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In many domain areas the behaviour of a system can be de-
scribed at two levels: the behaviour of individual components,
and the behaviour of the system as a whole. Often deriving one
from the other is impossible, or at least intractable, especially
when realistically large systems are considered. Here we present
a rigorous algorithm which, given an individual based model in
the process algebra WSCCS describing the components of a sys-
tem and the way they interact, can produce a system of mean
field equations which describe the mean behaviour of the system
as a whole. This transformation circumvents the state explosion
problem, allowing us to handle systems of any size by provid-
ing an approximation of the system behaviour. From the mean
field equations we can investigate the transient dynamics of the
system. This approach was motivated by problems in biological
systems, but is applicable to distributed systems in general.
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1 Introduction

In recent years process algebra has been increasingly used as a means of describing biological phenomena
e.g. [4, 16]. Process algebra has two main advantages. Firstly, they are fully formal (with mathematical
semantics), making them amenable to rigorous analysis. Secondly, the features they have for describing
systems, particularly for creating larger systems from smaller identical components, are turning out
to be useful in biological applications. WSCCS (Weighted Synchronous Calculus of Communicating
Systems) [19] has been used in particularly diverse biological applications, ranging from insect behaviour
[18, 20] through epidemiology [15] to genetics [7]. Often these models are referred to as individual based,
since the description focuses on individual behaviour and interaction between individuals. There is much
to be gained from such descriptions. Firstly, the act of specification leads to deeper understanding of
the system being described through clarification of assumptions, explicit definition of the actions being
performed, and agent interaction. Secondly, mathematical analysis can be carried out on the specification
since it has a formal semantics. For WSCCS this means investigation of the underlying Markov chain,
allowing the probabilities of states occurring to be calculated. Thirdly, simulations can be carried out
which also lend insight to the operation of the system. A problem is that both analysis and simulation
can be computationally expensive, sometimes prohibitively so.

An alternative approach is to view the system from the level of overall population dynamics, for ex-
ample, the use of Ordinary Differential Equations in Epidemiology [1, 10]. These ODEs are population
based models, and provide a means of examining large systems, with a range of algebraic analyses pos-
sible, while avoiding the computational problems of individual based models. A problem is defining the
ODEs to accurately capture system behaviour since such behaviour is usually observed at an individual
level, not at population level. An ideal solution is to bridge the gap between individual level models and
the population level equations, gaining the advantage of each approach while losing the disadvantages.
This particularly challenging problem is often referred to as “changing scale”. We present an approach
which goes a long way towards solving this problem. We have developed an algorithm to approximate the
behaviour of a population of individuals described using WSCCS, obtaining a set of mean field equations
(MFEs) describing the average behaviour of the population. MFEs are used because the underlying state
space is discrete, not continuous. The method is rigorous, since it is based on the underlying semantics
of WSCCS, and produces a population level description from individual behaviours. The ability to move
between different levels of abstraction (individual vs. population) when describing disease spread gives us
completely new ways of thinking about epidemiology because we can tie observed individual behaviour
to population dynamics directly.

In process algebra terms this is a way of circumventing the state explosion problem. As the number of
individuals in the system grows, analysis becomes intractable due to exponential growth of the number
of states. This is a particular problem in biological systems which may comprise many thousands of
individual agents. The technique presented here allows easy analysis of larger models, since the number
of MFEs depends on the number of different kinds of agents rather than the total number of agents.
Our technique is therefore particularly suitable for systems in which a limited number of agent types are
copied many times, and the complex behaviour of the population emerges from their interaction with
each other. Thus, although the method is developed with biological systems in mind, there are clear
applications in the computing domain, the most obvious being performance analysis.

Our work is a formalised continuation of the work of Sumpter [17] who produced mean field equations
for particular examples where it was possible to intuitively reason about the mean behaviour of the
system. As models become larger and more complex it is not possible to derive equations in this informal
fashion; a more formal approach is required. Our aim is to provide an approximation of the behaviour
captured in the WSCCS semantics; the algorithm presented here formalises this process for a subset of
WSCCS processes. Independently, Cardelli [6] has produced a method for interpreting process algebra
in terms of chemical reactions, and for deriving ODEs from process algebra. This is different from our
approach since actions occur at continuous rates (giving a straightforward mapping to ODEs) and there is
no link with the standard process algebra semantics. (Effectively a new semantics is given which assumes
communication occurs in accordance with the mass action law.) Cardelli defines a particular process
algebra, with a limited set of operators, which are nevertheless equivalent in expressive power to those
of WSCCS presented here. Also, the PEPA group have two methods for producing ODEs from PEPA
models. As above, this process algebra uses continuous rates. Additionally, interaction can be broadcast
as well as two way, giving the chance to affect more individuals in a time step. One method [5] is based
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on the mass action assumption (similarly to Cardelli). The other method [8] is based on the minimum
number of processes participating in a communication. The PEPA models for which this approach is
defined are limited in ways which make describing epidemiological models impossible (several components
may communicate on the same action but this is not reflected in the system dynamics) and some which
are just awkward (the same local rates are required in all components). The method does not reflect
precise population mix in the way that we do here: in a communication, one of the process types is
allowed to dominate. The differences between the PEPA and WSCCS approaches, and possible benefits
of each in different situations, are the subject of continuing research.

