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Abstract sum of conditional entropies and a quantity which depends
on the parameters of environment. The sum of conditional
Using the asymptotic equipartition property which holds on entropies is referred to as stochastic complexity. We then ex-
empirical sequences we elucidate the explicit performanceamine the sensitivity of stochastic complexity, useful for ap-
of exploration, and the fact that the return maximization is propriately tuning the parameters of the action selection strat-
characterized by two factors, the stochastic complexity andegy, and show that the lower bound of how fast the empirical
a quantity depending on the parameters of environment. Wesequence coincides with the best empirical sequence which
also examine the sensitivity of stochastic complexity, whichis yields a maximal return.
useful in appropriately tuning the parameters of the action se- The organization of this paper is as follows. We introduce
lection strategy, and show the lower bound of the convergencegome notation and the AEP on empirical sequences in Sec-
speed of the divergence between the empirical sequence anghn 2. Using the AEP we analyze the reinforcement learning

the best empirical sequence which produces a maximal retuMyrocess in Section 3. Finally, we give some conclusions in
Nomenclature reinforcement learning, Markov decision pro-  section 4.

cess, typical sequence, asymptotic equipartition property,
stochastic complexity

2 TheAEP

1 Introduction
We concentrate on the discrete-time MDP with discrete states

The weak law of large numbers in information theory is and actions in this paper. L& = {si,ss,...,5;} be the
known as the asymptotic equipartition property (AEP) which finite set of states of the environment,= {a1,as,...,a;}
was first stated in [1] and then developed by the type methodbe the finite set of actions, aity = {ry,r2,...,7x} C R

in [2]. When a sequence of random variables is drawn in-be the finite set of rewards which are discrete real numbers.
dependently according to an identical probability distribution Notice that|S| = I, |A| = J, and|Ry| = K. We assume

for many times, the AEP states that there exists the typicakhat elements in these sets are recognized without error by
set of the sequences with probability nearly one, that all el-the learner, hereinafter called the agent. We tusedenote
ements in the typical set are nearly equi-probable, and that time step. The stochastic variables of state, action, and re-
the number of elements in the typical set is given by an ex-ward at time step (¢ = 1,2,...) are written ass(¢), a(t),
ponential function of the entropy of the probability distribu- andr(¢), respectively. Lete = {s(t),a(t),r(t)};—, denote
tion. In addition, the number of elements in the typical set the empirical sequence aftime steps. The state sequence,
is quite small compared to the number of possible sequencesaction sequence, and reward sequence of the empirical se-
The AEP also holds on empirical sequences generated frongquencer € (S x A x R)™ are denoted by = {s(¢)}1-;.

a Markov decision process (MDP) in reinforcement learn-a = {a(t)}_,, andr = {r(t)};_,, respectively. Let

ing [3]. It facilitates analysis of the learning process since p(!)(s;) £ Pr(s(1) = s;) be the initial probability distri-
most of our attention can be focused on the typical set of thebution andp™ 2 (p™M)(sy), p™M(s2),...,pM(s)). The
empirical sequences. In this paper, with the AEP we eluci-agent learns the optimal policy which produces the maxi-
date the explicit performance of exploration, and the fact thatmal return by observing the empirical sequence. We use the
the return maximization is characterized by two factors, theterm return to express the sum of rewards. The empirical se-
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quence is drawn according to an ergodic MDP specified by the2.1  Type of Empirical Sequence
following three conditional probability distribution matrices.
Henceforth, the conditional probability distribution matrix is
simply called matrix. The policy matrix is ah x J matrix

Let n; (n; < n) denote the number of times that a state
s; € S occurs in the empirical sequence woftime steps,
x = (s,a,7) € (S x Ax Rp)". Ina similar manner, let

f
defined by n;; (ni; < n;) be the number of occurrencesto$uch that
(S(t), a(t)) e (Si, aj) €S x A, and Ietnijk (nijk < nij) be
Zi :Z o Z;j :(1) the number of occurrences pbuch that(s(t), a(t),r(t)) =
pra |70 TR T @ Q) (sia;,mk) € S x Ax Ry in the empirical sequence. With an

