

Computing Science and Mathematics

University of Stirling

The ACCENT Policy System

for Home Care

 Kenneth J. Turner

Technical Report CSM-188

ISSN 1460-9673

March 2020

 Computing Science and Mathematics

University of Stirling

The ACCENT Policy System for

Home Care

Kenneth J. Turner

Computing Science and Mathematics

University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44-1786-467423, Facsimile +44-1786-464-551

Email kjt@cs.stir.ac.uk

Technical Report CSM-188

ISSN 1460-9673

March 2020

mailto:kjt@cs.stir.ac.uk

Abstract

This report describes the architecture, installation and configuration of the ACCENT policy system. It is seen that

virtually all the ACCENT components are bundles deployed on an OSGi system. These bundles communicate using

the OSGi event service. The details are given of how to set up and configure each of the bundles.

Keywords: ACCENT (Advanced Component Control Enhancing Network Technologies), APPEL policy language

(ACCENT Project Policy Environment/Language), goal, OSGi (Open Systems Gateway initiative), policy.

Changes in Version 2

Relative to the version of April 2011:

• support for Plugwise energy monitors has been added in sections 2.12 and 3.4.18.

Changes in Version 3

Relative to the version of May 2011:

• barcode reader hardware is now introduced in section 2.1, the corresponding driver has been listed in

section 3.4.2, and details have been given in section 3.4.6

• RFID reader hardware is now introduced in section 2.1, the corresponding driver has been listed in section

3.4.2, and details have been given in section 3.4.21

• an overview of Knopflerfish is now given in section 3.4.1, including an explanation of how to run

Knopflerfish in the background as a Windows service

• the policy server parameters in section 3.4.18 have been slightly updated

• running the policy wizard in Tomcat is now described in section 3.4.20

Changes in Version 4

Relative to the version of September 2012:

• a description of the Raspberry Pi small computer that has been used to run Accent is now given in section

2.1

• use of Java and serial ports on the Raspberry Pi are now described in sections 3.1 and 3.2

• the position with regard to 32-bit and 64-bit operating systems is now discussed in section 3.1

• the audio and speech player is now mentioned in section 3.4.2, and details have been given in section

3.4.5

• observations about running the Ontology Server remotely have been added to section 3.4.16

• the location of Policy Wizard property files has changed as described in section 3.4.20

Changes in Version 5

Relative to the version of February 2013:

• section 3.4.1 explains that bundles are now configured by means of property files located according to

the uk.ac.stir.cs.accent system property (they were previously placed in the Knopflerfish osgi top-level

directory)

• the offline conflict analyser is now described in sections 3.4.2 and 3.4.8

• section 3.4.18 has been updated to reflect the current policy server properties (in particular, the server

debug flags have changed slightly)

• in section 3.4.20, the uk.ac.stir.cs.accent property now determines whether the policy wizard is running

as a bundle, and the policy wizard mapping file is now always internal

Changes in Version 6

Relative to the version of June 2013:

• the title of this report now qualifies its subject as home care

• the PolicyAction bundle has now been removed as IRTransDriver and X10Driver now directly perform

device_out actions

• driver locations have now been mentioned in sections 2.2 and 2.3 for the ACR122U RFID reader and the

Cipherlab 1070 barcode reader

• section 2.5 now describes the FitBit fitness monitor

• section 2.8 now describes the i-Buddy

• section 2.10 now describes the Nabaztag

• section 2.14 now describes Tunstall sensors

• section 2.15 now describes the TuxDroid

• section 3.1.2 now mentions the Java version 8 preview that works on the Raspberry Pi

• section 3.4.1 now mentions a Knopflerfish property to be set for unpacking bundle JARs

• section 3.4.2 now omits PolicyAction, with corresponding changes in start levels

• sections 3.4.2 now gives a number of new start levels for bundles

• sections 3.4.2 and 3.4.5 now mention that AudioPlayer starts at level 10

• sections 3.4.2 and 3.4.8 now describe the new ConfigurationSetup bundle

• section 3.4.5 now describes AudioPlayer changes for a new audio.entity property, speech synthesis to

file, use of audio clips, and use of a preamble tone rather than a delay

• section 3.4.9 now defines an ‘overwrite’ parameter for the ConflictAnalyser bundle

• sections 3.4.2 and 3.4.10 describe the new FitBitDriver bundle

• sections 3.4.2 and 3.4.13 describe the new ForecastService bundle

• section 3.4.2 and 3.4.14 describe the new IBuddyDriver bundle

• section 3.4.15 now defines actions parameters for IRTransDriver, while section 3.4.29 now defines

actions parameters for X10Driver

• sections 3.4.2 and 3.4.16 describe the new NabaztagDriver bundle

• section 3.4.17 now describes how ontologies can be served from the local host, and introduces a new

property rmi.path for cases where guidance needs to be given on finding rmiregistry

• section 3.4.18 now defines the properties variable.prefix and server.records for the policy server,

server.log.lines has been renamed server.lines, and a new 0400 debug flag has been added

• section 3.4.20 now defines the properties policy.message.port, system.prefix, wizard.debug,

device.actions and device.triggers for the policy wizard

• section 3.4.25 describes the new SpeechRecogniser bundle

• sections 3.4.2 and 3.4.26 describe the new TunstallDriver bundle

• sections 3.4.2 and 3.4.28 describe the new TuxDroidDriver bundle

Changes in Version 7

Relative to the version of April 2014:

• section 3.4.13 describes the revised location parameter for ForecastService

• section 3.4.25 explains that SpeechRecogniser now conforms to the Google Speech API Version 2 and

therefore requires a developer key parameter

Changes in Version 8

Relative to the version of July 2015:

• the overall framework now uses Knopflerfish 5.2.0, with consequent changes in some bundles

• section 3.1.1 no longer references Jacspcsc.dll and mentions that RFIDDriver will now work on 32-bit

and 64-bit Windows

• FitBitDriver in section 3.4.10 has been updated for the latest FitBit API using OAuth 2.0; as a result, a

number of properties have changed

• section 3.4.21 no longer references Jacspcsc.dll as the new RFIDDriver implementation uses the Java

SmartCardIO API; the polling interval parameter is no longer used

Changes in Version 9

Relative to the version of January 2017:

• the overall framework now uses Knopflerfish 8.0.9, with consequent changes in some bundles

• testing has now been carried out on Microsoft Windows 10 and Raspberry Pi 4

• section 2.1 mentions use with the Raspberry Pi 4

• section 2.2 now explains how to use smartcard readers on the Raspberry Pi

• section 2.5 introduces new support for the EasyBulb and similar lights

• section 2.3 introduces new support for the Amazon Echo

• section 2.7 comments on the availability of drivers for the Eston GPRS609

• section 2.10 clarifies compatibility of the Nabaztag with WiFi

• section 2.15 mentions additional sources of libraries for the TuxDroid

• sections 3.2 now uses NRJavaSerial for interfacing to serial ports

• section 3.4.2 discusses getting hold of Xerces-J and Pax Web, and provides updated start levels for a

variety of bundles

• section 3.4.4 discusses the new AccentSchemas bundle

• section 3.4.5 clarifies the formats of audio and clip messages for AudioPlayer, the new ability to play

WAV files using the recipient player, and notes the new start level as 11

• section 3.4.7 mentions NRJavaSerial for all CommAccess serial port communication, with the property

serial.ports instead of comm.ports

• section 3.4.8 gives an extended list for ConfigurationSetup with all the bundles whose inputs and outputs

are collected; which file is updated is also now more explicit

• section 3.4.10 discusses the new EasyBulbDriver bundle

• section 3.4.11 discusses the new EchoBridge bundle

• section 3.4.12 gives examples of FitBitDriver inputs and gives more explicit advice about getting a FitBit

access token

• section 3.4.15 clarifies the types of actions supported by IRTrans devices; channel and track numbers can

now be one to three digits

• section 3.4.16 mentions that, for NabaztagDriver, use of belly and center lights has been removed, that

the off action has been removed, and that the on action has been renamed as show

• section 3.4.17 mentions use by OntologyServer of the new AccentSchemas bundle

• section 3.4.18 clarifies the types of actions and inputs supported by Plugwise devices; an example is now

given of simulating output to a Plugwise device

• section 3.4.19 introduces a new PolicyServer property mail.user for the email account user, and notes that

only SMTP with plain authentication is supported

• section 3.4.20 uses the PolicyWizard property users.port for the database host port and users.database

for the database containing the users table (in place of users.table); it is now mentioned that the audio clip

applet is unlikely to work in recent browsers; the values for ontology URLs have been clarified; use of

older Pax Web bundles with Java id discussed

• section 3.4.21 gives examples of tags that might be produced by RFIDDriver

• section 3.4.22 clarifies the use of sensor ids by RFXCOMDriver for Oregon Scientific devices

• section 3.4.25 mentions that Google Speech API keys may no longer be available

• section 3.4.26 clarifies how device inputs relate to the Tunstall properties

• section 3.4.28 clarifies the types of actions and inputs supported by a TuxDroid; examples are now given

of TuxDroid inputs and outputs

Table of Contents

Changes in Version 2 ... 5
Changes in Version 3 ... 5
Changes in Version 4 ... 5
Changes in Version 5 ... 5
Changes in Version 6 ... 5
Changes in Version 7 ... 6
Changes in Version 8 ... 6
Changes in Version 9 ... 6

1 Introduction ... 1
2 Hardware ... 2

2.1 Raspberry Pi .. 2
2.2 ACS RFID Reader .. 2
2.3 Amazon Echo .. 2
2.4 Cipherlab Barcode Reader .. 2
2.5 EasyBulb/LimitlessLED/MiLight Lights .. 3
2.6 FitBit Fitness Monitor ... 3
2.7 GPRS Modem ... 3
2.8 i-Buddy Internet Buddy .. 3
2.9 IRTrans Transmitter .. 3

2.9.1 IRTrans Server .. 3
2.9.2 IRTrans GUI Client ... 4
2.9.3 IRTrans Command-Line Client... 4
2.9.4 IRTrans UDP Communication .. 4

2.10 Nabaztag Internet Rabbit .. 4
2.11 Oregon Scientific Wireless Sensor ... 5
2.12 Plugwise Energy Monitors .. 5
2.13 RFXCOM Wireless Receiver .. 5
2.14 Tunstall Sensors .. 5
2.15 TuxDroid ... 6
2.16 Visonic Wireless Sensors .. 6
2.17 X10 Modules ... 7

2.17.1 X10 Computer Modules .. 7
2.17.2 X10 Appliance Modules ... 7

3 Software .. 8
3.1 Java Run-Time Environment .. 8

3.1.1 Microsoft Windows... 8
3.1.2 Raspberry Pi .. 8

3.2 Java Serial Port Support .. 8
3.3 Policy Database ... 9
3.4 OSGi Bundles ... 9

3.4.1 Knopflerfish Overview ... 9
3.4.2 Bundle Overview .. 9
3.4.3 Axis 1 .. 11
3.4.4 Accent Schemas .. 11
3.4.5 Audio Player ... 11
3.4.6 Barcode Driver .. 12
3.4.7 Comm Access ... 13
3.4.8 Configuration Setup .. 14
3.4.9 Conflict Analyser .. 14
3.4.10 EasyBulb Driver .. 14
3.4.11 Echo Bridge .. 15
3.4.12 FitBit Driver .. 16

3.4.13 Forecast Service .. 17
3.4.14 i-Buddy Driver .. 17
3.4.15 IRTrans Driver .. 18
3.4.16 Nabaztag Driver .. 20
3.4.17 Ontology Server .. 21
3.4.18 Plugwise Driver... 22
3.4.19 Policy Server ... 23
3.4.20 Policy Wizard .. 24
3.4.21 RFID Driver .. 30
3.4.22 RFXCOM Driver .. 30
3.4.23 SMS Driver ... 32
3.4.24 Soap Proxy .. 33
3.4.25 Speech Recogniser .. 34
3.4.26 Tunstall Driver .. 34
3.4.27 Tuple Server .. 35
3.4.28 TuxDroid Driver ... 37
3.4.29 X10 Driver .. 39

4 Conclusion .. 41

1

1 Introduction

This document describes the architecture, installation and configuration of the ACCENT policy system (Advanced

Component Control Enhancing Network Technologies), mainly for its use in home care. The policy system is

comprehensive and flexible, with a variety of components developed on the projects ACCENT

(https://accentsuite.sourceforge.io), MATCH (http://www.cs.stir.ac.uk/~kjt/research/match) and PROSEN

(http://www.cs.stir.ac.uk/~kjt/research/prosen). Among the major elements documented elsewhere are the APPEL

policy language (ACCENT Project Policy Environment/Language [5]), the ACCENT Policy Server [2], the ACCENT

Policy Wizard [4], and the ACCENT Ontology Server [1].

This report describes the major components of the policy system for home care, how to install them, and how

to configure them. The policy system supports a substantial amount of hardware and software. The main hardware

used is as follows:

• Amazon Echo

• Barcode readers

• EasyBulb lights and similar

• Eston GPRS609 GPRS modem

• FitBit fitness bands

• i-Buddy ‘Internet buddy’

• IRTrans modules for infrared control (USB and Ethernet variants)

• Nabaztag ‘Internet rabbit’

• RFXCOM USB receivers for Oregon Scientific and Visonic sensors

• Oregon scientific wireless environment sensors

• Plugwise energy monitors

• Tunstall telecare equipment

• TuxDroid ‘Internet penguin’

• Visonic wireless home sensors

• X10 appliance control

The software versions below are those that have been used in testing, though later versions may be suitable:

• Firefox 74, Internet Explorer 11

• NRJavaSerial 3.15 and SerialPort 8.2

• JAVE 1.0.2

• jNabServer 2.1 (with modifications)

• JRE 8.N

• Knopflerfish 6.1.3 with Xerces-J Bundle 2.10.1

• Microsoft Windows 10

• MySQL 8.0.17 with MySQL Connector/J 5.1.48

• Pax Web Jetty Bundle 1.0.2, Pax Web JSP Support 1.0.2, Pax Web WAR Extender 0.8.0

• Raspbian 4.19

• TSpaces 2.1.2

https://accentsuite.sourceforge.io/
http://www.cs.stir.ac.uk/~kjt/research/match
http://www.cs.stir.ac.uk/~kjt/research/prosen/

2

2 Hardware

2.1 Raspberry Pi

The Raspberry Pi (https://www.raspberrypi.org) is a small computer that runs Linux. Both version 2 and version

4 have been used to run the ACCENT system.