The report is organised as follows. In Section 2 we introduce the notation of WSCCS and describe
the sorts of models to which our method can be applied. At present it is not possible to deal with the
full generality of WSCCS models; however, the restricted class of models which can be analysed have
proved to be useful for our purposes. In Section 3 we present two worked examples from epidemiology
of the derivation, and outline the algorithm for deriving mean field equations, with motivation for the
main technical details. Essentially, the algorithm produces an alternative semantics for WSCCS. Clearly
this should relate to the standard WSCCS semantics [21]. Section 4 shows how the MFEs relate to
simulation results, and also uses a result of Kurtz [12] to show the relationship between the MFEs and
the standard semantics. Finally, we make some concluding remarks.

2 WSCCS

In WSCCS the basic components are actions and the processes that carry out those actions. The actions
are chosen by the modeller to represent activities in the system. For example, infect, send, receive,
throw dice, and so on. Actions occur instantaneously and have no duration. There is no notion of time
in WSCCS, but there is ordering of events. WSCCS is a probabilistic process algebra, meaning that the
decision to move from one state to another can be a probabilistic one. The formal syntax and semantics
of WSCCS is presented in Tofts [21]. We present here an informal overview using the ASCII notation
of the probabilistic workbench [22, Appendix A]. The codes bs, btr, basi appearing in the models of
Figs. 1 and 2 are codes to the compiler, signifying the type of definition (basic sequential process, parallel
process with priority, and definition of a set of events, respectively).

The operations of WSCCS are:

prefix This is the simplest form of process: a:P where a is an action, and P is a process. This process
can carry out the action a and then behave like process P. Actions are as described above.

weighted choice The process w1.P1 + w2.P2 offers a choice between the processes P1 and P2. As-
suming both processes are able to progress, the branch chosen depends on the weights. Over a
number of trials we observe P1 being chosen with a probability w1/(w1+w2) and P2 being chosen
with a probability w2/(w1 + w2). Weights are generally positive natural numbers, but may also
incorporate the special weight ω which is greater than all natural numbers. This is used in priority
and is written m@n (for a weight of mωn).

synchronous parallel coordination Obtaining more complex behaviour requires the use of coordina-
tion. Simple processes using the operators above may be combined with each other in parallel, e.g.
P1 | P2. Parallel processes operate in lock step; that is, if we imagine the ticking of a universal
clock controlling the occurrence of actions, then all processes must execute some action together on
the clock tick - but not necessarily the same action. McCaig [13] introduces an extended notation
P{n} denoting n instances of process P in parallel, where n ∈ N+.

communication Two processes in parallel may communicate when one carries out an action and the
other carries out the matching co-action, e.g. infect and infect^-1 (also written infect). These
can conveniently be thought of as input and output actions. Communication can be used to model
passing of information from one process to another, or to coordinate activity. Such communication
is strictly two-way; that is, only two processes may interact on this action. Communication with
several processes simultaneously is achieved by multiple actions. For example, infect^3 is short-
hand for infect#infect#infect, or three infect actions in parallel, and hence the possibility to
synchronise with three other processes. The distinguished action

√
(written t in ASCII) can never
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bs S1 1.t:S2
bs I1 pr.t:R2 + pa.t:T2 + (1-pr-pa).t:I2
bs R1 1.t:R2

bs S2 1.infect:I1 + 1.t:S1
bs I2 1.infect:I1 + 1.t:I1
bs T2 1.infect^-1:I1 + 1.t:I1
bs R2 1.infect:R1 + 1.t:R1

basi L t
btr Population S1{a}|I1{b}|R1{c}/L

Figure 1: Epidemic model using non-prioritised communication ([15] Fig.6)

communicate. Communication is enforced when the action is hidden from the environment using
restriction.

restriction Without restriction, all processes may communicate with the environment as well as with
each other. With restriction, we can force two (or more) processes to communicate with each other
on chosen actions. For example, given the process (P1 | P2)/{a} where P1 and P2 can carry
out actions a, b, then P1 and P2 must cooperate on b actions, but a actions are visible in the
environment, and available to synchronise with other processes. That is, we are restricted to only
seeing the actions in the specified set.

priority In a choice, the process with infinite weight nωk will always be taken in preference to the
one with a natural number weight. This can be used to force particular actions to occur (usually
communications) if possible, allowing the alternative choice only if there is no other process with
which to communicate. There is a hierarchy of weights, with ωk+1 > ωk.

