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ABSTRACT
This paper discusses the effects of mutation and directed in-
tervention crossover approaches when applied to the deriva-
tion of cancer chemotherapy treatment schedules. Unlike
traditional Uniform Crossover (UC), the directed interven-
tion techniques actively choose the intervention level based
on the fitness of the parents selected for crossover. This
work describes how directed intervention crossover princi-
ples are more robust to mutation and lead to significant im-
provement over UC when applied to cancer chemotherapy
treatment scheduling.

Categories and Subject Descriptors
F.2.2 [Problem Solving, Control Methods, and Search]:
Sequencing and scheduling; G.3 [Probability and Statis-
tics]: Time series analysis; I.2.8 [Problem Solving, Con-
trol Methods, and Search]: Scheduling

General Terms
Algorithms

Keywords
Genetic Algorithms, Time Series, Chemotherapy, Crossover

1. INTRODUCTION
Genetic Algorithms (GAs) are frequently used to find ef-

fective solutions in a large solution space and may be ap-
plied to both static and time dependent problem domains

.

[1]. Previous work into GA crossover approaches produced a
directed intervention crossover method, Targeted Interven-
tion with Stochastic Selection (TInSSel), suitable for appli-
cation to time series problems [4]. This crossover approach
was used to derive optimisation schedules for the applica-
tion of nematode worms as a bio-control agent for combating
sciarid flies in the production of mushroom crops [5, 6].

TInSSel was shown to outperform traditional Uniform
Crossover (UC) when deriving schedules of bio-control appli-
cation over a range of initial intervention spreads. This work
introduces two alternative crossover approaches to TInS-
Sel – Fitness Directed Search (FDS) and Directed Uniform
Crossover (DUC). In contrast to UC, TInSSel, FDS and
DUC operate on the principle of calculating the required
number of interventions to use in offspring based on the re-
lationships between parents fitness values and intervention
levels.

In order to test these techniques, a cancer chemotherapy
treatment problem was chosen since GAs have already been
successfully used in chemotherapy design problems [15]. This
has a similar form to the previous scheduling work as anti-
cancer drugs are generally applied according to a schedule
where s doses are given at times t1, t2, . . . , ts [8].

In addition, the search effectiveness of a GA is significantly
affected by mutation [18]. With respect to intervention pro-
cesses such as chemotherapy scheduling, it is therefore im-
portant to investigate the performance of an algorithm with
respect to different levels of mutation in order to understand
their robustness and ability to exploit diversity.

This paper is structured as follows: Section 2 outlines the
approaches under consideration, Section 3 details the cancer
chemotherapy scheduling problem and Section 3.1 details
the relevant equations. Section 4 presents the experiments
and their results, and Section 5 summarises the conclusions
derived from this work.

2. PRELIMINARIES

2.1 Gene Representation



The TInSSel approach was a result of studying GA crossover
approaches in a variable length chromosome environment.
Due to this variable length facet of the work, the gene en-
coding utilised is slightly different from conventional GA
approaches. Each gene in the chromosome represents an in-
tervention in the chemotherapy schedule and has a schedule
location associated with it, while the omission of an inter-
vention represents a non intervention on that day. In the
nematode work, each location represented a day of the ap-
plication schedule, thus if a chromosome had two genes, e.g.
(2,16), this represents a schedule whereby the mushroom
farmer applies the bio-control agent to their crops on the
second and sixteenth day of the schedule. Section 3.1 de-
fines a cancer problem whereby each gene does not represent
a potential daily intervention, but groups of 4 genes are used
to calculate the strength of dose for a particular day.

2.2 Uniform Crossover
GAs commonly use Uniform Crossover (UC) as a method

of achieving recombination. UC is a popular method of gene
selection as it avoids the destructive tendencies that Single
Point Crossover (SPC) demonstrates in later generations [3].
In addition, UC is effective at protecting common genes and
recombining non-common genes [7]. In order to gauge the
effectiveness of the directed crossover approaches, we com-
pare their performance to the established UC approach. As
defined in Section 2.1, as there is a variable length environ-
ment, the gene representations are modified. In this work,
UC crossover operates by automatically picking those genes
that are present in both parents (i.e. they have a selection
probability of 1.0) then each of the remaining genes (those
not present in both parents) with a selection probability of
0.5.

2.3 TInSSel
The majority of crossover approaches have the gene selec-

tion process separated from the process of generating off-
spring, however, alternatives have been investigated [11].
TInSSel is a variant length encoding crossover approach that
produces children which have an intervention schedule de-
rived from the fitter of the two parents selected for breeding.
It was designed to test the principle that targeted inter-
vention selection would improve performance in time-series
problems.