The Raspberry Pi 2 (32-bit kernel and user space) has an ARM11 processor that runs at 700MHz, 256MB or

512MB memory, a 10/100Mbps Ethernet connection, two USB ports, an HDMI port, and other features. An

SD/SDHC card is used as a solid-state disc. Although part of this is used as swap space, it is strongly preferable

to have 512MB memory in order to reduce use of swapping. An Ethernet connection to the Internet is strongly

desirable as the processor board does not have a real-time clock. The recommended operating system is Raspbian,

an optimised version of Debian ‘Wheezy’. This comes in two variants: ‘armel’ that uses soft floating point, and

‘armhf’ that uses hard floating point.

The Raspberry Pi 4 (64-bit kernel and 32-bit user space) has a Broadcom BCM2711 processor that runs at

1.5GHz, 1/2/4Gb memory, a Gigabit Ethernet connection, four USB ports, an HDMI port, WiFi, Bluetooth and

other features. A micro SD/SDHC card is used as a solid-state disc. Although part of this is used as swap space,

it is strongly preferable to have lots of memory in order to minimise use of swapping. An Ethernet connection to

the Internet is strongly desirable as the processor board does not have a real-time clock. The recommended

operating system is Raspbian, an optimised version of Debian ‘Buster’.

In recent versions of Raspbian, access to devices is controlled by rules under /lib/udev/rules.d and also under

/etc/udev/rules.d. USB devices that emulate a serial port are likely to be accessible only by root. This can be fixed

by creating a file such as 60-usb.rules in /etc/udev/rules.d that places USB devices in group staff and makes them

readable/writable by this group. The level of this rule (60) ensures that it is run after 50-udev-default.rules in

/lib/udev/rules.d.
KERNEL=="ttyACM[0-9]*", GROUP="staff", MODE="0660"

KERNEL=="ttyUSB[0-9]*", GROUP="staff", MODE="0660"

On Linux (i.e. Raspberry Pi), serial devices are simply numbered. These numbers may also not be persistent

across reboots. It is therefore necessary to assign symbolic names to serial devices. This is done in the same USB

rules file as above, making use of the vendor, product and (if available) serial number information. This can be

obtained by running ‘lsusb -v’. Examples might be:
SUBSYSTEM=="tty", ATTRS{idVendor}=="0745", ATTRS{idProduct}=="0001",

 SYMLINK+="ttyBarcode"

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001",

 ATTRS{serial}=="A2003F0c", SYMLINK+="ttyPlugwise"

SUBSYSTEM=="tty", ATTRS{idVendor}=="067b", ATTRS{idProduct}=="2303",

 SYMLINK+="ttyX10"

2.2 ACS RFID Reader

The ACS (Advanced Card Systems) ACR122U has been tested with ACCENT. This requires a driver and JNI (Java

Native Interface) code. The driver can be downloaded from:
https://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader

The reader works on Microsoft Windows without any special installation. On a Raspberry Pi, it is first

necessary to install libnfc-bin and pcscd. The latter runs PC/SC (Personal Computer/Smart Card) as a daemon.

Java may need help in locating the pcsclite library, so place the following into the Knopflerfish file

osgi/restart.xargs or osgi/fwdir-accent/fwprops.xargs:
-Dsun.security.smartcardio.library=/usr/lib/arm-linux-gnueabihf/libpcsclite.so.1

2.3 Amazon Echo

Amazon Echo devices (https://en.wikipedia.org/wiki/Amazon_Echo) are voice-controlled devices that connect

externally to services in the cloud and locally to devices via Bluetooth or WiFi. In the context of ACCENT, the

Echo is used for voice control of various output devices – those that support on, off, dim and hue (or similar

commands). The code has been tested with an Amazon Echo Dot 3.

2.4 Cipherlab Barcode Reader

Many barcode readers emulate a keyboard so that barcodes appear as if typed. For use with the ACCENT system,

a barcode reader needs to interface as a serial port. The Cipherlab 1070 can be set into VCOM (Virtual COM port)

mode by scanning appropriate barcodes that are provided with the manual. Specifically, scan ‘Enter Setup’,

‘Activate Direct USB VCOM_CDC’ and ‘Update’. The barcode reader will then appear as a COM/TTY port. The

VCOM driver can be downloaded from:

https://www.raspberrypi.org/
https://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader
https://en.wikipedia.org/wiki/Amazon_Echo

3

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-

drivers

2.5 EasyBulb/LimitlessLED/MiLight Lights

EasyBulb (http://www.easybulb.com) make a range of LED lights that are network-controlled. LimitlessLED and

MiLight appear to be equivalent brands. For use with the ACCENT system, interface code has been written for an

EasyBulb Plus WiFi bridge that controls RGBW (Red-Green-Blue-White) LED lamps. (The code may work only

with version 1 of the bridge).

Reset the EasyBulb bridge if necessary, then connect to the WiFi network created by the bridge. Login with

the default username admin and password admin, then change these values immediately. Set the network name,

username and password for the WiFi router that the bridge should connect to. After the bridge is restarted, it will

get a local IP address by DHCP from the router.

The bridge expects to communicate using UDP (User Datagram Protocol). For reliability it should be set to

use TCP (Transmission Control Protocol). To do this choose Other Setting then Network Parameters Setting, and

set Protocol to TCP-Server. Save the settings and reboot the bridge.

2.6 FitBit Fitness Monitor

FitBit fitness monitors such as the Flex are typically equipped with an accelerometer, a (simple) display, input by

tapping the monitor, and vibration output. These fitness monitors can be used to record lifestyle factors such as

number of steps taken per day and sleep patterns. The device is connected through Bluetooth to the system running

ACCENT. With FitBit Connect running, the presence of a FitBit monitor in the area is checked every 15 minutes.

TThe FitBit Connect and FitBit Setup applications can be downloaded from a location such as:
https://www.fitbit.com/uk/setup

2.7 GPRS Modem

Any GPRS modem can, in principle be used. However, the code has been tested with an Eston GPRS609 (using

a BenQ M32 chip, https://www.portech.com.tw/data/BenQ%20M23%20AT.pdf) that has a USB interface. A 64-

bit driver is not currently available.

By following https://sites.google.com/site/klaasdc/modify-pl2303-pid-vid it is possible to change the USB

product identifier for this device so that it is recognised as a Prolific PL2303 device and uses the corresponding

driver. However, it seems that the device then no longer responds to AT commands and so can no longer be used

as a modem.

2.8 i-Buddy Internet Buddy

The i-Buddy ‘angel’ is an Internet Buddy developed by Union Creations to signal information from Windows

Messenger. The i-Buddy connects via USB. It has three head LEDs that can be set for different colours, a red

heart light that can be turned on and off, wings that can be made to flap, and the ability to rotate left or right. This

program can be downloaded from:
 https://www.snellelinks.nl/images/ibuddy/ibuddy210-f07.exe

The i-Buddy can also be controlled from Java using JLibiBuddy that can be downloaded from:
 https://github.com/Boukefalos/jlibibuddy

This requires the Java HID API available from:
 https://code.google.com/archive/p/javahidapi

2.9 IRTrans Transmitter

An infra-red transmitter made by IRTrans (https://www.irtrans.de) is used to exchange infrared signals with

domestic appliances such as TVs, CD players and DVD recorders.

2.9.1 IRTrans Server

On Windows, the server IRServer.exe or IRTransTray.exe can be run from the IRTrans installation directory. On

the Raspberry Pi, irserver needs to be compiled from the Linux source code found at

http://www.irtrans.de/en/download/linux.php. In either case a parameter of USB can be used to find a USB-

connected device.

After reading the definitions of remote controls (in subdirectory remotes), the server listens on port 21000 on

the local host. To accept commands from another host, the firewall may need to be modified to accept connections

on port 21000.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.easybulb.com/
https://www.fitbit.com/uk/setup
https://www.portech.com.tw/data/BenQ%20M23%20AT.pdf
https://sites.google.com/site/klaasdc/modify-pl2303-pid-vid
https://www.snellelinks.nl/images/ibuddy/ibuddy210-f07.exe
https://github.com/Boukefalos/jlibibuddy
https://code.google.com/archive/p/javahidapi
https://www.irtrans.de/
http://www.irtrans.de/en/download/linux.php

4

The commands for a remote control are identified in a .rem file in the Remotes sub-directory of the installation

directory. The names of these files are converted to lower case (e.g. TV_Lounge.rem becomes the remote control

tv_lounge).

A .rem file has a format such as:
 [REMOTE]

 [NAME]TV_Lounge

 [TIMING]

 [0][N]2[1]512 2024[2]512 4552[RC]3[RP]40[FREQ]39

 [COMMANDS]

 [Vol+][T]0[D]0011101010010

This gives the NAME of the remote control and its TIMING. These are followed by the commands for the remote

control such as Vol+. A file like this is created using the Learn command of the server or of the GUI client. Choose

a name for the remote. Then, in turn, enter a name for each command and click the Learn button. Point the remote

control at the IRTrans LEDs and click the corresponding button on the remote control. The IRTrans will flash as

it learns the command.

Some commands from a remote control toggle a bit in the signal. These can be accommodated by adding

[TOGGLE][4][01] at the end of the timing.

2.9.2 IRTrans GUI Client

A GUI client IRRemote.exe is provided to communicate with the server, normally on the local host port 21000

and using TCP. This uses the file Remote.irm in the installation directory to display the layout of a remote control

such as:
 [TV]

 [FRMPIX]230,220

 [LBL]10,200 [SIZE]300,30[TEXT]TV[FONT]14

 [SLED]1

 [POS]10,10 [SIZE]110,30[TEXT]Power [REMOTE]TV_Lounge [COMMAND]Off

This defines a TV device section. FRMPIX gives the x,y extent of the remote control panel in a window. LBL

defines one or more labels that appear in this window. SLED defines the use of LEDs (1 = internal).

Then each button is defined on a line of its own. A POS field gives the x,y position of a button, while SIZE

defines its x,y extent. TEXT defines the button label. REMOTE identifies the file of IR commands for a remote

control. COMMAND defines the command in this file associated with the button.

2.9.3 IRTrans Command-Line Client

Code in C is provided for a command-line client. Compile irclient.c as follows (possibly using gcc):
cc -o irclient -O irclient.c

strip irclient

The command-line client can now be called as:
irclient host_identifier remote_name command_name

e.g.:
irclient triton TV_Ferguson 3

irclient 10.0.0.18 TV_Ferguson Off

The remote name and command name can be in upper or lower case.

2.9.4 IRTrans UDP Communication

A UDP socket can be created to send commands to the IRTrans server. Send data in the format:
SND remote_name,command_name,Pport_number

e.g.:
SND TV_Ferguson,Off,P21001

and expect a response such as OK or ERR. SND and P can be all lower or all upper case. The port number is the

one used for the response to the client (21000 by default). Note that the response is not made to the port used by

the client to send the message.

2.10 Nabaztag Internet Rabbit

The Nabaztag ‘Internet rabbit’ (https://en.wikipedia.org/wiki/Nabaztag) was created by Violet. The Nabaztag Tag

is the second-generation device. It connects using WiFi to a configured Internet address (originally a Violet

https://en.wikipedia.org/wiki/Nabaztag

5

server). However, it can also be set up to use other servers including a local one. For input the device has a

microphone, RFID tag reader, and movable ears. For output the device has a loudspeaker, multiple coloured lights,

and movable ears. Nabaztag version 2 has been tested.

To set up the Nabaztag, press and hold the head button while powering the rabbit on – the lights will turn blue.

This creates a wireless network called nabaztagNN. Connect to this, and go to 192.168.0.1 in a web browser.

Configure the network parameters, ideally using DHCP from the wireless router. The rabbit should be set to

connect to the system that will run the server. For example, this might use 192.168.0.15:8181/vl (the vl for

manufacturer Violet being needed).

The Nabaztag appears to work only with WPA (WiFi Protected Access) using PSK (Pre-Shared Key) and

encryption AES (Advanced Encryption Standard). This may require the wireless router or access point security to

be set appropriately. Although there is replacement firmware at https://github.com/RedoXyde/nabgcc/releases to

support WPA2, this is an early version and was not found to work with the available routers. Once the rabbit has

been configured, it will connect to the selected server system. This needs to run a servlet web container that

responds to requests for JSPs.

Rabbits are identified by serial number, which corresponds to their wireless MAC address. jNabServer (as

used by the Nabaztag Driver) supports a configuration server that allows rabbits to be given a friendly name.

Typically connect to the jNabServer configuration server using telnet to port 6969.

2.11 Oregon Scientific Wireless Sensor

Wireless sensors made by Oregon Scientific (http://global.oregonscientific.com) are used to measure

environmental variables such as temperature and humidity. The BTHR918 sensor measures indoor temperature,

humidity and atmospheric pressure. The THGR228 sensor measures indoor or outdoor temperature and humidity.

The THGR918 sensor measures outdoor temperature and humidity

2.12 Plugwise Energy Monitors

Modules from Plugwise (https://www.plugwise.com) are used to monitor electricity usage. These modules

(‘circles’) are connected in a ZigBee network to a USB receiver (‘stick’) plugged into a computer. One module

(‘circle+’) is designated as the network controller, e.g. it is responsible for the clock. The receiver uses an FTDI

USB interface chip, with drivers available from:
https://www.ftdichip.com/Drivers/VCP.htm

Plugwise provide software (‘Source’) for configuring and controlling the network, and for reading electricity

usage from the modules. It is not clear if it is strictly necessary to initially configure the network using the software,

but it is probably wise to do so. Updates to module firmware are managed via this software.

2.13 RFXCOM Wireless Receiver

A wireless receiver made by RFXCOM (http://www.rfxcom.com) is used to read signals from Oregon Scientific

and Visonic sensors. The receiver uses an FTDI FT2232R USB interface chip, with drivers available from:
https://www.ftdichip.com/Drivers/VCP.htm

When plugged in, the receiver appears as a COM/TTY serial port.

This receiver comes with a number of utilities on a mini CD. RFReceiver.exe on this can be used to view data

from the port. By default the receiver works at 4800 bps. Before using the receiver with the policy system, it is

necessary to set it for 38400 bps. Do this by running RFReceiver.exe, connecting a receiver, and clicking on

‘Toggle Baud Rate (don't use)’ to make it work at 38400 bps in future. The current setting can be checked by

seeing if RFReceiver.exe can successfully decode a signal at the expected bit rate.