Two models from earlier work are used to illustrate the algorithm of Section 3. Norman and Shankland
[15] used WSCCS to develop epidemic models for a system consisting of susceptible, infectious and
recovered individuals, with infectious individuals able to pass on infection to susceptible agents, and
recovered individuals immune to future infection. Features of this model are that each kind of individual
is described as a separate agent, and the behaviour of the system as a whole is described by the system
equation Population, comprising multiple copies of each kind of agent in parallel. Model 5 of their
paper, reproduced in Fig. 1, comprises S1, S2 susceptible agents, I1, I2, T1 infected agents and R1, R2
recovered agents. Activity is separated into two phases (ticks), with communication (the infect action)
and probabilistic choice happening on different ticks. In the probabilistic choice, pa is the probability
that an infected individual will be able to pass on the infection in a given time step and pr is the
probability of recovery. Recall that in WSCCS all agents must perform an action in each step, therefore
the model will alternate between the states S1{a}|I1{b}|R1{c} and S2{d}|I2{e}|T2{f}|R2{g} where
only the numbers a-g change.

The model of Fig. 1 employs single actions and non-prioritised communication. In contrast, the
model of Fig. 2 utilises multiple actions and priority to model individuals passing their infection to at
most three others in each time step. The latter model was developed to investigate transmission terms
in WSCCS models of epidemic spread [14]. This model introduces additional agents (SI2 are susceptible
agents who have been contacted and Trans are infected agents trying to pass on the infection).

3 Deriving Mean Field Equations

3.1 Goal

WSCCS allows easy description of the behaviour of an individual, and the system equation may be ex-
panded to see how all individuals evolve over time. For example, given an initial system S1{100}|I1{10}|R1{0}
then we want to know where the peak of infection comes, how long it takes for the infection to die out,
how many are infected in total, and so on. These questions require the number of individuals of each type
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bs S1 1@1.inf:SI2 + 1.t:S2
bpa I1 T1|Trans
bs T1 1@1.inf:I2 + 1.t:I2
bs Trans 1@3.inf^-3:T + 1@2.inf^-2:T + 1@1.inf^-1:T + 1.t:T
bs R1 1@1.inf:R2 + 1.t:R2

bs S2 1.t:S1
bs SI2 pa.t:I1 + (1-pa).t:S1
bs I2 pr.t:R1 + (1-pr).t:I1
bs R2 1.t:R1

basi L t
btr Population S1{a}|I1{b}|R1{c}/L

Figure 2: Density dependent transmission: parallel actions ([14] Fig.5)

to be computed in future time steps. One possible solution is to carry out a large number of simulations
and to calculate the average result at each time step. This may be computationally expensive since the
system can evolve in many ways, potentially generating a state space which is exponential in the number
of distinct states. (This is the well known state explosion problem.) Mean Field Equations provide an
approximation by describing the average change in the number of each type of individual over time in
the population. For example, Norman and Shankland [15] derived the following MFEs for their models
by intuitive reasoning:

St+1 = St −
paItSt

St + It + Rt

It+1 = (1− pr)It +
paItSt

St + It + Rt

Rt+1 = Rt + prIt (1)

where St, It, Rt are the numbers of susceptible, infected, recovered individuals at time t, pa is the proba-
bility that an infected individual will be able to pass on the infection in a given time step, and pr is the
probability of recovery.

Our algorithm employs two abstractions to produce a more compact, symbolic, representation of
the system, which can then be used to predict system dynamics for a range of parameter values. The
first abstraction concerns branching: in each time step a state may evolve in one of several directions.
The abstraction reduces those multiple branches to just one, the weighted average of all the destination
states. The second abstraction concerns the elimination of intermediate steps, e.g. S2 in Fig. 1. The
algorithm calculates equations for each tick, but those equations associated with intermediate states are
removed by substitution, yielding equations such as (1).

The ability to move rigorously from individual descriptions to population dynamics allows us to
explicitly take into account the individual interactions which are fundamentally important in transmission
of disease. Moreover, the MFEs are less expensive to compute. The algorithm in Fig. 3 has complexity
O(mn2), where m is the number of distinct actions and n is the number of distinct agents. Both are
always finite, and usually small. Similarly, at most O(mn2) space is required. Once the MFEs are
obtained further analysis may be carried out using established mathematical techniques (perhaps with
tool support). The MFEs generated are always first-order equations, therefore computation and analysis
is straightforward. In this section we present an algorithm which formalises the process of deriving MFEs
for models such as those in Figs. 1 and 2.

3.2 How agents evolve: transitions

The central part of the algorithm is tracking how agents evolve. Consider an agent A (At in the MFEs).
Transitions from states involving A can increase, decrease, or maintain the number of A agents in the
overall population. In terms of the MFEs, an equation of the form At = At−1 − XAt−1 + Y At−1 + Z
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is produced, where X, Y, Z may be complex expressions involving other agents. These other agents may
also change as a result of the transition; their calculation is done separately. The different evolutions are
represented in a transition table recording the result of each possible transition of each type of agent.
The terms of the transition table can then be used to generate the MFEs. Examples of these are given
in Tables 1-4. The full transition table will be sparse, so it is often convenient to consider several partial
tables containing all the non-empty cells. In the table the rows denote the agents at time t − 1 and
their possible actions. These are labelled Ai aj for each agent Ai in the model and each action aj it
can perform. The columns of the transition table denote the agents at time t and are labelled Aj for
all agents in the model. The term in cell (Ai aj, Aj) will be ajAinew, the proportion of Ai agents at
time t − 1 which perform aj and become Aj at time t. The derivation of ajAinew is fully determined
by the type of action carried out and the makeup of the population, as explained in Section 3.4. The
equation for Ajt can then be obtained by summing the terms in the column Aj.

