT 
layer. The CL connection topology embodies aspects that 
facilitate the segmentation of moving rigid-bodies and reduce 
the effect of the perspective deformation of the visual field due 
to the rear view mirror. 

The proposed neural system is highly parallel. It is a self-
competitive neural computation scheme for feature selection. 
This enhances the capability of segmenting rigid bodies in 
noisy environments as seen in Fig. 6. 
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Fig. 1. V1 simple to complex cells interconnections. V1 complex cell are modeled using a Gaussian pooling operation. 

 
 

 
Fig. 2. Example of population coding. (a) The result of a plaid stimulus composed by a sinusoidal grating moving rightwards and another moving 
downwards is a moving pattern toward the right-bottom corner. (b) Grey levels codify the responses of a set of MT neurons. The relative position of 
the winner element with respect to the center of the population encodes the velocity module and direction. Maximum responses are given at the best 
tuned MT neuron for that stimulus, but MT cells tuned to near velocities are not zero.  (c) Finally, the winner element characteristics encode the 
estimated velocity. 
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Fig.  3. S&H Model. An overtaking car sequence is used to evaluate the model. After convolution operations with Gaussian derivative filters, the pre-
filtered images are combined to get V1 spatio-temporal orientation cell responses. These are combined to obtain the MT cell output. Finally, after a 
winner-takes-all competition process only one neuron per pixel remains active whose inherent characteristics encode the estimated velocity vector.  
 

 
Fig.  4. Pyramidal neuronal structure. 

 

 
Fig. 5. The figure shows the synaptic connections between three winner collector neurons that integrate the activity of MT cells of similar 
characteristics over a spatial neighbourhood. Two neurons detect rightward motion direction ( ) and the other detects leftward motion detection 
( ).  
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(e) 

 
Fig. 6. Overtaking car sequence in a sunny day (a,b); in a cloudy day with mist (c,e); in a 

foggy and rainy day (d). 
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