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Abstract

A cognitive vision neuronal network based on leaky
integrate-and-fire (LIF) neurons is proposed for object
recognition and depth analysis. In this network every
LIF neuron is able to capture the edge flowing through
it and record the temporal information. If the neuron is-
sues a spike, the temporal information will be encoded
by the time constant of the spike potential and transferred
to its successor neuron through synapses. The successor
neuron, on reception of the spike, will check whether that
edge arrives at its sensor. In the case that both events
synchronise the successor neuron will fire to confirm the
correct edge propagation. Meanwhile, in the process the
spike-timing-dependent plasticity (STDP) is employed to
achieve the suitable synapse efficacies to reject spurious
edge propagation. On recognition of the effective CMOS
realisation of LIF neuron, our model aims to be a biolo-
gically inspired neuromorphic system amenable to aVLSI
implementation.

1 Introduction

Early cognitive vision is one of the most important per-
ceptive functions in the mammalian cerebral cortex. In
cortical computation object recognition and the extrac-
tion of distance between observer and object, i.e., the
depth information, are closely related intelligent activit-
ies. Although one of the most popular approaches for
depth perception from motion parallax is to use binocular
stereopsis [1][2][3], it is a common sense that people can
still perceive the depth information with even the single
eyes. Therefore, some more intriguing mechanism must
be underlying the early cognitive vision functionalities
with which the single eyes, instead of the cooperation of
two or more eyes, are good enough to receive sufficient
information for cortical computing. During information
processing in the visual cortex, many bioelectrical sig-
nals are exchanged between cortical neurons, across their

synaptic interconnections. When modelling visual cor-
tex processing a dynamic scene can be modelled as an
optical flow field, which can, in turn, be mapped on to
a neuronal network. A possible, simple network struc-
ture has neurons placed along axes arranged radially from
the optical flow field centre with only nearest-neighbour,
on-axis connections. The characteristics of a dynamic
scene can thus be reconstructed by local computation in
neurons based upon the optical flow field [4][5]. On the
other hand, recent advances in Neuroscience suggest that
spike-timing-dependent plasticity (STDP) could be the in-
trinsic mechanism underlying synaptic plasticity in cereb-
ral visual cortex region to coordinate pre- and postsyn-
aptic neuronal activities within a critical time window
to conduct information storage and processing [6][7][8].
This discovery provides an opportunity to develop a bio-
logically plausible cognitive model for aVLSI implement-
ation.

In this work we have modelled a large-scale leaky
integrate-and-fire (LIF) neuronal network in the same ra-
dial network arrangement. The model uses edge-sensitive
pixels to capture the position and speed of movement of
features in a moving scene. Subsequently, object iden-
tification is achieved and depth information is recovered.
In this example, we have restricted movement to a straight
line, with a constant relative speed between a moving cog-
nitive model and the static scene. The basic component of
our network is a simplified LIF neuron with two excitatory
afferent synapses and one efferent synapse. In operation
a neuron in the network encodes the edge propagation by
using the decay rate of dynamic membrane threshold and
excitatory postsynaptic potential (EPSP) to associate the
neuron’s response with synchronised or unsynchronised
inputs of its two afferent synapses. We will show that this
LIF neuron component is fundamentally a leakage coin-
cidence detector with a window mechanism. The window
size is determined by the afferent synapse efficacy which
is adapted by STDP rule. By incorporating adaptation this
novel LIF-based network aims to be a neuromorphic sys-
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Figure 1: A schematic circuit diagram and simulation pulse stream propogation in one afferent pathway. (a) Two synapses
converge to an IF neuron. (b1) Poisson � -function current pulse stream propogates from the dendritic input terminals ��������
	���
 to
(b2) dendritic output terminals �������� 	���
 , and (b3) induce the EPSPs � ��� � �� 	���
 , where dashed line represents the neuron threshold.

tem capable of emulating some functionalities of retina
and visual cortex.

