

Abstract— This paper presents a method for training a binary

Hopfield neural network so that its energy function represents

the fitness surface of an optimization problem with one or more

target solutions. The main advantage of this method is that once

the network has been trained, new solutions to a problem can be

generated without reference to the original fitness function

(which may take time to run). This allows the network to move

from poor solutions to locally optimal solutions at speed.

I. INTRODUCTION

Hopfield networks [1] are a type of neural network

capable of storing a number of patterns distributed across the

same weight matrix. Patterns are stored using one-shot

learning and recalled by the presentation of a partial pattern,

which causes the network to produce the pattern from its

memory that is closest to the input stimulus. Such networks

have also been used on optimization tasks such as the

travelling salesman problem, but the network needs to be

configured by hand to reflect the structure of the problem to

be solved. In this paper, we present a method for training a

Hopfield network to represent local maxima in search space

so that multiple searches from arbitrary starting points may

be quickly executed. This work is restricted to binary

patterns, where units are either on or off.

In section II we introduce the Hopfield network and its

role as an auto-associative memory and optimization method.

In section III we present a method for training a Hopfield

network so that its energy function reflects the fitness of a

given pattern as a potential solution to an optimization

problem.

Section IV presents some experimental results from three

different types of task: discovering a single target pattern,

discovering a set of target patterns, and discovering a target

concept.

II. HOPFIELD NETWORKS

A Hopfield network [1] is a neural network consisting of

simple connected processing units. In this work, the network

has the following properties. Networks have a fixed size of n

binary processing units. The values the units take are

represented by a vector, U, of n binary values.

1

,1

±=

=

i

n

u

uuU K
 (1)

Kevin Swingler is with the Institute of Computing and Mathematics,

University of Stirling, Stirling, FK9 4LA. kms@cs.stir.ac.uk

In the following, we use ← to indicate ‘becomes’ to avoid

nonsensical equalities such as i=i+1, preferring i ← i+1.

The processing units are connected by directed weighted

connections, with subscripts denoting direction from pre-

synaptic unit to post-synaptic unit:

][ijwW = (2)

where wij is the strength of the connection from unit i to unit

j. Units are not connected to themselves, i.e.

0=iiw (3)

and connections are symmetrical, i.e.

jiij ww = (4)

A single pattern, P is a point in n-dimensional binary

space defined by a vector of binary values:

1

,1

±=

=

i

n

p

ppP L
 (5)

A pattern is entered into the network by setting:

ipu ii ∀← (6)

Once the input pattern has been entered, the network is

allowed to settle to an attractor state determined by the

values of its weights. The unit update rule is

j

ji

jii uwu ∑
≠

← , (7)

following which the unit’s value is capped by a threshold, θ,

such that:

1←iu if θ>iu

1−←iu otherwise (8)

In this paper, we will always use θ = 0.

The process of settling repeatedly uses the unit update rule

of Equation (7) for each unit in the network until no update

produces a change. At that point, the network is said to have

settled.

Learning in a standard Hopfield network takes place by

A Hopfield Network for Multi-Target Optimization

Kevin Swingler

the process of setting the pattern to be learned using

Equation (6) and applying the weight update rule:

jiijij uuww +← (9)

This is known as the Hebbian update rule.

With the above restrictions in place, the network has an

energy function, which is a Lyapunov function, which

determines the set of possible stable states into which the

network will settle.

The energy function is defined as:

ji

ji

ij uuwE ∑−=
,2

1 (10)

Settling the network, by Equation (7) produces a pattern

corresponding to a local minimum of E in Equation (10).

Hopfield networks have been used to solve optimization

tasks such as the travelling salesman problem [2] but weights

are set by an analysis of the problem rather than by learning.

In the next section, we show how random patterns and a

fitness function can be used to train a Hopfield network as a

search technique.

III. TRAINING OPTIMIZATION NETWORKS

In this section we describe a new method for training a

Hopfield network for use in optimization problems. The

procedure is summarized below and specified formally in the

following section.

Candidate solutions are generated randomly one at a time.

Each solution is given a score that reflects its quality as a

solution and this score is used as a learning rate in the

Hopfield network. Consequently, each pattern is learned with

a different strength, which reflects its quality as a solution.

The scoring mechanism is specific to the problem at hand

and some simple examples are presented in section IV of this

paper. After a number of patterns have been scored and

learned, the network is settled by repeated application of

Equation (7) and the resulting pattern is scored. The score of

the settled pattern will increase as learning proceeds.