Where Ai becomes Aj irrespective of which action it performs, a single row is used for that agent
which is labelled Ai *. For example the agent

bs R1 1.infect:R2 + 1.t:R2
always evolves to R2 whether it performs the infect action or not. In such instances R1 * appears as a
row in the table and the term R1t−1 appears in the column for R2t.

3.3 Algorithm

3.3.1 Preliminaries

Processes can be serial or parallel. Given a serial process

A w1.a1:A1 + w2.a2:A2 + ... + wn.an:An

we make the following definitions.

derivatives(A) = {w1.a1:A1, w2.a2:A2, ..., wn.an:An}
also denoted {D1, D2, ..., Dn}

sumw(0, n,A) = w1 + w2 + ... + wn

process(D) = process(w.a:A) = A

process(D1, D2, ...Dn) = {A1, A2...An}
action(D) = action(w.a:A) = a

weight(D) = weight(w.a:A) = w

Given a parallel process

A A1|A2|...|An

we define

components(A) = {A1, A2, ...An} .

Finally, an action a is a communicating action if there is a restriction set L, and a 6∈ L. A process is
a communicating agent if it is one which can perform a communicating action.

3.3.2 Pseudo Code

The pseudo code of the algorithm is presented in Fig. 3. The inputs to the algorithm are: the processes
of interest (those for which the final MFEs must be derived); the number of ticks in the WSCCS model
which represent a timestep in the MFEs; and the WSCCS description of the model.

3.3.3 Restrictions

There are some restrictions on the algorithm inputs which make models easier to understand, construction
of the MFEs more straightforward, and which seem sensible biologically:
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1. /*Construct transition table*/
For each process Ai {

if serial(Ai) then {
if process(derivatives(Ai))={Aj} then

/* single derivative */
add entry( (Ai,*),Aj)=Ait−1

else
/*more than one derivative*/
For each derivative D = (wj .aj : Aj) {

if Ai is communicating agent then
if action(D)∈ communicating then

add entry((Ai, aj),Aj)= ajAinew

else
add entry((Ai, aj), Aj) = Ait−1 − ajAinew

else { /*simple probabilistic choice*/
pj = wj/sumw(0, n,Ai)
add entry((Ai, aj),Aj) = pj ∗Ait−1

}
}

}
else /*process is parallel*/

For each component Aj
add entry((Ai,*),Aj)= Ait

}

2. /*Construct the change from communication*/
For each communicating action aj

For each communicating agent Ai
construct ajAinew

3. /*Construct equations*/
For each Ak

For each action aj

For each Ai
MFE Ak := MFE Ak + lookup((Ai,aj),Ak)

/*Simplify equation*/
For each AgentOfInterest Ai

For each tick
replace Aj in MFE Ai by MFE Aj

Figure 3: Algorithm to derive MFEs from a WSCCS model

6



1. The algorithm is constructed under the assumption that the model is of the form P|Q|...|Z/L
where the components can be sequential or parallel processes, and may include priority.

2. All weights associated with communication must be 1, and for single actions there should be only
one alternative action to the communication action. A consequence of this is that probabilistic
choice steps must be separate from communication steps.

3. There should be at most one communicating action in each agent in any time step. This does not
hamper expressivity, since it is possible to put two different communicating actions on different
time steps.

4. Agents performing the (input) action perform only a single action (e.g. infect), and may change
state as a result.

5. Agents performing a single (output) action may change state; however, agents performing multiple
actions (e.g. infect^3) should evolve to the same state, regardless of the number of actions per-
formed. Biologically there seems to be little need to allow evolution to different states depending
on the number of actions performed.

6. Processes should not include nested permission sets, i.e. all communication takes place between all
processes (potentially), and not between subgroups defined by restriction. The restriction operator
cannot be distributed over parallelism. Biologically, this appears to be a reasonable restriction.

Restrictions 2, 4 and 5 make the definition of the general terms for changing agents defined in Section 3.4
simpler; however, it should be possible to remove these restrictions in future work.

3.4 Quantifying the change in each agent: ajAinew

3.4.1 Probabilistic Agents

Calculation of ajAinew is straightforward for steps involving only probabilistic choice. Probabilistic
agents take the form

bs A0 w1.t:A1 + w2.t:A2 + ... wm.t:Am
and proceed independently without interacting with any other agent. The probability that A0 will become
one of its destination processes Ai is

pi =
wi∑m

j=1 wj
.

Standard probability theory means that if there are n instances of A0 then the mean number which
become Ai at the next time step will be Ai = pin .

