
Generalisation.�

The subtext of the last section can be stated simply: simply
recalling the correct output pattern for each input in the
supplied training set (including the test set, and the validation
set) is not enough.�

(This is why making NNs learn simple logical predicates by
showing them all the cases, though instructive, must be
treated with caution)�

What we require is for the system to generalise: that is, to
process unseen data appropriately.�

Unfortunately, appropriately depends on the application, and
is hard to predefine.�

We can identify two forms of generalisation appropriate to the
two forms of problem we discussed, classification problems
and mapping problems.�

31X7 Lecture 14 Page 1

Classification: �
Typically there are T output units, and in the training data,
exactly one of these outputs is 1 and all the rest are 0. In other
words, the training input vectors are classified as belonging to
exactly one of the T classes.�

Conceptually, the input training data set, I, has been chosen
from some set S, and we want the network to produce a
classification which extends the classification provided so that
it gives the desired classification on the set S−I.�

Clearly:�
(i) this is not predefinable without reference to the problem at
hand.�
(ii) good generalisation is not directly testable, at least not
without gathering more information from the system being
modelled.�

Note that we usually have to introduce some form of
interpretation procedure for unseen data: for example, the
classification is taken to be the class associated with the
output unit with the largest output, even if this output is
relatively small. One can introduce measures of the certainty
of a classification based on the actual output values.�

Good performance means that the percentage of correct
generalisation is adequate for the task at hand.�

31X7 Lecture 14 Page 2

Mapping: in mapping problems, the range of output values in
the training data is larger than in classification problems,
typically some interval of values inside the possible range of
each output unit. �

For example, there might be two output units, each with a
logistic output function (so that their possible range of output
is (0,1)). The range of actual outputs in the training data might
be [0.14, 0.83] for one, and [0.2, 0.86] for the other.�

Unseen inputs will generally have a different input vector
from any supplied in the training data, and will, generally,
require to be mapped to an output different from any of the
outputs in the training data. What the network is doing is
modelling some function whose output covers some interval:
new input vectors have their output calculated by the function
modelled by the network.�

There are two possible cases here: the network may be
performing interpolation, that is the input vector is "inside"
the set of vectors supplied in training (mathematically, inside
the convex hull defined by the training input vectors), or it
may be performing extrapolation (i.e. the unseen input vector
is outside the convex hull defined by the training input
vectors.).�

Networks generally perform interpolation reasonably well:
extrapolation is generally much more difficult.�

Note that this discussion of generalisation is necessarily not
general. Some problems are a mixture of of classification and
mapping: others don’t really fall into either type.�

31X7 Lecture 14 Page 3

Hints on applying BP.�

(i) Data-massaging

* The input data and the output data need to be in an
appropriate range.�

* Logistic units which are to be sensitive to small
changes on some input line around 0 will be swamped by
large input values. If some input line has input which has a
large range, but sometimes the output is sensitive to small
changes around (say) 0, then better performance may be
achieved by recoding the input using more than one input
unit. �

For example, one might replace a value X by�

X� � log
��
�j X j ���

and

X� �
�

� � exp����X�

so that X1 will compress X into a small range, and X2 will be

more sensitive to small changes in X around 0.�

31X7 Lecture 14 Page 4

* Highly compact representations are frequently
inappropriate. Such representations are often optimal for total
storage requirements, but achieve this at the expense of
similarity in representation of similar entities. A good
example is binary representation of integers:�

15 = 01111�
16 = 10000�

These two representations are a different as possible, yet
represent integers only 1 different!�

It is generally better to use a representation in which there is
some redundancy. Such representations are inevitably longer
(when counted in bits of information), and this can lead to
different problems.�

*Systems with large numbers of input units (i.e.
high-dimensional input spaces) need more training data. There
are more weights to be specified by the training data. In
general, one should choose representations to suit both the
problem at hand, and the net method of solution chosen.�

*Where possible, choose the training set so that as
much as possible of the problem input and output spaces are
used. (Clearly, this may not be possible if the training data is
supplied).�

31X7 Lecture 14 Page 5

(ii) Choosing the net topology.�

The network is intended to form a model of the system from
which the training data was extracted. We want the model to
both conform to the training data, and to generalise
appropriately. To this end one should use as few hidden units
as possible because�

* all the weights need to be set by the training data.
The more weights there are, the more training data will be
required to set them. �

* if you use too many hidden units, the net may well
converge to the training data, but be overspecialised.�

Additionally, one should use as few hidden layers as possible.
Using more than a small number of hidden layers will result
in the net being slow to train. Unfortunately, there are
occasions when more than two hidden layers is best: these
tend to occur when very similar inputs require very different
outputs, so that one hidden layer is used to recode the data
prior to the second layer which is used to perform the
mapping required.�

31X7 Lecture 14 Page 6

We usually are best to choose the simplest topology which
can be trained to a reasonable approximation of the training
data. By using a simple topology, we are constraining the
nature of the mapping producible by the network: the simpler
the topology, the simpler the range of possible mappings
producible.�

Often a "bottleneck" in the hidden layer can help this, since it
forces the final output to be based on a small number of
variables.�

Bottleneck

However, if too narrow a bottleneck is used, the net will fail
to converge.�

* generally, use a completely connected
feedforward network, unless you have good reason to believe
that certain inputs should be processed independently of
others.�

31X7 Lecture 14 Page 7

(iii) Choosing the initial weights.�

The initial weights cannot be 0, as this would lead to none of
the error being back-propagated. �

It is best to choose weights which are small. Generally, they
are chosen from a uniform distribution on [-0.5, 0.5], for
example.�

In this way, one starts off in an area of the output function
where the derivative is not too small.�

Where a unit has a large number of inputs, it may be
advantageous to use smaller weights.�

31X7 Lecture 14 Page 8

(iv) Choosing the network operating parameters.�

One needs to select�

η the learning rate�
α the momentum parameter�
ε the acceptable error level,�
and the number of epochs of training to be attempted before
giving up.�

We have already discussed ε. η and α interact: additionally,
the best values to use depend on the problem. This is because
they decide the weight change size as a function of the
gradient of the error at this particular point in W-space. The
nature of the error as a function of the weights is completely
problem-dependent.�

It can be useful to start with η high, and gradually reduce it.
Often the best value to use requires some experimentation.�

31X7 Lecture 14 Page 9

Overspecialisation.�

Training the network for too long on some training data can
result in poor generalisation performance. This can be a
particular problem when rather too large a hidden layer has
been used.�

Error

Epochs

Best Overall
generalisation
performance

Using too many hidden units tends to give the same effect.
What happens is that the network develops a transfer function
which attempts to explain the input/output pairs precisely.�

Function example (blackboard!).�

31X7 Lecture 14 Page 10

