
Proving the Backpropagated Delta Rule.�

For simplicity, we will consider a single pattern, in a simple
three-layer network, in which

k indexes the output units�
j indexes the hidden units�
i indexes the input "units"�

We therefore need to alter the wkj’s and the wji’s.�

To achieve gradient descent when altering the wkj’s we can

simply apply the Delta Rule:�

�wkj � ��Ek�
dYk

dAk

�Yj

and this will decrease Ek, for small enough η.�

If we had an expression for Ej, we would simply apply the

Delta rule again:�

�wji � ��Ej �
dYj

dAj

�Yi

31X7 Lecture 11 P 1

However, we know that Ek depends on the Ak, and that the

Ak depend on the Yj. So we can write�

�E

�Yj
�

sX

k��

�E

�Ak

�Ak

�Yj

where k indexes the s output units. Yk depends only on Ak, so

we can write:�

�E

�Yj
�

sX

k��

�E

�Yk

dYk

dAk

�Ak

�Yj

Ak is calculated from the Yj by weighted summation using

the wkj weights so that�

�E

�Yj
�

sX

k��

�E

�Yk

dYk

dAk

wkj

31X7 Lecture 11 P 2

We can then use the Delta rule to show us how the E depends
on the wji, and hence how to alter the wji weights:�

�E

�wji

�

�E

�Yj

dYj

dAj

�Aj

�wji

so that�

�E

�wji

�

sX

k��

�E

�Yk

dYk

dAk

wkj�
dYj

dAj

�Ii

which gives us the learning rule.�

And it is (reasonably!) local. Further, it can be applied �

* for any well-behaved error measure�
* for any strictly increasing and differentiable output function.�

For the usual error measure, �

�E

�Yk
� ��Dk � Yk��� �

we get the learning rule�

�wji � �

sX

k��

Ek

dYk

dAk

wkj�
dYj

dAj

�Ii

31X7 Lecture 11 P 3

The Backpropogation Algorithm.�

This algorithm may be clearer expressed programmatically.�

Repeat
{

for (pno=0;pno<N_Patterns;pno++)
{

/* forward pass */
Apply Input[pno] to input units;
Compute Y[pno] at output units ;
/* Backward pass */
For each layer, starting at output
{

For each unit in this layer
{

Compute the error at this unit
For each weight to this unit
{

Compute ∆w
Apply ∆w

}
}

}
}
Increment epoch counter
Compute total error

}
until (total error small enough or

 epoch count exceeded)

This form of the algorithm is known as on-line update as the
weights are updated after each pattern-pair presentation.

31X7 Lecture 11 P 4

There is another form, known as batch update in which the
weights are updated only after a complete epoch presentation.
In fact, the proof of the algorithm applies to the batch update
version.

Repeat
{

for (pno=0;pno<N_Patterns;pno++)
{

/* forward pass */
Apply Input[pno] to input units;
Compute Y[pno] at output units ;
/* Backward pass */
For each layer, starting at output
{

For each unit in this layer
{

Compute the error at this unit
For each weight to this unit
{

Compute ∆w
Accumulate ∆w

}
}

}
}
Apply accumulated ∆w’s
Increment epoch counter
Compute total error

}
until (total error small enough or

 epoch count exceeded)

The only difference between these is in when the weight
changes are applied.

31X7 Lecture 11 P 5

