

Department of Computing Science and Mathematics
University of Stirling

The Omnibus Language and
Integrated Verification Approach

Thomas Wilson

Technical Report CSM-174

ISSN 1460-9673

January 08

Department of Computing Science and Mathematics
University of Stirling

The Omnibus Language and
Integrated Verification Approach

Thomas Wilson

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland
Telephone +44-1786-467421, Facsimile +44-1786-464-551

Email twi@cs.stir.ac.uk

Technical Report CSM-174

ISSN 1460-9673

January 08

 iii

Abstract

This thesis describes the Omnibus language and its supporting framework of tools. Omnibus is an
object-oriented language which is superficially similar to the Java programming language but uses value
semantics for objects and incorporates a behavioural interface specification language. Specifications are
defined in terms of a subset of the query functions of the classes for which a frame-condition logic is
provided. The language is well suited to the specification of modelling types and can also be used to
write implementations. An overview of the language is presented and then specific aspects such as
subtleties in the frame-condition logic, the implementation of value semantics and the role of equality
are discussed. The challenges of reference semantics are also discussed.

The Omnibus language is supported by an integrated verification tool which provides support for
three assertion-based verification approaches: run-time assertion checking, extended static checking
and full formal verification. The different approaches provide different balances between rigour and
ease of use. The Omnibus tool allows these approaches to be used together in different parts of the
same project. Guidelines are presented in order to help users avoid conflicts when using the approaches
together. The use of the integrated verification approach to meet two key requirements of safe software
component reuse, to have clear descriptions and some form of certification, are discussed along with
the specialised facilities provided by the Omnibus tool to manage the distribution of components. The
principles of the implementation of the tool are described, focussing on the integrated static verifier
module that supports both extended static checking and full formal verification through the use of an
intermediate logic.

The different verification approaches are used to detect and correct a range of errors in a case study
carried out using the Omnibus language. The case study is of a library system where copies of books,
CDs and DVDs are loaned out to members. The implementation consists of 2278 lines of Omnibus
code spread over 15 classes. To allow direct comparison of the different assertion-based verification
approaches considered, run-time assertion checking, extended static checking and then full formal
verification are applied to the application in its entirety. This directly illustrates the different balances
between error coverage and ease-of-use which the approaches offer. Finally, the verification policy
system is used to allow the approaches to be used together to verify different parts of the application.

Keywords: Assertion-based Verification, Run-time Assertion Checking, Extended Static Checking,
Formal Verification, Verification Policies

 iv

Acknowledgements

The biggest thanks must go to my supervisors Savi Maharaj and Bob Clark. They gave me the freedom
to explore my own ideas and taught me how to write to an academic level through feedback on draft
after draft. I will be forever grateful for this and I really hope that my work has justified the belief they
always showed in me.

I must thank all my family for their support. I often discussed ideas with my Dad, who was
effectively my third supervisor. My Mum was always there for me when I needed her and my little
brother always kept me entertained. I was lucky to have some good friends. I must mention Ali,
Jennifer, Lloyd and Sarah. Most of all I want to thank my wonderful girlfriend Donna for all her
positivity and encouragement. How on Earth did I manage without her?

I should thank Kirsty Bell who carried out a case study with Omnibus for her honours dissertation.
This was quite a difficult task because the tools were still in development but she did excellent work.

There have been a lot of people who have believed in me and encouraged me over the years. Two
teachers had a big impact on my life: my high school Maths teacher Mr Tinning and Mr McFarlane
who taught me for my final year in primary school. Without their encouragement at crucial stages of
my life, I do not believe I would have reached this stage.

I was lucky to get the opportunity to work at a company called CBS Online while I was still at
school and the owner Martin Wardman had enough faith in me to put me on the programming team at
the age of 17. Those experiences directly motivated this research and setup my career.

I had the opportunity to undertake an exchange to the University of California, Santa Barbara in the
third year of my degree and work I did with Tevfik Bultan and Richard Kemmerer helped give me the
necessary background to undertake this project.

Thank you to the people I met at conferences and were so encouraging. Kind words from Joe
Kiniry, Patrice Chalin, David Cok, Erik Poll and Rustan Leino made a big difference to me.

Finally, thank you to my Ph.D. examiners, Ken Turner and Joe Kiniry, who went through my thesis
in great detail. I greatly enjoyed the opportunity to discuss my work with them during my Viva.

for my dad and granddad

 v

Contents
Abstract..iii
Acknowledgements..iv
Contents ..v
1 Introduction ...1

1.1 Formal methods and assertion-based verification...1
1.1.1 Current realities and future promise of formal methods ..2
1.1.2 Assertion-based verification approaches..3

1.2 Thesis contributions..4
1.2.1 The Omnibus language ..4
1.2.2 The Omnibus integrated verification approach..6
1.2.3 Strengths and weaknesses of Omnibus ..7

1.3 Related work...7
1.3.1 Related languages ..7
1.3.2 Related verification tools ...8

1.4 Structure of the thesis ...12
2 Overview of the Omnibus language ..13

2.1 Fundamental concepts ..13
2.2 Behaviour specifications...13

2.2.1 Principles of Omnibus behaviour specifications..13
2.2.2 Notes on the specifications of class body elements ...14
2.2.3 Levels of specification ...14
2.2.4 Light and full behaviour specifications..16
2.2.5 Calculation of pre- and post-conditions ...17
2.2.6 Calculation of frame conditions ...17
2.2.7 Example of calculation of pre- and post-conditions...18

2.3 Requirements specifications and their verification...20
2.3.1 Requirements specifications ..20
2.3.2 Laws...21

3 Design issues for the Omnibus language...25
3.1 Using functions instead of fields for specifications ..25

3.1.1 Checking method pre-conditions in specifications ..25
3.1.2 Model functions with pre-conditions in changes clauses ...26
3.1.3 Vicious circle of logic ..28

3.2 Implementing value semantics..31
3.2.1 Copy-on-update implementation of value semantics ...31
3.2.2 Optimisations of copy-on-update...33

3.3 Equality in Omnibus ...35
3.3.1 Built-in concept of equality..36
3.3.2 Manually defining the equality operator ..37

4 Challenges of reference semantics ..43
4.1 Problems of modular reasoning about reference semantics..43

4.1.1 Review of the basics of reference semantics..43
4.1.2 A class with a mutable, reference-based internal state...44
4.1.3 The representation exposure problem ..45
4.1.4 The argument object dependency problem ..45
4.1.5 Different views of the same problem...46

4.2 Sound modular static verification techniques ...46
4.2.1 Alias control through Universes ..46
4.2.2 Visibility-based invariants ...50

5 Combining verification approaches...52
5.1 Addressing limitations of ESC with the other approaches..53

5.1.1 Strengths of ESC..53
5.1.2 A Problem with ESC..53

Contents

 vi

5.1.3 Plugging the gaps in ESC with RAC and FFV ..56
5.2 Guidance on how to use the approaches together ...58

5.2.1 RAC- and ESC-compatibility ..58
5.2.2 Guidelines for avoiding conflicts between approaches..58
5.2.3 Recommendations for when to use each approach ..64

5.3 Verification policies..65
5.3.1 Configuring the approaches ...65
5.3.2 Verification policy tool support ...66

6 Safe software component reuse ...71
6.1 State-of-practice for reusable components..71
6.2 Use of the approaches for reusable components...71

6.2.1 Developing reusable components with RAC and ESC ..71
6.2.2 Developing reusable components with FFV ..72

6.3 Specialised support for open source components ...73
6.3.1 Interface documentation...73
6.3.2 Verification certificates..76
6.3.3 Distribution and use of components...78
6.3.4 Re-verification of components...79

6.4 Specialised support for closed source components...80
7 Tool support ..81

7.1 Run-time assertion checking...81
7.1.1 Translation of general file structure ...81
7.1.2 Special Java methods ...81
7.1.3 Translation of Omnibus class members ...81
7.1.4 Translation of method bodies...82
7.1.5 Translation of statements ...82
7.1.6 Generation of assertion checks ..82

7.2 Integrated static verifier ..82
7.3 Translation to generic logic ..83

7.3.1 Base level for generic logic specifications...83
7.3.2 Structure of theories...83
7.3.3 Translation of classes into generic logic ..83
7.3.4 Translation of methods into generic logic..84
7.3.5 Generation of VCs ...87

7.4 Mapping generic logic to specific provers..95
7.4.1 Translation of generic logic into Simplify ...95
7.4.2 Translation of generic logic into PVS..98

7.5 Prover-specific interaction..102
7.5.1 Simplify prover support ...102
7.5.2 PVS prover support..102

8 Case study ...103
8.1 Process used in the development of the Library system ...103
8.2 Informal description ...105
8.3 Run-time assertion checking...105

8.3.1 Auxiliary classes ..105
8.3.2 Central Lib class ..109
8.3.3 Testing ...112
8.3.4 Errors detected ...118
8.3.5 Conclusions..121

8.4 Extended static checking ..121
8.4.1 Using the ESC tool...121
8.4.2 New errors detected ...121
8.4.3 Limitations of the ESC tool ...125
8.4.4 Conclusions..125

8.5 Full formal verification...126
8.5.1 Automatic and interactive FFV..126
8.5.2 New errors detected ...127
8.5.3 Conclusions..129

8.6 Integrated verification...129

Contents

 vii

8.6.1 Using different policies for different files..129
8.6.2 Fully integrating the verification approaches...133

8.7 Summary...143
9 Conclusions and future work...144

9.1 Conclusions on the Omnibus language...144
9.1.1 Suitability of the language for different purposes ..144
9.1.2 Problems with the use of the language...145

9.2 Conclusions on our integrated verification approach ...146
9.2.1 Combining approaches to address limitations..146
9.2.2 Supporting the safe reuse of software components ..147

9.3 Future work...147
9.3.1 Formal definition for the Omnibus language ...147
9.3.2 Combining value and reference semantics...147
9.3.3 Integrating latest theorem provers and model checkers ...148
9.3.4 Distribution of reusable software components...149
9.3.5 Other future work...149

9.4 Concluding remarks..150
References...151
A Language syntax ...155

A.1 Syntax notation ...155
A.2 Lexical form ...155

A.2.1 Ignored elements..155
A.2.2 Special tokens ..155
A.2.3 Identifiers ...156
A.2.4 Literals ...156
A.2.5 Primitive types and expressions ...156

A.3 Source files ...159
A.4 Classes as types and objects ...162

A.4.1 Classes as types..162
A.4.2 Using Objects...162
A.4.3 Special variables ..163
A.4.4 Casting ...163

A.5 Specifications..163
A.5.1 Behaviour specifications ..163
A.5.2 Requirements specifications ..164

A.6 Implementation language..164
A.6.1 Code...164
A.6.2 Statements..164

B Modelling types...168
B.1 Collection class...168
B.2 Map class ..169
B.3 List class ...171

C Verification policy definitions...174
C.1 Configurable options for verification policies ..174

C.1.1 Run-time checking properties ..175
C.1.2 Static verification properties ..176

C.2 Built-in verification policies ...176
C.2.1 Properties for RAC, ESC and FFV ..176
C.2.2 Extensions of RAC, ESC and FFV ..177

D Symbolic execution example ..179
D.1 A sorting example...179
D.2 The symbolic execution process ...179

E An interactive PVS proof ..187
E.1 Relevant Omnibus source code...187
E.2 Generated PVS ...188
E.3 Details of the proof process ..189

 1

1 Introduction
The software development industry is plagued by massive failures [6, 7, 25, 44, 45, 52, 65]. Examples
of failed software projects include the crash of the Ariane 5 rocket in 1996, 40 seconds after launch,
with a reported cost of $500 million [52, 83]; the abandonment of a $526 million supply-chain
management system by J Sainsbury plc in 2004 [25]; and the ongoing saga of the UK’s NHS IT system
[6]. The U.S. Department of Commerce has estimated the economic cost of faulty software in the U.S.
alone at $22.2-$59.5 billion per annum [45]. Other estimates for this figure are as high as $60-$70
billion per annum [25]. People have also lost their lives as a result of software failures. For example,
between 1985 and 1987 a software error in a computer-controlled radiation therapy machine led to
patients receiving massive overdoses, killing at least three people [65]; a similar mishap between 2000
and 2001 led to another eight fatalities [65].