Learning terminates when a pattern of suitable quality has

been found. It may, however, be desirable to continue the

learning process until a number of good solutions have been

found. This ensures that more of the search space is learned.

We now define the procedure formally.

A. The Search Space

A single pattern, P is a point in n-dimensional search

space defined by a vector of binary values as specified in

Equation (5).

For the purpose of human readability in the examples that

follow, P is arranged into an m x m grid where nm = and

elements are displayed as black when pi = 1 and white when

pi = -1.

Target patterns are one of two types:

• A specific set of patterns T = {P
1
 … P

t
}, where t is

the number of target patterns

• A concept such as symmetry, producing a number

of equally perfect targets

In both cases, a candidate pattern is scored by comparison

to the target pattern or concept.

B. The Fitness Function

We define a fitness function, f(P), which returns a real

valued score corresponding to the quality of the pattern P as

a solution to the problem at hand. f(P) has the quality that

better patterns have higher scores. We implement three

example fitness functions in this paper, all with a score

between zero and one.

For each pattern stored in a Hopfield network, there are

two local minima in the energy function. One is at the point

representing the pattern itself and the other is at the point

representing the inverse of the pattern (to invert a pattern,

toggle all the values so that -1 becomes 1 and 1 becomes -1).

If the target pattern is one of a set (as in examples 1 and 2

below) then the fitness function is simply the hamming

distance between the candidate pattern and the target. This

simple measure does not work, however, due to the

symmetrical nature of the network attractors. The fitness

function is altered so that the inverse of any pattern and the

pattern itself both score the same, that score being the

maximum of the two. The modified hamming distance is

used to calculate the fitness of a pattern P given a target T

1)(2)|(
,

−= ∑
i

piti

n
TPf

δ
 (11)

where δti,pi is the Kronecker delta function between pattern

element i in T and its equivalent in P.

C. The New Weight Update Rule

This work utilizes a modification to the Hebbian rule so

that

jiijij uuPfww)(+← (12)

where f(P) is the score function for the given pattern, as

described above. This has the effect of learning high scoring

patterns more than low scoring patterns.

D. Search Algorithm

The search algorithm generates random patterns in P and

calculates f(P) for a chosen scoring function. Each element pi

is set to either 1 or -1 with equal probability. Early results

suggest that changing this distribution is detrimental to the

learning process.

The pattern is loaded into the network units, U, and the

learning rule in Equation (12) is applied to the weights, W.

The network is then settled by repeated application of the

unit update rule in Equation (7) and f(P) is re-calculated.

This process is repeated until f(P) produces a score of 1 (or

some pre-determined limit is reached).

Note that the patterns being generated are always random,

their probability distribution is not affected by W. That is to

say that it is the value of f(P) that is produced before the

network settles that is used for learning. The settled pattern is

not learned, and early experiments have shown that doing so

is detrimental to the performance of the algorithm.

Due to the fact that patterns and their inverse are equally

likely to be found – as described above – it may be necessary

to score both the solution and its inverse to find the true

solution.

Multiple solutions may be found by allowing the search

algorithm to continue to run after the first solution is found,

hence learning other high scoring patterns.

E. New Searches with an Existing Network

Once a number of solutions have been found, the energy

function of the network will have a number of local minima,

all of which are attractors to which the settling process will

move. By presenting a new pattern and allowing the network

to settle, the closest solution (or locally optimal solution)

will be found. This is done by settling the network and does

not require the fitness function f(P) to be evaluated. This

offers a useful fast search method for problems with the

following qualities:

1. More than one pattern has an optimal (or near

optimal) score;

2. High scoring patterns need to be found repeatedly

from different starting points;

3. The preferred pattern is that which is closest to the

starting point.

IV. EXPERIMENTAL RESULTS

A. Example 1 – Finding a Single Pattern

In this example, a 36 pixel vector was used to represent a

6 x 6 binary image. The single target pattern P is shown

below in Fig. 1.

Fig. 1. The first example target pattern.

Finding this one pattern from the 2
36

 possible binary

patterns is a relatively simple task for a genetic algorithm [3]

or estimation of distribution algorithm [4]. In this section, we

compare simple implementations of these two approaches

with the Hopfield approach. Our aim is to discover whether

or not the new approach is comparable to basic

implementations of these popular search methods. In all

cases, f(P) was calculated as the normalized hamming

distance between a candidate pattern and the target.

