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Abstract

Using the asymptotic equipartition property which holds on
empirical sequences we elucidate the explicit performance
of exploration, and the fact that the return maximization is
characterized by two factors, the stochastic complexity and
a quantity depending on the parameters of environment. We
also examine the sensitivity of stochastic complexity, which is
useful in appropriately tuning the parameters of the action se-
lection strategy, and show the lower bound of the convergence
speed of the divergence between the empirical sequence and
the best empirical sequence which produces a maximal return.
Nomenclature reinforcement learning, Markov decision pro-
cess, typical sequence, asymptotic equipartition property,
stochastic complexity

1 Introduction

The weak law of large numbers in information theory is
known as the asymptotic equipartition property (AEP) which
was first stated in [1] and then developed by the type method
in [2]. When a sequence of random variables is drawn in-
dependently according to an identical probability distribution
for many times, the AEP states that there exists the typical
set of the sequences with probability nearly one, that all el-
ements in the typical set are nearly equi-probable, and that
the number of elements in the typical set is given by an ex-
ponential function of the entropy of the probability distribu-
tion. In addition, the number of elements in the typical set
is quite small compared to the number of possible sequences.
The AEP also holds on empirical sequences generated from
a Markov decision process (MDP) in reinforcement learn-
ing [3]. It facilitates analysis of the learning process since
most of our attention can be focused on the typical set of the
empirical sequences. In this paper, with the AEP we eluci-
date the explicit performance of exploration, and the fact that
the return maximization is characterized by two factors, the

sum of conditional entropies and a quantity which depends
on the parameters of environment. The sum of conditional
entropies is referred to as stochastic complexity. We then ex-
amine the sensitivity of stochastic complexity, useful for ap-
propriately tuning the parameters of the action selection strat-
egy, and show that the lower bound of how fast the empirical
sequence coincides with the best empirical sequence which
yields a maximal return.

The organization of this paper is as follows. We introduce
some notation and the AEP on empirical sequences in Sec-
tion 2. Using the AEP we analyze the reinforcement learning
process in Section 3. Finally, we give some conclusions in
Section 4.

2 The AEP

We concentrate on the discrete-time MDP with discrete states
and actions in this paper. LetS � {s1, s2, . . . , sI} be the
finite set of states of the environment,A � {a1, a2, . . . , aJ}
be the finite set of actions, and�0 � {r1, r2, . . . , rK} ⊂ �
be the finite set of rewards which are discrete real numbers.
Notice that|S| = I , |A| = J , and|�0| = K. We assume
that elements in these sets are recognized without error by
the learner, hereinafter called the agent. We uset to denote
a time step. The stochastic variables of state, action, and re-
ward at time stept (t = 1, 2, . . . ) are written ass(t), a(t),
andr(t), respectively. Letx = {s(t), a(t), r(t)}nt=1 denote
the empirical sequence ofn time steps. The state sequence,
action sequence, and reward sequence of the empirical se-
quencex ∈ (S × A × �0)n are denoted bys = {s(t)}n

t=1,
a = {a(t)}nt=1, and r = {r(t)}nt=1, respectively. Let
p(1)(si) � Pr(s(1) = si) be the initial probability distri-
bution andp(1) � (p(1)(s1), p(1)(s2), . . . , p(1)(sI)). The
agent learns the optimal policy which produces the maxi-
mal return by observing the empirical sequence. We use the
term return to express the sum of rewards. The empirical se-
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quence is drawn according to an ergodic MDP specified by the
following three conditional probability distribution matrices.
Henceforth, the conditional probability distribution matrix is
simply called matrix. The policy matrix is anI × J matrix
defined by

Γπ �



π11 π12 . . . π1J

π21 π22 . . . π2J

...
...

. . .
...

πI1 πI2 . . . πIJ


 =




π(1)

π(2)

...
π(I)


 , (1)

whereπij � Pr(a(t) = aj |s(t) = si). According to this
matrix the agent selects an action in a state at each time step.
Note that actuallyΓπ is time-varying because the agent im-
proves the policy in the process of reinforcement learning.
However,Γπ tends to be constant as the policy goes to be op-
timal by the learning. The reward matrix is anIJ ×K matrix
given by

ΓR �




R111 R112 . . . R11K

R121 R122 . . . R12K

...
...