2.14 Tunstall Sensors

Tunstall (https://www.tunstall.co.uk) provide a wide range of sensors and actuators to support telecare and

telehealth. Example sensors include the following models. When a sensor fires, its sensor identifier is sent as a

two-digit ‘location’: a resident identifier (e.g. 01) or a room identifier (e.g. 41 for the kitchen). A two-character

sensor code is also sent to indicate the kind of signal.

Model Sensor Type Battery State Code Notes

41005/12-C0 bed/chair

occupancy

4×AA occupied AZ use port IP2 or IP3; use port IP4 and

Palm emulator to program unoccupied BA

D4106009A mattress pad for use with bed/chair occupancy

sensor

41005/25-A0 opened AQ

https://github.com/RedoXyde/nabgcc/releases%20to%20support%20WPA2
https://github.com/RedoXyde/nabgcc/releases%20to%20support%20WPA2
http://global.oregonscientific.com/
https://www.plugwise.com/
https://www.ftdichip.com/Drivers/VCP.htm
http://www.rfxcom.com/
https://www.ftdichip.com/Drivers/VCP.htm
https://www.tunstall.co.uk/

6

universal

sensor

Tadiran

SL-360P

closed AR set DIP switches to 1110 0001 for door

monitoring in this way

67005/60-A0 medication

dispenser

2×AA dose

missed

CZ signals if two hours late in taking

medication

67005/89-A1 fast PIR PP3 movement BH

67005/02-J1 pendant alarm pressed AA

68005/01-A7 wrist alarm pressed AA

Tunstall sensors connect wirelessly to a Lifeline Connect+ base unit. To register a sensor, hold the green button

for five seconds to enter programming mode; the red button then flashes slowly. Then hold the green button for a

further three seconds to enter registration mode; the red button then flashes quickly. At this point, activate the

sensor to register it with the base unit. Finally, press the green button to return to normal operation.

The Lifeline Connect+ is programmed by using the PC Connect application supplied by Tunstall. The Lifeline

Connect+ has been used on Microsoft Windows XP to 10 (32-bit and 64-bit). This can be downloaded from:
https://uk.tunstall.com/our-products/product-catalogue/lifeline-vi

PC Connect interfaces to the Lifeline Connect+ via a Tapit+. Depending on the model, this requires an RS232 or

USB port on the PC. An RS232-USB converter may be required such as the FTDI UC232R. The ‘User’ model of

the Tapit+ can be used for configuration and for receiving sensor data; the ‘Schools Protection’ model can also

be used for sensor data. PC Connect allows locations to be assigned to wireless sensors (along with many other

functions).

Some devices such as the bed/chair occupancy sensor or the property exit sensor are programmed using the

Sensor Tool application for the Palm or Palm Emulator. A Palm Emulator and this application (version 1 or 2)

can be obtained from Tunstall. The Palm Emulator requires a COM1 or COM2 serial port (or an RS232-USB

converter to emulate this). The application (TIM icon) can be used to program the bed/chair occupancy pressure

threshold (also set the ADLife option). When using version 1 of the application, press the Menu button and select

Phase 2/Occupancy Sensor 151 or Phase 3/Occupancy Sensor 171, for example. When using version 2 of the

application, select Cable and then OK.

2.15 TuxDroid

The TuxDroid ‘Internet penguin’ (https://en.wikipedia.org/wiki/Tux_Droid) was developed by Kysoh as a

desktop companion. It connects wirelessly through a USB dongle that works with the TuxBox 2.0 application.

For input the TuxDroid supports head and wing clicks, light-level readings and audio recording. For output

the TuxDroid supports movement of eyelids, beak and wings, turning eye lights on and off, rotation of the body

(unless connected to a charger) and audio playback. The TuxDroid can be used by Java with the TuxDroid-Java

package available from:
 https:/github.com/Cicatrice/tuxdroid-java

The TuxDroid requires libtuxdriver which can be obtained for Windows from:
 https://github.com/Cicatrice/tuxdroid-java

This includes libraries for Microsoft Windows XP to 10 (32-bit and 64-bit), where the DLL might be copied to

C:\Windows\System32. On a Raspberry Pi it is necessary to build this library from the source at:
https://github.com/joelmatteotti/tuxdriver

and typically install it in /usr/lib. The bundle also uses jna.jar, which can be found at:
https://github.com/java-native-access/jna

2.16 Visonic Wireless Sensors

Visonic make a variety of environmental and property sensors. Examples include the following models. In general,

code 84 means normal, code 04 means alert, and code 0C means activated.

Model Sensor Type Battery State Code Notes

MCT-211 wrist alarm CR2025 pressed 0C

MCT-241 pendant alarm CR2 pressed 0C

MCT-302T magnetic contact CR2 open 04 same transmitter as MCT-550

closed 84

MCT-425 smoke PP3

Long Life

smoke 04

clear 84

MCT-441 natural gas CR123A gas 04 mains-powered with 2-pin plug

clear 84

https://uk.tunstall.com/our-products/product-catalogue/lifeline-vi
https://en.wikipedia.org/wiki/Tux_Droid
https://github.com/Cicatrice/tuxdroid-java
https://github.com/Cicatrice/tuxdroid-java
https://github.com/joelmatteotti/tuxdriver
https://github.com/java-native-access/jna

7

MCT-442 carbon monoxide PP3

Long-Life

gas 04

clear 84

MCT-550 flood CR2 wet 04 same transmitter as MCT-302T

dry 84

NEXT PIR MCW movement CR123A movement 0C

clear 8C

CLIP T MCW movement CR123A movement 0C 3 minutes before re-triggered

These transmitters send out a ‘supervisory’ signal every 15 minutes or so. This is actually two signals: the first

contains a code indicating the current status of the sensor; the second contains the same code but has 800000

added to the address (e.g. DB11AE instead of 5B11AE). If the tamper alarm is set off by opening the device, 40

is added to the sensor code (e.g. C4 instead of 84).

2.17 X10 Modules

X10 devices are used to control appliances over the mains.

2.17.1 X10 Computer Modules

The DCIU computer module is made by Domia (http://www.domialifestyle.com). This is broadly equivalent to

CM11U and CM12U modules from other manufacturers. This uses a Prolific PL2303USB interface chip, with

drivers available from:
https://www.prolific.com.tw/eng/downloads.asp?ID=31

However, note that Prolific no longer support early versions of this chip (notably the HXA). It may therefore be

necessary to obtain an archive version of a Microsoft Windows driver for this chip. When plugged in, the module

appears as a ‘Prolific USB-to-Serial Comm Port’.

2.17.2 X10 Appliance Modules

These come from a variety of different manufacturers. Each module must be set to have a unique house address:

house/room code (letters A to P) and unit/device code (numbers 1 to 16). Available modules include the following:

Model Function

AD10 DIN rail switch (on, off, 16A)

AM12U appliance module (on, off)

CM12U computer module (RS232, USB)

LD11 DIN rail dimmer (on, off, dim, 700W)

LM12U light module (on, off, dim)

SS13U wall switch (3 × on, off, dim)

TM13U transceiver module (on, off, dim?)

https://www.prolific.com.tw/eng/downloads.asp?ID=31

8

3 Software

A simplified architecture for the ACCENT policy system is given below:

For home care, input and output are supported by the driver bundles described below.

3.1 Java Run-Time Environment

3.1.1 Microsoft Windows

A JRE is required to run Knopflerfish (32-bit or 64-bit). This could be from Oracle:
https://www.oracle.com/technetwork/java/javase/downloads

or OpenJDK:
https://openjdk.java.net

As described in section 3.4.20 it is necessary to use an earlier Java version for compatibility with Pax Web.

The libraries (DLL, SO) loaded by bundles need to match the operating system and JRE in terms of 32-bit or 64-

bit version.

On Windows, serial ports are identified as COM1, COM2, etc. including USB devices that present a serial

interface. The sample property files given in this report use Windows COM port numbers and Windows paths

(with semicolon separators).

3.1.2 Raspberry Pi

A 32-bit JRE is required to run Knopflerfish; this could be from Oracle:
https://www.oracle.com/technetwork/java/javase/downloads

or OpenJDK:
https://openjdk.java.net

For the Raspberry Pi 2, Oracle JRE 8.NN has been used. For the Raspberry Pi 4, an OpenJDK JRE 11.NN is

already included. However, as described in section 3.4.20 it is necessary to use an earlier Java version for

compatibility with Pax Web.

On Linux, serial ports are identified as /dev/ttyNN, etc. USB devices that present a serial interface are identified

as /dev/ttyUSB0, /dev/ttyUSB1, etc. For the Raspberry Pi, names like USB0 can be used for serial port numbers

and Unix paths (with colon separators) should be used in property files. See section 2.1 for the preferable use of

symbolic names for devices.

3.2 Java Serial Port Support

The original JavaComm driver does not work reliably on Windows 7 and above. Instead, SerialPort

(https://www.serialio.com) can be used as a straight replacement. As appropriate, a 32-bit or 64-bit version of

jspWin.dll can be placed into C:\Windows\System32. Note that a version of jspWin.dll will be needed that

recognises normal serial ports as well as modem ports (e.g. for a GPRS modem). The files jspComm.jar and

Serialio.jar can be placed into a Java extension directory or alternatively into the bundle.

NRJavaSerial (https://github.com/NeuronRobotics/nrjavaserial) has now been used for all bundles that access

serial ports. This package is open-source, multi-platform and self-contained. Like SerialPort, NRJavaSerial can

be used on both Microsoft Windows and the Raspberry Pi.

Serial port support is relevant for CommAccess and for many other bundles. The code is set up for use of the

package javax.comm. To use NRJavaSerial in a bundle, change import statements in relevant source files to use

Policy

System

Policy

Wizard

Policy

Database

Tuple

Store

Sensors/

Actuators

Ontology

Server

https://www.oracle.com/technetwork/java/javase/downloads
https://openjdk.java.net/
https://www.oracle.com/technetwork/java/javase/downloads
https://openjdk.java.net/
https://www.serialio.com/
https://github.com/NeuronRobotics/nrjavaserial

9

gnu.io instead. After compiling the code, update the bundle manifest to import and export gnu.io instead of

javax.comm.

3.3 Policy Database

The policy database is a standard relational database (MySQL). As this is not a bundle, it is installed and

configured outside OSGi. For Microsoft Windows, MySQL can be installed from

https://dev.mysql.com/downloads/installer. For Raspberry Pi, install mariadb-server. Login and privileges need

to be set up for the home_care user. The home_care database needs to be set up with the users table. The latter

defines admin and other users. Sample SQL scripts are provided in the ‘lib’ directory to automate this setup.

The policy database is supplemented by the TSpaces tuple-space server. Developed by IBM and made

available under an evaluation licence, this no longer seems to be available online. See [2] for more detailed

information about how the policy database is used.

3.4 OSGi Bundles

3.4.1 Knopflerfish Overview

For home care, ACCENT components are bundles deployed in the Knopflerfish implementation

(https://www.knopflerfish.org) of OSGi (originally Open Services Gateway Initiative).

Knopflerfish is normally run with a GUI, e.g. by double-clicking on framework.jar in the knopflerfish/osgi

directory. However, it is also possible to run Knopflerfish in the background. A Windows service can be installed

with Windows sc or CygWin cygrunsrv. The following is an example of using the latter:
cygrunsrv -I Knopflerfish -p C:/usr/local/jdk/bin/java.exe

 -a "-jar C:/usr/local/knopflerfish/osgi/framework.jar"

 -c C:/usr/local/knopflerfish/osgi

This creates a log file in C:/var/log/Knopflerfish.log.

All bundles are configured by means of a property file (located in, say, C:/usr/local/Knopflerfish/accent). The

location of these property files is defined by an entry in init.xargs and restart.xargs, or in fwdir/fwprops.xargs. In

addition is necessary that bundles be unpackaged from their JARs (for NabaztagDriver and OntologyServer at

least). The following properties must therefore be defined in the relevant xargs files:
uk.ac.stir.cs.accent=C:/usr/local/knopflerfish/accent

org.knopflerfish.framework.bundlestorage.file.always_unpack=true

Despite the lack of an associated terminal, Knopflerfish manages to start up and run as a service in the

background. However, in the absence of a console it is not possible to manage the framework or to see

Knopflerfish logs. The Telnet Console (which runs by default) can be used with:
telnet localhost 2323

and is configured with the following typical properties (in init.xargs and restart.xargs, or in fwdir/fwprops.xargs):
org.knopflerfish.consoletelnet.port=2323

org.knopflerfish.consoletelnet.user=admin-username

org.knopflerfish.consoletelnet.pwd=admin-password

This allows a remote user to manage the framework and to see logs. The HTTP Console (not installed by default,

but available as httpconsole from the bundle repository) can also be installed. This is accessed in a web browser

as follows, supplying the defined username and password:
http://localhost:8080/servlet/console

and is configured with the following typical properties in (in init.xargs and restart.xargs, or in

fwdir/fwprops.xargs):
org.knopflerfish.httpconsole.requirelogin=true

org.knopflerfish.httpconsole.user=admin-user

org.knopflerfish.httpconsole.pwd=admin-password

This allows bundles (but not the framework or logs) to be manipulated.

