

A HYBRID LEARNING ALGORITHM

Jihane BOULAHIA SMIRANI and Fériel MOURIA BEJI (Member IEEE)

Département d’informatique
Ecole Nationale des Sciences d’Informatique (ENSI)

Le complexe universitaire la Manouba
TUNISIA

Jihane.Smirani@fsb.rnu.tn
pdg@ati.tn

Abstract: The integration of symbolic prior knowledge and neural networks in so-called Knowledge and neural networks
is becoming increasingly popular for solving difficult real-world problems[1]. Hybrid intelligent systems that combine
and artificial neural network systems typically have four phases involving domain knowledge representation, mapping
into connectionist network, network training, and rule extraction respectively. In order to obtain a concise set of symbolic
rules, redundant and irrelevant units and connections of a trained neural network are usually removed by a network
pruning algorithm before rule are extracted Typical pruning algorithms require retraining the network, which incurs
additional cost. In this paper, we introduce a new rule extraction technique without network retraining. Our technique is a
universal and comprehensive approach that extracts all embedded knowledge in a trained artificial neural network and
represents it in a rule base format. Experimental results show that the size and the predictive accuracy of the rule
generated are comparable to those extracted by another method, which prunes and retrains the network.

Key Words: neural network, hybrid neuro-symbolic system, rule extraction, pruning algorithm.

,
1 INTRODUCTION

The lack of validation tools is often one of the reasons for
not using neural systems in practice. For instance,
physicians cannot trust a diagnosis system without
explanation of its responses. The difficulty of justification
of neural network responses is due to its distributed
internal representation. More particularly, the overall
network decision mechanism is represented onto a space
of connection weights and activation values which has an
exponential size and so in practice it cannot be entirely
explored.
Researchers in the field of symbolic rule extraction from
neural networks have proposed several algorithms. They
are concisely described by the taxonomy proposed by
Andrews at al.[1]. Briefly, symbolic rule extraction
methods belong to three categories: pedagogical,
decompositional, and electric. In the pedagogical
approach symbolic rules are generated by an inductive
symbolic algorithm which globally analyses expressions
related to the input and the output layer. For the
decompositional approach, symbolic rules are determined
by analysing the weights at the level of each hidden
neuron and each output neuron. Finally, the electric
approach is a combination of the pedagogical and
decompositional strategies.

In order to obtain a concise set of symbolic rules,
redundant and irrelevant units and connections of a trained

neural network are usually removed by a network pruning
algorithm before rules are extracted [1]. This process can
be time-consuming as most algorithms for neural network
such as Optimal Brain Surgeon[2], Hagiwara algorithm[3].
They retrain the network after removing some connections
or units. The retrained network is then checked to see if
any of its remaining units or connections meets the criteria
for further removal. More often than not, the amount of
computations incurred during retraining is much higher
than that needed to train the original fully connected
network. This paper proposes a new rule extraction
technique from trained feedforward neural networks with a
single hidden layer. The technique does not require
network pruning and hence no network retraining is
necessary. By eliminating the need to retrain the network,
we can speed up the process of rule extraction
considerably and thus make neural networks an attractive
tool for generating symbolic classification rules.

2 THE ALGORITHM

The proposed technique consists of three main parts: the
first part is a network training algorithm that minimizes a
cross-entropy error function augmented by a penalty
function. The minimization of the augmented error
function ensures that connections from irrelevant inputs
have very small weights. Such connections can be
removed without affecting the network’s classification
accuracy. The second part is consisting in the distinction

NC1-1 1 of 4

BICS 2004 Aug 29-Sept1 2004,

between the relevant network inputs from the irrelevant
ones. We have developed a simple criterion for removing
the network connections from the input units to the hidden
unit that does not affect the network’s classification
accuracy. A group of connections from the input units to a
hidden unit can be removed at once if they satisfy this
criterion. The third part is the extraction of the symbolic
rules relating input with network’ outputs.