1) A Simple Genetic Algorithm

Genetic algorithms (GAs) are optimization techniques that

maintain a population of candidate solutions which are

scored against a fitness function. Higher scoring candidates

are combined and randomly altered (mutated) to produce a

new generation that is closer to the target than previous

solutions. The GA used for comparison in this study

maintained a population of 100 candidate solutions, each of

which were scored using f(P). Fitness proportional selection

was used to select 10 patterns from each generation. Uniform

crossover with a rate of 100% was used with a mutation rate

of 5%. The offspring replaced the lowest scoring 10

candidates in the population.

2) A Simple Estimation of Distribution

Optimization using estimation of distribution algorithms

(EDAs) looks for solutions by maintaining a probability

distribution over the pattern elements from high scoring

members of a population of candidate solutions. New

solutions are generated by sampling from these distributions.

In this case, a vector of probabilities, R = {r1 … r36}, was

maintained and patterns were generated with pixel values set

to 1 with a probability ri and -1 with probability (1- ri). That

is to say that new generations of solutions are sampled from

the evolving distributions in R:

ii rpP ==)1((13)

A population of 100 solutions was generated based on

these probabilities and each pattern was scored using f(P).

The probabilities in R were then updated based on f(P) for

the best 10 scoring patterns. The update rule is:

)(Pfrr ii +← if 1=ip

ii rr ← otherwise (14)

The probabilities, ri are then normalized so that they cover

the range 0…1. Sampling was done with a simple rejection

algorithm.

3) Hopfield Network

The Hopfield network used to build the energy function

for the search had 36 units connected by 1260 weights.

Random patterns were presented to the network and learning

was performed as described above. Note that in this

approach, there is no population of candidate solutions and

no method of generating new, improved candidates. Stimuli

are always random and are learned one at a time.

4) Results

Each of the search techniques was run 150 times with the

pattern from Fig. 1 as a target. The number of calls to f(P)

made before the target was found were counted for each trial.

Table 1 below shows the mean and standard deviation search

length for each method over the 150 trials. The Hopfield

network was quicker than the other two approaches.
TABLE I

SEARCH LENGTHS FOR EXAMPLE 1

Method GA EDA Hopfield

Network

Mean Search

Length

2217 1410 1190

Standard

Deviation

416 404 596

Average number of score comparisons made by different search techniques

over 150 trials searching for the pattern in Fig. 1 above.

Undoubtedly, an expert in the use of the other two

methods would be able to reduce the search time for each.

We hope to demonstrate only that our new technique is

sufficiently quick on a simple search that it is worthy of

further investigation. We aim to say nothing about whether it

is generally better than the other techniques.

B. Example 2 – Multiple Targets

This example investigates the behavior of the Hopfield

network when the search target consists of a set of patterns,

rather than a single pattern. In this case, we use binary pixel

representations of the digits 0 to 3, as shown in Fig. 2.

Fig. 2. Binary pixel images of the digits 0, 1, 2, and 3.

The learning algorithm runs as follows:

1. Generate a random pattern across the network units;

2. For each target pattern:

2.1. Score the random pattern using Equation (11), the

modified hamming distance between the pattern

and the target;

2.2. Update the weights in the network using Equation

(12);

3. Allow the network to settle by repeated application of

Equation (7);

4. Score the settled network pattern against each target as

in step 2.1, but do not adjust the weights;

5. Stop when all targets have been found at least once.

To test the resultant network, distorted patterns were

presented and the network allowed to settle. Fig. 3 shows

some results. Note that the network has only ever seen

random patterns, it has never been presented with the stimuli

in Fig. 2.

Start Point Solution

Fig. 3. Binary pixel images of distorted digits 0, 1, 2, and 3 on the left and

their reconstructed solutions on the right. The network was not presented

with the patterns in this table during learning.

Each of the outputs on the right hand side of Fig. 3 score 1

when compared to one of the target patterns. During training,

the network is presented with random patterns where each

pixel has an equal chance of being on or off, so the average

score of the training patterns is 0.5. The training data almost

never contains a pattern with a score of 1. However, the

network settles on a pattern that maximizes the score against

one of the target patterns – the one closest to its starting

point.

C. Example 3 – Finding Symmetrical Patterns

In these trials, the fitness function f(P) is a measure of the

degree of vertical symmetry of an image. Images where the

left hand side is a mirror image of the right hand side score

1. The score becomes closer to zero the larger the number of

non-symmetrical pixels there are across this vertical split.

This trial is designed to demonstrate some of the qualities

of the Hopfield network search algorithm and is not a

comparison with other techniques. The purpose is to show

the network learning a concept (symmetry) based on scores

given to randomly generated patterns. Unlike the traditional

use of a Hopfield network, no known examples are shown to

the network. Indeed, it is common that the network will

arrive at the correct function without having been presented

with a perfect scoring example.