3.4.2 Bundle Overview

The relationship among the ACCENT bundles is shown below. Names in italics are those of OSGi events.

https://dev.mysql.com/downloads/installer
https://www.knopflerfish.org/

10

The bundles communicate via events, mediated by the OSGi Event Admin service. The bundles are mostly

parameterised by Java property files located in the Knopflerfish directory (e.g. knopflerfish/accent). Depending

on the Knopflerfish start level, it may be necessary to explicitly start bundles up to level 11. The start levels for

ACCENT bundles are as follows:

Level Bundle

6 Xerces-J

7 Axis1

7 CommAccess

7 ConfigurationSetup

7 EasyBulbDriver

7 FitBitDriver

7 IBuddyDriver

7 NabaztagDriver

7 Pax Web Jetty

7 Pax Web JSP

7 Pax Web WAR

7 SpeechRecogniser

7 TupleServer

7 TuxDroidDriver

8 AccentSchemas

8 BarcodeDriver

8 IRTransDriver

8 PlugwiseDriver

8 RFIDDriver

8 RFXCOMDriver

8 SMSDriver

8 SoapProxy

8 TunstallDriver

8 X10Driver

9 EchoBridge

9 OntologyServer

Comm

Access

Policy

Server

Barcode/

FitBit/

RFID/

RFXCOM/

Tunstall

Driver

EasyBulb/

IBuddy/

IRTrans/

X10

SMS

Driver
Ontology

Server

Tuple

Server
SOAP

Proxy

Axis

1

Policy

Wizard

Nabaztag/

Plugwise/

TuxDroid

Driver

Audio

Player
Conflict

Analyser

policy in/

policy out

request object /

provide object

request tuple /

provide tuple

send_message /

audio_message

device_in /

device_out

device_in

device_out

event in/

event out

request port /

provide port

(Barcode,

RFXCOM,

Tunstall)

Configura-

tion Setup

define

actions/triggers

Forecast

Service

set

variable

Speech

Recogniser

receive_

message

send_message /

receive_message

speech_out

SOAP request /

Soap response

request port /

provide port

request port /

provide port

Echo

Bridge

Accent

Schemas

speech_in

11

10 PolicyServer

11 AudioPlayer

11 ConflictAnalyser

11 ForecastService

11 PolicyWizard

The Xerces-J and Pax Web items in the table above are additional bundles needed for the Policy Wizard.

Xerces-J is supplied through the Knopflerfish bundle repository, while Pax Web bundles/JARs are available from

https://ops4j1.jira.com/wiki/spaces/paxweb/pages/12059110/Download.

3.4.3 Axis 1

The Axis bundle to support web services has been adapted from code by provided by Knopflerfish.

3.4.4 Accent Schemas

The AccentSchemas bundle can be used for local provision of the ACCENT XML schemas and ontologies, thus

not requiring Internet access. The ontologies provided assume that Pax Web runs on port 8081, so a typical

ontology will be found at localhost:8081/schemas/home_care.owl. If necessary, edit only the Owl imports

(owl:imports) in the ontology files to have a different port number.

3.4.5 Audio Player

The AudioPlayer bundle plays pre-recorded audio files, pre-recorded speech files created using the policy wizard,

and also performs TTS (Text To Speech). Audio is played by the policy action send_message(recipient, message).

The bundle uses the working directory AudioPlayer located in the ACCENT properties directory. This working

directory is created automatically if needed, and is used for temporary synthesised speech files. It is possible to

output pre-recorded audio clips and synthesised speech, either to the default audio device or to a specified one.

The policy server converts a send_message action with recipient audio or audio:recipient into an

audio_message event without the ‘audio:’ prefix that AudioPlayer listens for. If speech is to be synthesised into

a file, AudioPlayer sends a speech_out event that provides the recipient (e.g. nabaztag) and the full path to the

speech file. The intention is that another bundle for this recipient will output the speech file, which is then deleted

to avoid temporary files building up.

If the recipient is player, the message value is taken to be the name of a WAV file to be played. This has been

tested with all reasonable combinations of format: mono and stereo, 8/16/24/32 bits, and a sample rate from 8kHz

to 44.1kHz.

If the recipient is an empty string or has value default then output is to the default audio device. Any other

recipient value (besides player) causes an audio file (mono, 8-bit, 8kHz WAV file) to be created in the

AudioPlayer directory. The name of this audio file has the format <recipient>< time>.wav, where time is the

system time in milliseconds. For example, a TTS message to nabaztag might result in the file

AudioPlayer/nabaztag1390674487523.wav. The creation of an audio file is notified by a speech_out event with

recipient as the intended device (e.g. nabaztag) and message as the full path to the file (e.g.

C:/knopflerfish/accent/AudioPlayer/nabaztag1390674487523.wav). The receiving bundle should output this

audio file and then delete it.

If a TTS message has the form !variable, it is checked whether text names a policy variable. If so, its value is

taken as a pre-recorded audio clip (mono, 16-bit, 8kHz WAV file). Otherwise message is treated as text to be

synthesised using TTS. Such a message can start with !voice to indicate a voice other than the default specified in

the properties file. (In this case, voice cannot be the name of a policy variable.) The message can contain speech

markup such as ‘|’, ‘||’ or ‘|||’ for a short, medium or long pause. An example message would be ‘!Heather,

Welcome back. || The house temperature is :interior_temperature.’.

The property file AudioPlayer.properties defines the audio configuration. For TTS the bundle requires an

installation of the Cerevoice Text-to-Speech SDK (https://www.cereproc.com/products/sdk). If this is not

available, only pre-recorded clips can be played back. In such a case, only the preamble.tone property should be

defined. An example property file is as follows (audio device Speakers for Windows, ALSA for Raspberry Pi):

The owning entity for audio clip variables (user@domain):

audio.entity admin@cs.stir.ac.uk

The audio device used for playing sounds files (default no file playing):

audio.device Speakers (3- Realtek(R) Audio)

audio.device ALSA [default]

https://www.cereproc.com/products/sdk

12

The licence file for Cerevoice (default no TTS):

licence.file C:/usr/local/cerevoicej/licence.lic

The directory for the dynamic libraries to support Cerevoice (default no TTS):

library.directory C:/usr/local/cerevoicej

The directory for Cerevoice voice files (default no TTS):

voice.directory C:/usr/local/cerevoicej

The default voice when not specified in the request (Heather - default,

otherwise Jack, Sarah or Stuart):

voice.default Sarah

Some wireless speaker systems go to sleep when not receiving audio and can

take a few seconds to wake up when audio is played back. If the name of a

preamble tone is given, this is played first (current choices bell, cuckoo,

sleigh, 20khz). If the property is not defined then there is no preamble.

preamble.tone cuckoo

A request from the policy server to output a play an audio file can be simulated through OSGi. Choose the

Events tab in Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/audio_message

recipient player

message C:/sounds/warning.wav

A request to output a synthesised speech message from the policy server can be simulated through OSGi.

Choose the Events tab in Knopflerfish and click the Send… button. Set something like following, then click the

Send button:
Event Topic uk/ac/stir/cs/accent/audio_message

recipient default

message !Sarah, welcome home. || Had a good day?

Speech file output from AudioPlayer can be simulated through OSGi. Choose the Events tab in Knopflerfish

and click the Send… button. Set something like following then click the Se button, but note that the given audio

file will be deleted:
Event Topic uk/ac/stir/cs/accent/speech_out

recipient nabaztag

message C:/knopflerfish/accent/AudioPlayer/nabaztag1390674487523.wav

3.4.6 Barcode Driver

As described in section 2.3, a barcode reader like the Cipherlab 1070 needs to set to use a COM port. The property

file BarcodeDriver.properties defines the driver configuration. This allows zero or more barcodes to be mapped

to the corresponding item descriptions. This is useful for locally produced barcodes (e.g. to indicate a particular

programme to be recorded or an appointment to be kept). It is also useful for short-form barcodes used by

supermarket own-brand goods, when the normal UPC (Universal Product Code) may not be used. If a barcode is

not found in the properties file, it is looked up online. Most online barcode services are commercial.

BarcodeDriver is designed to work with the free www.updcatabase.org. This requires registration to obtain a

developer key that is used in queries to the site. If the barcode is not known to the site, BarcodeDriver will provide

the literal barcode (which may still be useful in a policy). However, it is possible for anyone to define new barcodes

on the site.

Barcode readings result in input events of the form device_in(reading,barcode,instance,,description). The

instance is normally single for a barcode reading. However, BarcodeDriver allows the same barcode to be scanned

twice (or more) in quick succession. In this case, the instance is multiple. This is intended for situations like

bringing items into the house (a single scan) and disposing of them after use (repeated scans). This allows stocks

of items to be maintained. The period within which multiple scans are recognised is defined in the properties file.

An example property file BarcodeDriver.properties is as follows:

The port should be the serial port where the barcode reader can be found

(appears in Windows Device Manager under Ports as "Silicon Labs CP210x USB

13

to UART Bridge"):

barcode.port COM6

The owning entity on whose behalf events will be triggered (user@domain):

barcode.entity admin@cs.stir.ac.uk

The URL used to check barcodes (default "http://www.upcdatabase.org/api/json")

barcode.url http://www.upcdatabase.org/api/json

The API key suffixed to the URL to identify the developer

barcode.key ----------------

The period within which repeated scans of a barcode are allowed (seconds,

default 2)

barcode.period 2

The mapping translates each barcode into a string reported when the barcode is

read. If a barcode is not found here, it is checked with www.upcdatabase.org.

If it is not found there, the literal barcode is reported. The format of

entries is:

key: barcode

value: item description (escape special characters, e.g. "\'")

25133707 Aldi Sweet Harvest sweetcorn

25211276 Bramwell's Real Mayonnaise

25213355 Stonemill Table Salt

25114515 Lacura Baby Lotion

20214029 Crusti Croc Cheese and Onion Crisps

25235043 Grandessa Smooth Peanut Butter

27013120 Wickes 40W R50 SES Light Bulbs

Input from a barcode to the policy server can be simulated through OSGi. Choose the Events tab in Knopflerfish

and click the Send… button. Set something like following, then click the Send button.
Event Topic uk/ac/stir/cs/accent/device_in

user admin@house.stir.net

arg1 reading (message type)

arg2 barcode (entity name)

arg3 single or multiple (entity instance)

arg5 description or numerical identifier (parameter values)

3.4.7 Comm Access

The CommAccess bundle is adapted from code by Michael Wilson. It now makes use of NRJavaSerial. It opens

the serial ports defined by the property file CommAccess.properties, e.g.:

Comma-separated list of ports to offer via services (the actual ports

may be a subset of this list). On Windows, ports have names like "COM3". On

Linux (i.e. Raspberry Pi), ports have names like "ACM1" and "USB2"; these

names are implicitly prefixed by "/dev/tty". Spaces around commas are ignored:

Current usage is COM3 (RFXCOM), COM4 (X10), COM5 (Plugwise),

COM6 (Barcode), COM7 (Tunstall), COM8 (SMS)

serial.ports COM3, COM4, COM5, COM6, COM7, COM8, COM9, COM10

On a Raspberry Pi, the port list might look like:
serial.ports Barcode, Plugwise, RFXCOM, SMS, Tunstall, X10

The actual serial ports opened from the list will depend on what devices are actually available. CommAccess

provides access to ports via an OSGi service.

14

3.4.8 Configuration Setup

The ConfigurationSetup bundle reads the property files of all relevant bundles (BarcodeDriver, EasyBulbDriver,

FitBitDriver, IBuddyDriver, IRTransDriver, NabaztagDriver, PlugwiseDriver, RFIDDriver, RFXCOMDriver,

TunstallDriver, TuxDroidDriver, X10Driver). It then updates the relevant PolicyWizard property file with lists

of corresponding device actions and triggers. For example, for the home care domain it updates device actions

and triggers in the file PolicyWizard.home_care.database.properties that is held where other bundle property files

are stored. This is file is accessed by the policy wizard on bundle startup. If the policy wizard is instead run as a

Tomcat web application, it would be necessary to manually update PolicyWizard//WEB-

INF/lib/home_care/database.properties for example. After updating the properties file the bundle stops. It could

therefore be set to run on every Knopflerfish startup.

The bundle is configured by the property file ConfigurationSetup.properties:

Policy domain to be configured

policy.domain home_care

This utility is normally run as a bundle, but could also be run as an application. In the latter case, certain constants

in the code may need to be adjusted (the location of property files and the policy domain).

3.4.9 Conflict Analyser

The ConflictAnalyser bundle is an offline conflict analyser developed from code by Gavin Campbell. It will also

run as a Java application. The conflict analyser is configured by the file ConflictAnalyser.properties, e.g.:

Name of the policy server host (e.g. "localhost")

policy.host localhost

Port used for for uploading policies (e.g. 9999)

policy.port 9999

Resolution policy owner

policy.owner admin@cs.stir.ac.uk

Name of the ontology server host (e.g. "localhost")

poppet.host localhost

Whether to overwrite an existing resolution ("true" or default "false")

overwrite.resolution true

3.4.10 EasyBulb Driver

The EasyBulbDriver interfaces to EasyBulb colour and white lights via an EasyBulb Plus bridge (version 1). It

appears that similar lights are also branded as LimitlessLED and MiLight.

The driver handles a range of colours and achromatic greys that are approximately those supported by an

Amazon Echo:

Alice Blue, Antique White, Black, Blanched Almond, Blue Violet, Blue, Cadet

Blue, Chartreuse, Chocolate, Coral, Cornflower, Cornsilk, Crimson, Cyan, Dark

Blue, Dark Cyan, Dark Goldenrod, Dark Green, Dark Khaki, Dark Magenta, Dark

Olive Green, Dark Orange, Dark Orchid, Dark Red, Dark Salmon, Dark Sea Green,

Dark Slate Blue, Dark Turquoise, Dark Violet, Davy's Gray, Davy's Grey, Deep

Pink, Deep Sky Blue, Dim Gray, Dim Grey, Dodger Blue, Firebrick, Floral White,

Forest Green, Fuchsia, Gainsboro, Ghost White, Gold, Goldenrod, Gray, Green,

Green Yellow, Grey, Honeydew, Hot Pink, Indigo, Ivory, Jet, Khaki, Lavender,

Lavender Blush, Lawn Green, Lemon Chiffon, Light Blue, Light Coral, Light Cyan,

Light Goldenrod, Light Gray, Light Green, Light Grey, Light Pink, Light Salmon,

Light Sea Green, Light Sky Blue, Light Steel Blue, Light Yellow, Lime, Lime

Green, Linen, Magenta, Maroon, Medium Blue, Medium Gray, Medium Grey, Medium

Orchid, Medium Purple, Medium Sea Green, Medium Spring Green, Medium Turquoise,

Medium Violet Red, Midnight Blue, Mint Cream, Misty Rose, Moccasin, Navy Blue,

Old Lace, Olive, Olive Drab, Orange, Oraange Red, Orchid, Pale Goldenrod, Pale

15

Green, Pale Turquoise, Pale Violet Red, Papaya Whip, Peach Puff, Peru, Pink,

Plum, Powder Blue, Purple, Rebecca Purple, Red, Rosy Brown, Royal Blue, Salmon,

Sea Green, Seashell, Sienna, Silver, Sky Blue, Slate Blue, Snow, Spanish Gray,

Spanish Grey, Spring Green, Steel Blue, Tan, Teal, Thistle, Tomato, Turquoise,

Violet, Web Green, Web Maroon, Web Purple, Wheat, White, White Smoke, Yellow

EasyBulb lights do not have individual addresses. Rather, they are addressed in four groups numbered 1 to 4,

with group 0 meaning all lights. All EasyBulb lights support on, off and dim actions (the latter with a dim

percentage parameter). Coloured lights also support hue actions (with a hue value from 0 to 360 degrees or a

colour name as above). Achromatic greys are simulated by setting the light to white at some dim level.