2.3.1 TInSSel Algorithm
The first step of the TInSSel process is to select the num-

ber of intervention points to be present in each offspring.
The fittest parent in the recombination pool is found and
the number of intervention points utilized by this parent
is noted as (IF ). Although the size of the fitter parent is
known, exploration is encouraged in this process by adjust-
ing the number of interventions in the offspring such that
they vary around that of IF . In order to calculate the limits
of this variance, we first calculate the absolute difference in
the number of interventions, (Di), between parents as:

Di = |I1 − I2| (1)

where I1 and I2 are the number of interventions for parents
one and two respectively.

For a given offspring, a stochastic element is introduced
such that the actual number of target interventions to use
IT , is calculated as:

IT = IF −
Di
2

+ rnd(Di) (2)

IT is a natural number constrained by the minimum num-
ber of interventions Imin, which must be applied (usually 1)
and a maximum number of interventions Imax. Imax is lim-
ited to the size of the set of interventions present in both
parents. The function rnd(x) returns a random real value
between 0 and x. IF acts as the centre point for the mean
target intervention level with bounds determined by the dif-
ference between the two parent intervention levels.

Having determined the number of interventions a child
will have, the next step is to calculate when the interven-
tions will occur. TInSSel ensures that intervention points
present in all the parents selected for crossover are passed
on to the offspring before interventions present in only some
of the parents. Interventions present in all parents selected
for breeding are placed in the set of duplicates Sdup, of size
ID and these intervention points will have priority in being
passed to the offspring (as is the case in UC). Interventions
from Sdup will be added once only, at random, until IT is
reached or no common intervention points remain. Note
that if IT is less than the size of ID then not all elements
of Sdup will be included. Having selected interventions com-
mon to both parents, the number of additional interventions
required (IB) is therefore IT - ID. IB will be a value between
0 and IT since it is possible that there are no duplicate in-
terventions across all parents. To determine the remaining
interventions, selection is carried out exactly as UC for genes
with 0.5 probability of selection (Section 2.2), until the re-
quired number is reached.

2.4 Directed Uniform Crossover
TInSSel has previously been shown to outperform UC

when applied to the scheduling of bio-control applications
[4, 5, 6]. The TInSSel approach described in Section 2.3
produces a window of potential intervention schedule sizes
based on the number of interventions present in the fitter
parent and the difference in intervention numbers between
both parents selected for crossover. Although TInSSel has
proven that directed intervention can be effective, the ques-
tion remains as to whether this is due to the sizing win-
dow approach of TInSSel, or indeed purely through provid-
ing a target number of interventions for crossover to aim
for? In order to investigate this question, Directed Uniform
Crossover (DUC) is presented as a simple technique that
provides a target number of interventions to be picked during
the crossover process. Rather than calculating a window of
potential intervention numbers as with TInSSel, DUC sim-
ply finds the fittest parent in the recombination pool and
the number of intervention points utilized by this parent is
noted as (IT ). As with the UC approach detailed in Section
2.2, all genes present in both parents are added to the off-
spring and if more material is still required, it is picked at
random from those interventions present in only one of the
parents until IT is reached.

2.5 Fitness Directed Search
Although TInSSel uses the difference in intervention num-

bers between parents, it does not take into account the fit-
ness difference. The Fitness Directed Search approach aims
to utilise both these properties to calculate the number of
interventions to use in offspring. The FDS approach places



an emphasis on selecting intervention sizes that are close to
the size of the fitter parent, while shifting in the direction
that appears to offer the best improvement, based on the
intervention and fitness gradients between the two parents.
For example, if the fitter parent has more interventions than
the less fit parent, then an intervention size will be returned
that is greater than the fittest parent with a margin that is
proportional to this fitness difference.

The FDS algorithm is presented with two parents for se-
lection. F1 is the normalised fitness associated with parent
one and I1 is the number of interventions utilised by parent
one, with F2 and I2 being the respective values for parent
two.

The normalised fitness score, Fnorm is calculated by find-
ing the maximum (Fmax) and minimum (Fmin) fitness scores
contained in the current population and applying Equation
3, where F is the score being normalised.

Fnorm =
F − Fmin

Fmax − Fmin
(3)

The number of interventions used by the fitter of the two
parents is recorded as IF and the normalised optimal fit-
ness score is recorded as T , where T=0 for a minimisation
problem and T=1 for a maximisation problem.

