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Abstract 
We develop a mathematical framework of 
continuum neural field theory as the beginning 
point for an analysis of the global brain. 
Arguments for and against this approach are 
developed. Applications to cortical dynamics and 
learning in somato-sensory cortex, visual cortex 
and motor control are briefly reveiewed. 
Extensions to a broader range of brain systems, 
including attention and emotions, are outlined. 
Open problems are listed to conclude the paper. 

1. Introduction 
The brain is an amazingly complex dynamical 
system. This has been found to be true at all 
levels of its investigation: from overall dynamics 
of the global brain down to the functioning of 
synapses, involved with a wealth of different 
neuro-chemicals. However I want to contrast 
those studies that get down to what is correct to 
call the ‘nitty-gritty’ of such micro-processing as 
compared to those that take a more global view 
The former tasks are involved with systems of 
variables more controllable than in the global 
case, as are the possibilities of performing 
experiments to test predictions of models. That is 
even possible at a still higher level, as for 
example in recent careful ‘bottom-up’ models of 
the cerebellum in its role in conditioned learning 
[1]. However there are only few detailed models 
of the dynamical interactions of modules across 
the vast reaches of the brain. Even these tend to 
be based on simulations, and not any 
mathematical principles. In this paper we take a 
step towards proposing a program to attempt to 
lift our modelling and analysis sights higher to 
the global brain. We do that in terms of recent 
functional proposals for overall control systems 
in the brain: of attention [2, 3], of motor control 
[4, 5], of emotions  [6, 7] and even of 
consciousness [8]. 
   To advance in this task of analysing the global 
brain, we have still to consider the level we will 
use to model it. Do we take it lobe by lobe, or 
module by module, or column by column, or 
neuron by neuron, or even down at synaptic 
level, or even lower at molecular level? The 
principle I propose to start with to attack the 
brain globally is to take it as composed of the 

simplest sorts of components, and try to 
determine what these could achieve. I will use 
functional guides coming from control theory to 
indicate how the different modules are expected 
to function together, either in attention, motor 
response or in emotion processing.  
   I start this program in the next section, where I 
present the basic components of the approach. 
This is then formulated in detail mathematically 
in the following section, and expected results 
from the mathematical analysis are developed in 
section 4. The paper concludes with a conclusion 
in section 5. 
2. The Brain’s Basic Components 
We have already discussed the main problem we 
face in such a program: it possesses too much 
complexity everywhere we look. To underline 
this point, we have to face up to  the hierarchy 
composed of: 

• Chemical components of synapses  
• Channel variable dynamics for each 

synapse 
• Overall dynamics of each compartment 
• Overall dynamics of each neuron 
• Overall dynamics of each column  
• Overall dynamics of each module 
• Overall dynamics of the overall brain. 