: : : : additional “cyclic” convention that(n), a(n), andr(n) pre-
T Tr2 o ... 7L (1) cedes(1), a(1), andr(1), letn;j» (n;» < n;;) denote the
number of occurrences ofsuch that(s(t), a(t), s(t + 1)) =
wherem;; £ Pr(a(t) = aj|s(t) = s;). According to this  (si,aj,s¢) € S x A x S in the empirical sequence. Note
matrix the agent selects an action in a state at each time stephat the cyclic convention is for simplicity of development.
Note that actuallyC'™ is time-varying because the agent im- The discussions in this paper strictly hold even if we do not
proves the policy in the process of reinforcement learning.assume this convention. The relationship among the non-
However,I'" tends to be constant as the policy goes to be op-negative numbers, n;, ni;, ni;r, andn;;; is expressed as
timal by the learning. The reward matrix is & x K matrix I J I

' I J K I
given by nzzni:Zznzjzzzznijkzzzzniﬁ’.
i=1 i

i=1 j=1 i=1 j=1 k=1 i=1 j=14'=1

Riin Ruz ... Ruxk R (4)
Rizi Rizz ... Riax Ry Now we define the type of, € S by f; = n;/n. Also, the
: S : ; joint type of (s;,a;) € S x Ais defined asfi; = n;;/n. Let
™2 | Ry, Rijo ... Rk | = Raoy |, @ us denote all the types and the joint types by
Rou Roiz o Raix R F(s) £ (f1, fa, ... 1) (5)
: : . : : and
Rrsi Rrje ... Rpk Ry fiir fiz ... fis
A f21 f22 e f2J
whereR,;. = Pr(r(t) = ri|s(t) = si,a(t) = a;). The state F(s,a)= : C E (6)
transition matrix is adJ x I matrix defined by ) ' ' '
frr fr2 ... frs
Ti11 Ty ... Tiir T respectively. In this case we say thatnd (s, a) have the
Tio1 Tioo ... Tior T(12) type F'(s) and the joint typeF'(s, a), respectively.
rralp o oo 3)  Conditional Type Relative to Policy If n; > 0 for all 4,
L 172 W an | @ then the conditional type dk;, a;) € S x A given a state se-

T T ... T T
At 2 1) quences € S™ is defined ag;; = n;;/n;. However, if there

: : : : existsi such that; = 0, then we can not uniquely determine

T Trp2 oo Togx T (1) the conditional type. To avoid such a case, we consider the
set of action sequences given any state sequence having type

whereT;;ir = Pr(s(t + 1) = su|s(t) = s4,a(t) = a;). F(s)andl x J matrix®™ : S — A expressed as

The agent does not knolv® andI'" of the environment but

T
the system is simulated and observed under any choice of gu g1z .- guJ Ggrl)
actions. We assume th&®* andI'T are constant and that FEN 921 g2 --- 927 | Gl @)
for simplicity of analysisI'™ is fixed forn time steps where - : P : o : :
n is sufficiently large. For notational simplicity we define g gre .. g1J GETI)

I 2 (I'",TR® T'T). Since MDPs are characterized by the fi-
nite sets, the initial probability distribution, and the matrices, In short,n;; is decided by:; andg;; for everyi, j. The set of
we denote the MDP byI(S, A, Ry, p™"), T). action sequences, which is uniquely determined, is referred to
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as®7-shell [2, p. 31] and denoted /' (®™). The entire set 2.2 Main Theorems
of possible matrice®™ for any state sequence with the type

F(s) is written asA™. To show the AEP we have to introduce the following se-

quences.

