
The Backpropogated Delta Rule.�

Although the Perceptron Learning Rule and the Delta Rule
work, and can learn associations (PLR) or minimise mean
squared error (DR), both are limited in what they can achieve
by the single layer architecture they work in.�

The PLR can learn linearly seperable classifications.�

The DR can produce a mapping which minimises the error:�
but the error is almost certain to remain non-zero
because of the limited range of functions possible�

It has long been known that general networks of units
provided a much richer computation capacity: but the absence
of applicable learning rules had made these networks little
more than an intellectual curiosity. This changed with the
discovery of some learning rules applicable to more complex
networks. We will discuss the Backpropogated Delta rule
(BP) here: we will discuss others later (specifically the
Boltzmann machine, and some extensions to BP).�

31X7 Lecture 10 P 1

The Backpropagated Delta rule (BP)�

BP is an extension to the Delta rule.�

The use of differentiable output functions is crucial to its
application. �

(This was perhaps one reason that Minsky and Papert failed to
find an extension to the PLR: no-one has yet managed to
extend the (very general) PLR to multiple layers). �

Though the term backpropagation was coined about 1986, the
algorithm was disovered by Werbos in 1974. �
But its importance was not realised, and it was rediscovered in
1985:�
by Parker, Le Cun, and Rumelhart, Hinton, and Williams.�

31X7 Lecture 10 P 2

Architecture:�

BP is not applicable to a general network: it requires a
feedforward network.�

General Feedforward Network.

In fact it is nearly always applied to a layered feedforward
network.�

Simple layered feedforward network.

31X7 Lecture 10 P 3

Usually, the architecture is that of a totally connected layered
feedforward network: �

That is, each node in layer X (where X=0 means inputs, X=1
is first hidden layer of units, etc.) is connected to all the units
in layer X+1.�

In fact, the proof simply requires the network to be loop free.�

The units used cannot simply be linear because the
combination of a set of feedforward linear units is equivalent
to a different linear unit.�

As discussed in the Delta rule, they need to be differentiable
and strictly monotonic. Usually either tanh or logistic
functions are used.�

31X7 Lecture 10 P 4

The Algorithm.�

Consider the network:�

k: indexes output
units

j: indexes hidden
units

i: indexes inputs

bias
units

wkj

wji

output

input

1

1

This layered feedforward network has 1 layer of hidden units.
We have added a bias unit to the inputs, and to the hidden
layer.�

The question is how should the weights be adjusted to achieve
gradient descent.�

31X7 Lecture 10 P 5

As before, we take the error measure to be �

E �
X

p

X

k

�Dp
k � Y

p
k �

�

where p indexes the patterns, and k the output units.�

For weights on each output unit, we can simply apply the
Delta rule: �

�wkj � ��
X

p

�Dp
k � Y

p
k ��

dYk

dAk

�Y
p
j

to find the weight change on one weight on an output unit (k).�

But how should we alter weights to the hidden units? �

If we had a value for the error at a hidden unit, Ej, say, then

we could apply the Delta rule there too:�

�wji � ��Ej �
dYj

dAj

�Yi

and we could continue this to any number of layers of hidden
units.�

31X7 Lecture 10 P 6

Another way of asking this question is "How should we
allocate the error that occurs at the output units amongst the
hidden units?". This is a credit (perhaps blame in this case!)
assignment problem.�

The solution taken is to "funnel" the errors at the output units
back through the weights which connect the hidden units to
the output units. That is, the error at a single hidden unit is the
sum of the errors at all the output units to which it is
connected, multiplied by the weight from the hidden unit to
each output unit. �

Perhaps it is clearer as an equation. The error at hidden unit j,
Ej, is�

Ej �

sX

k��

Ek

dYk

dAk

wkj

where k indexes the s output units.�

31X7 Lecture 10 P 7

If we use the logistic function for the output unit, then �

Yk �
�

�� � e����Ak��

where β is the slope of the logistic, and Ak is the activation of

unit k (including weighted bias input). Then�

dYk

dAk

� �Yk��� Yk�

So that we can find an expression for the error at hidden unit j,
Ej, �

Ej �

sX

k��

Ek�Yk��� Yk�wkj

where s is the number of output units. From this we can
produce an expression for the weight change at a hidden unit,
by applying the Delta rule:�

�wji �
sX

k��

Ek�kYk��� Yk�wkj�jYj��� Yj�Yi

and this can be applied directly to update the weights.�

It is clear that this argument can be applied to any number of
hidden layers.�

31X7 Lecture 10 P 8