3.4.2 Communicating Agents

Consider a system with agents S, Ti and Wi. S is the agent for which the interacting proportion is
calculated, i.e. the Ai in the table row, or the state we are moving from. Ti are the agents which
interact with S, e.g. the infecteds, or the agents who have the output action. Wi are the other agents
which interact with Ti. These may be regarded as being in competition with the S agents since they
may absorb occurrences of the action. For example, in the SIR system of Fig. 1, this is equivalent to
communication between an infected and a recovered. An opportunity to infect a susceptible has been
missed.

Given these definitions, there are four general cases covering all the types of model for which we can
currently derive the change in agents (denoted ajSnew below) arising from: prioritised or non-prioritised
communication, and single or multiple actions. Each case involves multinomial coefficients deriving from
ways of choosing which agents participate in a communication, but these can often be simplified. It is
the simplified form we present here. In all cases if there is more than one agent affected by performing
the input action, there will be a separate term created for each agent Ai changed by communication.
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Non-prioritised, Single For the case where non-prioritised communication is employed and agents
can perform only a single action aj, the general term for ajSnew is

ajSnew =
S

∑
i Ti

S + (
∑

i Ti) + (
∑

j Wj)
(2)

where S, T i, Wi are the numbers of agents of types S,Ti,Wi respectively.

Prioritised, Single For the case where prioritised communication is used the population mix is not
important; all of the Ti agents will perform the output action when sufficient agents are available to
perform the input action. In this case the term is

ajSnew =
S

∑
i Ti

S +
∑

j Wj
.

When there are insufficient agents available to interact with all of the Ti then all of the S agents will be
contacted, giving the general term

ajSnew = min
{

S,
S

∑
i Ti

S +
∑

j Wj

}
. (3)

It is possible to design models using parallel agents to ensure there are always enough agents with which
to communicate. In such cases (S

∑
i Ti)/(S +

∑
j Wj) will always be less than S and the min term can

be eliminated.

Non-prioritised, Multiple If individuals can perform multiple instances of the action then the general
terms become more complex. When non-prioritised communication is employed the general term is

ajSnew =

S
f
(( ∏p

i=1
Ti!Qci

v=1 ni,v !(Ti−
Pci

k=1 ni,k)!

)( S+(
Pw

l=1 Wl)−1

(
Pp

m=1
Ptm

q=1 q×nm,q)−1

))
f
(( ∏p

i=1
Ti!Qci

v=1 ni,v !(Ti−
Pci

k=1 ni,k)!

)( S+
Pw

l=1 WlPp
m=1

Ptm
q=1 q×nm,q

)) (4)

where

f(X) =
Tp∑

np,cp=0

Tp−np,cp∑
np,cp−1=0

...

Tp−
Pcp

i=1 np,i∑
np,1=0

T (p−1)∑
np−1,cp−1=0

...

T1−
Pc1

j=1 n1,j∑
n1,1=0

X .

p is the number of types of agent which can perform aj, ci is the maximum number of instances of aj
which Ti can perform, n(i,k) is the number of Ti agents which perform k instances of aj at a particular
time. In general we avoid using communication of this sort in our models since this term is algebraically
intractable. Biologically, the use of multiple actions is usually given hierarchical priority therefore equa-
tion (5) will apply. For example, in the model of Fig. 2 priority is used to make communication with three
agents the most likely option, if available, and to communicate with fewer agents in strict decreasing
priority.

Prioritised, Multiple For the case where prioritised communication is employed, the agents per-
forming the action always communicate if there are sufficient agents with which to interact. Taking into
account the situation where all S agents are contacted gives the term

ajSnew = min
{

S,
S

∑
i ciTi

S +
∑

j Wj

}
(5)

where ci is the maximum number of instances of aj which Ti can perform.
The four cases given in (2), (3), (4) and (5) provide the general cases to describe the proportion of

agents changed by communication. In the following sections we use these general terms along with the
algorithm to automatically derive systems of MFEs for the models given in Figs. 1 and 2.
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3.5 Example 1: Non-prioritised Communication (Fig. 1)

Applying our algorithm to Fig. 1, first note that the agents of interest (for which the MFEs will be derived)
are S1,I1 and R1 and that one timestep in the equations should represent two ticks in the WSCCS model.
The algorithm will produce two sets of equations which can be algebraically manipulated to obtain the
two tick MFEs (1).

Considering first the probabilistic agents S1, I1, R1 (transitions of which are described in Table 1),
we get the following system of equations for the evolution of the system over the first tick:

S2t = S1t−1

T2t = paI1t−1

I2t = (1− pr − pa)I1t−1

R2t = prI1t−1 + R1t−1 . (6)

For the second tick we get the following equations for S1, I1, R1 at time t in terms of S2, I2, T2, R2
at time t− 1 (described in Table 2):

S1t = S2t−1 − infectS2new
I1t = I2t−1 + T2t−1 + infectS2new
R1t = R2t−1 . (7)

The expressions for S2t, I2t, T2t and R2t from equations (6) are combined with equations (7) to
give the overall behaviour of the model over two time steps

S1t+2 = S1t − infectS2new
I1t+2 = (1− pr)I1t + infectS2new
R1t+2 = prI1t + R1t . (8)

Using the general term (2), since we have non-prioritised communication and single actions, we obtain

infectS2new =
S2T2

S2 + T2 + I2 + R2
. (9)

Substituting for S2, I2 and R2 in equation (9), and for infectS2new in equations (8), the equations can
be rewritten over one time step, dropping the 1s from the state names, to obtain the equations (1) as
derived by Norman and Shankland [15] using informal reasoning. This system of equations is the discrete
time equivalent of the standard ordinary differential equation model for disease systems with frequency
dependent transmission of disease [2] (fixed number of contacts per infected individual).

