
Generalisation.�

The subtext of the last section can be stated simply: simply 
recalling the correct output pattern for each input in the 
supplied training set (including the test set, and the validation 
set) is not enough.�

(This is why making NNs learn simple logical predicates by 
showing them all the cases, though instructive, must be 
treated with caution)�

What we require is for the system to generalise: that is, to 
process unseen data appropriately.�

Unfortunately, appropriately depends on the application, and 
is hard to predefine.�

We can identify two forms of generalisation appropriate to the 
two forms of problem we discussed, classification problems 
and mapping problems.�
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Classification: �
Typically there are T output units, and in the training data, 
exactly one of these outputs is 1 and all the rest are 0. In other 
words, the training input vectors are classified as belonging to 
exactly one of the T classes.�

Conceptually, the input training data set, I, has been chosen 
from some set S, and we want the network to produce a 
classification which extends the classification provided so that 
it gives the desired classification on the set S−I.�

Clearly:�
(i) this is not predefinable without reference to the problem at 
hand.�
(ii) good generalisation is not directly testable, at least not 
without gathering more information from the system being 
modelled.�

Note that we usually have to introduce some form of 
interpretation procedure for unseen data: for example, the 
classification is taken to be the class associated with the 
output unit with the largest output, even if this output is 
relatively small. One can introduce measures of the certainty 
of a classification based on the actual output values.�

Good performance means that the percentage of correct 
generalisation is adequate for the task at hand.�
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Mapping: in mapping problems, the range of output values in 
the training data is larger than in classification problems, 
typically some interval of values inside the possible range of 
each output unit. �

For example, there might be two output units, each with a 
logistic output function (so that their possible range of output 
is (0,1)). The range of actual outputs in the training data might 
be [0.14, 0.83] for one, and [0.2, 0.86] for the other.�

Unseen inputs will generally have a different input vector 
from any supplied in the training data, and will, generally, 
require to be mapped to an output different from any of the 
outputs in the training data. What the network is doing is 
modelling some function whose output covers some interval: 
new input vectors have their output calculated by the function 
modelled by the network.�

There are two possible cases here: the network may be 
performing interpolation, that is the input vector is "inside" 
the set of vectors supplied in training (mathematically, inside 
the convex hull defined by the training input vectors), or it 
may be performing extrapolation (i.e. the  unseen input vector 
is outside the convex hull defined by the training input 
vectors.).�

Networks generally perform interpolation reasonably well: 
extrapolation is generally much more difficult.�

Note that this discussion of generalisation is necessarily not 
general. Some problems are a mixture of of classification and 
mapping: others don’t really fall into either type.�
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Hints on applying BP.�

(i) Data-massaging

* The input data and the output data need to be in an 
appropriate range.�

* Logistic units which are to be sensitive to small 
changes on some input line around 0 will be swamped by 
large input values. If some input line has input which has a 
large range, but  sometimes the output is sensitive to small 
changes  around (say) 0, then better performance may be 
achieved by recoding the input using more than one input 
unit. �

For example, one might replace a value X by�

X� � log
��
�j X j ���

and 

X� �
�

� � exp����X�

so that X1 will compress X into a small range, and X2 will be 

more sensitive to small changes in X around 0.�
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* Highly compact representations are frequently 
inappropriate. Such representations are often optimal for total 
storage requirements, but achieve this at the expense of 
similarity in representation of similar entities. A good 
example is binary representation of integers:�

15 = 01111�
16 = 10000�

These two representations are a different as possible, yet 
represent integers only 1 different!�

It is generally better to use a representation in which there is 
some redundancy. Such representations are inevitably longer 
(when counted in bits of information), and this can lead to 
different problems.�

*Systems with large numbers of input units (i.e. 
high-dimensional input spaces) need more training data. There 
are more weights to be specified by the training data. In 
general, one should choose representations to suit both the 
problem at hand, and the net method of solution chosen.�

*Where possible, choose the training set so that as 
much as possible of the problem input and output spaces are 
used. (Clearly, this may not be possible if the training data is 
supplied).�
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(ii) Choosing the net topology.�

The network is intended to form a model of the system from 
which the training data was extracted. We want the model to 
both conform to the training data, and to generalise 
appropriately. To this end one should use as few hidden units 
as possible because�

* all the weights need to be set by the training data. 
The more weights there are, the more training data will be 
required to set them. �

* if you use too many hidden units, the net may well 
converge to the training data, but be overspecialised.�

Additionally, one should use as few hidden layers as possible. 
Using more than a small number of hidden layers will result 
in the net being slow to train. Unfortunately, there are 
occasions when more than two hidden layers is best: these 
tend to occur when very similar inputs require very different 
outputs, so that one hidden layer is used to recode the data 
prior to the second layer which is used to perform the 
mapping required.�
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We usually are best to choose the simplest topology which 
can be trained to a reasonable approximation of the training 
data. By using a simple topology, we are constraining the 
nature of the mapping producible by the network: the simpler 
the topology, the simpler the range of possible mappings 
producible.�

Often a "bottleneck" in the hidden layer can help this, since it 
forces the final output to be based on a small number of 
variables.�

Bottleneck

However, if too narrow a bottleneck is used, the net will fail 
to converge.�

* generally, use a completely connected 
feedforward network, unless you have good reason to believe 
that certain inputs should be processed independently of 
others.�
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(iii) Choosing the initial weights.�

The initial weights cannot be 0, as this would lead to none of 
the error being back-propagated. �

It is best to choose weights which are small. Generally, they 
are chosen from a uniform distribution on [-0.5, 0.5], for 
example.�

In this way, one starts off in an area of the output function 
where the derivative is not too small.�

Where a unit has a large number of inputs, it may be 
advantageous to use smaller weights.�
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(iv) Choosing the network operating parameters.�

One needs to select�

η the learning rate�
α the momentum parameter�
ε the acceptable error level,�
and the number of epochs of training to be attempted before 
giving up.�

We have already discussed ε. η and α interact: additionally, 
the best values to use depend on the problem. This is because 
they decide the weight change size as a function of the 
gradient of the error at this particular point in W-space. The 
nature of the error as a function of the weights is completely 
problem-dependent.�

It can be useful to start with η high, and gradually reduce it. 
Often the best value to use requires some experimentation.�
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Overspecialisation.�

Training the network for too long on some training data can 
result in poor generalisation performance. This can be a 
particular problem when rather too large a hidden layer has 
been used.�

Error

Epochs

Best Overall
generalisation
performance

Using too many hidden units tends to give the same effect.  
What happens is that the network develops a transfer function 
which attempts to explain the input/output pairs precisely.�

Function example (blackboard!).�
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