2.1 Training phase

It has been shown that the cross-entropy error function
improves the convergence of network training over the
standard least-squares error function [5,6,7], while the
penalty function F(w,v) is added to encourage weight
decay [8]. Each network connection that has nonzero
weight incurs a cost. By minimizing the augmented error
function we expect those connections that are not useful
for classifying the patterns to have small weights. Given
an input pattern p, p =1,2,..., P, the network’s output unit
value Sip and hidden unit activation value H jp are

computed as follows:









∑=
=

HvS jp

J

j
ijip

1
δ

() 







== ∑

=

K

k
kpjkpjjp xwxwH

1
δδ

Where []1,0∈xkp is the value of input unit k given

pattern p, w jk is the weight of the connection from input

unit k to hidden unit j, vij is the weight of the connection

from hidden unit j to output unit i, and ()εδ is the

sigmoid function e ε−+1/1 . J and K are the number of
hidden units and input units, respectively. Each pattern
x p belongs to one of the C possible classes

CCC c,...,, 21 . The target value for pattern p at output

unit i is denoted by tip . For binary classification problem,

one output unit with binary encoding is used. For
classification problems with C>2 classes, C output units
are used in the network. If pattern p belongs to class c,
then 1=tcp and citip ≠∀= ,0 . The network is trained to

minimize the augmented cross-entropy error function

() () () ()∑ −∑ −+−=
= =

C

i
ip

P

p
ipipip StStvwFvw

1 1
1log1log,,θ

With this minimisation, we expect those connections that
are not useful for classifying the patterns to have small
weights. Compared to the standard backpropagation
method, this method has been shown to converge much
faster [9].

2.2 Identification of relevant units Phase

The information gain method is used to identify the
relevant hidden unit. For this purpose, the C4.5 algorithm
is employed.

 Given a data set S, recursively a decision tree is
generated:
1.If S contains no example, the most frequent class at the
parent of this node is chosen as the class, stop.
 2. If S contains one or more examples, all examples
belonging to a single class Cc .

3 If S contains examples belonging to a mixture of
classes, information gain is then used as a heuristic to
split S into partitions based on the values of a single
feature
The decision tree is built using the hidden unit activations
of training patterns that have been correctly classified by
the neural network along with the patterns’ class labels.
Suppose that each pattern in the data set S belongs to one
of the C classes, and nc is the number of patterns in class

Cc , the expected information for classification is

() ∑−=
=

C

c

cc
N
n

N
nSI

1
2log

where the number of patterns in the set S is

∑= =
C
c cnN 1 .

For hidden unit j, its activation values, its activation
values H jp in response to patterns p, p =1,2,…,n., the

information gained by splitting the data set S into S1 and
S2 is:

()












=
+

=
−−

=
−= ∑∑∑

C

c

ccC

c

ccC

c N
c

N
c

jpGain
N
n

N
n

N
n

N
nnn

H
1 2

2
2

2

2

1 1

1
2

1

1

1
2 logloglog

The normalized gain is

 () () () ()














=
−= ∑

2

1
/2// log

j
NjNjjpGainjpNGain NNHH

The root node of the decision tree contains a test
condition, which involves the hidden unit whose
activation values give the highest normalized gain. The
complete decision tree is generated by applying the same
procedure to the subsets of the data at the tow branches of
a decision node. To identify the relevant input
connections, for each hidden unit j, one or more of its
connection weights from the input units may be
sufficiently small that they can be removed without
affecting the overall classification accuracy. The criterion
for removing these irrelevant connections is given below.
Let the splitting condition for a node in the decision tree is

H jtH jp ≤ for some t. Let S be the set of input units

whose connections to hidden unit j satisfy the following
condition:

()∑
∈

−+〈
Sk

H jtH tjw jk 1,2

And S 'be the complement of S. Then, by
changing the splitting condition to

NC1-1 2 of 4

BICS 2004 Aug 29-Sept1 2004,

()H jtH tjH jp ++≤ 1, / 2

2.3. Rule extraction Phase

The data set used for extraction rules contain only
relevant unit that we have determined in section 2. Each
cluster in a hidden unit forms a class. That is, if there are
x relevant hidden units left in the network, there will be x
such data sets. The number of classes in each data set is
solely determined by the number of clusters in the
corresponding hidden unit. By computing the inverse of
the sigmoid function for all node splitting conditions in a
decision tree, we obtain conditions that are linear
combinations of the input attributes of the data. After that
we remove negative weights. This may be possible by
replacing the corresponding inputs with their complement.
For example, suppose the attribute X has 2 discrete values
{ }xx 2,1 and 2 binary inputs ()II 21 , have been used to

represent them: () ()0,1, 211 =⇔= IIxX and

() ()1,0, 212 =⇔= IIxX . If the weight w1 is negative,
then we can replace x1by its complement, which is x 2 :

() wxwxwxw 1212111 1 +−=−=
Finally, we divide all the weights by the
smallest wi .

3. ILLUSTRATIVE EXAMPLE: Monk3

problem

A pattern is classified as monk in this problem if
(jacket_color=green and holding=sword) or (jacket_color
? blue and body_shape ? octagon). Our algorithm
generates tree with a total of 3 nodes, the root node and 2
child nodes. This indicates that the patterns in the data set
of this problem are linearly separable, i.e., there exists a
hyperplane such that all the monks are on one side of it
and the no-monks on the other side. For problems with
linearly separable patterns.
An example of a decision tree that is generated is as
follows:

 N Y

Our algorithm removes irrelevant connections to the
hidden unit 3 of the network and obtains :
If (-5.2 x4 + 2.8 x11 –5.2 x12 + 2.6 x13) > 0.34 then
class0 (not monk) else if (-5.2 x4 + 2.8 x11 –5.2 x12 + 2.6
x13) > 0.34 then class1 (monk)
Twelve different combinations of {x4,x11,x12,x13} are
possible (two for x4, two for x11 and three for x12 and 5
for x13) and they are all represented in the training data
set. The algorithm takes as input these 12 different
combinations along with the corresponding class labels

and outputs the following table where the symbol * is
used to indicate “do not care” value.

Rule x4 x11 x12 x13 Monk?
0
1
2
3
4

0 * 0 *
* * 1 *
* 1 0 1
1 * * 0
1 0 * *

Yes
No
Yes
No
No

 The generated rules are :
Rule 0 : If x4=x12=0, then monk,
Rule2: If x11=x13=1 and x12=0, then monk.

In terms of the original attributes, the equivalent rules are
Rule0: If (body_shape <> octagon) and (jacket_color <>
blue) then monk.
Rule 2: If (holding = sword) and (jacket_color=green)
then monk.

4.EXPERIMENTATION RESULTS

The effectiveness of ANPREX has been tested on 15
problems listed in figure 1 and figure 2. The data sets
were obtained from UCI repository [10] or generated
according to the function definitions given by vitalta, Blix
and Rendell[11]. Each data set was randomly divided into
three subsets: the training set (40%), the cross validation
set (10%) and the test set(50%). For all experiments, the
initial number of hidden units in the network was 10.
Figure 1 and Figure 2 compares the tree size (the number
of nodes) and the predictive accuracy of the decision trees
generated by ANPREX with those generated by C4.5 and
ANREX an Algorithm for Neural Rule EXtraction that we
have implemented and tested [12], this algorithm extract
rules from pruned neural network. The decision tree
extracted by ANPREX is smaller than the tree generated
by C4.5.
ANPREX and C4.5 do not require the cross validation set,
hence 50% of the data was used for each training session.
The comparison between ANREX and ANPREX shows
that there is no significant difference in the predictive
accuracy and the size of the decision trees generated by
both methods. It is hard to make direct comparisons
between our contribution: ANPREX and other methods as
published work include results obtained from only a small
number of data sets. Any good neural network rule
extraction algorithm can be expected to extract rules with
similar test accuracy as the networks. We also compare
ANPREX performance with that of a method that extracts
rules from pruned networks ANREX and find that there is
no significant difference in the predictive accuracy and
the size of the decision trees generated by both methods.