3.6 Example 2: Prioritised Communication with Parallel Actions

Applying our algorithm to the model in Fig. 2, note that the agents of interest are S1,I1 and R1 and
that this is a two tick model. Transitions for the model are described by Tables 3 and 4, which do not
include terms for the agent T since this is the null agent and does not contribute to the behaviour of
any other agents. The following system of equations for the behaviour of the communicating S1, I1
and R1 agents, described in Table 3, is derived. The parallel agent I1 contributes the only terms to the
equations for T1 and Trans:

T1t = I1t

Transt = I1t

SI2t = infS1new
S2t = S1t−1 − infS1new
I2t = T1t−1 = I1t−1

R2t = R1t−1 . (10)
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On the second tick in this model the S2,SI2,I2 and R2 agents behave probabilistically, leading to
the following system of equations (described in Table 4):

S1t = S2t−1 + (1− pa)SI2t−1

I1t = paSI2t−1 + (1− pr)I2t−1

R1t = R2t−1 + prI2t−1 . (11)

From the general term (5) the expression for infS1new is

infS1new = min
{

S1t−1,
3S1t−1Tt−1

S1t−1 + T1t−1 + R1t−1

}
. (12)

Combining equations (10-12) gives the MFEs for the model:

S1t+1 = S1t − pamin
{

S1t,
3S1tI1t

S1t + I1t + R1t

}
I1t+1 = (1− pr)I1t + pamin

{
S1t,

3S1tI1t

S1t + I1t + R1t

}
R1t+1 = R1t + prI1t . (13)

Notice that the different mode of communication used in this model leads to different MFEs to those
for the model of Fig. 1, capturing the contact rate of at most three infections per time step. In [14] a
more complex version of this model, involving functional contact rates allowing number of contacts to
vary with population size, was shown to produce equations equivalent to traditionally used models with
density dependent transmission of disease [1].

4 Correctness

In this section we consider the correctness of this approach. The fit between the derived MFEs (equations
1) and the simulated mean behaviour of an example model from Fig. 1 is investigated in Sect. 4.1. In
Sect. 4.2 we relate our approach to the conditions of the limit theorems presented by Kurtz [12].

4.1 Accuracy of Mean Field Equations

We have seen that the MFEs are derived by considering the mean of all the possible ways in which the
system can evolve so we now consider how well the MFEs approximate the simulated mean behaviour
of the system. This is done by comparing the time series of the MFEs (choosing parameter values and
an initial population) with the mean of a large number of simulations. The simulations were performed
using the computational software package Mathematica [9]. For each stage of the model the simulation
iterates through each individual present and uses random numbers, along with the probabilities, to
determine how each agent will evolve. For the communication stage we think of the agents performing
the output action (Trans) as being ‘active’, and the agents which perform the input action (S1,T1,R1)
as being ‘passive’. This means that the numbers of S1,T1 and R1 which communicate is determined by
the probabilistic choices of the Trans agents. In Fig. 4 the infected MFE is plotted along with the mean
of 1000 simulations and the mean ± one standard deviation. This graph was produced with pi = 0.08 ,
pr = 0.02 and an initial population of S1{990}|I1{10}|R1{0} . Time is plotted along the x axis. The
units are undefined because the length of a timestep in our MFE (and the underlying process algebra
model) is undefined and depends the particular system being modelled. For instance if we consider
Fig. 1, the timestep would be the duration in which the mean number of contacts that infecteds make is
one. The probability of recovery (pr) would then be the probability that an infected indivdual recovers
within that duration. We can see that the MFE is close to the mean of the simulations for the duration
of the epidemic and lies within the standard deviation.

