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ABSTRACT 

We develop a new biologically inspired oscillatory model 
that combines consecutive selection of objects and 
discrimination between new and familiar objects. The model 
works with visual information and fulfils the following 
operations: (1) separation of different objects according to their 
spatial connectivity; (2) consecutive selection of objects located 
in the visual field into the attention focus; (3) extraction of 
features, (4) representation of objects in the working memory; 
and (5) novelty detection of objects. The functioning of the 
model is based on two main principles: the synchronization of 
oscillators via phase-locking and resonant increase of the 
amplitudes of oscillators if they work in-phase with other 
oscillators. The results of computer simulations of the model 
are illustrasted for visual stimuli representing printed words. 

 
INTRODUCTION 

A traditional approach to visual pattern recognition is 
based on the assumption that objects are presented one at a 
time, but in reality biological systems must be able to deal with 
visual scenes that contain several objects simultaneously. 
Experimental studies show that a number of cognitive functions 
are in action when analyzing complex scenes. Firstly, the whole 
information should be collected in the pools belonging to 
different objects and the background. This separate 
representation must be preserved in the further process of 
feature extraction and transformation, which ensures a proper 
conjunction (binding) of features at the level of object 
recognition and memorization. Secondly, attention is necessary 
to decrease the amount of information that is processed in detail 
and to improve the binding of features. Thirdly, pattern 
recognition and memorization should be combined with novelty 
detection to ignore familiar or unimportant objects.  

Until now most papers on neural networks have been 
focused on modeling a particular cognitive function. Models of 
feature extraction and binding have been developed in [8, 22, 
26]. Models of attention are represented by both traditional 
connectionist networks [7, 10, 21] and oscillatory networks [5, 
12, 13, 16]. Models of memorization and novelty detection can 
be found in [4, 18, 25]. These models paved the way to 
combining in one system a set of cognitive functions covering 
the whole range of visual image processing. 

Below we describe a large-scale model that includes the 
main stages of information processing in the visual pathway: 
(1) segregation of information from different objects according 
to their spatial connectivity; (2) consecutive selection of objects 
into the attention focus; (3) extraction of features and their 
transformation to the form invariant to object location and 
scale; (4) representation of objects in the working memory and 
novelty detection.  

Presuming that the brain does not invent a special 
procedure for each cognitive function but adapts similar 
mechanisms for a particular type of processing, it has been a 
challenge to develop a model that would rely on a small set of 
general principles. As such principles we use oscillations, 
synchronization, and resonance. The choice of an oscillatory 
neural network for the development of the model is conditioned 
by the fact that animals and humans display a wide spectrum of 
rhythmic activity patterns in many areas and structures of the 
brain (see, e.g., [2, 15]) and that oscillatory principles provide 
efficient means for many types of information processing [3].  

NOMENCLATURE 
The Model  

The model is designed as a hierarchy of interactive 
modules. Each module consists of oscillators with 
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synchronizing or desynchronizing connections. An oscillator 
used as an element of the network is described by three 
variables: the oscillation phase, the oscillation amplitude, and 
the natural frequency of the oscillator [4, 13]. The values of 
these variables change in time according to prescribed rules of 
interaction. 

The flow of information between the modules of the 
network is presented in Figure 1. The components of the 
network are called Object Selection Module (OSM), Local 
Feature Module (LFM), Invariant Feature Module (IFM), and 
Novelty Detection Module (NDM). The oscillators comprising 
these modules are denoted as OSO, LFO, IFO, and NDO, 
respectively. There is also an additional Central Oscillator (CO) 
with global feedforward and feedback connections to the OSM. 
The top-down interaction is reduced to the one from the NDM 
to the OSM (its role is explained in Section 2.1). More 
sophisticated top-down interaction is postponed for future 
versions of the model. 

In biological terms the model is interpreted in the 
following way. It is assumed that oscillators in OSM, LFM, and 
IFM represent cortical columns in the areas of the 
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Figure 1. The architecture of the network. The input image contains 
three objects. In the OSM an object in the focus of attention is painted 
in black, other activated regions are painted in gray. In the LFM and 
IFM, there are five features of the object in the attention focus: four 
endpoints of different orientation and a crossing of two lines. In the 
LFM the features are attached to special locations where they are 
found, in the IFM the features are registered independently of their 

location in the image. The NDM is divided into the groups located 
along the horizontal axis. 
 
visual pathway. The OSM is located in the primary visual 
cortex (striate cortex), LFM can be attributed to different 
regions of the cortex (striate, extrastriate and higher) depending 
on the type and complexity of the features, IFM represents 
feature detectors of the temporal area invariant to geometrical 
transformations (IT and higher associative areas). The CO plays 
the role of a central executive of the attention system [1, 6]. To 
simplify the model, we consider only the interaction between 
the CO and OSM and ignore the influence of the CO on other 
modules. The NDM is associated with the hippocampus [14]. 
The groups of NDOs represent hippocampal segments.  

