Hypertext Transport Protocol
HTTP/1.1

Jm Gettys
Digital Equipment Corporation, ISBU
Visiting Scientist, World Wide Web

Consortium
10/17/96
Acknowledgments wt
m HTTP/1.1 Authors
+ Roy Fielding (UCI)

+ Jm Gettys - Editor (Digital ISBU / W3C)
+ Jeff Mogul (Digital / WRL)
+ Henrik Frysyk Nielsen (W3C)
o Tim Berners Lee (W3C)
mI[ETFHTTP Working Group
o Larry Masinter - Working Group Chair

Introduction we

m HTTP/1.1isan upward compatible
evolution of HTTP
« Focusis on making HTTP agood I nternet
citizen, while improving performance for both
clients and servers, while minimizing time
required to deploy clients and servers

Presentation Organization Wt

m Mgor Problemsof HTTF/1.0

m What's Not in HTTP/1.1, that needs to be
done soon

m FixestoHTTP/1.0

m New Features Introduced in HTTP/1.1
Cache Features
Persistent Connections/ Chunked encoding
New Methods
Range Requests

HTTP Structure we

m Very good idea: adoption of MIME type registry

m Lessgood idea: HTTP Based on Internet Mail
Protocols (SMTP, MIME)

m Different enough from and similar enough to
MIME to confuse MIME wizards

m Consequences
+ Slow to parse
o Verbose, therefore high latency

« Don’t know length of a request/response until
after parsing the protocol

HTTP/1.0 Design Problems wit

m HTTP/1.0 Protocol - Informational RFC
+ Feature: Simple; open, operation, close
+ Bug: Fetches single URL per TCP connection
& Mean size of gets only afew thousand bytes
+ Bimodal size of URL’s, usually short

m Out and out mistakes in the protocol
+ Host bug
+ Caching primitive at best

m ‘Flash Crowd' Problem due to success

Consequencesof HTTP/1.0 v\?c

m Closing connection causes loss of congestion information

m Connection opens may be congesting low bandwidth links, due to lack
of flow control on TCP opens and closes

m Poor user perceived performance (most connections in slow-start)

¢ Workaround has been opening multiple simultaneous connections, with
resulting congestion problems

m Servers have thousands of connectionsin close wait state
¢ eg. AltaVistaserver isat > 20 million connections/day, or >230/second
averaged over 24 hours
+ Cost isprimarily memory, on systems running reasonable TCP
implementations
m Vanity serverswith HTTP result in big servers using 100’ s of |.P.
addresses and consequential routing headaches
m Caching model is primitive, and broken enough that content providers
often defeat caching

Multiple Connection Hack ~ w#

m Problem:

+ Rendering requires meta-data of objects embedded in that page
m Solution:

+ Open N connections simultaneously (by default 4 with Netscape)
m Result:

& Faster time to render

+ but... Self congestion of nearly simultaneous opens

o “Unfair” use of bandwidth (problem of the “commons”)
m Hasmade HTTP/1.0’s use of TCP, abad problem, much worse

m Even with persistent connections, we will have fairness problems for
clients that use multiple connections, versus “well behaved” clients
using one. RED algorithm in routers may help.

Goalsof HTTP/1.1 we

1) Reduce HTTP simpact on the Internet, and
make HTTP a‘well behaved’ Internet
protocol

2) Finisn HTTP/1.1 quickly (see 1.)
3) Be as compatible as possible with

HTTP/1.0, particularly for origin servers
and clients (see 2.)