2 Model

In order to achieve a balance between the image resolu-
tion and simulation time (hardware cost), we choose em-
pirically ����� axes radially arranged from the optical flow
field centre. The number of LIF neurons allocated to every
axis is the same and depends on the resolution of edge-
sensitive pixel array. For a ��� �"!#��� � pixel array �%$ neur-
ons are aligned on every axis with the hyperbolically in-
creased distance from the flow field centre.

2.1 Single neuron and coincidence of inputs

Each neuron in the model has two identical excitatory
synapses configured to accept pulsed inputs. The syn-
apses connecting the previous neighbouring neuron and
the pixel sensor are referred to as the flow synapse and the
receptive synapse, respectively. For analytical simplicity
we make two assumptions. &�')( No delay is associated
with input pulse propagation within the synapses. &)'�')(
The IF neuron fires only in response to EPSPs induced
by a pair of synaptic inputs from the two different
synapses. No individual input pulse or consecutive pulses
from a same synapse can activate the neuron. Fig.1&�*�( is a schematic diagram of such LIF neuron, and
fig.1 &)+,� (.-/&�+10�( are the different stages as a pulse stream
propagates from a previous neuron to current one.

The sub-threshold membrane status when such a pair is
presented is:-

243�576�598;:,<>=�?8;=A@CB 5ED B &GFH(�IKJ 5MLEN�O�P�Q1RN3 P�Q1R 8;SUT)VXWY <Z=�?8;= @ D[O\P�Q�RN &GFH(�IK] N L_^.` &aF D F ^ ( (1)

where
3b5c6d5

and
3 PdQ�R are the membrane and synaptic time

constants respectively, J 5 is the membrane resistance,] N
is the weight of a synapse,

` &GF D F ^ ( is a
`
-function

dendritic input at time F ^ ,
O�PdQ�RN &GFH( is the current pulse at

the post-dendrite terminal, B &GFH( is the EPSP induced byO�P�Q1RN &GFH( , in our case ' @ �\eH� .

The firing threshold of an IF neuron is a combination of

an exponentially decaying threshold fg&aFH( @ *�h\ikjl jnm and
an intersecting constant threshold fg&GFH( @ f�o . The use
of such a dynamic threshold for pattern formation is not
biologically implausible [9][10]. The threshold equation
is then:-

f =�p @ 2 *�h i/jl jGm if �rq_Fsq Dt3 =�p.uGv#wUxyf o if
D[3 =�pzunv w xy|{ F (2)

where * is the threshold value at F @ � , the time when
the previous neighbouring neuron fires,

3 =�p is the expo-
nential threshold decay rate, f o is the constant threshold
value.

Dt3 =)p.uGv#wUxy is a time instant when the predicted fea-
ture arrives at the neuron. If the neuron is depolarised by
its flow synapse at time F , we would expect it to be fur-
ther depolarised by its receptive synapse in a time range
of } F D~3 =�p uGv w xy D�� F edF D~3 =�p uGv w xy I � F�� , where

� F
is the response window to be determined by the adapta-
tion mechanism. If the depolarisation from the receptive
synapse is within the expected response window then the
neuron issues a spike and its membrane potential is reset.
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Figure 2: The geometrical projection of a point on to a retina through the light rays (side view), the dark circles are neurons 	��,
 ,
and the schematic layout of a retina, the small circles are neurons (top view) 	��X
 .
2.2 Adaptation

We aim to make this neuromorphic reformulation of
the depth-recovery algorithm adaptive, and thus robust
against inevitable inaccuracy in circuits and fabrication
processes. We use the TAH learning rule, which responds
to spike synchrony, or near-synchrony. The adaptation of
each neuron in the artificial retina potentiates or depresses
the receptive synapse weight by a small amount according
to whether the depolarisation from the receptive synapse
is before or after the predicted time instant. The flow syn-
apse weight is held constant for the model simplification.
The adaptation scheme is:-

� &�] ( @
���� ���	��
 h j
� j��������l�� if F { F���� 6 8D

� i h i j
��j��������l � if F��_F���� 6 8� if F @ F ��� 6 8 (3)

where f(w) is the synaptic weight change, � � 
 e 3 
��and � � i e 3 i � are the initial amplitude and decay constant
of potentiation and depression, respectively and F�� � 6 8 is
the predicted time instant. In an initial stage, the untrained
weight of each neuron is set to a value corresponding to
a very narrow window size, suitable for imperfection-free
circuitry only. This idealised set-point corresponds to the
origin in the TAH learning curve. As the neural and pixel
circuits are not, of course, actually ideal, the TAH process
will modify the window size.