It is widely acknowledged that this situation is something we should look to address. Edsger
Dijkstra had the following comment [38]:

“The average customer of the computing industry has been served so poorly that he
expects his system to crash all the time, and we witness a massive worldwide
distribution of bug-ridden software for which we should be deeply ashamed.”

While it is widely accepted that there is no single silver bullet [18] to the problems of the software
development industry, we can still look for areas of improvement. Increasing the level of software
component reuse could help address some of the problems of software development by allowing
developers to make more use of existing components rather than implementing their own.

Studies have suggested that on average as much as 85% of a typical new application could be
developed by reusing existing software, meaning as little as 15% application-specific code may be
required if reuse is fully exploited [85, 92]. Reuse can save time and money since, given a suitable
framework, it is quicker and cheaper to reuse an existing component than it is to write your own. If the
components are rigorously ensured to be correct then component reuse can also improve reliability.

There is a range of dedicated frameworks for component reuse that are used in practice including
JavaBeans, .NET and CORBA. In these frameworks, software components are described using type
signature interfaces supplemented by interface documentation (e.g. javadoc, docgen). Typically, no
quantifiable assurances of the correctness of the components are provided.

The level of software component reuse is currently considerably below the theoretical threshold.
The most cited barrier to reuse in a 2005 NASA survey on software reuse practices in the Earth science
community was that components were “difficult to understand/poorly documented” [5].

Another often-cited barrier to reuse is the so-called not-invented-here syndrome [15] where
software developers favour re-implementation over reuse. This syndrome has acted to limit the reuse of
software components. The not-invented-here syndrome, in this context, may be a natural human
defence mechanism that programmers develop through experience to protect them from the dangers of
reuse. Without any dependable assurances of correctness, developers have to resort to the use of
informal information, like the reputation of the vendor that produced the component, to decide whether
they can trust the hidden implementation to work. The reality is that reuse without adequate support
can lead to results that are worse, not better, than without reuse [52].

1.1 Formal methods and assertion-based verification
Techniques that exploit the mathematical properties of software systems in order to formally reason
about their correctness are referred to as formal methods. In this thesis we consider the use of formal
methods to help address some of the problems within the software development industry.

Formal methods require the production of a formal specification which defines precisely the desired
behaviour for a software application or component. The specification can then be used as a basis for
checking the correctness of an implementation. Formal verification is the process of formally ensuring
that specifications are internally consistent and satisfied by an implementation. There is a range of
different formal verification approaches.

We focus on a class of formal methods called assertion-based verification, built around the use of
special expressions called assertions which are embedded within program code. Assertions define
properties that must hold at different points during the execution of software applications. If an
assertion does not hold at the point at which it is reached then this corresponds to an error. Assertions
can be used to provide a specification for formal verification or as an oracle of correctness for software
testing.

1 Introduction

 2

In assertion-based verification approaches, assertions are used to specify the interfaces between
classes and methods. The assertions define the separate obligations on the callers and implementers of
each method. Methods are annotated with special assertion annotations called: pre-conditions, post-
conditions and frame conditions. A pre-condition defines properties that should be established by the
caller of a method before the method is called. A post-condition defines properties that should be
established by the implementer by the end of the execution of the method, assuming that the pre-
condition was satisfied by the caller. Post-conditions are typically supplemented by a frame condition
which defines some restrictions on the data that the method can change. In addition to describing the
individual methods, assertion-based object-oriented verification approaches also support the concept of
class invariants. A class invariant is an assertion that should hold throughout the lifetime of all
instances of that class. More specifically, they should be established by constructor methods and
maintained by instance method calls of the object.

Formal methods can be used to assess different aspects of software. For example, when asked to
perform a specific action, we may wish to demonstrate that the software: will always terminate, will
terminate within some maximum time period, and/or if the software terminates, the state that it
terminates in will satisfy the specification. The work described in this thesis is restricted to the
demonstration that if a specific action of the considered software terminates that it will do so in a state
which satisfies the formal specification. This is referred to as partial correctness. Where the software is
also shown to always terminate, this is called total correctness but that is beyond the scope of this
thesis. Likewise, the thesis does not consider techniques to show that software will always terminate
within a specified time frame. We also restrict our attention to a specific type of software: sequential
object-oriented code. We do not consider concurrency or non object-oriented systems.

1.1.1 Current realities and future promise of formal methods

Formal methods could help address some of the current failings of the software development field. The
use of formal methods can reduce the amount of testing that is needed by catching errors earlier in the
development process. For example, the use of the SPARK formal method in the implementation of the
control system for the Lockheed C130J aircraft (commonly known as “Hercules”) assisted in a
reduction of the required testing budget by 80% [24].

Increased levels of reuse of verified components could also help the situation. Two key technical
problems that are inhibiting the reuse of software components are:

software components need to be properly documented with clear and precise descriptions of what
they are intended to do [71], and

justification needs to be provided that the hidden implementation of a software component satisfies
its descriptions [70].

Formal methods provide the facilities to address these failings [69]. Formal specifications can help
provide clear and precise descriptions of what a component should do and formal verification can
provide a basis for trusting that a hidden implementation satisfies its interface. Furthermore, economies
of scale can justify the additional costs of formal methods.

The formal verification of software has been a long-standing goal of computing science. In recent
years, improvements in computer hardware and in areas such as automatic and interactive theorem
proving, model-checking, and static analysis have led to a situation where formal verification of
industrial-scale software is now a realistic prospect. There have been some notable successes in the
development of safety-critical systems [13, 16, 24, 28, 50, 93]. However, formal methods have had
limited impact outside the conventional safety-critical domain.

This thesis aims to provide formal methods that can be applied to the wider commercial software
development industry. In our work we have attempted to identify areas which were not being focussed
on by the leading verification projects. We developed a new language and set of tools to give us
complete freedom to explore the area without being too heavily influenced by the handful of leading
international projects that are so dominant. We did not fix on a definition for the language early in the
project, formally describe it (its semantics and type system), and stick to it. Instead, the language and
tools were radically re-developed to incorporate new ideas as the project progressed. The drawback of
this approach is that we do not have a succinct formal definition of the language in its current state
which we can present. To produce such a definition is a key item of future work.

The intended audience for our work is researchers in the assertion-based verification community
and we hope that these researchers can take aspects from our work and incorporate them into their own
languages and tools. The project is intended more as a research vehicle to explore alternative ideas than
as an approach to be used immediately in large-scale commercial software development.

1 Introduction

 3

1.1.2 Assertion-based verification approaches

In this thesis we focus on three assertion-based verification approaches. They are: run-time assertion
checking (RAC), extended static checking (ESC) and full formal verification (FFV).

RAC is a dynamic verification approach built around testing, while ESC and FFV are static
verification approaches which involve the generation of obligations called Verification Conditions
(VCs) which must then be proved using a theorem prover. There are automatic theorem provers which
decide the truth of the specified correctness properties automatically without involving the user, and
interactive theorem provers which allow the user to assist in the proof process. The theorem proving
problem is undecidable for the types of logics we consider and so automated theorem provers cannot
prove all VCs that are valid.

FFV involves the production of a heavyweight specification which should provide a comprehensive
characterisation of correctness, while RAC and ESC use only lightweight specifications which simply
describe some properties that should hold. There is no formally quantifiable difference between
lightweight and heavyweight specifications. The difference is in the mindset of the writer. When
writing a heavyweight specification the developer should attempt to describe the interface of the
component as completely as possible with the assertion language. This will typically involve the use of
quantifiers and recursion. When using lightweight specifications, practical concerns must be kept at the
forefront of the developer’s thinking in order to keep run-time checking overheads down or theorem
proving difficulty within the scope of automated proving. This will require constructs such as
quantifiers and recursion to be used sparingly. The completeness of post-conditions and frame-
conditions can be compromised but, even in lightweight specifications, the pre-conditions should be
described as completely as possible so that it is always possible to identify when a method call is
invalid.

1.1.2.1 Run-time assertion checking

The run-time assertion checking approach takes a program with a set of lightweight assertion
annotations written in an extension of the expression language and produces an executable
implementation incorporating run-time checks of those assertions. The application can then be tested in
a traditional manner, and violations of the assertion annotations will be detected and reported.

A big advantage of RAC is that it avoids the theoretical complexities of theorem prover-based
verification. The contribution of RAC to the testing process is that the failures encountered during the
execution of the program are detected close to source, aiding analysis and correction. The assertion
failure messages that are generated are also far more informative than the stack trace error message that
may have otherwise revealed the failure when the flaw triggered the generation of an uncaught
exception at some later stage in the execution. The assertion annotations can provide a form of test
oracle for the testing process.

A limitation of the approach is that its error coverage is closely associated with the coverage of the
corresponding test suite. The approach also uses lightweight specifications, so only the behaviour
characterised in these assertions will be checked. Of course, it also impacts run-time performance.

The run-time assertion checking approach was popularised by Bertrand Meyer, who designed the
Eiffel language [68] around this principle. RAC tools are now also available for most other mainstream
programming languages. For example, tools supporting RAC for Java include Jass [11], iContract [58],
jContractor [53] and the JML run-time assertion checker [27].

1.1.2.2 Extended static checking

Extended static checking uses static verification techniques to detect a range of possible run-time errors
and violations of lightweight specifications without the need for user interaction. The VCs produced by
ESC tools are discharged by a fully automated theorem prover. Spurious warnings reported by ESC
tools (frequently caused by incompleteness in either the lightweight specifications or the theorem
prover) can be suppressed by using a range of assumption constructs that allow programmers to trade
these spurious warnings for possible unsoundness. A prominent example is the assume statement
which allows users to provide an assertion which should be taken as true without further justification.
There are different techniques for the handling of loops including unravelling them a finite number of
times to avoid the need for loop invariants.

ESC is presented to those outside the formal methods field as an extension of the static checking
(i.e. type checking, basic flow analysis, etc.) performed by programmers using standard language
compilers. ESC tools produce error messages similar to those produced by standard compilers. This
makes it easier to market the approach since software developers are more receptive to “type checkers”
than formal methods tools. Like RAC, ESC also uses lightweight specifications that are easier to write

1 Introduction

 4

than their heavyweight equivalents. ESC helps to find errors earlier in the development process than
RAC, when they are easier to correct, and does not require the production of a test suite.