Now an |ETF Proposed Standard

Deferred to Future we

m Hit count reporting to avoid cache busting
+ Important to increase caching
+ Draft out for review (Leach & Mogul)
m Compressed Protocol

+ Sticky headers proposal from Paul Leach
m Multiplexing of HTTP stream
+ Reduces further need for multiple connections
+ Transition strategy to future protocols
Transparent Content Negotiation
m User agent negotiation
PEP - HTTP protocol extensibility/negotiation

Fixesto HTTP/1.0 we

m Host: header
+ Solve major headache of Web service providers

m Reliable caching
+ Problems with getting stale datain a cache

« Insufficient cache control to build reliable
applications - result: applications defeat
caching, and get poor performance

Insufficient control to users, or warnings of
problems

New Features - Host: we

m Host Header
+ All requests now accompanied by Host: header
+ Not dependent on HTTF/1.1 for deployment
+ Already implemented by majority of clients

o HTTP/1.1 requires Host: header to be present,
or an error will be returned
(to detect buggy implementations)

+ Vital that this be implemented as soon as
possible, even if your implementation is not
otherwise HTTP/1.1 compliant

Range Requests Wwe

m Already commonly implemented
(Netscape, Microsoft)

m Not dependent on HTTP version,
optional feature of protocol
m Range: allows client to request arange

m Content-Range: specifieswhere a partial entity
should be inserted

m If-Range: ‘if the entity is unchanged, send me the
part(s) that | am missing; otherwise, send me the
entire new entity.’

Caching - Semantic Transparency W

m Caching that application developers and
users can rely on

m Requirements: disconnected operation and island
caches

m A cache behavesin a“semantically transparent” manner,
with respect to a particular response, when its use affects
neither the requesting client nor the origin server, except to
improve performance. When a cache is semantically
transparent, the client receives exactly the same response
that it would have received had its request been handled
directly by the origin server.

Caching - Age: wh

m HTTP/1.1 introduces Age: header, to allow
conservative age of document computation

m the Age: valueisthe sum of the time that
the response has been resident in each of the
caches along the path from the origin
server, plus the amount of time it has been
in transit along network paths.

m Enables reliable cache expiration
m See section 13.2.3

Caching - Last-Modified Dates W

m HTTP/1.0 has only Last-Modified: Dates

¢ Unreliable under some circumstances:
resolution left to 1 second

+ Notorious problems serving NFSfiles

+ Hard for some serversto generate (e.g.
databases)

m Used with
< If-Modified-Since:
< If-Unmodified-Since:

Caching - Opaque Validators wit>

m HTTP/1.1 Introduces Opague Validators
(Opaque to Client; left to server to choose)

m Strong Validators
+ Indicates equality of entry
m Weak Validators (optional)
m Transmitted using the Etag: header
m Typically used with:
+ If-Match:
+ If-None-Match:

Caching - Strong Validators wi

m Server chooses validator
m Indicates exact equality of cached entity
m Can be used with range requests

Caching - Weak Validators wi

m Weak Validators

+ Indicates equivalence, rather than bit equality
of an entity

« Useful for hit-counters, and other applications
where equivalence will do

+ e.g. rapidly changing entity in which any
version is equivalent
m Cannot be used with Range Requests

m Optional part of HTTP/1.1

Caching - Cache-Control: w#

m Categories of Cache-Control: directives

+ Restrictions on what is cachable; these may only be
imposed by the origin server.

+ Restrictions on what may be stored by a cache; these
may be imposed by either the origin server or UA

& Modifications of the basic expiration mechanism; these
may be imposed by either the origin server or the UA.

+ Controls over cache revalidation and rel oad; these may
only be imposed by a user agent.

¢ Control over transformation of entities.
+ Extensions to the caching system.

10

Caching - Cache-Control: wt

m What is cachable

+ these may only be imposed by the origin server.
+ public
(mark as cachable responses that would
otherwise be non-cachable or private)

& private
(must not be cached in a public cache)
& no-cache

(do not cache anywhere, even in caches
deliberately returning stale responses)

Caching - Cache-Control: w#

m What may be stored in a cache
+ these may only be imposed by the origin server.
& no-store
prevent the inadvertent release or retention of
sensitive information (for example, on backup

tapes).

11

Caching - Cache-Control: w#

m Modifications of the expiration mechanism
+ imposed by either the origin server or the UA.

+ max-age = delta-seconds
Indicates that the client iswilling to accept a
response whose age is no greater than the specified
time in seconds.