To investigate the effect of varying the initial numbers of infecteds we consider systems with the same
total population size and parameter values but with different initial numbers of infected individuals. In
Fig. 5 we consider an initial population featuring only one infected individual. In this case we can see
that the mean of the simulations fits less well to the MFE for I. At the beginning and end of the epidemic
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S2 I2 T2 R2

S1 t S1t−1

I1 t (1− pr − pa)I1t−1 paI1t−1 prI1t−1

R1 t R1t−1

Table 1: System progression table for S1,I1 and R1 agents in Fig. 1

S1 I1 R1

S2 infect infectS2new
S2 t S2t−1 − infectS2new
I2 * I2t−1

T2 * T2t−1

R2 * R2t−1

Table 2: System progression table for S2,I2,T2 and R2 agents in Fig. 1

S2 SI2 I2 R2

S1 inf infS1new
S1 t S1t−1−infS1new
T1 * T1t−1

R1 * R1t−1

Table 3: System progression table for S1,T1 and R1 agents in Fig. 2

S1 I1 R1

S2 t S2t−1

SI2 t (1− pa)SI2t−1 paSI2t−1

I2 t (1− pr)I2t−1 prI2t−1

R2 t R2t−1

Table 4: System progression table for S2,SI2,I2 and R1 agents in Fig. 2
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Figure 4: Infecteds (I) of Fig. 1 for pi = 0.08, pr = 0.02 and initial population S1{990}|I1{10}|R1{0}:
— MFE for I, – – Simulations mean for I, · · · mean±SD

the simulation mean and MFE match well, for the scale used in this graph, but around the peak of the
epidemic the MFE greatly overestimates the mean behaviour of the system. This occurs because, with
only one infected individual initially, the probability of the disease dying out before it becomes established
is much greater than for the previous example. This means that many of the simulations will be disease
free by the time of the peak and hence the mean of all the simulations is lower and the variability in the
system (i.e. standard deviation) is much greater. Similarly in Fig. 6 we consider an initial population
featuring 20 infected individuals. Here we can see that the MFE for I and the mean of the simulations
are indistinguishable for the majority of the epidemic and the MFE offers an excellent approximation to
the mean behaviour of the system. Although the graphs in Figs. 4, 5 and 6 are produced for a single
set of parameter values, by investigating a wide range of parameters we find similar results. These show
that the MFE does not offer a good approximation to the mean behaviour of the system only for very
small initial numbers of infected individuals.

Here we have demonstrated the accuracy of the MFE by choosing parameter values and computing
the time series of the MFE and simulations. One of the advantages of MFEs is that we can perform some
analysis without having to set values for the parameters. For example, we can calculate expressions for
the steady states of the system in terms of the parameters of the model. As an example we consider
Eqns. (1), the MFEs for Fig. 1. We find the steady states by setting St+1 = St = S∗, It+1 = It = I∗

and Rt+1 = Rt = R∗ and solving for S∗, I∗ and R∗ . Doing this we find that the steady state of Eqns.
(1) is (S∗, 0, R∗). This is a steady state for any values of S∗ and R∗ , including the special cases where
S∗ = 0 and R∗ = 0 .

It is further possible to analyse the stability of the steady states for small perturbations. For Eqns.
(1) we can reason about this without having to perform the full analysis. For small perturbations in S∗

or R∗ a new steady state will be reached, since any state where I = 0 is a steady state. Perturbations in
I will cause the system to evolve to a new steady state with different values of S∗ and R∗ . The steady
state (S∗, 0, R∗) can therefore be thought of as stable since for any perturbation the system will evolve
back to (S∗, 0, R∗) although with the values of S∗ and R∗ changed. Alternatively any particular steady
state (with specific values for S∗ and R∗) is unstable since small perturbations will cause the system to
evolve to a new state.

For systems in which individuals can be removed and added (either by births and deaths or by
migration) the steady states we find are more specific, with the numbers of individuals in each group
being a function of the parameters of the model. Analysing the stability of such steady states allows
us to comment, for instance, on whether a disease can be expected to persist or die out over time.
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Figure 5: Infecteds (I) of Fig. 1 for pi = 0.08, pr = 0.02 and initial population S1{999}|I1{1}|R1{0}:
— MFE for I, – – Simulations mean for I, · · · mean±SD
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Figure 6: Infecteds (I) of Fig. 1 for pi = 0.08, pr = 0.02 and initial population S1{980}|I1{20}|R1{0}:
— MFE for I, – – Simulations mean for I, · · · mean±SD

Such analysis is only possible for individual based models via MFEs (or ODEs). Repeated simulations
over a range of parameters might allow the same inference to be made, but would require much more
computation.

4.2 Proof

Our algorithm offers an alternative semantics for WSCCS which allows us to derive MFEs directly from
the WSCCS syntax (see Fig. 7). The standard WSCCS semantics give us the Markov chain for the
system. In this section we are interested in rigorously relating the Markov chain and MFEs semantics to
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Figure 7: Relationship between MFEs and Markov chain semantics

show that at the limit, where the system is infinitely large, the mean of the Markov chain is equivalent
to the MFEs, the dashed line in Fig. 7.

Kurtz [12] presented limit theorems which relate the mean of a Markov chain to ordinary differential
equations. For discrete time Markov chains, such as those which arise from WSCCS semantics, an
intermediate stage derives equations for the change in the state of the system in a single step of time. By
relating the conditions for the derivation of such terms to the process undertaken in our algorithm we
demonstrate that in the limit, where a system consists of infinitely many agents, our mean field equations
will be infinitesimally close to the mean of the Markov chain.