A crucial problem of ESC is that the specifications must be sufficient to act as a basis for modular
verification. This is illustrated in chapter 5. The specifications must also be adjusted to fit within the
capabilities of the associated automated theorem prover. If specifications are used which are too
complex, the tool may do something undesirable like report an error where there is none.

The extended static checking approach was developed by a team at DEC who produced the original
ESC tools: ESC/Modula-3 [35] and ESC/Java [41]. More recently Kiniry and Cok have produced the
ESC/Java2 tool [30].

1.1.2.3 Full formal verification

Full formal verification, or full functional program verification, is a static verification approach that
allows the correctness of an application relative to some specification to be fully mathematically
demonstrated, allowing the production of software that is, in principle, completely correct. FFV can
utilise either fully automated or interactive theorem provers.

Interactive theorem provers enable the use of more sophisticated specifications since the producer
of the specification does not need to remain within the bounds of what can be proved using an
automated theorem prover. The interactive proofs can be saved, distributed with the component and
then re-run by clients to re-verify the component.

Fully automated theorem provers are far more desirable because typical users frequently have
neither the mathematical training nor time to assist in the proof process. Unfortunately as Jacobs et al
note that full formal verification of languages like Java requires user assistance [51]: “The semantical
complexity of languages like Java... means that code verification is still very complicated and requires
a substantial amount of user interaction.” However, Crocker [34] believes that by using a cleaner
language and utilising advances in theorem proving and new levels of processing power, fully
automated FFV is now possible in practice. Unfortunately even if the proof process can be fully
automated, FFV is still very costly since it requires the production of heavyweight specifications
formalising the full details of each component being verified. This involves extra effort that, to make
matters worse, should be performed before the implementation is written, increasing time to market.
Finally, the full formal verification of implementations incorporating loops requires the production of a
loop invariant assertion for each loop. Determining suitable loop invariants is a non-trivial exercise.

Projects supporting full formal verification include B [2], SPARK [9], PerfectDeveloper [34], KeY
[3], LOOP [49], JACK [19], Jive [72] and Krakatoa [66].

1.2 Thesis contributions
This thesis makes contributions in two areas which are discussed in this section. They are:

1. investigation of the use of a new language loosely based on Java, but using value
semantics and containing an operational specification language with frame conditions, and

2. investigation of how different assertion-based verification approaches can be used together
in an integrated fashion in different parts of a single software application.

1.2.1 The Omnibus language

The thesis presents a new language called Omnibus. It is designed to use similar concepts to Java but
with value semantics for objects. Specifications can be provided in terms of the methods and attributes
in the interface of the class with a frame condition logic provided.

The contributions in this work are:
1. a presentation of a specification technique based upon type signature interfaces with

support for frame conditions, and a discussion of the problems in providing such support,
2. a discussion of techniques to implement an object-oriented programming language with

value semantics,
3. a discussion of the concept of equality with its increased importance in value semantics,

and presentation of an automatic lightweight definition and patterns for manual definitions,
and

4. an illustration of the challenges in reasoning with reference semantics and a discussion of
existing techniques.

Two of the most important language design decisions taken in the development of the Omnibus
language are the use of value semantics and an operational specification style. Justification for these
choices is given in the following sections.

1 Introduction

 5

1.2.1.1 Why value semantics is used

Objects may either be accessed via references or treated as values. Reference semantics is where
objects are accessed via references. Java is an example of a language which uses reference semantics.
The concepts of reference semantics are familiar to most programmers and are very expressive,
providing a powerful mechanism for describing programming solutions. However, they are relatively
complicated to reason about and harder to formally model. In value semantics, objects are accessed
directly, not by reference. SPARK is an example of a language that uses value semantics. Value
semantics is less expressive and cannot model certain complex design patterns efficiently. However, it
is far easier to reason about and formally model.

The Omnibus language uses value semantics for objects and does not provide any support for
reference semantics. We chose to concentrate on value semantics because reference semantics is one of
the biggest causes of complexity in verification of languages such as Java/JML. The difficulty of
verification of languages built on reference semantics makes the techniques less accessible, increasing
the need for user interaction in the theorem proving process. Value semantics offered the possibility of
verification techniques that are more accessible. Other projects have used value semantics for the same
reason. A prominent example is PerfectDeveloper, which uses a language primarily based on value
semantics in order to reduce theorem proving difficulty to the extent that fully automated provers can
be used. We wanted to explore the use of value semantics as the basis for a language supported by a
range of verification approaches.

Value semantics is also of critical importance even for languages primarily built around reference
semantics such as Java/JML. To perform formal verification, the classes in a system must be translated
into mathematical logic, and mathematics itself uses value semantics. Value semantics classes can be
used to describe the classes in an implementation in a manner that can be directly translated into the
underlying logic. Special modelling types of this kind, expressed using value semantics, are used
widely in Java/JML. A basis for the specifications, like our value semantics logic, is an important
component. This is discussed further in the next section.

There are limitations to value semantics and many of the most interesting outstanding research
challenges in software verification are concerned with reference semantics, so a thesis which does not
consider reference semantics at all would be somewhat unsatisfactory even under these circumstances.
As such we do discuss some of the key challenges in the verification of languages that use reference
semantics and promising current approaches for addressing these challenges.

Support for reference semantics could be added to the Omnibus language or the techniques for
value semantics presented here could be incorporated into an existing language such as JML which
focuses on reference semantics. Reference semantics could be used to provide expressiveness and
efficiency with value semantics being used for modelling types and implementations of selected
classes.

1.2.1.2 Why we use operational specifications

Another key language design question is what the base level of the specifications should be. Of course,
classes can be specified in terms of other classes, but this process must stop somewhere. Leading
projects such as JML and Spec# use a set of core types as the base level for specifications. These core
types are often referred to as modelling types [60]. The problem is then how these modelling types are
specified. As Leavens, Leino and Müller say [60]:

“Modelling types can, of course, be specified using other modelling types, but
ultimately some modelling types must be specified in some other way.”

The first challenge they discuss in their recent paper [60] is to “develop a technique for formally
specifying modelling types in a way that is useful for verification”. Modelling types can be provided in
a library and should provide core mathematical specification apparatus such as sets and sequences. The
types should obey value semantics to be compatible with the underlying mathematical theories used for
verification.

Their paper describes four candidate solutions to this problem. Their first candidate solution is to
use algebraic specification techniques. Such approaches can be used to describe the methods of a class
inductively. This approach is similar to the base-function specification technique of Eiffel [68]. Such
specifications are described by Müller [76] as operational interface specifications and are frequently
used in run-time assertion checkers. This approach is used extensively in JML, where an operational
specification style can be achieved through the careful definition of pure classes. However, no support
for frame conditions is provided. Ordinarily in JML, modifies clauses can be used to describe the
state elements that can be changed, from which the tool can deduce what state elements cannot be

1 Introduction

 6

changed. However, when writing pure classes in JML, the programmer must implement methods to
update the state of the class by returning the new object from the method. This is because, to obey
value semantics, the object to which the method is being applied cannot be mutated. The modifies
clause cannot be used in this circumstance: it can only be used where the target of the method call is
being changed.

In this thesis we present an operational specification technique with a frame condition logic to make
it more suitable for static verification.

The second proposed solution is to provide an algebraic specification through an equational theory.
These kinds of specifications are also used for many JML modelling types. However, among other
problems, this technique is unsuitable for run-time assertion checking, which is one of our key interests
in this thesis.

The final two proposed solutions are to specify the modelling types in the logic of some standard
prover, or to define the modelling types as built-in value types with a pre-defined notion of equality. It
is not clear to Leavens, Leino, Müller, or us, how helpful the specifications of the modelling types in
the logic of a standard prover would be. The clear problem with using built-in model types is that they
would not be easily extensible.

1.2.2 The Omnibus integrated verification approach

The thesis describes how the assertion-based verification approaches RAC, ESC and FFV can be used
together in an integrated fashion. Verification tools are usually built to support a single verification
approach. This thesis discusses the use of these approaches together in a flexible way, enabling an
application to be broken down into sections and different verification approaches used in each section.

The contributions in this work are:
1. a presentation of the case for supporting different approaches for different parts of a single

software application,
2. a discussion of the challenges in using the different approaches together, and presentation

of guidelines to meet them,
3. a presentation of the concept of verification policies that can be used to manage the use of

the approaches together,
4. a discussion of how the integrated verification approach can be used together with the

documentation generator and verification certificate system to help support safe reuse of
software components, and

5. a discussion of the integrated tool support provided by the Omnibus IDE, focussing on the
integrated static verifier which provides support for both extended static checking and full
formal verification.

The following sections explain why it is desirable to use the different verification approaches
together and why additional support is required to support the safe reuse of software components.

1.2.2.1 Case for using the approaches together

Integration of verification approaches is desirable because the different approaches provide different
balances between rigour and ease of use, matching the different balances between reliability
requirements and development resources in different parts of a software development project. Software
developers also have varying abilities and do not always have the mathematical training to perform
interactive theorem proving as is generally required for FFV. Integrated support for these approaches
allows developers with different mathematical training, developing code for different purposes, to use
verification at a level of rigour that most suits their needs. The extended static checker and run-time
assertion checker, together with the unit testing framework, provide push-button techniques that
software developers producing non-critical application-specific code can use relatively cheaply. Our
system also supports full formal verification which developers may choose to use if the reliability of
their code is critical and they have the required skills.

1.2.2.2 Why additional specialised support for reusable components is needed

Assertion-based verification provides for two of the basic needs of safe software component reuse: a
mechanism for providing clear descriptions and a basis for trusting the hidden implementations.
However, assertion-based verification alone is not sufficient to support the safe reuse of software
components. Without specialised support, the users of a component will have to inspect the source code
of the component in order to view its specification, and will have to re-verify the component’s
implementation in order to ensure that the implementation is correct. This is not practicable. For the
potential advantages of component reuse to be realised, the users must have separate, clear descriptions

1 Introduction

 7

of how to use the component, and a basis for trusting the implementation without having to manually
re-verify it themselves. They should ideally be isolated from the implementation, i.e. the
implementation should be hidden. Our specialised support provides additional facilities to allow this to
be achieved.

1.2.3 Strengths and weaknesses of Omnibus

The specification mechanisms of the Omnibus language were specifically designed to support the
definition of modelling classes and the language seems to be quite effective at expressing these. The
language can also be used to implement applications in their entirety but the limitations of value
semantics make it awkward to do so.

Our integrated verification approach appears to hold some promise. Our case study illustrates that
the different verification approaches that we support do provide different balances between error
coverage and ease of use. The verification policy system allows them to be used together in a highly
integrated fashion.

1.3 Related work
This section presents some related languages and verification tools.

1.3.1 Related languages

In this section we review the languages used in the state-of-the-art verification projects. We classify
them in terms of two dimensions: whether they use reference or value semantics and the bases for the
specifications.

1.3.1.1 Reference or value semantics as default

Many of the leading verification projects are built around existing programming languages. For
example, the JML project is built upon Java and the Spec# project is built upon C#. Facilities are added
to support the definition of assertion annotations, but the structure of the packages/classes/methods and
the use of reference semantics by default is retained. Classes obeying value semantics are supported via
the pure modifier. The Eiffel language was designed with assertion-based verification in mind,
specifically run-time assertion checking. It also supports reference semantics.