. . .
...

R1J1 R1J2 . . . R1JK

R211 R212 . . . R21K

...
...

. . .
...

RIJ1 RIJ2 . . . RIJK




=




R(11)

R(12)

...
R(1J)

R(21)

...
R(IJ)



, (2)

whereRijk � Pr(r(t) = rk|s(t) = si, a(t) = aj). The state
transition matrix is anIJ × I matrix defined by

ΓT �




T111 T112 . . . T11I

T121 T122 . . . T12I

...
...

. . .
...

T1J1 T1J2 . . . T1JI

T211 T212 . . . T21I

...
...

. . .
...

TIJ1 TIJ2 . . . TIJI




=




T(11)

T(12)

...
T(1J)

T(21)

...
T(IJ)



, (3)

whereTiji′ � Pr(s(t + 1) = si′ |s(t) = si, a(t) = aj).
The agent does not knowΓR andΓT of the environment but
the system is simulated and observed under any choice of
actions. We assume thatΓR andΓT are constant and that
for simplicity of analysisΓπ is fixed forn time steps where
n is sufficiently large. For notational simplicity we define
Γ � (Γπ,ΓR,ΓT). Since MDPs are characterized by the fi-
nite sets, the initial probability distribution, and the matrices,
we denote the MDP byM(S,A,�0,p(1),Γ).

2.1 Type of Empirical Sequence

Let ni (ni ≤ n) denote the number of times that a state
si ∈ S occurs in the empirical sequence ofn time steps,
x = (s,a, r) ∈ (S × A × �0)n. In a similar manner, let
nij (nij ≤ ni) be the number of occurrences oft such that
(s(t), a(t)) = (si, aj) ∈ S ×A, and letnijk (nijk ≤ nij) be
the number of occurrences oft such that(s(t), a(t), r(t)) =
(si, aj, rk) ∈ S ×A×�0 in the empirical sequence. With an
additional “cyclic” convention thats(n), a(n), andr(n) pre-
cedes(1), a(1), andr(1), let niji′ (niji′ ≤ nij) denote the
number of occurrences oft such that(s(t), a(t), s(t + 1)) =
(si, aj, si′) ∈ S × A × S in the empirical sequence. Note
that the cyclic convention is for simplicity of development.
The discussions in this paper strictly hold even if we do not
assume this convention. The relationship among the non-
negative numbersn, ni, nij , nijk, andniji′ is expressed as

n =
I∑

i=1

ni =
I∑

i=1

J∑
j=1

nij =
I∑

i=1

J∑
j=1

K∑
k=1

nijk =
I∑

i=1

J∑
j=1

I∑
i′=1

niji′ .

(4)
Now we define the type ofsi ∈ S by fi � ni/n. Also, the
joint type of(si, aj) ∈ S × A is defined asfij � nij/n. Let
us denote all the types and the joint types by

F (s) � (f1, f2, . . . , fI) (5)

and

F (s,a) �



f11 f12 . . . f1J

f21 f22 . . . f2J

...
...

. . .
...

fI1 fI2 . . . fIJ


 , (6)

respectively. In this case we say thats and(s,a) have the
typeF (s) and the joint typeF (s,a), respectively.

Conditional Type Relative to Policy If ni > 0 for all i,
then the conditional type of(si, aj) ∈ S ×A given a state se-
quences ∈ Sn is defined asgij � nij/ni. However, if there
existsi such thatni = 0, then we can not uniquely determine
the conditional type. To avoid such a case, we consider the
set of action sequences given any state sequence having type
F (s) andI × J matrixΦπ : S → A expressed as

Φπ �



g11 g12 . . . g1J

g21 g22 . . . g2J

...
...

. . .
...

gI1 gI2 . . . gIJ


 =




Gπ
(1)

Gπ
(2)
...