2.3 Network - the retinotopic application

Recently Wörgötter et al. [4] devised a feature-based
approach to the recovery of depth information from radial
flow fields. The two key steps in the algorithm are: &X�U(
calculation of the object coordinates in the environment;&���( a predictive mechanism to compare the predicted
and actual time of arrival of an edge feature for pattern

recognition and to improve noise rejection. A temporal
tolerance or “window” is associated with neurons, which
are arranged radially in the focal plane. At an individual
pixel/neuron, a previously calculated edge is accepted if
the predicted and actual arrival time of that edge feature
are within the neuron’s tolerance window. Otherwise the
edge coordinates are rejected as spurious. We implement
this mechanism as a spike-based scheme. Physiologically,
we assume that the scenes will be mapped onto an optical
flow field by the retina, and the optical flow information
will be further processed by the cerebral visual cortex.
By adopting the aforementioned model we can artificially
encode the vision activities with a large-scale neuronal
network and, further design an artificial vision device
through the phenomenological model, which is also
amenable to aVLSI implementation.

We consider a dynamic scene in which an observer
moves along the optical axis towards the target objects
at a constant speed. The geometrical light projection
of such motion can be displayed by fig.2. The retina
has pixel sensor neurons aligned along the radially
arranged axes. The neurons on an axis are separated
by a hyperbolically increasing distance ! R @#" '�$&% & R' ( ,
where $ is the neuron order and ( is a constant, chosen
empirically according to be suitable for the pixel res-
olution. For a suitable ( value, higher sensor density
can be achieved by interpolating additional LIF neur-
ons between the already arranged ones provided that
different neurons have different corresponding sensors.
The distance from each neuron to the retina centre is
a hyperbolic function of its order referred to as J R @*) &�$ ( .

The derivation of the depth information for a neuron
is conceptually straightforward [4]. In cylindrical polar
coordinates we have,
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Scene-Retina Parameter Value Neuron Parameter Value
Sequence 600 frames Membrane

3
20ms

Resolution 512x512 pixel Synapse
3

5ms
Step 1cm/frame Adapt curve

3
20ms

Axes number 400 Rest potential -70mv
Neuron/Axis 48 Reset potential -70mv
Retina radius 250 pixel Constant threshold -56mv

Table 1: Simulation parameters for object recognition and depth recovery

�������� @ � � � � W� <
	 W i�� ?�	 W i��
� �

(4)

where
�

,

�
, 
 are the cylindrical polar coordinate com-

ponents determining the actual position of an object in
a 0 D D space, � R @ � W� W ��� ,

�
is the focal length,

� �
is

the previous moving distance with projection from neuron$ D � to $ . It is obvious that, except
� �

, the right hand
side of this polar coordinate equation is fixed for each
neuron. Assuming that the ego/object motion speed is
constant and known, then

� �
is available through a step

counter to compute the time a light ray needs to travel
between the corresponding neurons, the depth informa-
tion is hence readily recovered.

3 Simulation results

This spike-based algorithm is tested with an artificial
environment in which there are three objects (cylinder,
cone, sphere) located at different distances ( �U��� , ����� ,� � ) in front of a white background ����� away. The
observer is 1.6m high and moves towards the scene with
a constant speed. In this experiment, object edges are
used as the stimulus to the IF neurons and depth maps
are defined only at the edges of the objects. The test
parameters are shown in table � . All the neuron para-
meters except the initial amplitudes of learning curves

� 
 @ ��� � and � i @ D ��� 0 are chosen with guidance
from neurobiology. We choose � 
 and � i to be larger
than those ones used in an earlier study [11], as our pixel
stimuli are much sparser. We use Euler integration as the
numerical method and the update step is increased with
each image frame.