Examples of languages that use value semantics are SPARK, B and Perfect. The SPARK project
uses a subset of Ada. B and Perfect are languages designed specifically with formal verification in
mind.

1.3.1.2 Different base levels of specifications

In this section we consider the different techniques used for the specification of modelling types by the
different state-of-the-art assertion-based verification projects. We follow Müller [76] in using the
classifications: declarative and operational specification languages. In declarative specification
languages, specifications are defined in terms of a separate mathematical model. In operational
specification languages, specifications are defined in terms of Boolean expressions over the type
signature interface of the class.

A prominent example of a declarative specification language is Larch. Using Larch, a program-
independent specification, referred to as a universal specification, is defined which provides a
collection of mathematical constructs for describing the class. A program-dependent specification of
the interface of the class can then be given in terms of the constructs provided in the universal
specification. The abstract state of the class will be defined in terms of constructs from the universal
specification, and the behaviour of the methods will be specified using pre-conditions, frame conditions
and post-conditions over this state. Such languages are not well suited to run-time assertion checking,
since the specifications are defined over abstract mathematical constructs that are not directly
executable.

Eiffel was one of the first languages to incorporate an operational specification language. In Eiffel,
a subset of the query methods of each class are selected as base methods and the rest of the methods in
the class are defined in terms of them. Eiffel lacks support for frame conditions and so these must be
manually encoded in the post-condition if static verification is to be performed.

There are a number of operational specification languages available for Java associated with the
many run-time assertion checking tools, e.g. iContract [58]. However, crucially, most of these still lack
frame conditions. An operational specification language which does support frame conditions is the
Java Interface Specification Language (JISL) [73]. Frame conditions are supported through a

1 Introduction

 8

mechanism to explicitly mark areas of the heap that should remain unchanged. This approach requires
the programmer to explicitly specify what should remain unchanged, in contrast with the more
common modifies-list or changes-list approach, where the programmer specifies what can be changed,
and from which the frame condition is then deduced.

Newer languages like JML and Spec# use a hybrid of operational and declarative specifications.
The main specification style within these languages is declarative in nature, with specifications written
over abstract fields holding values of special modelling types. Once sufficient modelling types have
been defined, it is easy and natural for users of the language to define their specifications in terms of
fields holding values of these models. However, unlike conventional declarative specifications, the
modelling types are defined in an operational style using the source language (i.e. Java/C#) rather than
some separate, non-executable mathematical logic. The modelling types are defined using classes
written to obey value semantics so that they can be directly translated into mathematics to support static
verification. In addition, because they are defined using the source language, they can be executed, thus
also facilitating run-time assertion checking. The use of the approaches together in this hybrid fashion
enables both formal verification and run-time assertion checking.

The hybrid approach was pioneered by the JML project. JML supports the concept of pure classes
which obey value semantics. A library of pure classes is provided with the JML distribution which can
be used to express specifications for user classes. The library includes common modelling types such as
sets and sequences. Programmers can also define their own modelling classes by writing new pure
classes. Programmers can then write specifications for their classes in a declarative style using abstract
fields of these modelling types. Unfortunately, little specialised support is provided in JML for the
specification of the pure classes that are used for modelling types. Update operations for these classes
must be written as methods which return new instances, which means that the programmer receives
none of the luxuries of a modifies-list. Instead, they must manually specify how all the state elements
of the newly created object relate to the state elements of the original object. The advantages of the
hybrid approach can still be achieved within Omnibus by using model functions of no parameters in
place of fields. This technique is used extensively in the case study in chapter 8.

1.3.2 Related verification tools

This section presents a survey of related projects which use the assertion-based verification approaches
discussed in this thesis.

1.3.2.1 Eiffel

Eiffel [68] is an object-oriented programming language built around the assertion-based Design-by-
Contract (DBC) approach. It was originally developed by Bertrand Meyer in 1985. Support for
assertions was built directly into the language from its inception. A run-time assertion checking
mechanism is used to detect violations of the specifications provided in Eiffel contracts.

While the Eiffel language was designed to accommodate assertion-based verification, it uses
reference semantics and so is closer to conventional programming languages like Java and C#, with
assertion annotations, than Omnibus. The supporting tools have also been built around the use of run-
time assertion checking rather than static verification although we note that there have been moves
towards supporting static verification of Eiffel code [90].

1.3.2.2 Jass and other Java DBC tools

Jass (Java with ASSertions) [11] is one of a number of RAC tools for Java. It supports an Eiffel-style
DBC approach for Java. Assertion annotations are provided in special comments within the source of
the class, and the supporting tool generates bytecode implementations containing run-time checks of
these assertions. Other RAC tools for Java include iContract [58], jContractor [53] and the JML run-
time assertion checker [27] which is discussed below.

Excluding the JML run-time assertion checker, these RAC tools are relatively lightweight
extensions of the Java language. They generally do not have a full range of specification constructs
(such as frame conditions) to support static verification.

1.3.2.3 ESC/Java

The original ESC/Java tool [41] was developed by a team at DEC who also produced a tool for
Modula-3 called ESC/Modula-3 [35]. The tools use a powerful fully automated theorem prover called
Simplify [36]. ESC/Modula-3 and ESC/Java take as input programs written in the Modula-3 and Java
languages, respectively, with a range of annotations included in special comments. The ESC/Java tool
has been relatively well received by those that have used it in industrial case studies [62].

1 Introduction

 9

The ESC/Java tool made an important contribution to the assertion-based software verification
field. However, it was quite limited in a number of ways. For example, there was limited support for
abstraction in the specifications and the frame conditions logic was primitive. These make it unsuitable
for large scale systems.

1.3.2.4 B

B [2] is a mathematical language and set of associated tools supporting automated and interactive
verification. B was developed by Jean-Raymond Abrial and aims to allow mathematically-minded
people to develop verified software. B has a software development method associated with it, called the
B method, which is built around specification refinement. B was used by the French transport industry
to develop their safety critical control software.

Other than using value semantics, the Omnibus language is a fairly conventional object-oriented
programming language. In contrast, the B language is fundamentally different from conventional
object-oriented programming languages and requires different development methodologies.

1.3.2.5 SPARK

SPARK [9] is a language created by Praxis High Integrity Systems and supported by a range of formal
verification and conventional analysis tools. The SPARK language is a subset of Ada, including only
features deemed necessary for writing reliable software and permitting analysis and proof. Bounded
space and time requirements are imposed by the language, prohibiting dynamic storage allocation,
recursion and arrays with arbitrary bounds.

As well as supporting assertion-based verification, SPARK provides comprehensive support for a
generalisation of data flow analysis called information flow analysis. Information flow analysis
incorporates the normal data flow analysis checks that variables are initialised before being read along
with checks of how values are used to derive other values. The SPARK approach has been used since
the early nineties and has been extensively used to develop systems for the military as well as in the
aerospace, rail and security areas. It is particularly well-suited to the development of safety critical
systems.

The restrictions that make SPARK so well-suited for the development of safety-critical systems
limit its applicability to wider software development. For example, the concept of dynamic binding
from object-oriented programming is not supported because it would greatly complicate the bounded
memory usage assurances.

1.3.2.6 PerfectDeveloper

PerfectDeveloper [34] is a formal verification tool produced by Escher Technologies, built upon a new
language called Perfect and using a fully-automated theorem prover. It aims to allow everyday
programmers to perform full formal verification. The Perfect language is specifically designed with
verification in mind. It uses value semantics by default to make verification more amenable to
automation. Programmers write stylised specifications from which the tool attempts to generate code
automatically. PerfectDeveloper uses an in-house fully automated theorem prover. The code generation
and automated theorem proving problems are undecidable, in general, but heuristics can be used to help
solve the problem for a wide range of cases. The PerfectDeveloper tool was itself implemented in
Perfect (apart from the GUI) in a bootstrapping approach. This has provided a useful case study for the
approach [33, 34].

The Perfect and Omnibus languages are quire similar. Both are object-oriented languages primarily
built on value semantics. However, the modelling types within Perfect are built into the language and
so are not as easily extensible as those in the Omnibus language. The PerfectDeveloper verification tool
also aims to support fully automated FFV. We chose to support a range of verification approaches of
different levels of rigour in order to cope with the undecidability of the problem.

1.3.2.7 KeY

KeY [3] is a formal verification tool that is being developed by the Universities of Karlsruhe and
Koblenz and Chalmers University of Technology in Gothenburg. It is built upon a commercial
Computer Aided Software Engineering (CASE) tool called the Together Control Center (TogetherCC)
and targeted specifically at the commercial world. As its input, it accepts UML designs with formal
specifications given via UML’s Object Constraint Language (OCL) [98] and implementations in
JavaCard [26], a subset of Java for developing smart card applications. The KeY tool now also accepts
JML. Both interactive and fully automated theorem proving are supported through the KeY prover. The
interactive theorem prover has a graphical front-end which can be used to visualise the proof process.

1 Introduction

 10

Crucially, it retains an OCL/Java-style notation so that users can more easily understand the VCs that
are presented to them. A number of case studies have been carried out using the KeY tool [3]. The
approach has been applied to parts of the Java Collections Framework, used to develop realistic
JavaCard applications and used to verify part of a German rail company’s control system.

The KeY tool is built upon the assumption that the fully automated verification of commercial
applications is an unachievable goal. To account for this, the tool attempts to provide an accessible
interactive verification tool which includes a graphical proof tool and presents the VCs to be proved in
the source language instead of some other formalism. These aspects could both be incorporated into
Omnibus to make its interactive static verification approach more accessible. However, the KeY
project does not address the other goals of Omnibus.

1.3.2.8 Spec#

Spec# [10] is a programming system under development by Microsoft which consists of the object-
oriented Spec# programming language, the Spec# compiler and the Boogie static verifier. The Spec#
language is a superset of C#, which is part of Microsoft’s .NET platform. The Spec# programming
system supports both run-time assertion checking and static verification. A combination of dynamic
and static checking is used to implement the verification process. Static verification is supported
through the Boogie tool. Spec# is still in the relatively early stages of development and has not been
applied extensively yet, but it holds great promise because of its backing by Microsoft and integration
with the Visual Studio.NET IDE.

1.3.2.9 JML

The Java Modelling Language (JML) [20, 59] is a Behavioural Interface Specification Language
(BISL) which can be used to annotate Java source files. JML was first developed by Gary Leavens with
colleagues and students at Iowa State University, but is now a free software project to which many
groups are contributing. JML annotations are written within specially tagged comments.

There is a wide range of tool support for the language including a type checker, a documentation
generator [87], a run-time assertion checker [27], a unit testing framework, a range of formal
verification tools [19, 49, 66, 72] and an extended static checker [30]. These tools have been used to
apply JML to a number of problems, many involving JavaCard. One case study [51] investigated the
application of a number of JML verification approaches to a realistic smart card applet from the
company SchlumbergerSema. The tools allowed a number of previously unknown problems to be
detected, and there was particular enthusiasm towards the ESC/Java2 tool which is discussed below.
JML has also been used to verify vote-counting software. Due to tight time constraints, the team that
undertook this project did not use any of the formal verification tools for JML, instead opting for a
combination of run-time assertion checking and extended static checking.