The number of interventions to select in the offspring IT ,
is calculated as shown in Equation 4.

IT = IF + (2T − 1)(I1 − I2)(F1 − F2) (4)

IT incorporates both the fitness and size difference be-
tween parents and therefore provides an intervention esti-
mate that captures the dynamics of the relationship between
the parents fitness and intervention values. Note that if
there is no difference between the number of interventions
in the parents or if the fitness score for parents are the same,
the calculation of IT is equivalent to the DUC approach.

2.6 Mutation
Mutation is a key component of GAs and prevents stagna-

tion in the population by introducing random diversity [18].
We have investigated 3 different levels of mutation in this
work in order to understand the ability of the algorithms to
exploit this diversity.

A relatively standard form of mutation is used where the
bit string of interventions is first padded out with zeros up
to the maximum number of interventions. This expanded
string, representing the chromosome, is traversed and bits
are randomly flipped according to a probability m (in this
study values of m are 0, 0.001 and 0.01). If this process is
repeated on a bit string with no external factors, the odds
of an individual bit being set will therefore tend toward 0.5,
resulting in a string with half the bits set to 1 and the other
half set to 0. This form of mutation introduces a tendency
to add genes when the number of interventions is low with
respect to L/2 and conversely, to remove genes when the
interventions is greater than L/2, where L is the bit length
of a chromosome.

3. CANCER CHEMOTHERAPY PROBLEM
Chemotherapy is frequently used to combat cancer whereby

chemotherapy drugs interfere with the division of cancerous
cells in order to cause the cancer to recede [12]. Construct-

ing an effective chemotherapy treatment schedule is a non-
trivial task; indeed chemotherapy is often considered one of
the most complex cancer treatments [20]. This complexity is
due to the range of drugs available and other factors such as
toxicity levels in the patient caused by treatments. Through
the use of deterministic mathematical models, valuable ef-
forts in the analysis of cancer chemotherapy have been made
[9]. However, the problem can be regarded as analytically
intractable due to both its multi-constraint nature and the
non-linearity of the optimisation functions [13]. This com-
plexity makes this problem an ideal test to assess the abili-
ties of DUC in searching a multi-constraint, extensive search
space where GAs have been previously successful in calcu-
lating treatment schedules [14].

3.1 Problem Formulation
We define the problem formulation of the single cancer

chemotherapy model from [10]. There exists a solution space
S of chemotherapeutic regimens where the representation
space I of these solutions is defined as a Cartesian product,
as shown in Equation 5.

I = A1 ×A2 × . . .×An (5)

Where Ai, i = 1, n are the allele sets which encode the
concentration levels Ci, i = 1, n of the anti-cancer drug in
the blood plasma. A 4-bit representation for each concen-
tration Ci is used, meaning that all allele sets Ai, i = 1, n
consist of 16 elements as defined in Equation 6.

Ai = {0000, 0001, 0010, 0011, . . . , 1110, 1111} (6)

This means that each concentration Ci has an integer
value in the range 0 to 15 and any treatment schedule c =
(Ci), i = 1, n can be represented as a 4n-bit chromosome
x ∈ I as detailed in Equation 7.

x = {a1a2a3 . . . a4n : ak ∈ {0, 1}∀k = 1, 4n} (7)

The target for these equations is to minimise the final tu-
mour sizeN(Tfinal) after a fixed treatment period [T0, Tfinal].
Thus the objective of the search is to find the treatment
schedule c = (Ci|i = 1, n) that minimises N(Tfinal). The
tumour growth is defined by the Gompertz model as shown
in Equation 8. This shows how the population of tumour
cells of size N at time t will grow at a rate λ and the prox-
imity of the current size N to an absolute limiting size θ.

dN

dt
= N(t)λln

θ

N(t)
(8)

The concentration of anti-cancer drugs relates to their
ability to kill cells, as shown in Equation 9 where N is the
number of tumour cells at time t, C(t) is the drug concen-
tration at time t and κ is the toxicity of the drug.

dN

dt
= −κC(t)N(t) (9)

Equations 8 and 9 are combined to form the differential
equation shown in Equation 10, which represents the tu-
mour response to chemotherapy. Each treatment is evalu-
ated through passing its encoded dose schedule to a simula-
tion of the response based on Equation 10, with the fitness



Parameter Value
λ 0.1

Ccum 120
κ 0.045
θ 100.484

Table 1: Chemotherapy Model Parameters

score being updated during the simulation run. The final
score at the end of the run forms the fitness function for the
experiments undertaken in this work. The parameters used
in these expressions for the experiments carried out in this
work are shown in Table 1.

