
 

 

 

  

Abstract— This paper presents a method for training a binary 

Hopfield neural network so that its energy function represents 

the fitness surface of an optimization problem with one or more 

target solutions. The main advantage of this method is that once 

the network has been trained, new solutions to a problem can be 

generated without reference to the original fitness function 

(which may take time to run). This allows the network to move 

from poor solutions to locally optimal solutions at speed. 

 

I. INTRODUCTION 

Hopfield networks [1] are a type of neural network 

capable of storing a number of patterns distributed across the 

same weight matrix. Patterns are stored using one-shot 

learning and recalled by the presentation of a partial pattern, 

which causes the network to produce the pattern from its 

memory that is closest to the input stimulus. Such networks 

have also been used on optimization tasks such as the 

travelling salesman problem, but the network needs to be 

configured by hand to reflect the structure of the problem to 

be solved. In this paper, we present a method for training a 

Hopfield network to represent local maxima in search space 

so that multiple searches from arbitrary starting points may 

be quickly executed. This work is restricted to binary 

patterns, where units are either on or off. 

In section II we introduce the Hopfield network and its 

role as an auto-associative memory and optimization method. 

In section III we present a method for training a Hopfield 

network so that its energy function reflects the fitness of a 

given pattern as a potential solution to an optimization 

problem. 

Section IV presents some experimental results from three 

different types of task: discovering a single target pattern, 

discovering a set of target patterns, and discovering a target 

concept. 

II. HOPFIELD NETWORKS 

A Hopfield network [1] is a neural network consisting of 

simple connected processing units. In this work, the network 

has the following properties. Networks have a fixed size of n 

binary processing units. The values the units take are 

represented by a vector, U, of n binary values. 
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In the following, we use ← to indicate ‘becomes’ to avoid 

nonsensical equalities such as i=i+1, preferring i ← i+1. 

The processing units are connected by directed weighted 

connections, with subscripts denoting direction from pre-

synaptic unit to post-synaptic unit: 

 

][ ijwW =  (2) 

 

where wij is the strength of the connection from unit i to unit 

j. Units are not connected to themselves, i.e. 

 

0=iiw  (3) 

 

and connections are symmetrical, i.e. 

 

jiij ww =  (4) 

 

A single pattern, P is a point in n-dimensional binary 

space defined by a vector of binary values:  
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A pattern is entered into the network by setting: 

 

ipu ii ∀←  (6) 

 

Once the input pattern has been entered, the network is 

allowed to settle to an attractor state determined by the 

values of its weights. The unit update rule is 
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following which the unit’s value is capped by a threshold, θ, 

such that: 

 

1←iu     if θ>iu  

1−←iu  otherwise (8) 

  

In this paper, we will always use θ = 0. 

The process of settling repeatedly uses the unit update rule 

of Equation (7) for each unit in the network until no update 

produces a change. At that point, the network is said to have 

settled. 

Learning in a standard Hopfield network takes place by 

A Hopfield Network for Multi-Target Optimization 

Kevin Swingler 



 

 

 

the process of setting the pattern to be learned using 

Equation (6) and applying the weight update rule: 

 

jiijij uuww +←  (9) 

 

This is known as the Hebbian update rule. 

With the above restrictions in place, the network has an 

energy function, which is a Lyapunov function, which 

determines the set of possible stable states into which the 

network will settle. 

 

The energy function is defined as: 
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Settling the network, by Equation (7) produces a pattern 

corresponding to a local minimum of E in Equation (10). 

Hopfield networks have been used to solve optimization 

tasks such as the travelling salesman problem [2] but weights 

are set by an analysis of the problem rather than by learning. 

In the next section, we show how random patterns and a 

fitness function can be used to train a Hopfield network as a 

search technique. 

III. TRAINING OPTIMIZATION NETWORKS 

In this section we describe a new method for training a 

Hopfield network for use in optimization problems. The 

procedure is summarized below and specified formally in the 

following section. 

Candidate solutions are generated randomly one at a time. 

Each solution is given a score that reflects its quality as a 

solution and this score is used as a learning rate in the 

Hopfield network. Consequently, each pattern is learned with 

a different strength, which reflects its quality as a solution. 

The scoring mechanism is specific to the problem at hand 

and some simple examples are presented in section IV of this 

paper. After a number of patterns have been scored and 

learned, the network is settled by repeated application of 

Equation (7) and the resulting pattern is scored. The score of 

the settled pattern will increase as learning proceeds. 