Conditional Type Relativeto Reward Similarly, we con- ~ Definition 2.1 (V- and W-typical sequences[3]) We as-
sider the set of reward sequences given any state and actiohime the existence of the following two unique stationary
sequences, hereinafter termed state-action sequences, haviRgpbability distributions,

joint type F(s,a) andlJ x K matrix ®® : S x A — R V 2 (v1,0,...,07) (10)
denoted by
and
R
g1 g1z --- 11K G&ll) ;}Ull Zm o ;Ul‘]
g121 9122 .- G12K Giig wal| b o 27 ’ (11)
L g g2 ... gurl|= GIQJ) . (8) wr wr2 ... Wrg
g211 G212 ... g2K G(zl) and that as n — oo F(s) and F(s,a) tend to V and
‘W, respectively. The stationary probability distributions are
' ' ' uniquely determined by the MDP, M(S, A, Ro, p("), T). In
grj1 grj2 .- 9IJK GR

(1.7) this case, there exists a sequence of positive «,, such that

kn — 0a@asn — oo, and if thetype F'(s) of a state sequence
The set of reward sequences is terndefd-shell and denoted ¢ ¢ S» satifies

by C*(®%). The entire set of possible matric@s® for any
state-action sequences with the joint tyiés, a) is written

’ 2L
asAL, s)IV) Z filog L o S (12)
then we call the state sequence a V-typical sequence. The

: H n A
a slightly different manner, we need to deal with the condi- SEt of V-typical sequences is denoted by Cy;, (V) = {s €

S"D(F(s)||V) < kyp}. Inasimilar manner, there exists a
tional Markov type. We consider the set of state sequences uence of positive £, suchthat &, — 0 asn — oo, and if
such that the joint type i¥'(s, a) given any action sequence = P " "

Conditional Markov Type Relativeto State Transition In

andlJ x I matrix®T : S x A — S designated by
) DIF(s.a)[W) =33 sl <, 19
g111 9112 ... g11r G(Tn) i=1 j=1
9121 G122 ... gi2r Gz holds, then the state-action sequences (s,a) € (S x A)"

are referred to as W-typical sequences. We define the set

: . . : n 7y
T2 g g2 .o gur| = GSTF”) 9) j)%t()%pl(?aﬁq‘uﬂfe)nieza}scgn(W) = {(s,a) € (S x
g211 G212 ... G211 Gy P e
: : : . Then, let us define
grj1  9grje ... 91jI GT. |
C8) D(®™||T™|F(s ZZ fiij 1og (14)

The set of state sequences is referred t@asshell and de- =15=1

noted byC™(®"). The entire set of possible matricds" ik
such that th(e joi21t type i#'(s, a) for any action sequence is D(®%|TH|F(s, a) Z Z Z fii9ijn 1Og 24t (15)
written asA . 1=15=1 k=1

For simplicity, we definep = (&™, ®% &T) andA, = i
AT x AR x AT, The set of empisical sequenc)es that consists (2" [T [F(s,a) Z Z Z fizgiji log 5 - (16)
of the®™-shell,®-shell, and® T -shell is called®-shell and =ly=1i=l
denoted bYC™(®) £ C™(®™) x C"(®T) x ¢ (®@T). Inthis  We give definitions of the typical sequence and the typical set
case we write that the empirical sequence has the conditionadf empirical sequences, which will lead us to show that the
type matrix®. AEP holds for empirical sequences.
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Definition 2.2 (T'-typical sequence and I'-typical set [3]) where
If the matrix & € A,, of the conditional types with respect 1)
to an empirical sequence =z = (s, a,r) € (S x A x Ro)" pe 11312[29 (si), (23)
satisfies
N H(IT™|V) ;755 log i, 24
D(@"T7[F(s)) + D(@" [T F(s,a) e ZZ o8 24
+D(@T|TT|F(s,a)) < An, (17) I
RiW) & _ R g
for any matrix I and positive number \,,, then the empirical HI™ W) = z; 2 ; wijRiji. log Rijg (25)
1=1 )= =

sequence is called a I'-typical sequence. The set of such em-

pirical sequencesis also called the I'-typical set and denoted T N
byCP (T). Thatis, C (T) isgiven by BT W) = Z Z Z wiy Tijir log Tigir.— (26)

=1 j=14¢=1

n A n
cx, () = U cr(®). Finally, we present the theorem which implies that the number
n REALD(RTTT|F(8)) of elements in thd -typical set is written as an exponential
+D(ETITTIF(s,0)+D(® T F(s,a))SAn (18) function of the sum of the conditional entropies.