If each level were attempted to be modelled 
faithfully we would have enormous complexity 
of the overall system by the time we arrive at the 
overall brain itself. But then that is the brain in 
reality; we have to try to face up to it .  
  One way to tackle such complexity is  by 
making a sequence of ever more complex 
approximations. The starting point would then 
reduce to a problem which looks as if it has a 
chance of being solved reasonably well. Further 
additions of complexity, going back up the bullet 
points above, would bring as back to the brain in 
all its complexity. However we would at least 
have some idea of what the powers were of the 
basic ‘first approximation’, and what further 
powers are needed, and might be added, by the 
further steps going up the ladder of bullet points. 
   The first step– of formulating the basic or 
simplest approximation–is the most important. It 
must be so structured as to lead us to expect 
interes ting features that would be able to lead to 
some of the true powers of the brain in reality. 
But it must be simple enough to be relatively 
soluble (where that means existence theorems 
but not necessarily analytic forms of solution are 
obtainable).  
   I want to propose a particular first 
approximation which has drawn considerable 
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interest, but only at the single (or few) module 
level. It is that of continuum neural field theory 
(CNFT). This wa s started in 1977 by Amari [9] 
who proved some remarkable features of a 
certain class of CNFT in 1-dimension: the 
existence of long-term solutions, or bubbles of 
restricted neural activity. This  was extended 
more recently [10] to the 2-dimensional case. A 
little later Amari and colleagues developed a 
mathematical analysis of learning of afferents in 
the CNFT framework, in terms of the 
distribution of inputs [11]. That has since been 
applied to the brain in a variety of ways: 
showing the development of orientation 
selectivity in a structured form in V1 [12 ], 
supporting various illusion in visual perception 
[13}, the unmasking features of somato-sensory 
cortex when certain components of the inputs 
were damaged (and agreement with experimental 
results on this unmasking) [14, 15], various 
applications to psychological experiments [16], 
applications in motor control [17, 18, 19].  
   All of these applications show the value of 
CNFT for modelling local processing, by one or 
two modules, in the brain. However I want to 
extend this approach to a framework of global 
brain processing. The simplest way to proceed 
on this is to take hard-wired interacting CNFTs 
for the modules across the brain, and attempt to 
solve the resulting dynamics, or at least obtain 
general features of this dynamics. The next step 
is to include learning as  done by Amari and his 
colleagues in their move from [9] dynamics to 
afferent learning [11]. 
3. Mathematics of the Simple Brain 
A CNFT model is based on the approximation of 
a module of neurons as composed of a two-
dimensional sheet of neurons, with the neuron at 
position r on the sheet having membrane 
potential V(r). The simplification in this ‘sheet-
like’ assumption allows us to consider many 
neurons at once, although we can relatively 
easily reduce the sheet back to a finite number of 
neurons by using the localised distributions of 
neurons at a finite set of points on the sheet. 
   The dynamics of the neurons is also greatly 
simplified by assuming a graded response pattern 
for each neuron output (although this can be 
extended to spiking neurons if needed). Thus the 
output of each neuron is taken to be some 
function f( ) of its potential; the simplest case is a 
step function, although results have been 
obtained for more general sigmoid functions. 
Thus the simplest dynamics is taken as  
tdV( r  )/dt=-V( r )+w* f(V) ( r )+I( r)-h     (1) 