The conditions which are set out for the proof are:

• Xn(k) is a sequence of discrete time Markov processes, with measurable state spaces, En , which
is a subset of Bk, the Borel sets [11] in Rk (true for WSCCS processes since all subsets of Rk are
Borel sets)

• we rescale the processes from {0, 1, ..., n} to [0, 1] by dividing through by n and letting n →∞ [3]
— for our purposes n is the initial number of agents in the system

• the one step transition function is denoted by

µn(x, Γ) = P{Xn(k + 1) ∈ Γ|Xn(k) = x}

i.e. µn(x, y) is the probability of moving from x to y in one time-step (this is the same as the
transition function of WSCCS)

• we suppose there exist sequences of positive numbers αn and εn such that

lim
n→∞

αn = ∞ and lim
n→∞

εn = 0 ,

sup
n

sup
x∈En

αn

∫
En

|z − x|µn(x, dz) < ∞ (14)

and
lim

n→∞
sup

x∈En

αn

∫
|z−x|>εn

|z − x|µn(x, dz) = 0 , (15)

where lim is the limit of a sequence and sup is the supremum, or least upper bound.

We see that both (14) and (15) contain |z − x| , the magnitude of the difference between the
start state, x, and the destination state, z. We think of z and x as being position vectors with a
component representing each type of agent in the system. This means that |z − x| is the norm of
the vector travelled in one time-step.

As n → ∞ the number of states which can be reached in one step becomes very large. Since we
scale the process by dividing by n, the states z for which µ(x, z) is greatest will be close to x (such
that |z − x| is close to 0). For z where |z − x| is larger, the probability of reaching z will be close to
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0. This means that
∫
|z−x|>εn

|z − x|µn(x, dz) is infinitesimal and at the limit (where n = ∞) αn = ∞
αn

∫
En

|z − x|µn(x, dz) < ∞ is true and (14) is satisfied.
Similarly for (15), as n →∞ the proportion of [0, 1] which we are considering increases since εn → 0.

At the limit the probability of reaching any point other than x (such that |z − x| 6= 0) is 0 so that (15)
is satisfied.

The Kurtz result then shows that for every δ > 0, t > 0

lim
n→∞

sup
x∈En

P

{
sup

k≤αnt
|Xn(k)−Xn(0)−

k∑
l=0

∫
En

1
αn

Fn(Xn(l))| > δ

where Xn(0) = x

}
= 0 , (16)

where Fn(x) = αn

∫
En

(z−x)µn(x, dz). Considering the behaviour of the process over only one time-step
(16) becomes

lim
n→∞

sup
x∈En

P

{
sup

k≤αnt
|Xn(1)−Xn(0)−

∫
En

(z − x)µn(x, dz)| > δ

where Xn(0) = x

}
= 0 .

This means that, at the limit, where n = ∞, an equation derived from G(x) =
∫

En
(z − x)µn(x, dz) will

be equal to the average change in the process in 1 time-step. Further we can see that this gives us

Xn(1) = Xn(0) + G(Xn(0)) .

Since we are dealing with Markov processes, which have no memory of previous states, we can generalise
further to find

Xn(k + 1) = Xn(k) + G(Xn(k)) . (17)

The form of G(x) =
∫

En
(z − x)µn(x, dz) is equivalent to the way in which we construct our MFEs.

We interpret the integral here as a summation, such that the integral across the entire state space,of
the product of the change of state and the probability of making that change, gives us the mean change
of state. By adding this to the previous state of the models, (17), we obtain the MFEs derived by our
algorithm.

5 Conclusion

We have developed an algorithm to derive MFEs directly from WSCCS models. This allows us to
write individual-based models corresponding to directly observed behaviour, and to rigorously obtain an
approximate population-level description. With this algorithm we have begun to solve the problem of
changing scale. This is a huge leap forward for theoretical biologists who do not have a rigorous method
of taking individual rules of behaviour and deriving a description of population level behaviour.

This advance allows investigation of specific biological problems and, in particular, permits a rigorous
investigation of the impact of individual behaviour on population dynamics. Case studies carried out by
our group include an investigation of transmission terms arising from different interactions in WSCCS
models of disease spread [14] and limiting growth in populations [13]. Previous work in this area relied
on hypothesising a suitable transmission term and then fitting to data. The more complex the model
becomes, the less satisfactory this method, since many factors may be confused.

The method is general and can be applied to any system built from a number of identical components,
therefore our algorithm also has significant impact for theoretical computer science. While process
algebra has proved a useful description tool, simulation and further analysis of systems has always
been hindered by the state explosion problem, and the limitations of memory and processing power. The
MFEs allow us to explore the mean behaviour of large scale systems irrespective of parameter values. The
MFEs have only a single first order equation for each type of agent and are therefore less computationally
demanding.
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Work remains to be done: the algorithm presented operates on a subset of WSCCS models. The
restrictions were noted in Section 3 and can be readily justified in terms of ease of modelling; however,
we are already investigating the removal of some of these limitations. At present we have a partial
implementation of our algorithm. Models which lead to MFEs featuring interaction terms of the forms
(2) and (3) can be automatically derived for appropriate models.
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