We are in a position to show the following three theorems 1 N€orém 2.3 (Bounds of number of I'-typical sequences[3])

regarding the AEP on empirical sequences. Ifs c CL(V) (s,@) € C (W), z € C (I
such that «, — 0, &, —> 0,0 \, — O

Theorem 2.1 (Probabl“ty of I‘-typlcal set [3]) If >\n — 0 as n — 00, then there exist two sequences,

asn — oo and \,, satisfies {GI, J, K, bny &y An) and {nn (1, J, K, kn,&n, An) b
(IJ+IJK +I?J)log(n+1) +1logI —logv such  that  Gu(L, J, K, kin,6ny An) = 0 and
An = - >0, (L, J, K, biny &y An)  — 0, respectively.  Then, the
(19) number of elementsin the I'-typical set is bounded by
where
ve  omin_ Ty, (20) exp [n {H(P7|V) + H(T*[W) + H(IT[W) — ¢, }]
1<i,d' <I,1<5<J n
there exists a sequgnce {e j(I J,K,\,)} such that <63, (D)) <
en(I, 1K, M) — 0,andthen exp [n {H(T™|V) + H(TH W) + HTT[W) + 7, }] .

(27)
Pr(Cy (1)) =1—en(I, J, K, \y). (21) . _
" . ~ The ratio of the number df-typical sequences to that of all
Note thatnA,, — oo because of (19). This theorem implies empirical sequences € (S x A x R,)™ of n time steps is
that the probability of thd-typical set asymptotically goes

to one independently of the underlying probabilistic struc- Icy (1) . R T
tures,I'™, TR, andI'T. Next, the following theorem indi- TIK)" < exp [“{H(F [V)+H(I W)+H(I [W)+n,
cates the fact that all elements in theypical set are nearly

equi-probable. —logl —logJ — IOgKH — 0, (28)

Theorem 2.2 (Equi-probability of I'-typical sequence [3]) asn — oo. Hence, we can say that tiietypical set is quite

Ifs € C. (V) (s,a) € CZ (W), z € C} (') suchthat  small in comparison to the set of all empirical sequences.
kn — 0, & — 0, Ay — 0asn — oo, then there  Nonetheless, their existence is important enough that the total
exists a sequence {pn(l,J, K, kn, &ns An)} such that  probability is almost one.

on(I, J, K, Kn,y&n,y An) — 0. Then,

losv < 3 Analysisof Reinforcement L earning
n

_ 1Og Pr(z {H I™|V) + H(TR|W) + H(FT|W)} The process of return maximization (RM) in reinforcement
learning is analyzed using the AEP in this section. We first
22) give a review of temporal difference (TD) learning and typical
action selection (AS) strategies.

S_logu
n

+ A + pn,
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3.1 TD Learning and AS Strategy Whether the softmax AS or thegreedy AS is better is un-
clear and it may depend on the task and on human factors [4,
p. 31]. Added to this, the explicit role of the parameté=nd

e is also unknown. In the rest of this section we elucidate the
mathematical role of the parameters, or more concretely, their
effect on RM and the sensitivity of exploratory performance
with respect to the parameters.

Let Q;; denote the estimate of an action value called the
Q-function [4, chapter 3] with respect to a state-action pair
(siyaj) € & x A. Let A; be the set of indices of actions
available in a state; € S and let|4;| = J;. We useq,,

to denote the learning rate at time stepnd-~ to denote the
discount factor that controls the relative importance of an im-
mediate reward and delayed rewards. Foranryand:’ the
(one-step) TD learning [4, chapter 6] has the update form, 3.2 Performance of Exploration