The bundle is configured by the property file EasyBulbDriver.properties:

The EasyBulb bridge name/address is as follows (default is automatic discovery

of the first EasyBulb bridge found on the local network):

bridge.host 192.168.1.2

The following mapping describes a comma-separated list of mappings from

policy actions to protocol commands. The key data must match policies in

respect of case, but the value data can be in either case. Spaces can be used

after commands, and special characters such as "=" must be escaped as "\=".

key: message,entity,instance,parameters

value: command,address,parameters

One or more messages or commands may be given, separated by "|"; the number of

these in the key and value must be the same. The instance is optional. The

parameters can be comma-separated and are optional; if a policy action does

not match the mapping with its specific parameters, a match is tried without

the parameters.

Parameters then instance may be omitted from the right (e.g.

"message,entity,instance" and "message,entity" or "command,address" can be

used).

Mapping entries can be repeated for the same message, entity and instance but

with different parameters.

Anglepoise lamp in lounge

off|on|dim|hue,anglepoise,living_room off|on|dim|hue,1

Wall lights in bedroom

off|on|dim|hue,wall_lights,bedroom off|on|dim|hue,2

Output to an EasyBulb light from the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

arg1 hue (message type)

arg2 anglepoise (entity name)

arg3 living-room (entity instance)

arg5 purple (parameter values)

3.4.11 Echo Bridge

The EchoBridge bundle emulates output devices as Philips Hue/Lux lights where possible. This allows Amazon

Echo voice commands to be issued to control ACCENT devices. This is for output only (input sensors are not

supported) and for devices that support on, off, dim and hue commands (or similar).

EchoBridge uses an adaptation of the Hue Emulator https://steveyo.github.io/Hue-Emulator. The emulator

should normally run on localhost port 80. If this is not possible (e.g. because another web server is using this or

because of Linux restrictions on opening port 80), it is possible to run the emulator on a different port. However,

it would then be necessary to reverse-proxy the URL patterns "/description.xml" and "/api/*" from port 80 to the

given bridge port. This is possible with, for example, the Apache web server (e.g. see

https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html).

https://steveyo.github.io/Hue-Emulator
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html

16

For advice about a non-root user opening port 80 on Linux (i.e. a Raspberry Pi), see

https://superuser.com/questions/710253/allow-non-root-process-to-bind-to-port-80-and-443. Basically, install

authbind then do:
touch /etc/authbind/byport/80

chmod 777 /etc/authbind/byport/80

In the startup script for Knopflerfish, execute Java as ‘authbind --deep java -jar framework.jar …’

Policy wizard device actions for home care (defined in PolicyWizard.home_care.database.properties) are used

to identify Echo devices. It follows that the ConfigurationSetup bundle must have been already run to set these

actions up for the policy wizard. Echo device names are formed from the ACCENT names "entity_name

entity_instance". The entity name and instance should normally be strings without spaces, though underscores can

be used. If spaces or underscores are present in the ACCENT strings, these are automatically converted to hyphens

in the Echo names.

ACCENT devices with message type off/open, close/on/shut or channel_set/dim/set/track_set are mapped to

Echo ‘light’ devices with on, off or set commands respectively. For example Accent off,tv,lounge is mapped to

Echo “off,Tv Lounge”, and ACCENT open,tuxdroid,beak corresponds to Echo “off,Tuxdroid Beak”.

When an Echo voice command is issued for a registered device, this is picked up by the EchoBridge bundle.

The Echo command and device name are mapped to the corresponding ACCENT message type, entity name and

entity instance.

In the case of a hue command, an Echo hue value (0..65535) is supplied for conversion to hue degrees (0..360).

If the ACCENT device does not support hue, the command is ignored. Normally, an ACCENT device_out event is

then sent to cause the corresponding action to be performed.

In the case of a set command, an Echo brightness value (0..255) is supplied for conversion to a dim percentage

(0..100). If the ACCENT device does not support dim/set, the command is ignored. Normally, an Accent device_out

event is then sent to cause the corresponding action to be performed.

Example Echo voice commands are:

• Discover devices

• Turn on the lounge light

• Switch the Anglepoise on

• Power on the wall lights

• Turn the living-room light off

• Switch off the TV

• Dim the bedroom light to 40 [percent]

• Set the standard light to peach [a colour name]

• Set the TV to 101 [a channel number]

The bundle is configured by the property file EchoBridge.properties:

Port on which the bridge server runs (default 80). If the default port is

unavailable, e.g. because another web server is in use, that web server needs

to be set to reverse-proxy "/description.xml" and "/api/*" from port 80 to the

given bridge port. On Linux, which requires root to open port 80, consider

using "auth_bind" or similar.

bridge.port 80

The owning entity on whose behalf events will be triggered (user@domain):

bridge.entity admin@cs.stir.ac.uk

3.4.12 FitBit Driver

The FitBitDriver bundle retrieves fitness information (steps, sleep) for a FitBit fitness monitor. Unlike most other

bundles, FitBitDriver requires an Internet connection. FitBitDriver is configured by the file

FitBitDriver.properties, e.g.:

The owning entity on whose behalf events will be triggered (user@domain):

fitbit.entity admin@cs.stir.ac.uk

Interval between FitBit data retrieval (hours, default 3)

fitbit.interval 3

https://superuser.com/questions/710253/allow-non-root-process-to-bind-to-port-80-and-443

17

Access token allocated by FitBit for retrieving data. If this value is not

given, the bundle will output instructions on how to get an access token.

access.token --

Client identifier allocated by FitBit for this application, used only when

instructions are needed about how to get an access token

client.id ------

At intervals, the bundle will provide device inputs with arguments such as:

reading,fitbit,battery,,0 if battery low

reading,fitbit,sleep,,7.6 7.6 hours of sleep last night

reading,fitbit,steps,, 987 987 steps so far today

The client identifier is obtained after signing into https://dev.fitbit.com/build/reference/web-api and registering

the bundle as an application. Then run the bundle with the access.token property set to empty. This will provide

instructions on how to authorise access to a user’s data, one year being the maximum period permitted.

3.4.13 Forecast Service

The ForecastService bundle uses UK-oriented forecasting services for air pollution (DEFRA, https://uk-

air.defra.gov.uk), pollen level (MeteoVista, https://www.meteovista.co.uk), and weather forecast

(OpenWeatherMap https://www.openweathermap.org). The last of these requires an API key to be obtained by

signing up with the site.

Unlike most other bundles, ForecastService requires an Internet connection. It retrieves forecasts and stores

them as text in the exterior_pollution, exterior_pollen and weather_forecast policy system variables. The value

of these variables can then be used for, say, advising users to close windows or to give them a forecast. The bundle

is configured by the property file ForecastService.properties, e.g.:

The owning entity on whose behalf forecasts are stored (user@domain):

forecast.entity admin@cs.stir.ac.uk

Interval between forecast checks (hours, default 3)

forecast.interval 3

Pollen forecast location (according to https://www.meteovista.co.uk, e.g.

"Stirling/4409327")

pollen.location Stirling/4409327

Pollution forecast location (according to https://uk-air.defra.gov.uk, e.g.

"56.12,-3.94" for Stirling, meaning 56.12 degrees North and 3.94 degrees West)

pollution.location 56.12,-3.94

Weather forecast location (according to https://www.openweathermap.org,

"<city>,<country>" e.g. "Stirling,UK", or location identifier e.g. "2636910")

weather.location Stirling,UK

Weather forecast user identifier (if required by the weather service)

weather.id --------------------------------

3.4.14 i-Buddy Driver

The IBuddyDriver bundle interfaces to an i-Buddy ‘Internet buddy’. It is configured by the property file

IBuddyDriver.properties, e.g.:

In the following, alternatives are separated by '|'. Internal action

parameters are the same as policy parameters.

https://dev.fitbit.com/build/reference/web-api
https://uk-air.defra.gov.uk/
https://uk-air.defra.gov.uk/
https://www.meteovista.co.uk/
https://www.openweathermap.org/

18

Reinitialise everything on the i-Buddy

reset reset

Flash the i-Buddy head a pair of colours for a fixed time

flash,head,blue+white|cyan+white|green+white|purple+white|red+white|yellow+white

 flash,head

Set the i-Buddy heart off, on or to flash

flash|off|on,heart flash|off|on,heart

Set the i-Buddy head off or on for a fixed time

off|on,head,blue|cyan|green|purple|red|yellow|white off|on,head

Set or flap the wings

set,wings,down|up|flap_fast|flap_slow set,wings

Spin operations that can be performed

rotate,body,left|right|spin rotate,body

3.4.15 IRTrans Driver

The IRTransDriver bundle supports infrared communication with domestic appliances such as air conditioners,

CD players, DVD players and TVs. Note that an IRTrans server instance must already be running on the target

host (whether local or remote), and that this must have definitions (remotes directory) compatible with the defined

protocol commands. The bundle uses a remote IRTrans server defined by the property file

IRTransDriver.properties, e.g.:

The IRTrans server must already be running before the ITRTrans Driver is used.

Start the server outside the OSGi framework (e.g. as a Start menu item). The

server host name and port number for the system running the IRTrans server are

as follows:

ir.server.name localhost

ir.server.port 21000

Port number for the system running the IRTrans client:

ir.client.port 21001

The following mapping describes a comma-separated list of mappings from

policy actions to protocol commands. The key data must match policies in

respect of case, and the value data must similarly match what is in the

IRTrans ".rem" (remote) files. Spaces can be used after commands, and special

characters such as "=" must be escaped as "\=".

key: message,entity,instance,parameters

value: command,address,parameters

One or more messages or commands may be given, separated by "|"; the number of

these in the key and value must be the same. The instance is optional. The

parameters can be comma-separated and are optional; if a policy action does

not match the mapping with its specific parameters, a match is tried without

the parameters.

Parameters then instance may be omitted from the right (e.g.

"message,entity,instance" and "message,entity" or "command,address" can be

used).

Mapping entries can be repeated for the same message, entity and instance but

with different parameters.

The following entries correspond to those in the IRTrans remotes directory

19

("C:\ProgramData\IRTrans\remotes" on Windows). Certain device commands are

hard-coded and may be followed by "!":

off, on: These are hard-coded to power a device off or on. If

"on" is followed by "!" then the device is first powered

on by sending the hard-coded device command "1" for

channel/track 1. In all cases, the hard-coded device

command "power" is sent to the device. No parameters are

allowed for these commands. The power state of a device

is noted so that these commands are sent appropriately.

channel, track: These are hard-coded for channel and track changes. A

one- to three-digit channel or track number is then

provided as parameter. If these commands are followed by

"!" then a two-digit channel/track number must be

provided as a parameter. In this case the hard-coded

"nn" device command is sent first, followed by commands

for each of the two digits.

other commands: Examples might be back/forward, channel-/+, drive, mute,

next/previous, play/record/pause/stop, and volume-/+. No

parameters are allowed for these commands.

All devices are presumed to support "channel" or "track", "nn", "power" and

"0" to "9" commands, corresponding to "channel" or "track", "off", "on" and

"0" to "9" in the policy language. Specialised policy commands are follows:

Panasonic DVD: back (slow), channel_down, channel_up, down (cursor

(recorder) down), drive (select HDD, disc, etc. with down/up/ok),

forward (slow), next (chapter), ok (cursor OK), pause,

play, previous (chapter), record, stop, up (cursor up)

Sony TV: channel_down, channel_set, channel_swap, channel_up,

mute, volume_down, volume_up

Panasonic DVD recorder in lounge

o channels 10 to 999 need digits in quick succession

off|on,dvd,lounge off|on,panasonic_dvd

0|1|2|3|4|5|6|7|8|9,dvd,lounge 0|1|2|3|4|5|6|7|8|9,panasonic_dvd

channel_down|channel_up,dvd,lounge channel-|channel+,panasonic_dvd

channel_set,dvd,lounge channel,panasonic_dvd

back|forward|next|previous,dvd,lounge back|forward|next|previous,panasonic_dvd

play|pause|record|stop,dvd,lounge play|pause|record|stop,panasonic_dvd

down|drive|ok|up,dvd,lounge down|drive|ok|up,panasonic_dvd

Sony TV in lounge

o channels 10 to 999 need digits in quick succession

off|on,tv,lounge off|on!,sony_tv

0|1|2|3|4|5|6|7|8|9,tv,lounge 0|1|2|3|4|5|6|7|8|9,sony_tv

channel_down|channel_up,tv,lounge channel-|channel+,sony_tv

channel_set|channel_swap,tv,lounge channel|swap,sony_tv

mute|volume_down|volume_up,tv,lounge mute|volume-|volume+,sony_tv

Output to an IR device from the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

20

arg1 pause (message type)

arg2 CD (entity name)

arg3 lounge (entity instance)

3.4.16 Nabaztag Driver

The NabaztagDriver bundle bidirectionally interacts with a Nabaztag ‘Internet rabbit’. Besides being a bundle, it

can also be run as a Java application (using jNabServer.jar). The bundle interacts with a modified version of

jNabServer for managing the Nabaztag (https://code.google.com/p/jnabserver). This effectively replaces the

original Violet server with something roughly equivalent.

The system that runs the server dictates the IP address to be used by the Nabaztag. jNabServer can use a variety

of ports, but it is best to avoid common ones such as 80 or 8080. The choice of port may also be affected by the

local firewall.

For use with ACCENT, a Nabaztag is automatically associated with AccentPlugin when it first contacts the

server. This plugin interacts bidirectionally with the bundle, allowing policy triggers to be provided and policy

actions to be performed.

The bundle uses the working directory NabaztagDriver located in the ACCENT properties directory. This

working directory is created automatically if needed. The directory is used to hold plugins (as defined by the

bundle build – currently only AccentPlugin) and Nabaztag boot code (both copied from the bundle contents). It

is also used for temporary audio input files that are created on audio input. The save command of the jNabServer

configuration server preserves the state of a Nabaztag in bunnies/<serialno>.ser.