Patterns were generated in a 6 x 6 image of binary pixels

as described above. There are 2
36

 (68,719,476,736) possible

patterns in such a matrix. Of those, there will be one

vertically symmetrical pattern for every possible pattern in

one half of the image. There are 2
18

 (262,144) such half

patterns, representing 0.00038% of the total number of

possible patterns.

In this trial the network was allowed to learn until ten

different symmetrical patterns had been found. At that point,

the learning process was terminated and the network was

tested with a set of local searches. A local search starts from

a random pattern and moves towards a higher scoring pattern

by allowing the network to settle to a local minimum of the

energy function described by the learned weights.

Fig. 4 shows the result of testing the learned network from

five different starting patterns. The score of the starting

pattern and the settled pattern are given. The network settling

process is described above, but it should be noted that during

this search, no new learning takes place and the fitness

function is not evaluated.

The inverse pattern problem does not affect the fitness

function in this example as any pattern has the same degree

of symmetry as its inverse.

Start Point Solution

Score = 0.48

Score = 1

Score = 0.56

Score = 1

Score = 0.24

Score = 1

Score = 0.53

Score = 1

Score = 0.27

Score = 1

Fig. 4. Binary pixel images of random stimuli on the left and resultant

generated images on the right.

V. ANALYSIS

This section presents some observations on the method

and its results. The energy function of the network in

Equation (10) is globally minimized when the units’

activation values are consistent with the weight matrix that

connects them. The process of settling the network finds the

pattern of activation that is most consistent with the weights

of the network. The weights can be viewed as constraints

between units, and the act of settling the network is the

process of satisfying those constraints. Weights can be seen

as an extension to the idea of an EDA. Rather than modeling

the probability (or importance) of single element values in a

pattern, we are modeling the conditional importance of the

value of each element given the value of all other elements.

The learning process derives the constraints from random

patterns, so does not need to solve the problem of generating

new candidate patterns from an evolving population. There is

no combination nor mutation and no selection nor sampling.

The patterns used during training must consist of elements

drawn from an even binary distribution. Each pattern can be

expected to have around half of its elements set to 1 and half

to -1. This does not restrict the distribution of element values

in the target population but further work is required to

produce an algorithm that works when the training examples

do not have an even distribution.

It is clear that the capacity of the network will limit the

number of concurrent local minima possible and

consequently the number of distinct solutions the network

can store. Using Hebbian learning, the capacity of a network

is shown by [5] to be n / (2 ln n) for random patterns, but

that number can be higher for certain sets of patterns. The

symmetrical patterns illustrated here are a good example, the

36 unit network being able to store over 130 such patterns.

CONCLUSIONS

We have shown that a Hopfield network presented with

nothing but random patterns and a fitness score for each

pattern is able to learn target patterns or concepts that it has

never directly seen. Such a network allows new good

solutions to be generated from existing poor solutions

without the need for reference to the fitness function.

This early work has many limitations, which will be

addressed in future work. Patterns are binary in nature and

need to be extended to a continuous space. We have noted

that training pattern elements must be drawn from an equal

distribution of ±1, which means that any attempt at evolving

the training distribution towards a target distribution is

detrimental to the process. This requires further

investigation. We also described the problem of patterns and

their inverse both being attractor states in the network and

presented a simple adjustment to the hamming distance

fitness function. The impact of this problem on other

evaluation criteria needs further investigation.

ACKNOWLEDGMENTS

Thanks to Bruce Graham and David Cairns for their

comments on this paper.

REFERENCES

[1] Hopfield J.J. Neural networks and physical systems with emergent

collective computational abilities, Proceedings of the National

Academy of Sciences of the United States of America, Vol. 79, No. 8,

1982. pp. 2554-2558.

[2] J. J. Hopfield and D. W. Tank, Neural computation of decisions in

optimization problems, Biological Cybernetics, vol.52, pp.141-152,

Springer. 1985.

[3] Goldberg, David E. Genetic Algorithms in Search Optimization and

Machine Learning. Addison Wesley. pp. 41. 1989.

[4] Larrañaga, Pedro; & Lozano, Jose A. (Eds.). Estimation of

distribution algorithms: A new tool for evolutionary computation.

Kluwer Academic Publishers, Boston, 2002.

[5] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh.

1987. The capacity of the Hopfield associative memory. IEEE Trans.

Inf. Theor. 33, 4, 1987. pp 461-482.