The depth map is shown in fig.3. The three objects are
identified clearly by the edge features flowing along the
retina axis. At the outset, (fig.3 * ), all features that fall
on the pixel sensors are new and consequently stimulate
the neighbour neurons via their flow synapses. Few edges
appear on the depth map at this stage.

After this initial settling period, as the actual light rays
move from the original pixel sensors to the next ones, the
stimuli from the receptive synapses begin to depolarise
the neurons’ membrane.

If the EPSPs from the two synapses to a neuron sum
within the firing window to produce an activity that
exceeds than the combined threshold, then the neuron is
activated to confirm the identification of the associated
edge feature. The confirmed feature is then included in
the depth map. Meanwhile its depth information can
be calculated by the firing neuron according to equation&��%( . As further movement occurs in the real scene and
the confirmed feature continues to flow along the retinal
axis it can be confirmed repeatedly to become an ever
more reliable representation of the edge that it represents.
In the depth map of fig.3

�
, the geometrical shape of

objects is clear and depth information can be recovered
as described above.

All the depth maps corresponding to the different im-
age frames are boolean images in the sense that the simu-
lated pixel sensors have only boolean outputs. Any neuron
in the model can estimate the depth information provided
that it has “seen” an edge and, therefore issue a spike.
We use the neurons on the ��� � F % axis in our model as an
example to show the object depth recovery according to
equation &��%( . In this example only one edge feature, the
cross line of left side wall and back wall, will propagate
along this axis. The initial location of this edge feature
is ��� metres away from the camera. The depth informa-
tion recovered by the neurons on the ���U�UF % axis is shown
in fig.4 &)*%( . It is clear that the estimated depth matches
well with the actual depth after an initial self-organising
process. The effect of STDP mechanism can be shown
explicitly through the distribution of receptive synapse ef-
ficacies before and after online adaptation. Initially we
set all receptive synapse efficacies randomly between their
maximum and minimum values. The normalised random
receptive synapse efficacies lead to a uniform distribution.
After online STDP adaptation the initial uniform distribu-
tion converges towards the bimodal distribution as shown
in fig.4 &)+�( and &���( .
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Figure 3: The depth maps of a hallway scene. 	��,
�� 	���
 are the snapshots of image frames at the start,
�����

and 	�
�
 steps
respectively. 	��,
 is the still contour of the first frame without running the spike-based algorithm. 	�
�
 and 	���
 are the depth maps
calculated from the start frame till the corresponding frame shown on the left with the algorithm.
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Figure 4: The characteristics of the cognitive vision model operating on the hallway scene. 	��,
 a comparison between the depth
information estimated by the neurons on axis � � 
 ��� and the corresponding actual depth; the increasing order of neuron ID also
represents the time axis. 	��;
 the initial uniform distribution of receptive synapse efficacies, and 	���
 the bimodal distribution after
STDP adaptation.
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4 Conclusion

In this paper we have explored a neuromorphic cognitive
vision model consisting of LIF neurons for object recog-
nition and depth analysis. The postsynaptic LIF neuron’s
activity is dependent on the correlation of two synaptic
inputs. We demonstrate that the intrinsic neuronal cir-
cuit parameters will determine a temporal tolerance win-
dow within which the effect of correlated inputs can res-
ult in different postsynaptic neuron response. Afferent
synchrony can thus be detected between the intercellular
connections. The window size is adjustable through syn-
aptic and membrane time constants which are directly re-
lated with the circuit parameters, hence render the model
applicable in aVLSI application. Our study therefore
provides an approach to the realisation of synaptic weight
adaptation based on STDP, which is a possible adaptation
mechanism underlying the visual cortical activities.
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