Gπ
(I)


 . (7)

In short,nij is decided byni andgij for everyi, j. The set of
action sequences, which is uniquely determined, is referred to
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asΦπ-shell [2, p. 31] and denoted byC n(Φπ). The entire set
of possible matricesΦπ for any state sequence with the type
F (s) is written asΛπ

n.

Conditional Type Relative to Reward Similarly, we con-
sider the set of reward sequences given any state and action
sequences, hereinafter termed state-action sequences, having
joint typeF (s,a) andIJ × K matrix ΦR : S × A → �0

denoted by

ΦR �




g111 g112 . . . g11K

g121 g122 . . . g12K

...
...

. . .
...

g1J1 g1J2 . . . g1JK

g211 g212 . . . g21K

...
...

. . .
...

gIJ1 gIJ2 . . . gIJK




=




GR
(11)

GR
(12)

...
GR

(1J)

GR
(21)

...
GR

(IJ)



. (8)

The set of reward sequences is termedΦR-shell and denoted
by Cn(ΦR). The entire set of possible matricesΦR for any
state-action sequences with the joint typeF (s,a) is written
asΛR

n .

Conditional Markov Type Relative to State Transition In
a slightly different manner, we need to deal with the condi-
tional Markov type. We consider the set of state sequences
such that the joint type isF (s,a) given any action sequence
andIJ × I matrixΦT : S ×A → S designated by

ΦT �




g111 g112 . . . g11I

g121 g122 . . . g12I

...
...

. . .
...

g1J1 g1J2 . . . g1JI

g211 g212 . . . g21I

...
...

. . .
...

gIJ1 gIJ2 . . . gIJI




=




GT
(11)

GT
(12)
...

GT
(1J)

GT
(21)

...
GT

(IJ)



. (9)

The set of state sequences is referred to asΦT-shell and de-
noted byCn(ΦT). The entire set of possible matricesΦT

such that the joint type isF (s,a) for any action sequence is
written asΛT

n .
For simplicity, we defineΦ � (Φπ,ΦR,ΦT) andΛn �

Λπ
n×ΛR

n ×ΛT
n . The set of empirical sequences that consists

of theΦπ-shell,ΦR-shell, andΦT-shell is calledΦ-shell and
denoted byCn(Φ) � Cn(Φπ)× Cn(ΦR) × Cn(ΦT). In this
case we write that the empirical sequence has the conditional
type matrixΦ.

2.2 Main Theorems

To show the AEP we have to introduce the following se-
quences.

Definition 2.1 (V- and W-typical sequences [3]) We as-
sume the existence of the following two unique stationary
probability distributions,

V � (v1, v2, . . . , vI) (10)

and

W �



w11 w12 . . . w1J

w21 w22 . . . w2J

...
...

. . .
...

wI1 wI2 . . . wIJ


 , (11)

and that as n → ∞ F (s) and F (s,a) tend to V and
W, respectively. The stationary probability distributions are
uniquely determined by the MDP, M(S,A,�0,p(1),Γ). In
this case, there exists a sequence of positive κn such that
κn → 0 as n → ∞, and if the type F (s) of a state sequence
s ∈ Sn satisfies

D(F (s)‖V) =
I∑

i=1

fi log
fi

vi
≤ κn, (12)

then we call the state sequence a V-typical sequence. The
set of V-typical sequences is denoted by Cn

κn
(V) � {s ∈

Sn|D(F (s)‖V) ≤ κn}. In a similar manner, there exists a
sequence of positive ξn such that ξn → 0 as n→∞, and if

D(F (s,a)‖W) =
I∑

i=1

J∑
j=1

fij log
fij

wij
≤ ξn (13)

holds, then the state-action sequences (s,a) ∈ (S × A)n

are referred to as W-typical sequences. We define the set
of W-typical sequences as Cn

ξn
(W) � {(s,a) ∈ (S ×

A)n|D(F (s,a)‖W) ≤ ξn}.
Then, let us define

D(Φπ‖Γπ|F (s)) �
I∑

i=1

J∑
j=1

figij log
gij

πij
, (14)

D(ΦR‖ΓR|F (s,a)) �
I∑

i=1

J∑
j=1

K∑
k=1

fijgijk log
gijk

Rijk
, (15)