Learning terminates when a pattern of suitable quality has 

been found. It may, however, be desirable to continue the 

learning process until a number of good solutions have been 

found. This ensures that more of the search space is learned. 

We now define the procedure formally. 

A. The Search Space 

A single pattern, P is a point in n-dimensional search 

space defined by a vector of binary values as specified in 

Equation (5). 

For the purpose of human readability in the examples that 

follow, P is arranged into an m x m grid where nm = and 

elements are displayed as black when pi = 1 and white when 

pi = -1. 

Target patterns are one of two types: 

 

• A specific set of patterns T = {P
1
 … P

t 
}, where t is 

the number of target patterns 

• A concept such as symmetry, producing a number 

of equally perfect targets 

In both cases, a candidate pattern is scored by comparison 

to the target pattern or concept.  

B. The Fitness Function 

We define a fitness function, f(P), which returns a real 

valued score corresponding to the quality of the pattern P as 

a solution to the problem at hand. f(P) has the quality that 

better patterns have higher scores. We implement three 

example fitness functions in this paper, all with a score 

between zero and one. 

For each pattern stored in a Hopfield network, there are 

two local minima in the energy function. One is at the point 

representing the pattern itself and the other is at the point 

representing the inverse of the pattern (to invert a pattern, 

toggle all the values so that -1 becomes 1 and 1 becomes -1).  

If the target pattern is one of a set (as in examples 1 and 2 

below) then the fitness function is simply the hamming 

distance between the candidate pattern and the target. This 

simple measure does not work, however, due to the 

symmetrical nature of the network attractors. The fitness 

function is altered so that the inverse of any pattern and the 

pattern itself both score the same, that score being the 

maximum of the two. The modified hamming distance is 

used to calculate the fitness of a pattern P given a target T 
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where δti,pi is the Kronecker delta function between pattern 

element i in T and its equivalent in P. 

C. The New Weight Update Rule 

This work utilizes a modification to the Hebbian rule so 

that 

 

jiijij uuPfww )(+←  (12) 

 

where f(P) is the score function for the given pattern, as 

described above. This has the effect of learning high scoring 

patterns more than low scoring patterns. 

D. Search Algorithm 

The search algorithm generates random patterns in P and 

calculates f(P) for a chosen scoring function. Each element pi 

is set to either 1 or -1 with equal probability. Early results 

suggest that changing this distribution is detrimental to the 

learning process. 

The pattern is loaded into the network units, U, and the 



 

 

 

learning rule in Equation (12) is applied to the weights, W. 

The network is then settled by repeated application of the 

unit update rule in Equation (7) and f(P) is re-calculated. 

This process is repeated until f(P) produces a score of 1 (or 

some pre-determined limit is reached). 

Note that the patterns being generated are always random, 

their probability distribution is not affected by W. That is to 

say that it is the value of f(P) that is produced before the 

network settles that is used for learning. The settled pattern is 

not learned, and early experiments have shown that doing so 

is detrimental to the performance of the algorithm. 

Due to the fact that patterns and their inverse are equally 

likely to be found – as described above – it may be necessary 

to score both the solution and its inverse to find the true 

solution. 

Multiple solutions may be found by allowing the search 

algorithm to continue to run after the first solution is found, 

hence learning other high scoring patterns. 

E. New Searches with an Existing Network 

Once a number of solutions have been found, the energy 

function of the network will have a number of local minima, 

all of which are attractors to which the settling process will 

move. By presenting a new pattern and allowing the network 

to settle, the closest solution (or locally optimal solution) 

will be found. This is done by settling the network and does 

not require the fitness function f(P) to be evaluated. This 

offers a useful fast search method for problems with the 

following qualities: 

 

1. More than one pattern has an optimal (or near 

optimal) score; 

2. High scoring patterns need to be found repeatedly 

from different starting points; 

3. The preferred pattern is that which is closest to the 

starting point. 

IV. EXPERIMENTAL RESULTS  

A. Example 1 – Finding a Single Pattern 

In this example, a 36 pixel vector was used to represent a 

6 x 6 binary image. The single target pattern P is shown 

below in Fig. 1. 

 

 
Fig. 1. The first example target pattern. 

 

Finding this one pattern from the 2
36

 possible binary 

patterns is a relatively simple task for a genetic algorithm [3] 

or estimation of distribution algorithm [4]. In this section, we 

compare simple implementations of these two approaches 

with the Hopfield approach. Our aim is to discover whether 

or not the new approach is comparable to basic 

implementations of these popular search methods. In all 

cases, f(P) was calculated as the normalized hamming 

distance between a candidate pattern and the target. 