+ min-fresh = delta-seconds
The client wants a response that will still be fresh
for at least the specified number of seconds.

+ max-stale [= delta-seconds]
Indicates that the client iswilling to accept a
response that has exceeded its expiration time.

Caching - Cache-Control: w#

m Controls over cache revalidation and reload
+ these may only be imposed by a user agent.
+ no-cache Force end-to-end rel oad
+ max-age = delta-seconds The client iswilling

to accept a response whose age is no greater
than the specified time in seconds.

¢ must-revalidate Forces revalidation, or
generates Gateway Timeout response

o proxy-revalidate ~ Same as must-revalidate,
except for private user-agent caches

12

Caching - Cache-Control: w#

m Transformations in caches are desirable for
many situations (e.g. gif -> PNG or JPEG,
or conversion of resolution for PDA use),
however some applications fail if their data
has been transformed

m Applications that care can prohibit
transformations

+ no-transform
Do not transform this entity to a different
content-type.

Caching - Warnings wh

m Provided any time ‘ semantic transparency’
isviolated

m |ntended for both disconnected and ‘island’
cache use

m HTTP/1.1 warnings

+ Response is stale

+ Revalidation failed

+ Disconnected operation
« Heuristic expiration

+ Transformation applied

13

New Methods we

m Trace
Used in concert with Via: and
Max-Forwards: for debugging

m Put
m Delete

m Options
Extensibility hook

m Upgrade

Persistent Connections we

m Default behavior for HTTP/1.1

m Server can indicate connection will be
closed by:

+ Connection: close
m Request/responses can be pipelined

m Mg or performance gain for users, and
major goodness to the network

m Different than Keep-Alive: which did not
work correctly with chained proxies

14

Chunked Encoding V\?C

m Some entities do not have known length
(e.g. those generated by scripts)

m Chunked Encoding allows transmission of
entities where the length is not known in
advance

Other New Headers we

m Upgrade:
Supports protocol switching on open
connection

m Proxy-Authenticate:, Proxy-Authorization:
Authentication of proxy caches

m Content-MD5:
MD5 Digest Message Integrity Check

m Content-Transfer-Encoding:
Hop-by-hop compression of entities

15

Content Negotiation wo

m Accept-*
+ Existing practice codified
+ Transparent negotiation deferred from
HTTP/1.1, but caching design takes it into
account
m Vary: indicates which dimensions a
response varies on
m Alternates: Hook for future content
negotiation; to state what alternate
representations are available

|mplementation Requirementsyt>

m Host: mandatory, and HTTP/1.1 servers
must check for its presence

m Persistent Connections
m Chunked Encoding

m Honoring DNS Time To Liveisnow an
explicit requirement of HTTP/1.1

m Proxy caches have significant work to
implement HTTP/1.1

16

Associated Documents wo

m Digest Authentication
o Now an |ETF Proposed Standard
+ Replacement for Basic Authentication
+ Should eliminate cleartext passwords
+ Uses cryptographic hashes for authentication
+ No export control problems
+ Appears everyone will implement

+ Big benefit for Corporate Intranets with
distributed proxy caches

Associated Documents (Cont) W

m State Management

& In|ETF last call, Proposed Standard status
expected soon

+ Compatible standardization of Netscape
“cookies’

+ Resulted in worst pun of HTTP development...

17

What This Means wt

mHTTP/1.1
+ Improves user perceived performance

+ Reduces |oad and increase performance of
HTTP servers

« Enablesreliable applications in the face of
caching

+ Should help congestion and other operational
problems of parts of the Internet

¢ Decreases load of HTTP on the Internet

More Information wt

m More information at
http:/www.w3.org/pub/WWW/Protocols

m Specifications, pointers to more
Information, and this talk can be found at
thislocation

18

Next Steps weC

m Deferred items
m Better support for authoring tools

m Multiplexing transport to reduce need for

multiple connections
(but game theory implies additional network

level solutions needed, e.g. RED algorithm)

m Reduce latency over low bandwidth/high
latency links via protocol compression and
pipelining implementations

19

