Proving the Backpropagated Delta Rule.l]

For simplicity, we will consider asingle pattern, inasimple
three-layer network, in which

k indexes the output unitsL]
j indexes the hidden units[]
| indexes the input "units'[]

We therefore need to alter the ij 's and the Wj i 's.[]

To achieve gradient descent when altering the wkj 'swe can

simply apply the Delta Rule:[]

dYy
Awkj = nEkd_flkl/J

and thiswill decrease Ek’ for small enough .

If we had an expression for Ej’ we would ssimply apply the

Deltarule again:[]

dY;
iji = nEjﬁY;
J

31X7 Lecture11P1

However, we know that Ek depends on the Ak, and that the

Ak depend on the Yj . S0 we can writel]

Z OF 0A,
0A, 0Y;

where k indexesthe s output units. Yk depends only on Ak, SO
we can write: [

Z OF dY OAy
Y, dA, 0Y;

Ak Is calculated from the Y- by weighted summation using

J
the wkj weights so thatl]

Z OF dY,zC
OY, dA,zC

31X7 Lecture11 P2

We can then use the Delta rule to show us how the E depends

on the wj i and hence how to alter the Wj i weights:.[]

OE OE dY; 0A,;
awji N (‘ﬂ/} d/—lj 6wjz-

so that[]

OF OF dY de
Wiy. I

which gives usthe Iearnl ng rule.[]
And it is (reasonably!) local. Further, it can be applied [

* for any well-behaved error measurel]
* for any strictly increasing and differentiable output function.[

For the usual error measure, [
OF
c‘?Yk

we get the learning rulel]

— 2Dy~ Y3). — 1

1Y, dY;
A0 _”ZEdekw’” 4,

31X7 Lecture11 P 3

The Backpropogation Algorithm.[]

This algorithm may be clearer expressed programmatically.l]

Repeat
{

for (pno=0; pno<N_Patterns; pno++)

/* forward pass */

Apply Input[pno] to input units;
Conpute Y[pno] at output units ;
/* Backward pass */

For each layer, starting at output

{
For each unit in this |ayer
{
Conpute the error at this unit
For each weight to this unit
{
Comput e Aw
Apply Aw
}
}
}

}

| ncrenent epoch counter
Conpute total error

}

until (total error small enough or
epoch count exceeded)

Thisform of the algorithm is known as on-line update as the
weights are updated after each pattern-pair presentation.

31X7 Lecture11 P4

There is another form, known as batch update in which the
weights are updated only after a complete epoch presentation.
In fact, the proof of the algorithm applies to the batch update
version.

Repeat
{

for (pno=0; pno<N _Patterns; pno++)

/* forward pass */

Apply I nput|[pno] to input units;
Conpute Y[pno] at output units ;
/* Backward pass */

For each | ayer, starting at output

{
For each unit in this |ayer
{
Conpute the error at this unit
For each weight to this unit
{
Conput e Aw
Accunul ate Aw
}
}
}

}

Apply accumul ated AW s
| ncrenent epoch counter
Conpute total error

}

until (total error small enough or
epoch count exceeded)

The only difference between these isin when the weight
changes are applied.

31X7 Lecture11 P5