where I is the external input to the module at that 
point, w( r, r’ ) denotes the lateral connection 
strength between the neuron at r’ and that at r, -h 
is a constant inhibitory bias to all neurons to 
assure  stability and suitable competition between 
neurons, and * is the usual symbol for the 
convolution product taken over the positions of 
the module.  
   We now extend (1) to a set of interacting 
modules as 
? dV(r)/dt=-V( r )+W*f( V) (r)+I(r)-H     (2) 
where the extension of (1) to (2) is achieved by 
taking V to be a vector-valued field of membrane 
potentials (each component denoting the neural 
field for a given module),  
W( r’, r  ) now denoting the matrix of field 
connections, with diagonal connections being the 
lateral one w in (1), the off-diagonal ones being 
those connecting different modules, -H is now a 
diagonal matrix, with constant values in each 
entry for a given module although with possible 
differences across modules to allow different 
levels of overall inhibition, and I denoting a 
vector field of external inputs, each component 
again being associated with a given neural field 
module; the matrix ?  denotes a diagonal matrix 
of time constants (where also in (1) this can be 
extended to different time constants for different 
neuron positions if so desired). We note that we 
are simplifying by taking the same co-ordinates 
for each module; again that can be generalised. 
Further we are only taking neurons of the same 
type in (1) and (2); again that can be extended to 
those of inhibitory and excitatory form or of 
different sub-populations, by suitably extending 
the notation in these equations.  
   We now indicate some of the features expected 
from (2), extending those possessed by (1) – 
bubble existence, dynamics of bubbles, learning 
structures.  
a) Basic Features of the Dynamics 
A Liapunov function can be derived for the 
dynamics of (2) extending that for (1) in the case 
of symmetric connection matrix W (across 
modules as well across the lateral connections in 
each module), as in [17] , thus providing general 
stability arguments.  
b) Existence of Bubbles  
The one- and two-dimensional bubble analyses 
of [9] and [10], and the many simulations in the 
references [12 – 19], lead to the expectation that 
there will exist multiple bubbles, across a range 
of modules. It is possible to develop equations 
for coupled bubbles from (2); that will be 
described elsewhere. 
c) Dynamics of Bubbles  
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Bubbles have been found [9 – 19] to driven to 
flow to regions of highest input. A similar 
situation is expected to occur for the coupled 
bubbles in the expanded version (2) of NFT; the 
nature of these bubbles will be decsribed. 
d) Learning Structures  
The original one-dimensional work of [11] was  
extended in [10] to two dimensions and to 
applications to specific brain modules in [12 – 
19]. The most crucial feature of this study was 
the presence and exploitation of instability in the 
learning law dynamics, producing discontinuous 
periodic structures mapping higher dimension 
input spaces down to the two-dimensional sheet 
in a clearly defined, even analytic, manner. 
Similar structures are to be expected in the 
extended case of (2). How this applies when 
variations of the lateral connection weight 
functions are included (as described below to 
encode genetic memory) will be discussed in 
detail.  
4. Insertion of Control Structures 
So far we have only extended the standard CNFT 
model of a single module to that of several such 
modules, without any understanding of how 
functional differentiation can be included in the 
model. We now turn to that important aspect. To 
justify our approach we need to accept that we 
cannot expect our extended model to learn its 
feed-forward and feedback connections all on its 
own, without any use of genetic memory. This 
will have been built up over many millions of 
years by pressure of the environment. It has led 
to crucial differences between modules that 
allow them to be differentiated into input 
processing modules, higher level control 
modules and response modules. The first and 
third of these modules have already been 
dis cussed in the brain context in [12-19]. Here 
we turn specifically to the second class of 
modules, those for attention control, by suitable 
assumptions on the lateral connection matrix W: 
by depth and width of the lateral connection 
matrix internal to a module. This a ffects the size 
of bubbles, and the overall level of the WTA 
nature of the module. The higher level modules 
in parietal lobe will therefore be allocated large 
values of inhibitory connections so as to provide 
a strong bias towards competition and hence 
generation of attention control signals. The 
feedback signals will also be sculpted initially by 
hand so as to provide excitation to lower level 
sites, as well as more distributed inhibition. 
At the same  time the possibility of applying 
developmental knowledge to the learning process 
will also be considered. This will be achieved by 

including learning in an incremental fashion, so 
that lower level representations will be learnt, 
and stabilised, before further learning under top-
down control will be analysed. Furthermore the 
manner in which goal representations in 
prefrontal cortex could arise will be considered.  
   Emotion will be added by addition of ‘valence’ 
modules (amygdale and orbito-frontal cortex), 
following the emotion brain architecture already 
presented elsewhere [7], but now represented in 
the CNFT framework.  
5. Results of the Program 
The basic results are of three sorts: 
1) Coupled bubble formation and dynamics, 
under simple feed-forward- & feedback coupling 
assumptions, with sizes and expected influences 
of bubbles on each other determined by relative 
parameter choices and fan-in values in the 
various modules; 
2) Learning of cortical representations, both of 
feedback and feed-forward form, supporting 
topographic spatial and localised object 
representations (using pre-specified fan-ins 
depending on the site of the CNFT module being 
considered. 
3) Provision of a basis for addition of further 
complexity into the system, as well as applying 
other criteria, such as information maximisation, 
to constrain the approach. 
6. Conclusions 
A general framework has been developed to 
attack the brain. It allows stable state analysis as 
well as extension to the temporal dynamics of a 
set of interacting CNFT modules. Learning 
presents also dynamical features that allow the 
analysis of pattern structure of the synaptic 
weights. The nature of emotional modulation has 
yet to be properly inserted by use of reward 
learning, but this will be included in subsequent 
vers ion of the over CNFT brain model. 
 Much work lies ahead, but general features will 
be obtainable that will indicate the value of the 
approach. 
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