D(ΦT‖ΓT|F (s,a)) �
I∑

i=1

J∑
j=1

I∑
i′=1

fijgiji′ log
giji′

Tiji′
. (16)

We give definitions of the typical sequence and the typical set
of empirical sequences, which will lead us to show that the
AEP holds for empirical sequences.
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Definition 2.2 (Γ-typical sequence and Γ-typical set [3])
If the matrix Φ ∈ Λn of the conditional types with respect
to an empirical sequence x = (s,a, r) ∈ (S × A × �0)n

satisfies

D(Φπ‖Γπ|F (s)) + D(ΦR‖ΓR|F (s,a))

+ D(ΦT‖ΓT|F (s,a)) ≤ λn, (17)

for any matrix Γ and positive number λn, then the empirical
sequence is called a Γ-typical sequence. The set of such em-
pirical sequences is also called the Γ-typical set and denoted
by Cn

λn
(Γ). That is, Cn

λn
(Γ) is given by

Cn
λn

(Γ) �
⋃

Φ∈Λn:D(Φπ‖Γπ|F (s))

+D(ΦR‖ΓR|F (s,a))+D(ΦT‖ΓT|F (s,a))≤λn

Cn(Φ).

(18)

We are in a position to show the following three theorems
regarding the AEP on empirical sequences.

Theorem 2.1 (Probability of Γ-typical set [3]) If λn → 0
as n→∞ and λn satisfies

λn − (IJ + IJK + I2J) log(n+ 1) + log I − log ν
n

> 0,
(19)

where
ν � min

1≤i,i′≤I,1≤j≤J
Tiji′ , (20)

there exists a sequence {εn(I, J,K, λn)} such that
εn(I, J,K, λn)→ 0, and then

Pr
(Cn

λn
(Γ)

)
= 1− εn(I, J,K, λn). (21)

Note thatnλn → ∞ because of (19). This theorem implies
that the probability of theΓ-typical set asymptotically goes
to one independently of the underlying probabilistic struc-
tures,Γπ, ΓR, andΓT. Next, the following theorem indi-
cates the fact that all elements in theΓ-typical set are nearly
equi-probable.

Theorem 2.2 (Equi-probability of Γ-typical sequence [3])
If s ∈ Cn

κn
(V), (s,a) ∈ Cn

ξn
(W), x ∈ Cn

λn
(Γ) such that

κn → 0, ξn → 0, λn → 0 as n → ∞, then there
exists a sequence {ρn(I, J,K, κn, ξn, λn)} such that
ρn(I, J,K, κn, ξn, λn)→ 0. Then,

log ν
n
− ρn ≤

− 1
n

log Pr(x)− {
H(Γπ |V) + H(ΓR|W) + H(ΓT|W)

}
≤ − logµ

n
+ λn + ρn, (22)

where

µ � min
1≤i≤I

p(1)(si), (23)

H(Γπ |V) � −
I∑

i=1

J∑
j=1

viπij logπij , (24)

H(ΓR|W) � −
I∑

i=1

J∑
j=1

K∑
k=1

wijRijk log Rijk, (25)

H(ΓT|W) � −
I∑

i=1

J∑
j=1

I∑
i′=1

wijTiji′ log Tiji′ . (26)

Finally, we present the theorem which implies that the number
of elements in theΓ-typical set is written as an exponential
function of the sum of the conditional entropies.

Theorem 2.3 (Bounds of number of Γ-typical sequences [3])
If s ∈ Cn

κn
(V), (s,a) ∈ Cn

ξn
(W), x ∈ Cn

λn
(Γ)

such that κn → 0, ξn → 0, λn → 0
as n → ∞, then there exist two sequences,
{ζn(I, J,K, κn, ξn, λn)} and {ηn(I, J,K, κn, ξn, λn)},
such that ζn(I, J,K, κn, ξn, λn) → 0 and
ηn(I, J,K, κn, ξn, λn) → 0, respectively. Then, the
number of elements in the Γ-typical set is bounded by

exp
[
n

{
H(Γπ |V) + H(ΓR|W) + H(ΓT|W)− ζn

}]
≤ |Cn

λn
(Γ)| ≤

exp
[
n

{
H(Γπ |V) + H(ΓR|W) + H(ΓT|W) + ηn

}]
.