Qij — Qij + ndQuji, (29) We assume that the policy is improved sufficiently slowly

such that the AEP holds. Figures 1 and 2 illustrate a rein-
wheredQ;;» is written as forcement learning process on the manifold spanned by
This manifold is called the information manifold (IM) [6].
0Qijy =7+ TR Qi — Qij (30)  Recall that for anyi, j the expected value @ ;; is denoted

) ) ) ) by Q;;. Letr; = (3, Q;;) for any3 in the softmax method
wherer denotes an immediate reward, in Q-learning [5], for anqr* = r(e, Q%) for anye in the e-greedy method. Let
example. The update is done after every transition from state */ *
action(s;, a;) to subsequent statg . By sufficient iterations e A TR T . .
of (29) for everyi, j, all the estimates of the Q-function con- We definel™ = (I'", I, I'") and write the set of™" as

N ot . i .
verge to the expected values. We denote the expected valug = {I|r™ = F } for notational convenience. The $tis
by Q7 2 E[Q,;] henceforth. In Q-learning the convergence given by changing the parameter of AS strategy, sughasd

is guaranteed under certain conditions such as sufficient iters Lgt us denote the ?et of best e;mpmca] sequences that yield
ations [5]. maximal return by{x}. The optimal policy matrix that has

Now we review the following two AS strategies which have th% largest probability of the s¢t'} appearing is denoted by

been employed in many cases. The softmax method [4, chapl ™ Where components are
ter 2] is the most popular strategy and is also termed the Boltz-

T™" be the policy matrix whose components are givemrby

man method when the exponential function is used. Recall P )1 if j = argmax; ca, Qjj . (34)
thatr;; denotes the probability that the agent chooses an ac- " 0 if j #argmaxjea, Q)
tion a; in a states;. The policy probability is defined as

Ny For example, in the softmax method we can write s =
i = (6,Qi5) = %, (31) {wjj = 7(00, Q};)}ij, and in thee-greedy method we can
i(B) also write it asT™ = {wjj = 7(0,Q5;)}ij- Also, we de-
where the partition function ig;(5) £ Y=, 4, exp(8Qi).  fineTt 2 (D™ T, I'T). We assume that the neighborhood
The parametes is gradually increased as— oo to promote  of the optimal matrix on the IM is smooth for the parameters
the acceptance of actions which may produce a good returnef the AS strategy, such asande. If the environment, or
Let us denote the value gfat time step: by 3,,. specifically, the reward matriR™ and the state transition ma-
In thee-greedy Method [4, chapter 2], with probability  trix I'" are constantl” varies only with the changes &~.
the agent randomly chooses an action. On the other hand, thelence the area of possib# on the IM is actually restricted.
agent chooses the best action with the largest estimated valugow we define a stochastic complexity (SC) which will play

with probabilityl — e. Thatis,;; is given by an important role in the later discussion.
T =7 (e,Qiy) = ; + (1 —¢)0,5, (32) Definition 3.1 (Stochastic complexity) The SCisdefined by
where ¢(T) £ H(C™|V) + H(CYW) + H(T'T[W).  (35)

i = {1 I: e maeA Ql_]/ : (33)  This is referred to as complexity since the valueydT’) is
0 ifj# argmaxjrea; Qi closely related to the algorithmic complexity [7].

The parametet is gradually decreased such that— 0 as We shall show that the SC sets the performance of explo-

n — oo. We denote the value efat time step: by ¢,,. ration. Within the framework of reinforcement learning the
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ward matrix TR and the state transition matrix I'" of the en-

vironment the performance of the exploration of the policy
Area given by (17) matrix I'" is given by the size |C} (T")| of the I'-typical set,
An which is determined essentially by the SC ¢(T).

Information manifold s implies that if the value of (T') is large, then the policy

is exploratory and that if the value is small, then the policy is
exploitative. Thus we can mathematically describe the term
“exploration” from the aspect of information theory. Using
Figure 1: Trajectory of updating ;; the property of this definition, a neat AS strategy has been
proposed in [8].