Object Selection Module  

The OSM is responsible for grouping the information from 
the external input into separate clusters according to spatial 
connectivity of objects. The OSM has the same 2D grid-like 
structure as the visual field with one-to-one correspondence 
between the pixels of the image and the elements of the 
module. An OSO with coordinates (x, y) is activated by the 
input signal from the pixel (x, y). The grouping of pixels into 
object representation is realized through synchronizing local 
connections between OSOs.  

The OSM is also used to organize consecutive selection of 
objects into the focus of attention. This is achieved through the 
interaction with the CO (see [13] for details). The interaction is 
organized in such a way that at any moment the CO works 
coherently with an assembly A of OSOs that represent a single 
object. Due to the resonance with the CO, the amplitude of 
oscillations in A is made high while the activity of other OSOs 
is inhibited to a low level. Being in the resonant state is 
interpreted as the fact that A is included in the focus of 
attention.  

The resonant state in A is interrupted by the top-down 
signal from the NDM that is generated when an object in the 
attention focus is detected as a new one and memorized in the 
working memory or when the familiarity of the object is 
detected. This signal blocks the assembly of OSOs so that it is 
unable to interact with the CO until the whole image is 
analyzed. This gives the CO an opportunity to change the 
attention focus by synchronizing its activity with another 
assembly of OSOs, etc. The order in which objects are included 
in the focus of attention is determined by their saliency. The 
objects of greater size and contrast have an advantage in being 
attended first. 

Local Feature Module 

The LFM is responsible for transforming the information about 
an object from representation by pixels to representation by 
local features. The oscillators in the LFM are arranged into a 
3D structure with different types of feature detectors occupying 
different layers (planes). An LFO is active if a corresponding 
local feature is present in the object that is currently in the 
attention focus. The assembly A is used as a common source of 
synchronization for active LFOs. The gating of signals outside 
the attention focus is determined by the amplitudes of the 
signals coming from the OSM. This gating prevents erroneous 
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conjunction of features of different objects during 
memorization. 

Invariant Feature Module  

The IFM is used for representing an attended object by a 
set of features that are invariant to object transformations such 
as translation, scale, etc. The module is arranged as a set of K 
columns of oscillators, where K is the number of types of 
feature detectors in the LFM. An IFO at the level i in the 
column k is active if a local feature of the kth type is present i 
times in the attended region of the input image. Thus at most 
one IFO can be active in a column at any moment. Such a 
coding automatically makes the activity in the IFM invariant to 
translation. Invariance to scaling can be achieved if the set of 
features extracted from an object is independent of the scale. 
We will give an example of such features in Section 3. 

The assembly of synchronous LFOs plays the role of a 
common source of synchronization for all active oscillators in 
the IFM. In this way the synchronization that has appeared in 
the OSM is spread to higher modules generating a 
representation of an object in the form of coherent oscillations. 

Novelty Detection Module 
The NDM is responsible for memorization of objects in the 

working memory and making decisions about novelty of 
objects. The discrimination between novel and familiar objects 
is made in terms of duration of oscillatory activity in the NDM 
in response to external stimulation by a visual object. 
Following the experimental evidence on the theta activity in the 
hippocampus during orienting response [19, 23], the NDM 
generates a long (tonic) response when an object is new and a 
short (phasic( response when an object is familiar. The 
memorization of an object in the NDM is achieved under fixed 
connection strengths by a proper modification of internal 
parameters of NDOs. The details of this modification can be 
found in [4]. 

The NDM is an elongated structure divided into 
independent (disconnected) groups of oscillators located in the 
planes orthogonal to the long horizontal axis. There are all-to-
all synchronizing connections between NDOs in each group. 
Connections from the IFM to the NDM are of all-to-all type 
with random delays. These delays mimic phase lags in 
transmission of the signals from the neocortex to the 
hippocampus.  

A basic principle of NDM functioning is that an NDO 
reaches and keeps a high level of activity (resonant amplitude) 
if the signals that are supplied to this oscillator from the IFM 
arrive in-phase. For a given set of active oscillators in the IFM, 
due to random delays in connections, the resonant activity in 
the NDM takes place at only a small number of randomly 
chosen locations (groups), where an appropriate coincidence of 
input signal phases takes place. The activity in other parts of 
the NDM is low. Thus each object is represented in the NDM 
by a sparse assembly of oscillators that is specifically related to 
the object in the attention focus.  