The JML language is different from the Omnibus language in that it is designed to be fully
backward compatible with Java. All aspects of Java are retained, including those that are difficult to
statically verify. The Omnibus language does not have to work within this hard requirement and so can
explore other areas of the language design space. The different tools in the JML community together
cover the range of different verification approaches that Omnibus does. However, they have typically
been implemented separately and cannot easily be used together directly.

1.3.2.9.1 Run-time assertion checking with JML using the JML compiler
The JML compiler (jmlc) [27] accepts JML-annotated programs and compiles them to Java bytecode
instrumented with run-time checks of the assertion annotations. This tool is one of the leading run-time
assertion checkers. It incorporates facilities normally seen in full formal verification tools but not run-
time assertion checkers that are generally more lightweight.

1.3.2.9.2 LOOP
LOOP [49] is a full formal verification tool developed at the University of Nijmegen which translates
JML-annotated Java code into theories for the semi-automatic PVS theorem prover [81]. This
translation is built upon a formal semantics for sequential Java and JML. This gives LOOP the ability
to reason about unannotated code like the KeY project. As a consequence of the use of a semi-
automatic theorem prover, verification using LOOP requires skilled user assistance but allows more
complicated properties to be handled than any fully automated theorem prover.

1 Introduction

 11

1.3.2.9.3 JACK
The JACK (Java Applet Correctness Kit) tool [19] has been developed at the research lab of Gemplus,
a smart card manufacturer. It supports the Simplify and PVS theorem provers along with the Atelier B
toolkit’s automated and semi-automated theorem provers. JACK aims to be usable by normal Java
developers and attempts to hide the underlying mathematical concepts from the user. This is achieved
by presenting VCs in Java/JML-like notation. JACK is available as a plug-in for the Eclipse IDE.

1.3.2.9.4 Jive
Jive [72] is a formal verification tool developed by the Universities of Hagen and Kaiserslauten. It can
be used in conjunction with either of the interactive theorem provers, PVS and Isabelle/HOL. Jive
originally used its own specification language but has been adapted to work with JML. Unlike most of
the tools which automatically generate VCs, in Jive, Hoare rules are either applied manually or via
strategies (Java programs that automatically apply several Hoare rules). The Jive tool incorporates a
GUI which gives users full visual control over the verification process.

1.3.2.9.5 Krakatoa
Krakatoa [66] is another formal verification tool for JML developed at Université Paris-Sud. It
generates VCs through an external tool called WhY and then uses the Coq theorem prover (among
others) to prove them. The input language for the WhY tool is an ML-like minimal language with very
limited support for imperative features like references and exceptions. The translation process centres
on a formalisation of the heap.

1.3.2.9.6 Extended Static Checking with JML using ESC/Java2
The ESC/Java tool used an assertion annotation language similar to JML, but simpler. Work on the tool
halted when the Compaq SRC group was disbanded. The project was re-launched as an Open Source
project by Joe Kiniry and David Cok under the name ESC/Java2 [30]. The new tool accepts the JML
syntax and has been re-packaged in a more accessible form. The current state of this work is reported in
the implementation notes distributed with the tool [31].

1.3.2.10 Functional Programming Languages

Finally, we consider some functional programming languages which have support for formal
verification.

1.3.2.10.1 ACL2
ACL2 (A Computational Logic for Applicative Common Lisp) [54] is a functional programming
language, based on Common Lisp, incorporating support for formal verification. The associated tool
support centres on an automated prover which was developed as a successor to the Boyer-Moore
theorem prover. The logic of the prover is an extension of the standard first-order predicate calculus
with equality to include recursive function definitions and the concept of mathematical induction. Users
of the language can assist the proof process by supplying lemmas to guide the theorem prover in the
proof of tricky conjectures. This is particularly important for the handling of inductive assertions.

In being a pure functional programming language, ACL2 is built on value semantics, like Omnibus.
However, there is no object-oriented support. The approach of supplying lemmas in order to assist an
automated prover can also be used in most other automated verification tools, including Omnibus. The
support for recursive function definitions and mathematical induction is a key strength of ACL2
because it enables more sophisticated properties to be specified and verified than a pure first-order
logic with equality.

1.3.2.10.2 EML
EML (Extended ML) [89] is a framework for the specification and formal development of SML
(Standard ML) programs. The EML language is a generalisation of SML which allows unexecutable
constructs, that are useful for writing specifications, to be used in addition to the executable constructs
of SML. SML can then be thought of as an executable subset of EML. This arrangement allows
abstract specifications to be defined using the unexecutable constructs. Implementations can be defined
by using only executable constructs. As such, EML can be used to cover the full development process
from specification to implementation. An abstract EML specification can be produced initially and then
a system of refinement carried out until executable SML is obtained. Proof obligations can be
generated to ensure that each refinement step is consistent with the level above.

1 Introduction

 12

Unfortunately, there is limited tool support for EML consisting of just basic parsing and type
checking. Crucially, no tool support integrated with a theorem prover is available.

1.3.2.10.3 RAISE
RAISE (Rigorous Approach to Industrial Software Engineering) [43] is an industry-focussed formal
method which has run for over 20 years. It covers the whole development process, from specification,
through design to implementation via a step-wise refinement paradigm. The project uses a language
called RSL (RAISE Specification Language) which supports many different language styles including
functional programming (e.g. Lisp-style) and imperative programming (e.g. Java-style). The process
covers most activities associated with software development, including requirements capture,
documentation, and project management. An integrated set of tools is provided to support the language
and method. These include formal verification tool support but less formal justification approaches are
also supported, where rigorous arguments can be provided in place of a formal proof. A rigorous
argument informally describes how a proof for a property could be constructed.

The RSL language is large and allows the use of many different styles. However, it does not fully
support object-oriented programming. There is no concept of dynamic binding and no support for the
dynamic instantiation of objects within the language. The tool support also does not cover all aspects of
the verification process. The formal conditions, needed to prove the refinement is valid, must be
generated manually. However, the idea of informal proof justification could be incorporated into other
projects, including Omnibus.

1.3.2.10.4 Clean/SPARKLE
Clean is a pure functional programming language which has verification support provided by the
SPARKLE tool [106]. A key strength of the Clean language is the inclusion of the concept of
uniqueness typing, which allows mutation and destructive updates to be used without violating value
semantics. This technique works by ensuring that values which can be mutated are clearly identified
and the aliasing of these values monitored closely. SPARKLE is an interactive theorem prover for
Clean. It can be used to formally verify properties of Clean programs. It has a graphical proof tool with
a sophisticated window-based user interface. Verification conditions are presented in a subset of the
Clean language so are easily understandable to users. Some automation is possible through a system of
proof tactics.

The Clean language is a pure functional programming language and so quite far from the object-
oriented Omnibus language. The SPARKLE proof tool is attractive and shares many of the strengths of
KeY.

1.4 Structure of the thesis
The remainder of this thesis is structured as follows.

Chapters 2 to 4 are mainly concerned with the Omnibus language. 2 gives an overview of the
language. 3 discusses some particular aspects of the language in more detail including our frame
condition logic, the implementation of value semantics and equality. 4 outlines some of the challenges
of reference semantics.

Chapters 5 to 7 are mainly focussed on the Omnibus integrated verification approach. 5 illustrates
why it is desirable to use the approaches together and how this can be safely achieved through the use
of verification policies. 6 discusses how the framework can allow software components to be reused
safely. 7 describes how our integrated verification tool supports the different approaches.

8 presents a case study of the use of our language and verification approach. 9 presents our
conclusions and discusses possible future directions for our work.

 13

2 Overview of the Omnibus language
This section presents an overview of the Omnibus language. Specific aspects are discussed further in 3.
Full details of the syntax including an explanation of the style of EBNF used to describe the syntax in
this chapter are given in appendix A.

2.1 Fundamental concepts
Omnibus is an object-oriented language designed to be amenable to formal analysis. It is superficially
similar to Java, using similar concepts of packages, classes, methods, expressions, statements,
accessibility levels, name-declaration binding, etc. but incorporates a behavioural interface
specification language and uses value semantics for objects.

An Omnibus project consists of a set of class definitions. Each class can contain declarations of
attributes, a range of static and instance methods and test cases. Attributes allow the internal state of a
class to be defined. There are three main types of method declaration: constructors, functions and
operations. Constructors allow objects to be created, functions allow objects to be queried without side-
effects, and operations allow objects to be updated. Static functions can be used to define methods
which are not applied to any object. The declaration of a method starts with a keyword identifying the
type of method. Constructors and static functions are class methods whereas functions and operations
are object methods. Test cases can also be defined within a class. These can be used to describe how
object instances of the class should behave for specific concrete values. Omnibus supports public,
protected, and private modifiers which change the accessibility level of language constructs in
the same way that they do in Java.

In Omnibus, all objects are immutable with the system. New objects are created behind-the-scenes
as needed to preserve value semantics. This is hidden from the programmers, who are allowed to think
in terms of updating objects. There is a single equality operator which represents deep equality and has
a default definition provided for every object.

Method implementations can be defined using a Java-style implementation language containing an
assignment statement, operation call statements, a declaration statement, an assert statement, an if
statement, a for loop, a foreach loop and a while loop. These statements can be used to
manipulate local variables and the attributes of the containing class. Loops can be annotated with loop
invariant assertions. Omnibus is a block-structured language with static typing, like Java.

Full details of these core elements of the Omnibus language are discussed in more detail in
appendix A.

2.2 Behaviour specifications
The aspects of the Omnibus language discussed in appendix A are largely concerned with replicating
support for facilities that are present in languages such as Java. In this section we discuss the support
for the specification of the behaviour of methods using the Omnibus language.

2.2.1 Principles of Omnibus behaviour specifications

In Omnibus the behaviour of methods can be described using behaviour specifications which are
constructed in the conventional style from requires, changes and ensures clauses which give
pre-conditions, frame conditions and post-conditions, respectively. There can be different levels of
specifications for the different accessibility levels in an Omnibus class. In this section we consider
specifications at a single level of accessibility and generalise the concept to multiple levels in section
2.2.3.

In Omnibus, as in Java, the current state of an object instance of a class consists of the values of the
attributes used to implement the class. We refer to this as the concrete state. The behaviour
specifications of the methods in the class are described in terms of the attributes and other methods.
Methods can be specified in terms of other methods, but this process must stop somewhere with some
methods not specified in terms of other methods. The attributes provide such a means of halting this
recursive definition process because they themselves are not defined in terms of any other elements.
Some methods can be defined in terms of the attributes, then other methods can be defined in terms of
them. However, it is good practice for the attributes that are used to implement a class to be declared as
private or protected to hide the details of the implementation from users of the class. In such cases, the
public behaviour specifications cannot refer to these attributes because they are not publicly accessible.
So we again have the problem that some methods must not be specified in terms of other methods but
can no longer define these methods in terms of the attributes. What is done instead is that some of the

2 Overview of the Omnibus language

 14

functions in the class can be declared with the special model modifier and are not described in terms
of the other methods, i.e. they must not have post-conditions. Functions declared with the model
modifier are referred to as model functions. Just as the attributes that are used to implement a class
together form a representation of the concrete state of the class, the attributes and model functions that
are visible at a particular level are said to represent the abstract state of the class. The behaviour of the
other methods (the remaining functions along with the constructors and operations) is then defined at
that level in terms of them.