A choreographies sub-directory is created and used to temporarily store a ‘choreography’ Accent.chor as a

series of commands created by the bundle. The Nabaztag reads these choreographies only periodically, so there

can be a delay of some seconds before commands are executed. Although changes to ear state are permanent,

changes to LED state apply only during the choreography. It follows that the changes to an LED do not persist:

they can be only flashed or shown for a period. Another action will not be executed until this period has elapsed.

The bundle is configured by the property file NabaztagDriver.properties, e.g.:

The owning entity on whose behalf events will be triggered (user@domain):

nabaztag.entity admin@cs.stir.ac.uk

Port number for the jNab configuration server

nabaztag.configuration.port 6969

Port number for the jNab rabbit server

nabaztag.rabbit.port 8181

Debug setting ("debug", "error", "info" (default))

nabaztag.log.level info

Input triggers ###

The following definitions give the device input message type,entity type and

(if relevant) parameter values. The entity name is implicitly "nabaztag" in

all cases. For example, moving the left ear down will result in the event

"device_in(moved,nabaztag,left_ear,,down)".

Button click on head

click,head click,head

double_click,head double_click,head

Ear position

moved,left_ear,back|down|forward|out|up moved,left_ear

moved,right_ear,back|down|forward|out|up moved,right_ear

RFID tag (reported as a "reading" event)

D0021A053B4702E7 weather report

D0021A053B45307B medicine

D0021A053B452E48 how to cook

https://code.google.com/p/jnabserver

21

Output actions ###

The following definitions give the device output message type,entity type and

(if relevant) parameter values. The entity name is implicitly "nabaztag" in

all cases. For example, to move both ears forward requires the event

"device_out(move,nabaztag,both_ears,,forward)".

Lights (flash or show light for 10 seconds)

flash|show,bottom,blue|green|orange|purple|red|white|yellow \

 flash|show,bottom

flash|show,centre,blue|green|orange|purple|red|white|yellow \

 flash|show,centre

flash|show,left,blue|green|orange|purple|red|white|yellow \

 flash|show,left

flash|show,nose,blue|green|orange|purple|red|white|yellow \

 flash|show,nose

flash|show,right,blue|green|orange|purple|red|white|yellow \

 flash|show,right

Ears

move,left_ear,back|down|forward|out|up move,left_ear

move,right_ear,back|down|forward|out|up move,right_ear

move,both_ears,back|down|forward|out|up move,both_ears

Device output to the Nabaztag driver can be simulated through OSGi. Choose the Events tab in Knopflerfish and

click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

arg1 move (message type)

arg2 nabaztag (entity name)

arg3 both_ears (entity instance)

arg5 forward (parameter values)

Event Topic uk/ac/stir/cs/accent/device_out

arg1 show (message type)

arg2 nabaztag (entity name)

arg3 nose (entity instance)

arg5 blue (parameter values)

Speech output to the Nabaztag driver can be simulated through OSGi. Choose the Events tab in Knopflerfish and

click the Send… button. Note that the WAV file provided will be deleted. Set something like following, then click

the Send button:
Event Topic uk/ac/stir/cs/accent/speech_out

recipient nabaztag

mesage C:/Temp/002185ba6790.wav

3.4.17 Ontology Server

The OntologyServer bundle (POPPET) will also run as a Java application. The ontology server starts an RMI

(Remote Method Invocation) registry instance on the same system. In principle the ontology server can be run on

a remote system. In practice, a firewall and RMI security can get in the way. At the least, the firewall of the remote

system must allow incoming connections on port 1099. A security manager and security policy could also be

needed on the remote ontology server, though even these can lead to access issues. For these reasons, it is

recommended to run the ontology server on the local host.

The ontologies themselves can reside on a remote system or on the local host. For example, they might be

deployed in Tomcat/webapps/schemas. In this case, the properties file and only the Owl imports (owl:imports) in

the OWL files should refer to localhost:8080/schemas. Alternatively, if AccentSchemas is in use then the files

should refer to localhost:8081/schemas.

Note that the Ontology Server needs to be built as an OSGi bundle (for use in Knopflerfish), but also as a JAR

file (for use from the command line) using the Ant build file provided. If the Poppet JAR file is updated, it needs

to replace the version currently in the Policy Wizard WEB-INF/lib directory. The Unix scripts poppet-start and

poppet-stop are provided in accent/bin for command line use. See [1] for more detailed information about the

ontology server.

The ontology server supports an ontology service defined by the property file OntologyServer.properties, e.g.:

22

Base URL for OWL ontologies ("http://" prefix assumed)

ontology.base www.cs.stir.ac.uk/schemas

ontology.base localhost:8080/schemas

ontology.base localhost:8081/schemas

Comma-separated list of domains to support (currently call_control, home_care

and sensor_network). Spaces around commas are ignored:

ontology.domains home_care.

Path to where the "rmiregstry" command is located (default assumes it can be

found on the normal command path):

rmi.path C:/Cygwin/usr/local/jre8.77/bin

3.4.18 Plugwise Driver

The PlugwiseDriver bundle was written using public information about the Plugwise protocol. This information

is incomplete and conjectural as no official specification exists of the protocol. Although the bundle works

satisfactorily, there are some uncertainties as to its operation. The bundle is configured by the property file

PlugwiseDriver.properties, e.g.:

The port should be the serial port where the Plugwise receiver can be found

(appears in Windows Device Manager under Ports as "USB Serial Port"):

plugwise.port COM5

The owning entity on whose behalf events will be triggered (user@domain):

plugwise.entity admin@cs.stir.ac.uk

The number of attempts allowed at sending a message (increase for a large or

noisy network):

plugwise.retry.limit 3

The first part of all Plugwise module addresses:

plugwise.address.start 000D6F0000

The interval (minutes) between polls for recent energy consumption. This could

be as frequently as required since communication errors may result in energy

readings being lost. The result, however, would be repeated triggers for the

same energy reading. The normal setting would, however, be for 60 minutes:

plugwise.energy.interval 60

The interval (minutes) between polls for instantaneous power consumption:

plugwise.power.interval 10

Plugwise devices support "off" and "on" actions. They can also be polled to

create input messages "energy" (value in watt-hours) and "power" (value in

watts). After current power consumption has been received for all Circles, the

total power is provided in an input message with no entity name or instance.

Similarly, energy is provided for individual Circles as well as for all

devices.

The following mapping relates Circle addresses to entity name/instance in a

policy trigger or action. The Circle addresses can be in upper or lower case,

but the entity data must match policies in respect of case. One Circle address

must be followed by '+' to indicate it is the Circle+. Spaces around commas in

the entity data are ignored.

module: Circle address (followed by '+' for Circle+)

policy: entity name, entity instance

23

72AE95 stick

769F17 kettle,kitchen

76A75A fridge,kitchen

76B60E phone,lounge

76B960+ light,lounge

76AEB5 microwave,kitchen

Output to a Plugwise device from the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

arg1 on (message type)

arg2 light (entity name)

arg3 lounge (entity instance)

3.4.19 Policy Server

PolicyServer can run as a bundle or as a Java application. If OntologyServer or TupleServer is restarted while the

policy server is running, this can cause bizarre effects (e.g. the policy server upload port is not properly closed).

The bundle normally uses the working directory PolicyServer located in the ACCENT properties directory. This

working directory is created automatically if needed and is typically used for a log file.

The policy server is configured by file PolicyServer.properties. The standard settings are for trigger/action

communication, policy upload/download, email, database access, tuple space access, and event handling:

Policy Server properties when running on the local machine

Database server name (e.g. "localhost"), remote access port number (e.g. 3306)

database.server localhost

database.port 3306

Accent database name (e.g. "accent") , username for accessing this

(e.g. "accent"), password for accessing this, terminology mapping table name

(e.g. "terminology_mapping")

database.name accent

database.username accent

database.password ------

database.table terminology_mapping

Policy event handler (e.g. "EventAdmin" for plain OSGi, "MessageBroker" for

the Match project, or "ContextServer")

event.provider EventAdmin

event.provider MessageBroker

event.provider ContextServer

Application domain and administrator email for this

application.domain home_care

application.owner admin@cs.stir.ac.uk

SMTP server hostname, port number (e.g. "587"), email account user and

password, sender email address, subject for email messages from the system.

Only plain authentication is supported.

mail.server smtp.acme.com

mail.port 587

mail.user ken

mail.password shibboleth

mail.sender ken@acne.com

mail.subject Policy System Message

Prefix of system policies (instantiated prototypes) and system variables

(e.g. "!"), prefix of prototype parameters (e.g. "$"), prefix for variables

(e.g. ":", which must be escaped as "\:")

24

parameter.prefix $

system.prefix !

variable.prefix \:

Port used for sending events to the policy server (e.g. 9998) and port used

for uploading/querying policies (e.g. 9999)

policy.message.port 9998

policy.upload.port 9999

Directory (relative to policy server root) for logging

policy.log.directory PolicyServer

Name of the ontology server host (e.g. "localhost")

poppet.host localhost

Hex flags to turn on debugging (0000 typically, 0400 to allow wizard policy

checking, 0404 to add triggered policies, 06CD to add goal handling,

07FF for everything):

0000 report nothing

0001 report prototype contributions to goals

0002 report triggering status for policies

0004 report triggered policies

0008 report dynamic analysis summary

0010 report goal formula

0020 report identical scores for different prototype combinations

0040 report prototype indexes and names being considered for goals

0080 report optimised policies

0100 report defuzzified policies

0200 report static analysis summary

0400 record activations even if simulated (for wizard Check Policies)

server.debug 06CD

Number of lines to preserve in a server log (default 2048)

server.lines 2048

Number of activation/history records to preserve in the server journal

(default 128)

server.records 128

Name of the tuple server host (e.g. "localhost"), port number (e.g. "8200")

tuples.server localhost

tuples.port 8200

Name of the policy database (e.g. "Policies"), policy username (e.g.

"accent"), and password

tuples.name Policies

tuples.username accent

tuples.password ------

See [2] for more detailed information about the policy server.

3.4.20 Policy Wizard

The PolicyWizard bundle allows easy definition and editing of policies, goals, etc. It is possible to run the policy

wizard as a bundle or as a Tomcat web application. The latter requires a Tomcat context file

Tomcat/conf/Catalina/localhost/wizard.xml such as:
 <?xml version="1.0" encoding="UTF-8"?>
 <Context docBase="C:/Users/kjt/Home/bin/accent/PolicyWizard"

 path="/wizard" reloadable="true"/>

25

The policy wizard is normally run as a bundle in Knopflerfish. This requires the Pax Web bundles mentioned

in section 3.4.2. However, note that the Pax Web versions that have been tested are now rather old. Due to a

change in Java around version 8.91 the Jasper compiler in Pax Web JSP no longer works. It is necessary either to

run Knopflerfish with an earlier Java version (e.g. 8.77) or to run the Policy Wizard from Tomcat rather than

through Knopflerfish. Earlier Oracle Java versions can be downloaded from a location such as

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html, choosing an architecture such

as ‘Windows x64’ (for Microsoft Windows) or ‘Linux ARM 32 Hard Float ABI’ (for Raspberry Pi).

Normally the policy wizard would be run as a bundle in Knopflerfish using Pax Web. The HTTP-Server and

HTTP-Root-Impl bundles need to be stopped before running Pax Web as the latter will install Jetty as a

replacement servlet container. The policy wizard runs as a set of JSPs using Pax Web (see section 3.4.2).

If Tomcat is in use then Pax Web must not be simultaneously running in Knopflerfish. For home care, the

policy wizard is typically accessed as follows (the trailing ‘/’ is optional with Tomcat but required for Pax Web):
http://localhost:8080/wizard/home_care/

If Tomcat is in use but the bundle form of the Policy Wizard is preferred, Pax Web needs to run on a different

port. In a Knopflerfish configuration file (e.g. fwdir-accent/fwprops.xargs), this might be done by adding:
-Forg.osgi.service.http.port=8081

OntologyServer, PolicyServer and TupleServer must be started before PolicyWizard is started. (If any of these

is restarted with the policy wizard is running, it will be necessary to restart from the policy wizard login page.).

Note that the Policy Wizard needs to be built as a WAR file (Web Archive) for use in Knopflerfish) and also

as a webapp (for use in Tomcat) using the build script in the top-level Policy Wizard directory. See [4] for more

detailed information about the policy wizard.

The policy wizard always has an admin user who can create other users. The email address for one of these

must be the same as that provided to various communications drivers (e.g. admin@house.stir.net).

When policies are formulated, their triggers and actions must match the mappings in various communications

drivers and PolicyAction. Sample triggers are as follows:
when told of unoccupied by bed

when told of movement in lounge

Sample actions are as follows:
do perform dim of lighting in bathroom with value 20

do perform on of heating in kitchen

do perform pause of CD in lounge

Although the policy wizard normally runs as a bundle, it is configured outside OSGi. A WAR file, with OSGi

bundle manifest, is created by running the following command in the policy wizard root directory (e.g. after

recompiling the code or changing property files):
jar cfm bin/PolicyWizard-N.N.0.war META-INF/MANIFEST.MF call_control home_care

 sensor_network WEB-INF

The location of the property files depends on whether the wizard is running as a bundle (system property

uk.ac.stir.cs.accent is defined) or as a normal webapp (this property is not defined). In the following, root might

be C:/usr/local/knopflerfish/accent, domain might be home_care, and language might be en-GB.

• Bundle: The database property file is external to the wizard; the mapping and wizard property files are

bundled with the wizard and are therefore internal:
root/PolicyWizard.domain.database.properties

PolicyWizard/WEB-INF/lib/domain.mapping.properties

PolicyWizard/WEB-INF/lib/domain/language/wizard.properties

• Webapp: The database, mapping and wizard property files are bundled with the wizard and are therefore

internal:
PolicyWizard/WEB-INF/lib/domain/database.properties

PolicyWizard/WEB-INF/lib/domain/mapping.properties

PolicyWizard/WEB-INF/lib/domain/language/wizard.properties

The file database.properties defines interfaces to other servers (policy database, policy server, ontology

server), e.g.:
Home care wizard properties when running on local machine

System administrator email address

admin.email kjt@cs.stir.ac.uk

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
http://localhost:8080/wizard/home_care/

26

Name of the database host (e.g. "localhost"), port (e.g. "3306")

username (e.g. "call_control"), password, name of database (e.g.