(27)

The ratio of the number ofΓ-typical sequences to that of all
empirical sequencesx ∈ (S ×A ×�0)n of n time steps is

|Cn
λn

(Γ)|
(IJK)n

≤ exp
[
n
{
H(Γπ |V)+H(ΓR|W)+H(ΓT|W)+ηn

− log I − log J − logK
}]
→ 0, (28)

asn → ∞. Hence, we can say that theΓ-typical set is quite
small in comparison to the set of all empirical sequences.
Nonetheless, their existence is important enough that the total
probability is almost one.

3 Analysis of Reinforcement Learning

The process of return maximization (RM) in reinforcement
learning is analyzed using the AEP in this section. We first
give a review of temporal difference (TD) learning and typical
action selection (AS) strategies.

4
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3.1 TD Learning and AS Strategy

Let Qij denote the estimate of an action value called the
Q-function [4, chapter 3] with respect to a state-action pair
(si, aj) ∈ S × A. Let Ai be the set of indices of actions
available in a statesi ∈ S and let|Ai| = Ji. We useαn

to denote the learning rate at time stepn andγ to denote the
discount factor that controls the relative importance of an im-
mediate reward and delayed rewards. For anyi, j andi ′ the
(one-step) TD learning [4, chapter 6] has the update form,

Qij ← Qij + αnδQiji′ , (29)

whereδQiji′ is written as

δQiji′ = r + γ max
j′∈Ai′

Qi′j′ −Qij , (30)

wherer denotes an immediate reward, in Q-learning [5], for
example. The update is done after every transition from state-
action(si, aj) to subsequent statesi′ . By sufficient iterations
of (29) for everyi, j, all the estimates of the Q-function con-
verge to the expected values. We denote the expected value
byQ∗

ij � E[Qij] henceforth. In Q-learning the convergence
is guaranteed under certain conditions such as sufficient iter-
ations [5].

Now we review the following two AS strategies which have
been employed in many cases. The softmax method [4, chap-
ter 2] is the most popular strategy and is also termed the Boltz-
man method when the exponential function is used. Recall
thatπij denotes the probability that the agent chooses an ac-
tion aj in a statesi. The policy probability is defined as

πij � π (β,Qij) =
exp(βQij)

Zi(β)
, (31)

where the partition function isZi(β) �
∑

j′∈Ai
exp(βQij′ ).

The parameterβ is gradually increased asn→∞ to promote
the acceptance of actions which may produce a good return.
Let us denote the value ofβ at time stepn by βn.

In theε-greedy Method [4, chapter 2], with probabilityε,
the agent randomly chooses an action. On the other hand, the
agent chooses the best action with the largest estimated value
with probability1− ε. That is,πij is given by

πij � π (ε,Qij) =
ε

Ji
+ (1− ε)θij , (32)

where

θij �
{

1 if j = arg maxj′∈Ai Qij′

0 if j 	= arg maxj′∈Ai Qij′
. (33)

The parameterε is gradually decreased such thatε → 0 as
n→∞. We denote the value ofε at time stepn by εn.

Whether the softmax AS or theε-greedy AS is better is un-
clear and it may depend on the task and on human factors [4,
p. 31]. Added to this, the explicit role of the parametersβ and
ε is also unknown. In the rest of this section we elucidate the
mathematical role of the parameters, or more concretely, their
effect on RM and the sensitivity of exploratory performance
with respect to the parameters.

3.2 Performance of Exploration

We assume that the policy is improved sufficiently slowly
such that the AEP holds. Figures 1 and 2 illustrate a rein-
forcement learning process on the manifold spanned byΓ.
This manifold is called the information manifold (IM) [6].
Recall that for anyi, j the expected value ofQ ij is denoted
byQ∗

ij . Letπ∗
ij = π(β,Q∗

ij) for anyβ in the softmax method
andπ∗

ij = π(ε,Q∗
ij) for any ε in the ε-greedy method. Let

Γπ∗
be the policy matrix whose components are given byπ ∗

ij .