This is the same technique as used by Eiffel. In Eiffel the functions that are part of the abstract state
are called base functions but are not specifically declared with a separate modifier.

2.2.2 Notes on the specifications of class body elements

In this section we discuss some points about the specifications of different class body elements.
The attributes of an Omnibus class are an implementation detail and should ideally play no part in

the specification of a class. There is currently no support for specification-only attributes within
Omnibus. In other words, it is not possible to express that an attribute should be part of a public
abstract state of the class but not its private concrete state. Public model functions can be coupled with
private attributes for that purpose.

Functions can be divided into three categories: static functions, model functions and derived
functions. The behaviour of static functions is specified via an ensures clause (and a requires
clause, if required). The behaviour specification of a model function may include a requires clause
if appropriate but not an ensures clause. Instead, the behaviour specifications for the constructors
and operations of the class will describe how the values of the model functions change over the lifetime
of an object. Invariants (which will be discussed in section 2.3) can be used to express properties of the
results of model functions that would usually be given in an ensures clause. Derived functions are
declared without the static or model modifiers. Their behaviour must be specified in terms of the
attributes and functions via an ensures clause (and a requires clause, if required).

Constructors are used to create instances of classes. The resulting object should be described in
terms of the value of the model functions and attributes via an ensures clause. A constructor should
not be specified with a changes clause since the values of all fields and model functions are
undefined before the constructor executes, so all components of the state must be changed by the
constructor. This is taken as implicit.

When specifying operations, the changes clause should be used to describe which attributes and
model functions have their values changed. An ensures clause must be used to describe how they are
changed.

2.2.3 Levels of specification

As is conventional within object-oriented languages that are used for verification, Omnibus requires
that, where inheritance is used, the principle of substitutability [63] is respected. This principle states
that any property which is provable about objects x of type T must be true for objects y of type S
where S is a subtype of T [64]. This is essential in order to ensure that the principle of polymorphism
from object-oriented programming, the ability to treat instances of a class S as if they were instances of
a superclass T, does not introduce the possibility of errors. We will consider the details of how this is
checked in section 2.3.2, but the basic principle is to check that the behaviour specification of each of
the overridden methods is consistent with the corresponding method specification in the superclass.

It can also be desirable to have different specifications for a method within a single class for
different accessibility levels. For example, we may want a particular method to be a model function at
the public level and used as part of the abstract state, but then redefine that function in terms of private
concrete fields at the private level.

The principles involved in providing different specifications for a method at different accessibility
levels are the same as those for overriding a method from a superclass. In both cases, the specification
at the lower level (i.e. the lower accessibility level or the subclass) must be consistent with the
specification at the higher level (i.e. the higher accessibility level or the superclass). Both cases also
need facilities for handling inheritance of portions of specifications and to ensure that requirements
from higher levels of the hierarchy are respected. This has led us to unify the two concepts.

Consider the following inheritance hierarchy where Rectangle isa Shape and Square isa
Rectangle.

2 Overview of the Omnibus language

 15

The following diagram shows the Shape hierarchy with the different levels of the specification for

each class shown. The key point is that all directed arrows are treated equivalently regardless of
whether they are concerned with inheritance between classes or the different levels of specification
within a single class.

To describe how these relationships are handled, we can abstract away from the type of the

relationship. All we need to know is that there are two levels of specification in the hierarchy,
connected by an arrow.

Such a relationship is then interpreted as follows:

1. Instances of B are acceptable wherever an instance of A is expected. This makes logical
sense since this is part of the definition of inheritance. Similarly, if you have a private level
view of an object then you can also interact with it through the public interface.

2. Instances of A may or may not also be instances of B but, if they are, then they can be cast
so that their static types are B. Just as if you have a Shape it may or may not be castable
to a Rectangle (it could be a Circle, not a Rectangle or Square), if you have a
public Rectangle it may or may not be castable to a private Rectangle (it could be a
Square, not a private Rectangle).

A B

public
Shape

protected
Shape

private
Shape

public
Rectangle

protected
Rectangle

private
Rectangle

public
Square

protected
Square

private
Square

Shape

Rectangle

Square

2 Overview of the Omnibus language

 16

3. All the requirements (i.e. invariants, constraints and initiallys discussed in section 2.3.1) of
A are inherited by B. Again, this makes sense for both inheritance and moving between
views of an object. In both cases the invariants that were assumed to be true in proofs at
higher levels must also be true at the current level.

4. Methods are either introduced, inherited or overridden.
a. Introduced methods: A method is introduced if it is defined in B and it is not

defined in A (either in A itself or inherited from a level somewhere above A).
Constructors are always introduced methods: they cannot be inherited or
overridden. Constructors must be shown to establish all the invariants and
initiallys, either defined locally in B or inherited from A. Introduced operations
must be shown to maintain the truth of all the local and inherited invariants, and
to satisfy all the local and inherited constraints. These laws are discussed in
section 2.3.2.

b. Overridden methods: A method is overridden if it is defined in both B and A
(either in A itself or inherited from a level somewhere above A). The specification
of the method in B must be compatible with the specification of the method in A.
Specifically, the pre-condition can be maintained or weakened, but not
strengthened and the post-condition can be maintained or strengthened but not
weakened. Overridden operations must be shown to maintain the truth of all the
local and inherited invariants, and to satisfy all the local and inherited constraints.
These laws are discussed in section 2.3.2.

c. Inherited methods: A method is inherited if it is defined in A (again, either in A
itself or inherited from a level above A) and not redefined in B. Through the
verification of A, the inherited operation can be assumed to satisfy the invariants
and constraints of A. We need only show that it also satisfies the invariants and
constraints defined locally in B. These laws are discussed in section 2.3.2. The
situation becomes more complicated when B extends or redefines the abstract
state of A, but these complications are the same for both forms that the
relationship can take.

2.2.4 Light and full behaviour specifications

There are two syntaxes for behaviour specification supported by Omnibus. These are referred to here as
light behaviour specification and full behaviour specification. Light behaviour specifications provide a
single behaviour specification for a method at a single accessibility level, while full behaviour
specifications allow multiple behaviour specifications to be provided for different accessibility levels.
JML has similar concepts and refers to them as lightweight and heavyweight specifications, but we use
the terms lightweight and heavyweight specifications to refer to expressiveness of the specifications.

Lightweight specifications are useful for simple examples where the behaviour of the public derived
methods in a class will be described in terms of public model functions. However, in more complicated
examples involving inheritance, a class may have a high-level public behaviour definition for clients
purely in terms of model functions, a medium-level protected definition exposing some concrete
attributes to subclasses, and a low-level implementation entirely in terms of the concrete attributes.
Thus, it may be desirable to define some functions as model functions at one accessibility level and
derived functions at another. Full behaviour specifications make this possible. Light behaviour
specifications are de-sugared, by the verification tool, to full behaviour specifications with a single
behaviour level with the same accessibility as the method itself. This is a model if and only if the
method itself was declared with the model modifier.

For example, the following is an example of light behaviour specifications for the public level of
methods from a Map class:

public model function contains(k:Key):boolean

public model function value(k:Key):Value
 requires contains(k)

For convenience, the requires, changes and ensures clauses are written immediately after
the method header and provide a specification for the accessibility level which the method is declared
with.

2 Overview of the Omnibus language

 17

The light behaviour specification of the contains method is translated by the verification tool
into a full behaviour specification with a single public behaviour specification containing the model
modifier and no requires, changes or ensures clause. The light behaviour specification of the
value function is translated into a specification with a single public behaviour specification
containing the model modifier and the specified requires clause.

If we were to produce an implementation of this class, we would be required to give a private
specification for the public model functions. This would require the use of full behaviour specifications
such as the following:

public model function contains(k:Key):boolean
 private ensures result = (exists (p:Pair[Key,Value]
 where col.contains(p)):
 p.first() = k)

public model function value(k:Key):Value
 public requires contains(k)
 private requires contains(k)
 ensures exists (p:Pair[Key,Value]
 where col.contains(p)):
 p.first() = k && result = p.second()

Here public and private behaviour specifications are provided for the methods. These are identified
by placing the appropriate accessibility modifier before the requires, changes and ensures
clauses.

There is also a certain amount of de-sugaring involved when using full behaviour specifications. If
the method is declared with the model modifier then the behaviour specification with the same
accessibility as the method is set to be a model. If there is no specification with the same accessibility
as the method then one is created with no requires, changes or ensures clause.

In its second definition, the contains function is declared with the model modifier so the
specification with the same accessibility as the method itself is changed to be model. There is no
public behaviour specification given so one is created. In the value function, there is already a public
behaviour so the model modifier is simply added to it.

2.2.5 Calculation of pre- and post-conditions

The requires and ensures clauses are used to give the pre- and post-conditions of a method.
These clauses consist of a comma-separated list of optionally labelled assertions. These assertions are
then conjoined (i.e. logically ANDed). The changes clause is used to provide a frame condition and
can only be used in behaviour specifications for operations. Frame conditions define a bound on what a
method can change. These should contain a comma-separated list of model function names, attribute
names and model functions applied to some concrete parameters. The changes clause should be used
to say what an operation can change, and the ensures clause should describe how those things are
changed. Together, they give a complete description of the manipulation of an object. Further details of
the calculation of the frame condition from changes clauses are given in the next section.

2.2.6 Calculation of frame conditions

The Omnibus verification tool translates changes clauses into a nochange predicate over the initial
and final states of the object to which the operation is being applied. This predicate expresses that all
elements of the state that are not mentioned in the changes clause do not change. Elements in the
changes list are either model function names, attribute names or model functions applied to some
concrete parameters. The calculation of the nochange predicate is carried out by considering each of
the model functions and attributes in the class and checking whether it is in the changes list.

The nochange predicate is initialised to the boolean literal true and then the algorithm proceeds
by conjoining assertions to this value.

For each attribute

 attribute att:type

If att appears in the changes list, no changes are made to the nochange predicate.

2 Overview of the Omnibus language

 18

If att does not appear in the changes list, the following assertion is conjoined to the nochange
predicate:

 this.att = old this.att

For each model function

 model function func(params):type
 requires func_pre
 ensures func_post

where func is the name of the function, params is the list of formal parameters and func_pre and
func_post are the requires and ensures assertions which are translated into special boolean-
returning methods of the class during the static verification process.

If func appears in the changes list without any parameters, no changes are made to the
nochange predicate.

If func does not appear in the changes list, the following assertion is conjoined to the nochange
predicate:

 forall (params):
 old this.func_pre(params)
 && this.func_pre(params)
 ==>
 old this.func(params) = this.func(params)

This expresses that for all parameters that satisfy the pre-conditions of the function for the old and
new objects, the corresponding values returned by the function are equal. The syntax used is that of the
Omnibus language and is described in appendix A.

If func appears in the changes list as func(actparams), the following assertion is
conjoined to the nochange predicate:

 forall (params):
 params != actparams
 && old this.func_pre(params)
 && this.func_pre(params)
 ==>
 old this.func(params) = this.func(params)

This expresses that for all parameters, other than those specified, that satisfy the pre-conditions of
the function for the old and new objects, the corresponding values returned by the function are equal.
Note that the assertion params != actparams corresponds to a number of not equals assertions for
each of the formal parameter/actual parameter pairs.