"call_control")

users.host localhost

users.database home_care

users.password ------

users.port 3306

users.table home_care

Name of the policy server host (e.g. "localhost") and upload port number

(e.g. "9999")

policy.host localhost

policy.message.port 9998

policy.upload.port 9999

Name of the ontology server host (e.g. "localhost") and ontology name

(e.g. "home_care")

poppet.host localhost

poppet.ontology.name home_care

URI prefixes for generic, wizard and home care ontologies (note: append `#' to

URIs). These are not the URLs for the actual files, which are defined by

Ontology Server.

ontology.policy.generic http://www.cs.stir.ac.uk/schemas/genpol.owl#

ontology.policy.wizard http://www.cs.stir.ac.uk/schemas/wizpol.owl#

ontology.policy.domain http://www.cs.stir.ac.uk/schemas/home_care.owl#

Prefix of system policies (instantiated prototypes) and system variables

system.prefix !

Hex flags to turn on debugging (0000 typically, 0001 for everything):

0000 (nothing), 0001 (show policy tree), 0002 (show system variables -

'!' prefix and ontology variables - '*' prefix)

wizard.debug 0000

Device actions and triggers

device.actions back,cd,lounge/.../volume_up,tv,lounge

device.triggers active,flush,toilet/.../shut,window,lounge

The device action and trigger properties are currently used only for the home care domain. These are triples

separated by ‘/’. The triples themselves are comma-separated and have the form

message_type,entity_name,entity_instance. Although these properties can be manually defined, they are normally

created automatically by the ConfigurationSetup bundle (see section 3.4.8).

The file mapping.properties defines the mapping from policy language names to policy wizard names, e.g. (in

part):

Mapping from policy language names to natural language names

triggers

device_in policy.device.in

device_in_raw policy.device.in.raw

#conditions

entity_name policy.entity.name

...

actions

http://www.cs.stir.ac.uk/schemas/home_care.owl

27

device_out policy.device.out

device_out_raw policy.device.out.raw

operators

and operator.and

...

ge_epoch operator.ge.epoch

...

Generic conditions

date policy.date

day policy.day

time policy.time

preferences

must policy.must

...

nothing policy.nothing

availablility policy.status.availability

presence policy.status.presence

availablility_raw policy.status.availability.raw

presence_raw policy.status.presence.raw

Generic policy triggers

timer_expiry policy.timer.expiry

timer_expiry_raw policy.timer.expiry.raw

Generic policy actions

log_event policy.log.event

...

log_event_raw policy.log.event.raw

...

apply_default resolution.apply.default.action

...

preference0 resolution.preference0.condition

variable0 resolution.variable0.condition

...

locale.de-DE language.de.de

...

stage.0 policy.novice

...

The file wizard.properties defines the mapping from policy wizard names to natural language, e.g. (in part):

The following are interpreted by the browser and so may use HTML entities for

special characters

Generic Interface properties

aspect.applicability Applicability (label, owner, ...)

...

button.cancel Cancel

...

edit.action Edit Action

...

error.database Cannot read database

...

language.de.de German - Germany

...

Generic Policy User levels/stages

28

policy.administrator administrator

...

Generic Policy Preferences

policy.must must

...

Generic Wizard Hint Text

hint.action Set empty to remove an action

...

Domain-Specific Wizard Hint Text

e.g. for hints of a category of trigger/condition/action:

hint.*category_name*.action.category

hint.*category_name*.condition.category

hint.*category_name*.trigger.category

hint.configure.action.category e.g. 'perform off at bathroom light' or

 'perform record at VCR 2 delayed 1:00 with value

 channel=3,period=0:30'

...

'status' variables (profile is a permanent variable, but hint text can be

specified for the domain)

hint.status.profile e.g. 'weekend' or 'emergency' (empty implies all

 policies)

...

Generic Operators

operator.and and

...

Domain-Specific Operators

operator.ge.epoch is or is after

...

Generic Policy Properties

policy.address address

...

Domain-Specific Policy Properties

Triggers

policy.device.in told of

policy.device.in.raw device_in(type,ent,inst,period,pars)

policy.status.availability.raw availability

policy.status.presence.raw presence

...

Conditions

policy.entity.instance entity instance

...

Actions

policy.device.out perform

policy.device.out.raw device_out(type,ent,inst,period,pars)

29

Miscellaneous, e.g. descriptive elements such units of time, quantity, etc.

policy.Kbps Kbps

...

Status Variables

policy.status.availability availability

policy.status.presence presence

Domain-Specific Trigger Categories and Argument Labels

e.g. policy.*category_name*.trigger.category *value*

e.g. policy.*category_name*.trigger.arg*number* *value*

policy.configure.trigger.category event

...

Domain-Specific Condition Categories

e.g. policy.*category_name*.condition.category *value*

policy.epoch.condition.category time

...

Domain-Specific Action Categories and parameter arg labels

e.g. policy.*category_name*.action.category *value*

e.g. policy.*category_name*.action.arg*number* *value*

policy.configure.action.category perform

...

policy.send.action.category send

...

policy.timer.trigger.arg1 called

...

policy.update.action.category update

Resolution Conditions (generic)

resolution.POP.condition.category parameter/parameter comparison

...

resolution.preference0.condition preference0

resolution.variable0.condition variable0

...

Resolution Actions (generic)

resolution.apply.default.action apply default resolution

...

resolution.generic_res_action.category generic resolution

Resolution Action (domain-specific)

The following are interpreted by JavaScript and so cannot use HTML; escape

a "'" character with "\\"

Generic properties

error.action.arg.empty Parameter field(s) for the selected action cannot

 be empty and must not begin with "?"

...

Domain-specific properties

error.address Define address in "person@domain", "sms:number" or

 ":variable" format

...

30

The policy wizard can record audio clips using an applet. However, applets are unlikely to be supported in

recent browsers so it may be necessary to use an older browser such as Internet Explorer 11. The JAR for recording

audio clips is also self-signed rather than using a proper certificate.

3.4.21 RFID Driver

The ACS ACR122U installation disc and web site (www.acs.com.hk) provide drivers. Barcode readings result in

input events of the form device_in(reading,rfid,tag,,description). The property file RFIDDriver.properties defines

the driver configuration, e.g.:

The owning entity on whose behalf events will be triggered (user@domain):

rfid.entity admin@cs.stir.ac.uk

The mapping translates each RFID tag UID (Unique Identifier) into a string

reported when the tag/card is read. If the identifier is not found here, the

literal value is reported. The format of entries is:

key: tag/card UID as hex with upper-case letters

value: item description (escape special characters, e.g. "\'")

Example identifiers (four bytes for a PICC, first four bytes for an ISO

14443 A card) are as follows:

Mifare 1K Card: 8E6DE91F

Mifare Ultralight Label Rectangular: 04582CA9 (+ E42580 if read in full)

Mifare Ultralight Label Round: 046ECE82 (+ F32180 if read in full)

DED2E81F Ask my daughter to call

9E0C1D17 Ask my son to call

CEB2E81F Cancel milk for one week

4EB41A17 Tell my doctor I am ill

04582CA9E42580 Record \'East Enders\' today

046ECE82F32180 Wake me in one hour

The properties file allows zero or more card/tag UIDs (Unique Identifiers) to be mapped to the corresponding

descriptions. This can be used by associating particular cards/tags with particular functions. If an identifier is not

found in the properties file, it is reported in literal hexadecimal form (which may still be useful in a policy).

Input from an RFID card/tag to the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_in

user admin@house.stir.net

arg1 reading (message type)

arg2 rfid (entity name)

arg3 tag (entity instance)

arg5 description or 4-byte hexadecimal identifier (parameter values)

3.4.22 RFXCOM Driver

The RFXCOMDriver bundle supports a radio receiver for Oregon Scientific and Visonic devices. It is configured

by the property file RFXCOMDriver.properties, e.g.:

The port should be the serial port where the RFCOM receiver can be found

(appears in Windows Device Manager under Ports as "USB Serial Port"):

rfxcom.port COM3

The owning entity on whose behalf events will be triggered (user@domain):

rfxcom.entity admin@cs.stir.ac.uk

The mapping translates each sensor signal to trigger parameters (which can be

omitted from the right). The sensor data can be in upper or lower case, but

the trigger data must match policies in respect of case. In the key, no spaces

31

are allowed and "=" must be escaped as "\=".

key: sensor id,sensor code

value: message type,entity name,entity instance,parameter values

If the signal from a sensor is repeated with the same parameters, it is

ignored and no event is generated.

Oregon Scientific temperature-humidity sensors are supported (type BTHR918,

THGR228, THGR918). The sensor id is the device type (0X5A6D, 0X1A2D, 0X1A3D

respectively). The sensor code is the channel number in the top quartet

(0 = 0X0, 1 = 0X1, 2 = 0X2, 3 = 0X4), and the device function in the bottom

quartet (0X0 = temperature, 0X1 = humidity). For example, "1A2D,01" is a

THGR228 humidity reading. The sensor reading (temperature, humidity) is

automatically set in the parameter values ("arg5"). Barometric pressure from

a BTHR918 is ignored, as are signals from other types of sensors.

All Visonic sensors are supported. The sensor id is a unique address that must

be learned separately. For devices that send two signals, sensor code

0X04 = active (e.g. open, smoke/gas, wet) and 0X84 = inactive (e.g. closed,

clear, dry). For devices that send one signal, sensor code 0X0C = active

(e.g. movement, alarm). No parameter values ("arg5") are set.

front door switch:

4891AE,00 battery,door,front

4891AE,04 open,door,front

4891AE,84 shut,door,front

kitchen movement sensor

82DDCB,00 battery,movement,kitchen

82DDCB,0C active,movement,kitchen

82DDCB,8C clear,movement,kitchen

kitchen smoke detector (seems to send 84 rather than 8C for clear)

168059,00 battery,smoke,kitchen

168059,0C active,smoke,kitchen

168059,84 clear,smoke,kitchen

168059,8C clear,smoke,kitchen

lounge temperature-humidity sensor (type THGR228, channel 1):

1A2D,00 battery,temperature,interior

1A2D,10 reading,temperature,interior

1A2D,11 reading,humidity,interior

outdoor temperature-humidity sensor (type THGR810, channel 1):

FA28,00 battery,temperature,exterior

FA28,10 reading,temperature,exterior

FA28,11 reading,humidity,exterior

pendant alarm

43B0DE,00 battery,pendant

43B0DE,0C active,pendant

43B0DE,8C clear,pendant

toilet flush sensor

9B63A9,00 battery,flush,toilet

9B63A9,04 active,flush,toilet

9B63A9,84 clear,flush,toilet

wrist alarm

32

8E64DE,00 battery,wrist

8E64DE,0C active,wrist

8E64DE,8C clear,wrist

Input from a wireless device to the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_in

user admin@house.stir.net

arg1 unoccupied (message type)

arg2 bed (entity name)

arg3 main (entity instance)

3.4.23 SMS Driver

The SMSDriver bundle uses a GPRS modem and is configured by the property file SMSDriver.properties, e.g.:

The port should be the serial port where the GPRS modem can be found

(appears in Windows Device Manager under Modems as "GPRS609 USB Modem";

to find the port number, go to "Network Connections", "GPRS609

USB", "Properties")

The port should be the serial port where the GPRS modem can be found:

sms.port COM9

The bit rate for the serial port (e.g. 115200, 57600, 38400, 19200, 9600):

sms.rate 115200

The owning entity on whose behalf events for incoming messages will be

triggered (user@domain):

sms.entity admin@house.stir.net

The international prefix for the locale (e.g. 44 for UK):

sms.international 44

The national prefix for the locale (e.g. 0 for UK):

sms.national 0

The following mapping translates policy user addresses into mobile phone

numbers; the reverse mapping is automatically defined. The corresponding user is

then used as the caller in the policy trigger.

If the calling phone number does not match any entry, it will be provided

literally as the caller.

A user address has the form 'user@domain'; case is significant, and spaces are

not allowed. A mobile phone number is a list of digits, but with the following

variants:

' ' white space is allowed but removed

'-' a minus is allowed but removed

If the inbound or outbound phone number starts with "+", it will be

converted from international to national form prior to lookup in this table.

admin@house.stir.net 07593-246-801

kjt@cs.stir.ac.uk 07811-123-456

When an inbound message arrives, it results in a receive_message trigger for the policy server with the following

environment parameters:
user as defined by sms.entity

call_type "SMS"

topic "Text message"

33

caller policy user address (originating phone number if not defined)

call_content the text message itself

An outbound message is sent with the action a send_message(recipient,message) from the policy server. The

recipient can be specified as a national phone number (e.g. 07811-123-456), an international one (e.g. +44-7811-

123-456), or as a user address (e.g. kjt@cs.stir.ac.uk). The latter will be converted into a national phone number

using the property definitions.

A request to output an SMS message from the policy server can be simulated through OSGi. Choose the Events

tab in Knopflerfish and click the Send... button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/send_message

recipient 07811-123-456

message Time for lunch

 ‘+’, ‘-’ and white space are removed from the phone number as given. An international phone number such

as ‘+44-7811-123-456’ may also be used.