* /
D(I™ |07 | F (s

Updating@s Ini{ial r

3.3 Return Maximization

We will show the relationship between the SC and RM in re-
inforcement learning. Maximizing return corresponds to the
set of best empirical sequences having probability nearly one,
that is,C} (I') ~ {z'} under a proper AS strategy so that
the estimates of the Q-function eventually converge to the ex-
00 n pected values. Hence we consider thaf} c C} (T") and
then reduce th&-typical set such that} (I') ~ {z'}. Here
the key points are that

Figure 2: Asymptotic decrease &f,
e by updating the estimates we have to improve the pol-
icy matrix '™ as quickly as possible such that the

agent learns a policy based only on observed rewards because ~ typical set includes the empirical sequence having the
the optimal selections are not directly instructed. The agent ~ conditional type matril'™ , that is,

accordingly has to perform an explicit trial-and-error search S

for finding better actions, especially in the early stages of DA™ I (s)) < An, (36)
learning. Iq other w'o'rds, the agent is reqqired to gnlarge the (see Figure 1), and then while keeping (36)

set of possible empirical sequences, that is,ItHgpical set

in order to widely explore the environment. This is because e we are required to shut out empirical sequences except
the I'-typical set occurs with probability almost one accord- the best empirical sequence from Heypical set in or-

ing to Theorem 2.1. Such a policy for exploratory search is der to assign high probability to the best empirical se-
termed exploration. On the other hand, using estimates of  quence (see Figure 2).

the Q-function the agent has to select the best action With.l_he algorithm for the former is simply TD learning. It is

the largest estimate of the Q-function to maximize the fu- known that the convergence order of TD learning is at most

ture return. This aim corresponds to making Thaypical .
. . 1/y/n [9]. The goal of the latter is to make the number
set smaller, so that only few empirical sequences which yleIdOf elements in tha-typical set small while satisfying (36).

high return are allowed to be generated in practice. Such his leads to the result that the set of the best empirical se-

policy for RM is termed exploitation. This tradeoff is well- quences occurs with high probability because according to

known as the exploration-exploitation dilemma in reinforce- .
ment learning [4, chapter 2]. Theorem 2.3 states that the num:l'heorem 2.2 all th&-typical sequences of lengthhave the

ber of elements in thE-typical set is characterized by the SC same probability for sufficiently large. I_:rom Th_eorem 2.'3
(T and the quantity\,,. Since,, depends om the agent we see that the number of elements in Pypical set is
™ n dependent on the SG(T') and the quantity,,, and that the

can control only the SC by changing the AS strategy, and the .
larger the value ofi(T), the greater the number of tHe smaller each value is, the smaller the number of elements. Re-

typical sequences. Thus, this naturally leads to the foIIowingCall that by tuning the parameters of the AS gtrategy Wwe can
definiti control only the SC. This leads us to the question of how sen-
efinition. o .
sitive the parameters such @sande are for controlling the
Definition 3.2 (Performance of exploration) Under the re- SC. The following theorems answer this question.
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Theorem 3.1 (Relationship between 5 and SC) The value
of ¢(T") decreases as 3 increases. The derivative of ¢(T")
with respect to 3 is

W) <~ [ 8§ ( P
B Zl”{ 20Z:(3)? ; jzzl (@i = Qi)
exp(B(Qij + Qz‘j’))) } (37)

In particular, if 3 — oo, then
Y(T) — H(TYW) + H(ITT W), (38)
Theorem 3.2 (Relationship between ¢ and SC) The value

of ¢(I") decreases as ¢ — 0. The derivative of ¢(I") with
respecttoce is

dqé(gl“) _ Z”{(Jl _ 1) log<% +1 —g)

=1
1 €

In particular, if e — 0, then ¢ (T") coincides with (38).
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in the sense of information theory, and the fact that the RM
is characterized by the SE(T") and the quantity\,, under a
proper AS strategy. We can control only the SC by tuning the
parameters of the AS strategy, suchdaandes. We then ex-
amined the relationship between the parameters and the SC,
which is important for tuning, and showed the lower bound of
the convergence speed of the empirical sequences tending to
the best empirical sequence.
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4 Conclusions
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