We now define the post-condition of the operation by conjoining the values of the ensures clause
with the nochange predicate.

2.2.7 Example of calculation of pre- and post-conditions

The following example presents part of a heavyweight specification for a simple Omnibus class for
modelling a sequence of elements. This is achieved through the definition of a Sequence class with
an Element template parameter. One of the model functions in this specification, elementAt, has a
parameter and is defined for values of that parameter between 0 and one less than the size of the
Sequence. The example helps illustrate our handling of the changes clause in more detail.

spec class Sequence[Element] {
 model function size():integer
 model function elementAt(i:integer):Element
 requires i >= 0 && i < size()
 function isEmpty():boolean
 returns size() = 0
 constructor empty()
 ensures size() = 0
 operation add(e:Element)
 changes size

2 Overview of the Omnibus language

 19

 ensures size() = old size() + 1,
 elementAt(size()-1) = e
 operation set(i:integer, e:Element)
 requires i >= 0 && i < size()
 changes elementAt(i)
 ensures elementAt(i) = e
 operation addAt(i:integer, e:Element)
 requires i >= 0 && i < size() + 1
 changes size, elementAt
 ensures size() = old size() + 1,
 forall (j:integer := 0 to i – 1):
 elementAt(j) = old elementAt(j),
 elementAt(i) = e,
 forall (j:integer := i+1 to size()-1):
 elementAt(j) = old elementAt(j-1)
}

The values of the pre- and post-conditions of these methods are a follows:
The pre- and post-conditions of the size, elementAt, isEmpty and empty methods are

relatively straightforward since they do not involve any changes clauses.

function size():integer
pre-condition := true
post-condition := true

function elementAt(i:integer):Element
pre-condition := i >= 0 && i < size()
post-condition := true

function isEmpty():boolean
pre-condition := true
post-condition := result = (size() = 0)

constructor empty()
pre-condition := true
post-condition := size() = 0

The specification of the add operation is a bit more complicated. The changes clause includes
the size model function without any parameters and so, as laid out in the previous section, no
reference is made to this in the generated frame condition. The elementAt model function is not
referred to in the changes clause and so the frame condition defines that, for all parameters values
which satisfy the pre-condition of the function, it should remain unchanged. The ensures clause
describes that the size increases by one and so the value size()-1 satisfies the pre-condition of
elementAt after the operation whereas it did not before the operation (there was no old
elementAt(size()-1), i.e. no old elementAt(old size())).

operation add(e:Element)
pre-condition := true
post-condition :=
size() = old size() + 1
&& elementAt(size()-1) = e
&& (forall (j:integer):
 old this.elementAt_pre(j)
 && this.elementAt_pre(j)
==>
 old this.elementAt(j) = this.elementAt(j)
)

In the specification of the set operation, the changes clause describes that the elementAt
model function is changed for the value i. This leads to the generation of a frame condition that the
size function is not changed and that the value of the elementAt model function is unchanged for

2 Overview of the Omnibus language

 20

all values which are not equal to i, and do not satisfy the pre-condition of elementAt before and
after the operation.

operation set(i:integer, e:Element)
pre-condition := i >= 0 && i < size()
post-condition :=
elementAt(i) = e
&& size() = old size()
&& (forall (j:integer):
 i != j
 && old this.elementAt_pre(j)
 && this.elementAt_pre(j)
==>
 old this.elementAt(j) = this.elementAt(j)
)

In the addAt operation, the parameter values for which the elementAt function is changed
cannot be enumerated and so the function is listed without parameters along with the size function.
This means no frame condition is added.

operation addAt(i:integer, e:Element)
pre-condition := i >= 0 && i < size() + 1
post-condition :=
size() = old size() + 1,
&& (forall (j:integer := 0 to i – 1):
 elementAt(j) = old elementAt(j)
) && elementAt(i) = e
&& (forall (j:integer := i+1 to size()-1):
 elementAt(j) = old elementAt(j-1)
)

2.3 Requirements specifications and their verification
In this section we explain the use of requirements and then present the laws for their verification using
FFV. For RAC and ESC, checks of the requirements are embedded within the bodies of the methods
and so are verified using an extension of the techniques used for implementations which are described
in appendix D.

2.3.1 Requirements specifications

In the preceding sections we have considered the mechanisms provided within the Omnibus language
for the specification of the intended behaviour of methods using requires, changes and ensures
clauses. These specifications are used to give a basis for the checking of implementations. However,
behaviour specifications can be difficult to write and prone to errors themselves. The standard approach
to this problem is to provide a higher level of specification construct for providing assertions that
should hold over groups of methods. This simply provides another level of redundancy which can be
checked against. The term we use to refer to these higher level specifications are requirements
specifications.

Three types of requirements are supported by Omnibus: invariants, constraints and initiallys. These
should be declared within the body of a class, alongside the methods and attributes. All requirements
can be declared with an accessibility modifier.

Requirements specifications like invariants, constraints and initiallys are used in most assertion-
based languages like Eiffel and JML. Our use of requirements specifications to verify properties of
behaviour specifications is based on Aslan [8]. In contrast, JML does not require that the behaviour
specifications themselves satisfy the requirements specifications. Instead, for all verification
approaches with JML, the requirements are checked as part of the verification of the implementations.
The advantage of this is that there is a single interpretation of requirements specifications for all the
approaches. However, we will see in the chapter 8 that our approach can uncover further errors. It also
allows properties of the behaviour specifications to be verified before an implementation is produced.

2 Overview of the Omnibus language

 21

2.3.1.1 Invariants

Invariants are assertions that should hold over an object at all times. More correctly, invariants should
hold over the internal state of an object at all times when it is externally accessible. An object is
externally accessible after it is created via a constructor call and after each operation call. The reason
we use this looser definition is that we allow an invariant to be temporarily invalidated during the
execution of a constructor or operation. However, the invariants must also hold when one local method
calls another local method which has the invariants as part of its pre-condition, as discussed in section
3.1. All the constructors of a class should establish the truth of the invariants, and all the operations
should maintain their truth.

2.3.1.2 Constraints

Constraints are assertions that should hold over any two consecutive, externally accessible states of an
object. They can refer to methods and attributes in the earlier of the consecutive states using the old
keyword and to those in the later by omitting this prefix. The only method which the constraint is
concerned with is the operation since it is the only method that can update the value of an object.

2.3.1.3 Initiallys

Initiallys should hold over freshly constructed objects where a freshly constructed object is an object
which has been created by a constructor but has not yet been updated via an operation. As such, all
constructors should establish the truth of these assertions.

2.3.2 Laws

In the previous section we introduced Omnibus requirements. In this section, we present a set of basic
rules for checking that the methods of a class satisfy these requirements. We start by presenting the
basic laws for specifications at a specific level in a class and then discuss how the laws can be extended
to handle inheritance and specifications at different accessibility levels. These laws are based upon
those used in the Aslan [8] system.

2.3.2.1 Basic laws

Informally, initiallys should be satisfied by the constructors, invariants should be established by
constructors and maintained by operations, and constraints should hold across operations.

For convenience, let us assume that the symbols init, inv and con contain the conjunctions of
all the initiallys, invariants and constraints, respectively, of the class being considered. In our tool
implementation, these are checked separately so that more specific error messages can be generated,
but that is not relevant from a logic point of view.

To further simplify the presentation of the following rules, let us also require that a de-sugaring
algorithm is applied to all assertions as a preliminary stage. This de-sugaring algorithm consists of two
steps: the implicit ‘this.’ is added to local methods and attributes, and assertions of the form ‘old
this.member...’ are then translated to ‘old_this.member...’. We can then model Omnibus
operations as mathematical functions from an old_this object and some parameters to a this
object, Omnibus functions as mathematical functions from a this object and some parameters to a
result and Omnibus constructors as mathematical functions from some parameters to a this object.
We can express the pre- and post-conditions as predicates over these parameters and objects.

Now, consider the generalised description of a constructor given below

constructor con(params)
 requires pre
 ensures post

The constructor is described using a pre-condition given in the requires clause and a post-
condition given in the ensures clause. We should then check that it establishes the initiallys and
invariants of the class. We can express this as follows:

Constructor invariant establishment and initially satisfaction law:
forall (params, this):
 pre(params) && post(params, this)
==>
 init(this) && inv(this)

2 Overview of the Omnibus language

 22

This states that if the pre-condition holds over the parameters of the constructor, and the post-
condition holds over the parameters and the created object, then the initiallys and invariants hold over
that object. The params word is italicised to remind the reader that it should be replaced by the zero
or more parameters of the constructor.

Now, consider the generalised description of an operation:

operation op(params)
 requires pre
 changes chgs
 ensures ens

The pre-condition is given by the requires clause. The post-condition is given by the changes
and ensures clauses, with the changes clause describing what aspects of the state change and the
ensures clause describing these changes.

We now define the post-condition of the operation by conjoining the values of the ensures
clause, ens, with the nochange predicate:

post(old_this, params, this) :=
 ens(old_this, params, this)
 && nochange(old_this, this)

These pre- and post-conditions should maintain the invariant and satisfy the constraints of the class.
We can express this as follows:

Operation invariant maintenance and constraint satisfaction law:
forall (old_this, params, this):
 inv(old_this) && pre(old_this, params)
 && post(old_this, params, this)
==>
 inv(this) && con(old_this, this)

This states that if the invariant holds over the initial object, the pre-condition holds over that object
and the parameters, and the post-condition holds over the initial object, the parameters and the resulting
object, then the invariants hold over the resulting object and the constraint holds over the two objects.

2.3.2.2 Inheritance laws

Omnibus allows classes to be declared as subclasses of other classes using the isa clause. Such classes
can then inherit or override the members of the superclass, and instances of these classes can be used
whenever an instance of the superclass is expected. Similar checks are required for consistency
between different levels of specification within a single class. For convenience, in the rest of the
section we focus on inheritance, but the same laws apply for different levels of specification in a single
class.

To ensure that we can safely use the specification of a class in place of the specification of its
subclass, we must make sure that the two class definitions are compatible. We must ensure two things:
that the requirements of the superclass hold over the class, and that methods which override a
superclass method are compatible with the method they override.

Requirements (i.e. the invariants, constraints and initiallys) give a high-level definition of some
essential characteristics of a class. If a class is going to be usable in place of its superclass then the
requirements of the superclass should hold over the class. Of course, the requirements introduced in the
subclass should also hold over the methods inherited from the superclass.

We have already seen that methods which override a method from the superclass should have a
specification which is consistent with the specification of the method they override. More specifically,
their requires clause should not be more restrictive than the one in the superclass. If it were, when
the specification from the superclass is used in place of the specification from the subclass, values
would be accepted that violated the requires clause of the subclass specification. Conversely, the
changes and ensures clauses of the specification of the method in the subclass should imply the
changes and ensures clauses of the overridden method. If this were not the case, then when using
the specification from the superclass, the system would conclude consequences of calling the method
which were not valid.

2 Overview of the Omnibus language

 23

For convenience, let us introduce three symbols super_init, super_inv and super_con to
represent the conjunctions of all the initiallys, invariants and constraints, respectively, from all the
superclasses of the class being considered.