3.4.24 Soap Proxy

The SOAPProxy bundle cooperates with ActiveBPEL (https://sourceforge.net/projects/activebpel502) to map

between OSGi events and web service calls. The bundle maps events as defined by the property file

SoapProxy.properties, e.g.:

The base URL of the BPEL services, "/services/<service_name>" being appended

to this:

proxy.url http://localhost:8080/active-bpel

A comma-separated list of entity names in any case that may appear in

device_in/out events. If class <Entity>In and/or <Entity>Out exist, it is

instantiated. The following entity types are currently recognised:

alert (in) fall, freezing

bed (in) free, occupied

cd (out) back, fast_forward, fast_reverse, forward, next, off,

on, pause, play, previous, record*, stop,

track_set(digits)

chair (in) free, occupied

cooker (out) off, on

door (in) open, shut

door (out) lock, unlock

drier (out) off, on

dvd (out) back, channel_down, channel_set(digits),

channel_up, drive*, fast_forward, fast_reverse, forward,

mute*, next, off, on, pause, play, previous, record*,

stop, volume_down, volume_up

dvb (out) channel_down, channel_set(digits), channel_up,

mute, off, on, volume_down, volume_up

volume_up

fall (in) active

fan (out) off, on

flood (in) clear, active

gas (in) clear, active

heating (out) off, on

humidity (in) reading(percentage)

light (out) dim(percentage), off, on

mat (in) active

medicine (in) active

message (in, out) receive(sender,subject,message),

send(sender,subject,message)

movement (in) active

pendant (in) active

phone (out) text

pressure (in) reading(millibars)

smoke (in) clear, active

sms (in) text

sms (out) text

temperature (in) reading(centigrade)

tv (out) channel_down, channel_set(digits), channel_up,

https://sourceforge.net/projects/activebpel502

34

mute, off, on, volume_down, volume_up

vcr (out) back, channel_down, channel_set(digits),

channel_up, fast_forward, fast_reverse, forward, mute*,

next, off, on, pause, play, previous, record, stop,

volume_down, volume_up

washer (out) off, on

window (in) open, shut

wrist (in) active

Device parameters in the above list are shown in parentheses. Asterisked

actions may not be available on all devices.

proxy.entities alert, door, fall, heating, light, movement, phone, sms,

 speech, temperature

See [3] for more detailed information about the SOAP proxy. Note that the SOAP Proxy requires a modified

version of the Knopflerfish Axis1 package (section 3.4.3). See also the README file in

knopflerfish/osgi/jars/axis-osgi.

3.4.25 Speech Recogniser

The SpeechRecogniser bundle accepts speech_in events, with sender indicating the sending device and message

giving the full path to an audio file. Audio can be in most reasonable formats including 8kHz and 16kHz sample

rates as well as ADPCM and PCM encoding. The audio is converted into FLAC format using JAVE

(https://www.sauronsoftware.it/projects/jave) which in turn is a wrapper for FFmpeg (http://www.ffmpeg.org).

Audio is then sent to the Google Speech Service (Version 2) for recognition. The SpeechRecogniser interface

to this service is based on ideas from JARVIS (https://github.com/The-Shadow/java-speech-api). The result is a

receive_message message with sender as the sending device and message as the recognised text. By virtue of the

Google Speech service, recognition is possible in multiple languages. However this means that, unlike most other

bundles, the speech recogniser requires the ACCENT system to have an Internet connection.

It appears that Google speech API keys may no longer be available, requiring use of a Google Cloud API that

is not currently supported by this bundle.

The bundle uses the working directory SpeechRecogniser located in the ACCENT properties directory. This

working directory is created automatically if needed and is used for temporary speech files. The speech recogniser

is configured by the property file SpeechRecogniser.properties, e.g.:

The owning entity on whose behalf events will be triggered (user@domain):

speech.entity admin@cs.stir.ac.uk

Speech API key (see http://www.chromium.org/developers/how-tos/api-keys)

speech.key -------------------

Speaker language (<language>-<COUNTRY>, default en-GB)

speech.locale en-GB

Input to the speech recogniser can be simulated through OSGi. First record some speech as a WAV file, e.g.

using an audio application like Audacity or by using the Nabaztag. Choose the Events tab in Knopflerfish and

click the Send… button. Set something like following, then click the Send button but note that the given audio file

will be deleted:
Event Topic uk/ac/stir/cs/accent/speech_in

sender nabaztag

mesage C:/knopflerfish/accent/002185ba6790.wav

3.4.26 Tunstall Driver

The TunstallDriver bundle is configured by the property file TunstallDriver.properties, e.g.:

The port should be the serial port where the Tunstall Tapit receiver can be

found (appears in Windows Device Manager under Ports as "USB Serial Port"):

tunstall.port COM7

The owning entity on whose behalf events will be triggered (user@domain):

https://www.sauronsoftware.it/projects/jave
http://www.ffmpeg.org/
https://github.com/The-Shadow/java-speech-api

35

tunstall.entity admin@cs.stir.ac.uk

The mapping translates each sensor signal to trigger parameters (which can be

omitted from the right). The sensor id is a location code assigned by the PC

Connect application to a sensor. Policy parameter values are reserved for

future use. Sensor data is case-sensitive, and the trigger data must match

policies in respect of case. Spaces are allowed round commas, and "=" must

be escaped as "\=".

key: sensor id,sensor code

value: message type,entity name,entity instance,parameter values

If the signal from a sensor is repeated with the same parameters, it is

ignored and no event is generated.

The Tunstall sensors supported are Bed/Chair Occupancy (strip attached to

IP2), Door Switch (activated by magnet), Medication Dispenser (the Addoz unit

signals only missed medication), Personal Trigger (pendant and wrist alarms)

and PIR (Standard).

base unit buttons:

00,HA click,lifeline,red

00,Ha click,lifeline,green

00,Hc click,lifeline,yellow

wrist alarms (id 126416 = pendant/resident1, id 83055 = wrist/resident2):

01,AA active,pendant,resident1

02,AA active,wrist,resident2

bed sensor (id 34845 = bed/lounge):

21,AZ occupied,bed,lounge

21,BA free,bed,lounge

door sensors (id 37805 = door/front):

80,AQ open,door,front

80,AR shut,door,front

movement sensors (id 118483 = movement/kitchen):

41,BH active,movement,kitchen

medication dispenser (Addoz unit signals only missed medication)

02,CZ missed,medication

02,JH taken,medication

Input from a Tunstall device to the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_in

user admin@house.stir.net

arg1 occupied (message type)

arg2 bed (entity name)

arg3 lounge (entity instance)

3.4.27 Tuple Server

The TupleServer supports the policy store. This uses IBM TSpaces that this is now an inactive project. It listens

on port 8200 on the machine where it is started. Port 8201 is typically configured to support a web interface to

check tuple space contents. It starts an XML database defined by the property file TupleServer.properties, e.g. the

following that is adapted from the TSpaces sample configuration file:

The [Server] section contains general specifications for the TSServer.

36

[Server]

The port that it listens to for requests.

Port = 8200

Default Space options

If tuple results should be returned in FIFO order

ResultOrderFIFO = false

The pathname of the directory used for checkpointing

CheckpointDir = C:/usr/local/tspaces/ts-checkpoint

The interval between dumping the checkpoint data (minutes)

CheckpointInterval = 10.0

The number of updates before checkpoint is requested (-1 to disable)

checkpointWriteThreshold = -1

The interval beween checking for deadlocked threads (seconds)

DeadLockInterval = 15

The interval between scans for expired tuples (minutes)

ExpireInterval = 15

The [HTTPServer] section contains parameters for the internal HTTP server

[HTTPServer]

HTTPServerSupport = true

HttpPort = 8201

Turn off the Web Admin support (only use this for development)

HTTPAdminSupport = false

The directory where downloadable class files are kept

ClassesDirectory = ./

The [FileStore] section contains parameters for the internal FileStore

[FileStore]

The directory where files are stored

CacheDir = C:/usr/local/tspaces/ts-cache

The [AccessControl] section contains parameters needed for AccessControl

[AccessControl]

If false, no access checking will be done

ACVerifierClass = com.ibm.tspaces.security.AccessControlVerifier

CheckPermissions = true

The set of Users and Groups.

37

AdminUser = root

AdminPassword = ------

AdminGroup = AdminGroup

The list of valid groups

TopGroup = Users

[Group-Users]

accent

root

Subgroups of "Users"

Group AdminGroup

 [Group-AdminGroup]

root

The [DefaultACL] section sets up the Default Access Control List

[DefaultACL]

Accent Read Write

Root Read Write Admin

Users Read

The [CreateACL] section sets up the Access Control List that is used

to control who can create new Spaces.

[CreateACL]

Accent Create

root Create

See [2] for more detailed information about how the policy store is used.

3.4.28 TuxDroid Driver

The TuxDroidDriver bundle is configured by the property file TuxDroid.properties, e.g.:

The TuxDroid supports a variety of different policy triggers and actions as

follows. Alternatives are separated by '|'. Internal trigger or action

parameters are the same as policy parameters.

The owning entity on whose behalf events will be triggered (user@domain):

tuxdroid.entity admin@cs.stir.ac.uk

Name of the TuxDroid audio device:

tuxdroid.audio.device Speakers (TuxDroid-Audio)

The interval between reporting average light level (minutes):

tuxdroid.light.interval 5

Input Triggers ###

Input events arrive with the message type and entity instance shown below, and

the entity name fixed at "tuxdroid". An example input might be

"device_in(click,tuxdroid,head)".

Battery low warning:

battery battery

38

Button click on head or wings:

click,head click,head

click,wing,left|right click,wing

Light reading:

reading,light reading,light

Output Actions ###

Output actions are sent with the message type and entity instance shown below,

and the entity name fixed at "tuxdroid". In some cases a third parameter value

is supplied. An example output might be

"device_out(set,tuxdroid,wings,,flp_slow)".

Lights (flash or wink switches light on then off, off/on leaves the light off

or on until told to change this):

off|on|flash|wink,eyes,left|right|both off|on|flash|wink,eyes

Mouth (speak = mouth opens and closes repeatedly):

open|shut|speak,beak open|shut|speak,beak

Eyes:

open|shut|blink,eyes open|shut|blink,eyes

Reset (wings down, eyes open, facing forward, beak closed, lights off):

reset reset

Body (roughly left/right = 180 degrees, spin left/right = 360 degrees):

rotate,body,left|right|spin_left|spin_right rotate,body

Wings:

set,wings,up|down|flap_slow|flap_fast set,wings

Example policy server inputs might be:
Event Topic uk/ac/stir/cs/accent/device_in

arg1 click (message type)

arg2 tuxdroid (entity name)

arg3 head (entity instance)

Event Topic uk/ac/stir/cs/accent/device_in

arg1 reading (message type)

arg2 tuxdroid (entity name)

arg3 light (entity instance)

arg5 9.5 (parameter values)

Output to a TuxDroid from the policy server can be simulated through OSGi. Choose the Events tab in

Knopflerfish and click the Send… button. Set something like following, then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

arg1 blink (message type)

arg2 tuxdroid (entity name)

arg3 eyes (entity instance)

Event Topic uk/ac/stir/cs/accent/device_out

arg1 set (message type)

arg2 tuxdroid (entity name)

arg3 wings (entity instance)

arg5 flap_slow (parameter values)

39

3.4.29 X10 Driver

The X10Driver bundle is adapted from code by Michael Wilson. It uses the Java X10 package from Jesse Petersen

and others (http://www.agaveblue.org/projects/x10). The bundle is configured by the property file

X10Driver.properties, e.g.:

The port should be the serial port where the X10 computer module can be found

(appears in Windows Device Manager under Ports as "Prolific USB-to-Serial

Comm Port"):

x10.port COM6

The following mapping describes a comma-separated list of mappings from

policy actions to protocol commands. The key data must match policies in

respect of case, but the value data can be in either case. Spaces can be used

after commands, and special characters such as "=" must be escaped as "\=".

key: message,entity,instance,parameters

value: command,address,parameters

One or more messages or commands may be given, separated by "|"; the number of

these in the key and value must be the same. The instance is optional. The

parameters can be comma-separated and are optional; if a policy action does

not match the mapping with its specific parameters, a match is tried without

the parameters.

Parameters then instance may be omitted from the right (e.g.

"message,entity,instance" and "message,entity" or "command,address" can be

used).

Mapping entries can be repeated for the same message, entity and instance but

with different parameters.

All X10 devices support "off" and "on" actions. Specialised policy actions are

as follows:

X10 Light: dim

Standard lamp in lounge

off|on|dim,standard_lamp,lounge off|on|dim,c2

dim,standard_lamp,lounge,very_dim dim,c2,20

dim,standard_lamp,lounge,dim dim,c2,30

dim,standard_lamp,lounge,moderate dim,c2,50

dim,standard_lamp,lounge,bright dim,c2,70

dim,standard_lamp,lounge,very_bright dim,c2,85

Bedside lamp in lounge

off|on|dim,bedside_lamp,lounge off|on|dim,c3

dim,bedside_lamp,lounge dim,c3

dim,bedside_lamp,lounge,very_dim dim,c3,20

dim,bedside_lamp,lounge,dim dim,c3,30

dim,bedside_lamp,lounge,moderate dim,c3,50

dim,bedside_lamp,lounge,bright dim,c3,70

dim,bedside_lamp,lounge,very_bright dim,c3,85

Blinds in lounge

open|close|set,blinds,lounge open|close|set,c1

Output to an X10 device from the policy server can be simulated through OSGi. (This requires PolicyAction to

be running.) Choose the Events tab in Knopflerfish and click the Send… button. Set something like following,

then click the Send button:
Event Topic uk/ac/stir/cs/accent/device_out

http://www.agaveblue.org/projects/x10

40

arg1 on (message type)

arg2 light (entity name)

arg3 bathroom (entity instance)

Event Topic uk/ac/stir/cs/accent/device_out

arg1 dim (message type)

arg2 light (entity name)

arg3 bathroom (entity instance)

arg5 25 (parameter values, here the dim percentage)

41

4 Conclusion

This report has described the architecture, installation and configuration of components in the ACCENT policy

system for home care. It has been seen that all ACCENT components are bundles deployed in the Knopflerfish

OSGi platform (though several of the key components will also run as applications). Most bundles are configured

through property files deployed in a Knopflerfish directory. The components exchange information through the

OSGi Event Admin service.

42

References

[1] Gavin A. Campbell. Overview of Policy-Based Management using POPPET, Technical Report CSM-168,

Computing Science and Mathematics, University of Stirling, June 2006.

[2] Stephan Reiff-Marganiec, Kenneth J. Turner, Lynne Blair and Feng Wang. The ACCENT Policy Server,

Technical Report CSM-164, Computing Science and Mathematics, University of Stirling, August 2013.

[3] Kenneth J. Turner. Device Services for The Home, in Khalil Drira, Ahmed Hadj Kacem and Mohamed

Jmaiel, editors, Proc. 10th Int. Conf. on New Technologies for Distributed Systems, pages 41–48, IEEE

Computer Society, Los Alamitos, California, USA, June 2010.

[4] Kenneth J. Turner and Gavin A. Campbell. The ACCENT Policy Wizard, Technical Report CSM-166,

Computing Science and Mathematics, University of Stirling, April 2014.

[5] Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Gavin A. Campbell and Feng Wang. APPEL: The

ACCENT Project Policy Environment/Language, Technical Report CSM-161, Computing Science and

Mathematics, University of Stirling, April 2014.