 

1) A Simple Genetic Algorithm 

Genetic algorithms (GAs) are optimization techniques that 

maintain a population of candidate solutions which are 

scored against a fitness function. Higher scoring candidates 

are combined and randomly altered (mutated) to produce a 

new generation that is closer to the target than previous 

solutions. The GA used for comparison in this study 

maintained a population of 100 candidate solutions, each of 

which were scored using f(P). Fitness proportional selection 

was used to select 10 patterns from each generation. Uniform 

crossover with a rate of 100% was used with a mutation rate 

of 5%. The offspring replaced the lowest scoring 10 

candidates in the population.  

 

2) A Simple Estimation of Distribution 

Optimization using estimation of distribution algorithms 

(EDAs) looks for solutions by maintaining a probability 

distribution over the pattern elements from high scoring 

members of a population of candidate solutions. New 

solutions are generated by sampling from these distributions. 

In this case, a vector of probabilities, R = {r1 … r36}, was 

maintained and patterns were generated with pixel values set 

to 1 with a probability ri and -1 with probability (1- ri ). That 

is to say that new generations of solutions are sampled from 

the evolving distributions in R: 

 

ii rpP == )1(  (13) 

 

A population of 100 solutions was generated based on 

these probabilities and each pattern was scored using f(P). 

The probabilities in R were then updated based on f(P) for 

the best 10 scoring patterns. The update rule is: 
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The probabilities, ri are then normalized so that they cover 

the range 0…1. Sampling was done with a simple rejection 

algorithm. 

 

3) Hopfield Network 

The Hopfield network used to build the energy function 

for the search had 36 units connected by 1260 weights. 

Random patterns were presented to the network and learning 

was performed as described above. Note that in this 

approach, there is no population of candidate solutions and 

no method of generating new, improved candidates. Stimuli 

are always random and are learned one at a time. 

4) Results 

Each of the search techniques was run 150 times with the 



 

 

 

pattern from Fig. 1 as a target. The number of calls to f(P) 

made before the target was found were counted for each trial. 

Table 1 below shows the mean and standard deviation search 

length for each method over the 150 trials. The Hopfield 

network was quicker than the other two approaches. 
TABLE I 

SEARCH LENGTHS FOR EXAMPLE 1 

Method GA EDA Hopfield 

Network 

Mean Search 

Length 

2217 1410 1190 

Standard 

Deviation 

416 404 596 

Average number of score comparisons made by different search techniques 

over 150 trials searching for the pattern in Fig. 1 above. 

 

Undoubtedly, an expert in the use of the other two 

methods would be able to reduce the search time for each. 

We hope to demonstrate only that our new technique is 

sufficiently quick on a simple search that it is worthy of 

further investigation. We aim to say nothing about whether it 

is generally better than the other techniques. 

B. Example 2 – Multiple Targets 

This example investigates the behavior of the Hopfield 

network when the search target consists of a set of patterns, 

rather than a single pattern. In this case, we use binary pixel 

representations of the digits 0 to 3, as shown in Fig. 2. 

 

  
 

  
Fig. 2. Binary pixel images of the digits 0, 1, 2, and 3. 

 

The learning algorithm runs as follows: 

1. Generate a random pattern across the network units; 

2. For each target pattern: 

2.1. Score the random pattern using Equation (11), the 

modified hamming distance between the pattern 

and the target; 

2.2. Update the weights in the network using Equation 

(12); 

3. Allow the network to settle by repeated application of 

Equation (7); 

4. Score the settled network pattern against each target as 

in step 2.1, but do not adjust the weights; 

5. Stop when all targets have been found at least once. 

 

To test the resultant network, distorted patterns were 

presented and the network allowed to settle. Fig. 3 shows 

some results. Note that the network has only ever seen 

random patterns, it has never been presented with the stimuli 

in Fig. 2. 

Start Point Solution 

  
 

  
 

  
 

  
Fig. 3. Binary pixel images of distorted digits 0, 1, 2, and 3 on the left and 

their reconstructed solutions on the right. The network was not presented 

with the patterns in this table during learning. 
 

Each of the outputs on the right hand side of Fig. 3 score 1 

when compared to one of the target patterns. During training, 

the network is presented with random patterns where each 

pixel has an equal chance of being on or off, so the average 

score of the training patterns is 0.5. The training data almost 

never contains a pattern with a score of 1. However, the 

network settles on a pattern that maximizes the score against 

one of the target patterns – the one closest to its starting 

point. 