Ṅ(t) = N(t)λln

8>>: θ

N(t)

9>>;− κC(t)N(t) (10)

This model is subject to the constraints detailed in equa-
tions 11 - 13 whereby equations 11 and 13 are for all i = 1, n.

g1(c) = Cmax − Ci ≥ 0 (11)

g2(c) = Ccum −
nX
i=1

Ci ≥ 0 (12)

g1(c) = Nmax −N(ti) ≥ 0 (13)

Equation 11 details the maximum instantaneous dose Cmax
for the drug, Equation 12 the maximum cumulative Ccum
dose of the drug and Equation 13 the maximum permissible
size Nmax of the tumour. The goal of cancer chemother-
apy is to achieve the beneficial effects of treatment without
violating the above constraints [16].

4. EXPERIMENTS & RESULTS
Tournament selection was used to select parents for breed-

ing as it has been shown to provide better or equivalent
convergence and computational properties when compared
to alternative approaches [2]. There were 2 potential parents
in each tournament and the GA maintained a steady state
population update. This allows the offspring to immediately
be used as part of the breeding pool and has been shown to
make a shift towards the optimal solution in an early part of
the optimisation process [19]. The other parameters for the
GA are shown in Table 2. The cancer chemotherapy sched-
ules were 400 bits long, and as described in section 3.1, there
are 4 bits for each chemotherapy dose which is equivalent to
a 100 dose schedule. The experiments used the same param-
eters with the only exception being the crossover approach
used and mutation probability.

As one cannot assume that data of this type are normally
distributed, a nonparametric statistical test is required. We
have used the Kruskal-Wallis (KW) one-way analysis of vari-
ance by ranks test to discern whether the samples are from
different populations.

A KW probability less than 0.05 indicates that at least one
of the groups is different from at least one of the others. For
the results presented in this paper, the KW probabilities for
all studies were at most 0.00006, indicating that a statistical
difference was present between at least one group and one
other group.

Parameter Value
Population Size 100

Fitness Function Limit 10,000
Crossover Probability 1.0

Mutation Probability m 0, 0.001, 0.01
Chromosome Length 400

Table 2: GA Parameters

This test does not identify which groups are different, thus
in order to distinguish this information, the formula detailed
in Equation 14 was used [17]. This allows us to test the
hypothesis H0 : θu = θv against H0 : θu 6= θv between two
groups u and v.

|R̄u − R̄v| ≥ Zα/k(k−1)

r
N(N + 1)

12
(

1

nu
+

1

nv
) (14)

k = number of samples or groups
nj = number of cases in the jth sample
N = number of cases in the combined sample
Rj = sum of the ranks of the jth sample
R̄j = average of the ranks of the jth sample
R̄ = average of the ranks in the combined sample

For each evaluation, as there are k = 4 groups, we have
4(4-1)/2 = 6 comparisons. An α = 0.05 was used result-
ing in a critical value of z = 2.63. N is 800, with nu and
nv both 200. Thus when two samples are compared, if the
resulting score is greater than 60.97, H0 : θu 6= θv can be ac-
cepted, showing a statistically significant difference between
samples.

In this study, 200 runs of each crossover approach were
conducted with the 3 different mutation probabilities. Each
run was recorded up to 10,000 Fitness Function Evaluations
(FFE) in order to gauge the performance of the crossover
approaches over time.

The results for each of these experiments are shown in
Figures 1 to 3. Each figure shows the median performance
of the relevant crossover approach at a given point in time
(as measured by FFEs) with a set level of mutation, where
a high score indicates an effective treatment schedule. Since
data of this type are rarely normally distributed, all the
graphs plot the median values from the runs with the error
bars showing the first and third quartiles.

For each experiment, mean rank tables are provided for
each group (Tables 3 to 5), sampled at 1000 FFE intervals.
Comparison of the mean rank differences in these tables in-
dicates a significant difference between approaches when the
mean rank difference is greater than 60.97.