We defineΓ∗ � (Γπ∗
,ΓR,ΓT) and write the set ofΓ∗ as

Ω � {Γ|Γπ = Γπ∗} for notational convenience. The setΩ is
given by changing the parameter of AS strategy, such asβ and
ε. Let us denote the set of best empirical sequences that yield
maximal return by{x†}. The optimal policy matrix that has
the largest probability of the set{x†} appearing is denoted by
Γπ†

where components are

π†
ij =

{
1 if j = arg maxj′∈Ai Q

∗
ij′

0 if j 	= arg maxj′∈Ai Q
∗
ij′
. (34)

For example, in the softmax method we can write it asΓπ†
=

{π†
ij = π(∞, Q∗

ij)}ij , and in theε-greedy method we can

also write it asΓπ†
= {π†

ij = π(0, Q∗
ij)}ij . Also, we de-

fineΓ† � (Γπ†
,ΓR,ΓT). We assume that the neighborhood

of the optimal matrix on the IM is smooth for the parameters
of the AS strategy, such asβ andε. If the environment, or
specifically, the reward matrixΓR and the state transition ma-
trix ΓT are constant,Γ varies only with the changes ofΓπ.
Hence the area of possibleΦ on the IM is actually restricted.
Now we define a stochastic complexity (SC) which will play
an important role in the later discussion.

Definition 3.1 (Stochastic complexity) The SC is defined by

ψ(Γ) � H(Γπ |V) + H(ΓR|W) + H(ΓT|W). (35)

This is referred to as complexity since the value ofψ(Γ) is
closely related to the algorithmic complexity [7].

We shall show that the SC sets the performance of explo-
ration. Within the framework of reinforcement learning the
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Γ∗

Γ
Area given by (17)

Information manifold

Initial Γ
UpdatingQij

λn

D(Γπ∗‖Γπ|F (s))

Figure 1: Trajectory of updatingQ ij

Γ∗

Γ

∞

Ω

n

λn

Figure 2: Asymptotic decrease ofλn

agent learns a policy based only on observed rewards because
the optimal selections are not directly instructed. The agent
accordingly has to perform an explicit trial-and-error search
for finding better actions, especially in the early stages of
learning. In other words, the agent is required to enlarge the
set of possible empirical sequences, that is, theΓ-typical set
in order to widely explore the environment. This is because
theΓ-typical set occurs with probability almost one accord-
ing to Theorem 2.1. Such a policy for exploratory search is
termed exploration. On the other hand, using estimates of
the Q-function the agent has to select the best action with
the largest estimate of the Q-function to maximize the fu-
ture return. This aim corresponds to making theΓ-typical
set smaller, so that only few empirical sequences which yield
high return are allowed to be generated in practice. Such a
policy for RM is termed exploitation. This tradeoff is well-
known as the exploration-exploitation dilemma in reinforce-
ment learning [4, chapter 2]. Theorem 2.3 states that the num-
ber of elements in theΓ-typical set is characterized by the SC
ψ(Γ) and the quantityλn. Sinceλn depends onn the agent
can control only the SC by changing the AS strategy, and the
larger the value ofψ(Γ), the greater the number of theΓ-
typical sequences. Thus, this naturally leads to the following
definition.

Definition 3.2 (Performance of exploration) Under the re-

ward matrix ΓR and the state transition matrix ΓT of the en-
vironment the performance of the exploration of the policy
matrix Γπ is given by the size |Cn

λn
(Γ)| of the Γ-typical set,

which is determined essentially by the SC ψ(Γ).

This implies that if the value ofψ(Γ) is large, then the policy
is exploratory and that if the value is small, then the policy is
exploitative. Thus we can mathematically describe the term
“exploration” from the aspect of information theory. Using
the property of this definition, a neat AS strategy has been
proposed in [8].