The activity in the NDM is organized so that under the 
influence of the coherent input from the IFM the number of 
resonant NDOs gradually increases until it reaches a certain 
threshold H, that is until the assembly of resonant oscillators in 
the NDM becomes sufficiently large. At that moment the NDM 

generates the top-down signal to the OSM that leads to the shift 
of the attention focus to another object. The important 
parameter is the period of time t∆  from the moment when 
attention is focused on a given object and until the assembly of 
at least H resonant oscillators in the NDM is formed. By a 
proper modification of parameters of NDOs during 
memorization, it is possible to accelerate their capability to 
generate the resonant activity, therefore t∆  can be made much 
smaller for familiar objects than for novel objects [4]. 

 
A Simulation Example 
We illustrate the principles of network performance using a 
simple black and white image representing the characters of the 
word “HELLO”. The image is exposed at the input for 35 time 
units and is processed sequentially object by object with 
memorization and novelty detection of all 5 objects. In this 
example the order in which objects are selected is conditioned 
by their size.  

Since the object L occurs two times in the image, it should 
be detected as familiar at the second appearance in the attention 
focus. Other objects occur in the image only once, therefore 
they will be detected as new.  

Fig. 2 shows the types of features used to represent the 
image HELLO in the LFM. For example, the object H is 
represented by six active LFOs - four endpoints (two top and 
two bottom) and two T-shape crossing (left and right). In the 
IFM this character is represented by four active IFOs – top 
endpoint (level 2), bottom endpoint (level 2), left T-shape 
crossing (level 1), and right T-shape crossing (level 1). 

 

 
                                   endpoints (bottom, top, right,) 
                                      corners (bottom-left, top-left, bottom-right, 

top-right 
                                      T-shape crossing (left, right) 
 
Figure 2. The features used for coding the shape of objects in the 
image. 
 

Figure 3 shows the dynamics of the amplitudes in the 
OSM. By this figure one can see the periods when different 
objects are attended which is reflected in high amplitudes of 
oscillations of the OSOs corresponding to these objects while 
the amplitude of other OSOs is low. The period of time t∆  
when an object is attended varies between 4.1 and 5.0 for a new 
object, For a familiar object (the first appearance of L in 
HELLO) the value of t∆  is 1.6 which is about 3 times shorter.  

 
Discussion 

We have demonstrated that general principles of 
information processing in oscillatory neural networks can be 
successfully applied to the solution of complex cognitive tasks 
that combine several interrelated cognitive components such as 
feature binding, attention, and novelty detection. The system 
architecture and functionality reflect (in a very simplified form) 
the main stages of visual information processing, starting from 
the primary visual cortex and finishing at the hippocampus. By 
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computer simulations we have shown that the system is capable 
to fulfill consecutive selection of objects in the image and their  
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Figure 3. Dynamics of the amplitudes in the OSM. The numbers above 
the graphs show the period of time when attention is focused on a 
given character. 
 
novelty detection in terms of the duration (tonic or phasic) of 
the oscillatory response at the output module (the 
hippocampus). 

The main new aspects of the model are the implementation 
of selective attention and novelty detection. Separately these 
cognitive functions have already been modeled in our previous 
works [4, 13], now we provide a framework where both models 
can be properly adjusted to each other.  

The principles of information processing used in our 
system have already appeared in other models. Our 
achievements are mostly related to their proper combination 
and adaptation to the task considered. As far as modeling the 
binding problem, we follow the already known ideas (see [3] 
for a review), reformulating them in terms of oscillators with 
the explicitly defined phase. The peculiarity of our model is 
that we use the characteristics of individual pixels as primary 
features. The advantage of this approach is that it can be 
applied to any type of images and not only to contour objects.  

The idea of the resonant interaction is very attractive and 
finds support in experimental and modeling studies [9, 11]. Our 
approach differs from the one developed in these works 
because we explicitly postulate the type of dynamics of the 
oscillator amplitude depending on the synchronization with 
other oscillators. 

The adaptation of natural frequencies of oscillators has 
been used before as a mechanism of learning and memorization 
[4, 17, 20]. Here it provides an efficient mechanism of 
implementing a winner-take-all procedure when different 
assemblies of oscillators compete for the synchronization with 
the central oscillator.  

Oscillatory models of attention with the central element 
have been developed in the papers [24, 26], where the role of a 

central element in the network LEGION is played by a global 
inhibitory neuron, and [5], where the central element is 
represented by a population of integrate-and-fire neurons. The 
function of the central element in these works is similar to the 
one considered here, that is to synchronize some assemblies of 
oscillators and to desynchronize others. 
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