C. Example 3 – Finding Symmetrical Patterns 

In these trials, the fitness function f(P) is a measure of the 

degree of vertical symmetry of an image. Images where the 

left hand side is a mirror image of the right hand side score 

1. The score becomes closer to zero the larger the number of 

non-symmetrical pixels there are across this vertical split. 

This trial is designed to demonstrate some of the qualities 

of the Hopfield network search algorithm and is not a 

comparison with other techniques. The purpose is to show 

the network learning a concept (symmetry) based on scores 

given to randomly generated patterns. Unlike the traditional 

use of a Hopfield network, no known examples are shown to 

the network. Indeed, it is common that the network will 

arrive at the correct function without having been presented 

with a perfect scoring example. 

Patterns were generated in a 6 x 6 image of binary pixels 

as described above. There are 2
36

 (68,719,476,736) possible 

patterns in such a matrix. Of those, there will be one 

vertically symmetrical pattern for every possible pattern in 

one half of the image. There are 2
18

 (262,144) such half 

patterns, representing 0.00038% of the total number of 

possible patterns. 

In this trial the network was allowed to learn until ten 

different symmetrical patterns had been found. At that point, 

the learning process was terminated and the network was 



 

 

 

tested with a set of local searches. A local search starts from 

a random pattern and moves towards a higher scoring pattern 

by allowing the network to settle to a local minimum of the 

energy function described by the learned weights. 

Fig. 4 shows the result of testing the learned network from 

five different starting patterns. The score of the starting 

pattern and the settled pattern are given. The network settling 

process is described above, but it should be noted that during 

this search, no new learning takes place and the fitness 

function is not evaluated. 

The inverse pattern problem does not affect the fitness 

function in this example as any pattern has the same degree 

of symmetry as its inverse. 

 

Start Point Solution 

 
Score = 0.48 

 
Score = 1 

 
Score = 0.56 

 
Score = 1 

 
Score = 0.24 

 
Score = 1 

 
Score = 0.53 

 
Score = 1 

 
Score = 0.27 

 
Score = 1 

Fig. 4. Binary pixel images of random stimuli on the left and resultant 

generated images on the right. 

V. ANALYSIS 

This section presents some observations on the method 

and its results. The energy function of the network in 

Equation (10) is globally minimized when the units’ 

activation values are consistent with the weight matrix that 

connects them. The process of settling the network finds the 

pattern of activation that is most consistent with the weights 

of the network. The weights can be viewed as constraints 

between units, and the act of settling the network is the 

process of satisfying those constraints. Weights can be seen 

as an extension to the idea of an EDA. Rather than modeling 

the probability (or importance) of single element values in a 

pattern, we are modeling the conditional importance of the 

value of each element given the value of all other elements. 

The learning process derives the constraints from random 

patterns, so does not need to solve the problem of generating 

new candidate patterns from an evolving population. There is 

no combination nor mutation and no selection nor sampling. 

The patterns used during training must consist of elements 

drawn from an even binary distribution. Each pattern can be 

expected to have around half of its elements set to 1 and half 

to -1. This does not restrict the distribution of element values 

in the target population but further work is required to 

produce an algorithm that works when the training examples 

do not have an even distribution. 

It is clear that the capacity of the network will limit the 

number of concurrent local minima possible and 

consequently the number of distinct solutions the network 

can store. Using Hebbian learning, the capacity of a network 

is shown by [5] to be n / (2 ln n) for random patterns, but 

that number can be higher for certain sets of patterns. The 

symmetrical patterns illustrated here are a good example, the 

36 unit network being able to store over 130 such patterns. 

CONCLUSIONS 

We have shown that a Hopfield network presented with 

nothing but random patterns and a fitness score for each 

pattern is able to learn target patterns or concepts that it has 

never directly seen. Such a network allows new good 

solutions to be generated from existing poor solutions 

without the need for reference to the fitness function. 

This early work has many limitations, which will be 

addressed in future work. Patterns are binary in nature and 

need to be extended to a continuous space. We have noted 

that training pattern elements must be drawn from an equal 

distribution of ±1, which means that any attempt at evolving 

the training distribution towards a target distribution is 

detrimental to the process. This requires further 

investigation. We also described the problem of patterns and 

their inverse both being attractor states in the network and 

presented a simple adjustment to the hamming distance 

fitness function. The impact of this problem on other 

evaluation criteria needs further investigation. 
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