3.3 Return Maximization

We will show the relationship between the SC and RM in re-
inforcement learning. Maximizing return corresponds to the
set of best empirical sequences having probability nearly one,
that is,Cn

λn
(Γ) 
 {x†} under a proper AS strategy so that

the estimates of the Q-function eventually converge to the ex-
pected values. Hence we consider that{x†} ⊂ Cn

λn
(Γ) and

then reduce theΓ-typical set such thatCn
λn

(Γ) 
 {x†}. Here
the key points are that

• by updating the estimates we have to improve the pol-
icy matrix Γπ as quickly as possible such that theΓ-
typical set includes the empirical sequence having the
conditional type matrixΓπ∗

, that is,

D(Γπ∗‖Γπ|F (s)) ≤ λn, (36)

(see Figure 1), and then while keeping (36)

• we are required to shut out empirical sequences except
the best empirical sequence from theΓ-typical set in or-
der to assign high probability to the best empirical se-
quence (see Figure 2).

The algorithm for the former is simply TD learning. It is
known that the convergence order of TD learning is at most
1/
√
n [9]. The goal of the latter is to make the number

of elements in theΓ-typical set small while satisfying (36).
This leads to the result that the set of the best empirical se-
quences occurs with high probability because according to
Theorem 2.2 all theΓ-typical sequences of lengthn have the
same probability for sufficiently largen. From Theorem 2.3
we see that the number of elements in theΓ-typical set is
dependent on the SCψ(Γ) and the quantityλn, and that the
smaller each value is, the smaller the number of elements. Re-
call that by tuning the parameters of the AS strategy we can
control only the SC. This leads us to the question of how sen-
sitive the parameters such asβ andε are for controlling the
SC. The following theorems answer this question.
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Theorem 3.1 (Relationship between β and SC) The value
of ψ(Γ) decreases as β increases. The derivative of ψ(Γ)
with respect to β is

dψ(Γ)
dβ

=
I∑

i=1

vi

{
−β

2(Zi(β))2

J∑
j=1

J∑
j′=1

(
(Qij −Qij′)2

exp(β(Qij +Qij′ ))
)}

. (37)

In particular, if β →∞, then

ψ(Γ)→ H(ΓR|W) + H(ΓT|W). (38)

Theorem 3.2 (Relationship between ε and SC) The value
of ψ(Γ) decreases as ε → 0. The derivative of ψ(Γ) with
respect to ε is

dψ(Γ)
dε

=
I∑

i=1

vi

{(
1
Ji
− 1

)
log

(
ε

Ji
+ 1− ε

)

+
(

1− 1
Ji

)
log

ε

Ji

}
. (39)

In particular, if ε→ 0, then ψ(Γ) coincides with (38).

We omit the proofs because of the limitation of paper length.
Note that from Definition 3.2 (37) and (39) denote the sen-
sitivity for the performance of exploration. The sensitivity
may be an important guide for tuning the parameters appro-
priately. The main difference between the two methods is that
estimates of the Q-function affect the derivative of the SC di-
rectly in the softmax method but not in theε-greedy method.
Next, we will consider another important factorλn for mak-
ing the number of elements in theΓ-typical set smaller. Fig-
ure 2 shows the changes ofλn with n where the lower bound
of λn is given by (19). The lower bound suggests that the con-
vergence rate ofD(Φn‖Γ) going to zero is at mostlogn/n
and its coefficient is(IJ + IJK + I2J). This means that
we can not accomplish the RM faster than this rate even if we
know all the values ofQ∗

ij in advance. The coefficient also
implies that in applications a lot of time steps are required for
agreement between the current matrixΓ and the matrixΦ of
the conditional types regarding the empirical sequence when
the state, action, and reward sets are large.

4 Conclusions

In this paper, using the AEP on empirical sequences we elu-
cidated that the SC exhibits the performance of exploration

in the sense of information theory, and the fact that the RM
is characterized by the SCψ(Γ) and the quantityλn under a
proper AS strategy. We can control only the SC by tuning the
parameters of the AS strategy, such asβ andε. We then ex-
amined the relationship between the parameters and the SC,
which is important for tuning, and showed the lower bound of
the convergence speed of the empirical sequences tending to
the best empirical sequence.
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