4.1 No mutation
For the case where no mutation is present (Figure 1), all

four crossover approaches reach a point where no further im-
provements can be made. It is interesting to note that the
relatively simple DUC approach produces the best results
in this case since it just uses the best parent’s intervention
level as the guide for offspring. Since UC is unguided, it
has no means of adjusting its current intervention position
and, as will shown in the next section, relies purely on muta-
tion to find the best intervention level to use. The TInSSel
and FDS approaches attempt to move the intervention level



based upon the relative differences in the parent interven-
tion and fitness scores. At the start of the evolutionary pro-
cess, there is some variance in the population and progress
is made, however this variance quickly disappears and the
population stagnates. With no variance to exploit, TInSSel
and FDS also cease to improve. Note also that since both
of these approaches tend to vary around the current fittest
parent’s intervention level, they are slower to get ‘off the
mark’ than DUC.

Figure 1: Fitness scores with no mutation

FFEs UC TInSSel FDS DUC
1000 151.54 468.20 415.03 567.24
2000 208.45 457.79 371.19 564.57
3000 231.00 455.31 357.99 557.71
4000 235.31 453.97 356.27 556.46
5000 235.39 453.96 356.22 556.44
6000 235.39 453.96 356.22 556.44
7000 235.39 453.96 356.22 556.44
8000 235.39 453.96 356.22 556.44
9000 235.39 453.96 356.22 556.44

10000 235.39 453.96 356.22 556.44

Table 3: Mean ranks with no mutation

4.2 Mutation of 0.001
Figure 2 shows the results for a mutation level of 0.001.

All four crossover approaches are seen to perform signifi-
cantly better than in the previous case and all tend toward
a near optimal performance given sufficient time. The main
advantage of the directed approaches appears to be their
relative efficiency at finding a good solution in a given time.
UC is now able to use the variance introduced by this level
of mutation to return better solutions when compared to
its previous performance where no mutation was present.
FDS and TInSSel are initially outperformed by DUC but
are able to regain this ground in the later stages and main-
tain a slight advantage. It is also worth noting that even

when FFEs equals 10,000, all the directed approaches still
statistically outperform UC (Table 4).

Figure 2: Fitness scores for mutation of 0.001

FFEs UC TInSSel FDS DUC
1000 113.72 457.24 465.19 565.86
2000 136.73 444.30 475.23 545.75
3000 160.07 446.74 483.00 512.20
4000 200.62 435.77 480.46 485.16
5000 230.85 427.64 483.91 459.61
6000 261.10 425.52 478.00 437.39
7000 281.83 423.84 469.01 427.32
8000 304.41 421.34 457.62 418.64
9000 322.20 420.55 445.74 413.52

10000 336.10 423.76 434.87 407.28

Table 4: Mean ranks with mutation of 0.001

4.3 Mutation of 0.01
Figure 3 shows the results for a mutation level of 0.01.

The performance of the four crossover approaches actually
deteriorate in this case, with UC performing significantly
worse than the directed approaches. Since the level of noise
in a given chromosome is likely to be relatively high, the
DUC approach will be targeting intervention levels that are
potentially erroneous. In contrast, the FDS approach is able
to use the fitness and intervention gradient between the two
parents to calculate a suitable level of interventions to aim
for.

In response to the question raised in section 2.4, we can see
that from 2,000 FFEs onward, there is a statistically signif-
icant difference between the searching approaches of TInS-
Sel and FDS versus DUC. TInSSel stochastically searches
around the point used by DUC and FDS works out the cor-
rect direction to move from the value used by DUC. These
results would seem to indicate that it is important to vary
intervention levels around the currently observed best inter-
vention level if the system is to remain robust to noise.



Figure 3: Fitness scores for mutation of 0.01

FFEs UC TInSSel FDS DUC
1000 104.17 482.90 536.33 478.61
2000 103.70 493.27 577.02 428.01
3000 103.19 501.20 587.77 409.86
4000 104.47 513.67 587.42 396.45
5000 105.59 526.19 586.22 384.01
6000 105.76 534.19 587.18 374.88
7000 105.57 538.53 590.59 367.32
8000 105.45 545.96 589.33 361.28
9000 105.37 546.97 595.69 353.98

10000 105.25 550.93 597.55 348.28

Table 5: Mean ranks with mutation of 0.01

5. CONCLUSION
Section 4 reports our results comparing UC, TInSSel, FDS

and DUC at deriving cancer chemotherapy treatment sched-
ules. The experiments show a statistical advantage in using
a directed intervention technique over traditional UC regard-
less of the fitness function evaluation point being observed.
The directed approaches are quicker than UC at finding good
scores and appear to be able to more effectively exploit the
diversity introduced by mutation. Further investigation will
focus on time-series problems which offer a finer granularity
of intervention time in order to assess the potential benefits
of directed crossover techniques in a more complex environ-
ment.
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