N H3p>10

Non-Monk Monk

NC1-1 3 of 4

BICS 2004 Aug 29-Sept1 2004,

0
20
40
60
80

100
120

Monk
1

Monk
3

CNF12
b

DNF12
b

MAJ
12

b

Au
str

alia
n

Hea
rtD

So
nar

C4.5
ANREX

ANPREX

Figure1. Predictive accuracies of C4.5,
ANREX and ANPREX

5. CONCLUSION

To conclude, we have presented in this paper ANPREX,
A Non Pruning Algorithm for neural rule EXtraction. Our
experimental results show that even though the algorithm
does not perform network retraining after identifying the
relevant hidden units and connections, the decision trees
that are generates are comparable in terms of predictive
accuracy and tree size to those generated by another
method which requires network pruning and retraining.
The algorithm employs C4.5 to generate a decis ion tree
using the hidden unit activations as inputs. For a data set
with discrete attributes, the node splitting conditions in
the tree can be replaced by their equivalent symbolic rules
after irrelevant input connections are removed. Simple
criteria for identifying such connections are given. The
criteria ensure that the removal of these connections will
not affect the classification accuracy of the tree.

0

50

100

150

200

250

Monk
1

Monk
3

CNF 12
b

DNF 12
b

MAJ
12

b

Au
stra

lian
Hea

rtD
So

na
r

ANPREX

C4,5

 Figure 2. Tree size of ANPREX and C4.5

6 REFERENCES

[1] Andrews R., Diederich J., Tickle A.B. : Survey and
critique of techniques for Extracting Rules from Trained
Artificial Neural Networks. Knowledge-Based Systems,
vol8, no.6, 373-389 (1995).
[2] B. hassibi and D.G. Stork, “Second order derivative
for network pruning: Optimal Brain Surgeon”, in

Advances in Neural Information Processing Systems 5,
1993,pp. 164-171, San Mateo, CA: Morgan Kaufmann.
[3] M. Hagiwara, “A simple and effective method
for re moval of hidden units and weights”,
eurocomputing, vol. 6, 1994, pp. 207-218.[4] S.B.
Thurn, et al. The Monk’s problems- a performance
comparison of different learning algorithm. Preprint
CMU-CS-91-97, Carnegie Mellon University,
Pittsburgh.1991.
[5] A. van Ooyen, A. and B. Nienhuis, B. “Improving the
convergence of the backpropagation algorithm”, Machine
learning, vol. 13, no1, 71-101, 1993.
[6] J. Boulahia Smirani and F. Beji . “Extraction and
insertion rules during the training process of neural
network”. ACIDCA’2000. International Conference on
Artificial and Computational Intelligence for Decision,
Control and Automation in Engineering and Industrial
Applications.55-60.2000.
[7] J. Boulahia Smirani. “HLS: Hybrid learning systems”.
Tunisian-German Conference.2000.
[8] J. hertz, A. Krogh, and R.G. palmer, Introduction to
the theory of neural computation. Redwood City, CA :
Addition Wesley, 1991.
[9] R.L. Watrous, “Learning algorithms for connectionist
networks : Applied gradient methods for nonlinear
optimization”, in Proc. IEEE 1st Int. Conf. Neural
Networks, San Diego, CA, 1987, pp. 619-627.
 [10]C. Metz, and P. Murphy, UCI repository of machine
learning databases
http://www.ics.uci.edu/~mlearn/Mlrepository.html, Irvine,
CA: University of California, Dept of Info and Comp.
Sci.1996.
[11] R.L. Watrous, “Learning algorithms for connectionist
networks: Applied gradient methods for non linear
optimization,” in Proc. IEEE 1st Int. Conf. Neural
network, San Diego,CA,1987,pp. 619-627.
[12] J. Boulahia Smirani and F. Beji . “ANREX : An
algorithm for Neural Rule EXtraction”. IEEE-
SMC.CESA’98 Computational Engineering in Systems
Applications Tunisia.

NC1-1 4 of 4

BICS 2004 Aug 29-Sept1 2004,