Let us now consider the checks we need to make to ensure these properties. Firstly, constructors
should establish the invariants and initiallys from the superclass (and all of its superclasses) as well as
the local ones.

New Constructor invariant establishment and initially satisfaction
law:

forall (params, this):
 pre(params) && post(params, this)
==>
 init(this) && inv(this)
 && super_init(this) && super_inv(this)

We will now consider operations. There are three types of operations: introduced operations,
inherited operations and overridden operations. Introduced operations are operations for which there is
no definition in the superclass. Before we added inheritance, all operations were introduced operations.
In the presence of inheritance, introduced operations should satisfy the invariants and constraints of the
superclasses as well as the local ones.

Introduced Operation invariant maintenance and constraint
satisfaction law:

forall (old_this, params, this):
 inv(old_this) && super_inv(old_this)
 && pre(old_this, params) && post(old_this, params, this)
==>
 inv(this) && con(old_this, this)
 && super_inv(this) && super_con(old_this, this)

Note that we can also assume the superclass invariants hold over the starting object.
Inherited operations are operations which are defined in the superclass but have no corresponding

definition given in the subclass. These operations are implicitly inherited by the subclass and can be
used as if they were identically redefined in the subclass. The invariants and constraints of the subclass
and superclass should hold over all operations, including the inherited ones. However, the verification
of the superclass has already ensured that the operation satisfies the invariants and constraints of the
super classes. We need only check that it also satisfies the local invariants and constraints.

Inherited Operation invariant maintenance and constraint satisfaction
law:

forall (old_this, params, this):
 inv(old_this) && super_inv(old_this)
 && pre(old_this, params) && post(old_this, params, this)
==>
 inv(this) && con(old_this, this)

Overridden operations are operations which are defined in both the subclass and superclass. In that
case, the method in the subclass is said to override the method in the superclass and when instances of
the subclass are used in place of the superclass, the method definition in the subclass will be the one
that is actually invoked. Once again, we must ensure that the invariants and constraints of the sub- and
super classes hold over the operation. This time, we must also ensure that the specification of the
method in the subclass is compatible with the specification in the superclass. Firstly, any values that
satisfy the pre-condition in the super class method should satisfy the pre-condition in the subclass.

Overridden operation application law:
forall (this, params):
 super_pre(this, params) && inv(this) && super_inv(this)
==>
 pre(this, params)

Secondly, any values that satisfy the post-condition of the local method should satisfy the post-
condition of the superclass. We also need to ensure that the method in the subclass satisfies the
requirements of the subclass and superclass. However, the verification of the superclass will already

2 Overview of the Omnibus language

 24

have ensured that the specification of the superclass method satisfies the requirements of the
superclass. Since we have already proved the new specification implies the overridden one, we need
only check the local invariants and constraints.

Overridden operation refinement, invariant maintenance and constraint
satisfaction law:

forall (old_this, params, this):
 super_pre(old_this, params) && inv(old_this)
 && super_inv(old_this) && post(old_this, params, this)
==>
 super_post(old_this, params, this)
 && inv(this) && con(this)

We also need to check that functions in the subclass that override functions in the superclass are
compatible. Again, the values that satisfy the pre-condition of the method in the superclass should
satisfy the pre-condition in the subclass, and values that satisfy the post-condition in the subclass
should satisfy the post-condition in the superclass.

Overridden function application law:
forall (this, params):
 super_pre(this, params) && inv(this) && super_inv(this)
==>
 pre(this, params)

Overridden function refinement law:
forall (this, params, result):
 super_pre(this, params) && inv(this) && super_inv(this)
 && post(this, params, result)
==>
 super_post(this, params, result)

The laws we presented in this section are a generalisation of the basic laws that were introduced in
the previous section. We can derive the basic laws from them, by using the fact that every class which
does not explicitly specify a superclass implicitly has the omni.lang.Object superclass, which
contains no requirements and no methods or attributes.

 25

3 Design issues for the Omnibus language
There are a number of interesting problems that were encountered during the development of the
Omnibus language. Firstly, the use of functions instead of fields in specifications presented some
challenges. These resulted from the fact that functions can have pre-conditions while classically fields
do not. Secondly, we had to develop techniques to implement value semantics for our object-oriented
language. This was not trivial because value semantics can be naturally modelled through the storing of
object values but the dynamic binding concept from object-oriented programming requires the use of
references to access objects. Finally, we had to provide support for the concept of equality. This is
particularly important for a language such as ours which is based on value semantics because there is
no primitive definition such as equality of references which we can fall back on. We discuss these
issues in this chapter.

3.1 Using functions instead of fields for specifications
In section 1.3.1 we considered conventional specification approaches where specifications are either
defined in terms of the methods in the interface without frame conditions (the Eiffel base function
approach), defined in terms of abstract fields with the base level defined in some other manner, or a
hybrid approach where the lowest level specifications are defined in terms of the methods in the
interfaces and higher levels are defined using fields. For the reasons set out in section 1.2.1, the
Omnibus approach is built around specifications defined in terms of the methods in the interface, with
support for frame conditions.

Defining specifications in terms of fields and defining specifications in terms of methods are
obviously not entirely unrelated. For example, we can formally model fields using methods without
side-effects. We used methods as the main mechanism for expressing Omnibus specifications so that
we could use them to express modelling types. However, when using methods instead of fields to
represent the abstract state of a class, a number of new problems are encountered.

Fields are nice for formal modelling. We do not need to consider pre-conditions: we can retrieve
their value at anytime, regardless of whether an object is in a valid state or not (i.e. whether its
invariants are currently satisfied). This is not so for methods. Methods may be specified with pre-
conditions which must be taken into consideration. We cannot simply ignore these pre-conditions and
formally model the methods as underspecified total functions (i.e. allow calls that do not satisfy the
pre-conditions but do not specify what the return values will be in those cases). To check an assertion
defined in terms of a method call using run-time assertion checking, we must execute the body of the
method; an assertion violation or run-time error may result if the pre-condition is not satisfied.

3.1.1 Checking method pre-conditions in specifications

It is important when supporting run-time assertion checking and static verification that the semantics of
these two forms of checking assertions are consistent. However, as Chalin has discussed [22] within the
JML project, the interpretation of method calls within specifications differs for run-time assertion
checking and static verification. For run-time assertion checking, it is natural to define checks of the
pre-conditions of methods in code at the start within the method implementation. Without any
specialised additional support, this would mean that the pre-conditions of the methods are checked
whenever they are called, whether it is from expressions within assertions or from expressions within
the normal program execution. Such a consistent interpretation of method calls is quite elegant:
wherever a method call occurs, be it in an assertion annotation or normal piece of program code, its
pre-condition should be respected.

However, the JML static verification tools have favoured an approach of formally modelling pure
methods (i.e. those without side-effects that can be used in specifications) as underspecified total
functions. This means that the pre-conditions of method calls appearing in assertion annotations do not
have to be satisfied, although the post-condition of the method can only be used if it is.

Within our system where run-time assertion checking and static verification are used in an
integrated fashion, it is not acceptable to have different semantics for method calls in static and
dynamic verification. It would be difficult to adopt the underspecification approach for run-time
assertion checking. We could turn off pre-condition checks for method calls made from within
assertions, but then the execution of the body of the method may result in an assertion failure or a run-
time error. This is because the verification of the absence of assertion failures and run-time errors from
the method body is dependent on the initial truth of the pre-condition. We would have to introduce

3 Design issues for the Omnibus language

 26

additional apparatus to cope with this, perhaps introducing additional special return values for
exceptional executions.

It is far easier and more consistent to adopt the standpoint that the pre-conditions of all methods,
whether in assertions or general expressions, should be shown to hold whenever a method is called. We
can verify this through the generation of side-conditions.

3.1.2 Model functions with pre-conditions in changes clauses

In the previous section we discussed the challenge that method pre-conditions pose for the use of
method calls in specifications. Method pre-conditions also cause problems for the interpretation of
changes clauses.

Ignoring the complexities of inheritance for a moment, frame conditions involving fields are
relatively straightforward to handle. If only fields are used to model the abstract state of a class then the
fields whose values are changed by a method should be listed in the frame condition and those that are
not changed should be omitted. The final post-condition of the method is the conjunction of the user-
provided post-condition and the calculated frame condition. We can simply add assertions that the
values of each field that is not mentioned in the frame condition are the same before and after the
method.

Where methods are used to model the abstract state of a class, the frame condition should make
reference to these methods and this can complicate matters. To illustrate the problems, consider the
following Stack example:

class Stack[Element] {
 model function size():integer
 spec model function elementAt(i:integer):Element
 requires i >= 0 && i <= size()-1
 ...
}

Here we have a portion of the specification of a Stack class. We present only the two methods that
are used to model the abstract state of the class: size and elementAt. The size method returns an
integer representing the number of elements currently being held by the Stack. The elementAt
method accepts an integer parameter between 0 and one less than the size of the Stack, and returns
the element at the corresponding position. A pre-condition is used to formalise that the elementAt
function is only defined for some index values.

First consider the specification of an empty constructor:

constructor empty()
 ensures size() = 0

Frame conditions are not used in conjunction with constructors since there is no previous state. In
the ensures clause we should specify the values given to each of the constructs in the abstract state,
here the elementAt and size model functions. We state that the size is set to zero but do not
explicitly refer to the elementAt function. This is because the pre-condition of the elementAt
function restricts the valid parameters of elementAt to be between 0 and the size()-1. No
parameters satisfy this and so elementAt contains no values. This shows how the domain of model
functions can be affected by changes to other model functions.

Now let us consider the specification of a push operation without a frame condition:

operation push(e:Element)
 ensures size() = old size() + 1, elementAt(size()-1) = e

The push operation increases the size by one and assigns the passed value to the last position in
the elementAt model function. When designing the Omnibus language, we were faced with the
question of what should the frame condition of such an operation be. Clearly size should be included
in the frame condition, but what about elementAt? By increasing the size by one, an additional
parameter value is accessible for elementAt. Does this alteration of the acceptable parameters for the
method constitute a “change” and so should elementAt be listed in the changes clause?

A similar problem arises for the pop operation which is shown without frame condition below:

operation pop()
 requires size() > 0

3 Design issues for the Omnibus language

 27

 ensures size() = old size() – 1

Here the size is decreased by one, reducing the valid indices of the elementAt function by one.
Should elementAt be listed in the changes clause because its domain has changed? Or should it
not be, because the values at the valid indices have not changed?

The Omnibus approach that was outlined in the chapter 2 is that methods must be listed in the
changes clause if any of the indices which are valid before and after the method are changed. These
are really the only values for which it makes any sense to have a frame condition because they are the
only values to have both old and new values. All other values are excluded from the calculated frame
condition. This approach is consistent with the decision to omit changes clauses from constructor
specifications. It does, however, appear to be a source of some confusion for users. Using the Omnibus
approach the specifications of push and pop with frame conditions would be as follows:

operation push(e:Element)
 changes size
 ensures size() = old size() + 1, elementAt(size()-1) = e

operation pop()
 requires size() > 0
 changes size
 ensures size() = old size() – 1

We found that some users were confused by the absence of any reference to the elementAt
function in the changes clause. Values of that function are changed: in the push operation the newly
accessible last value is assigned to the passed e value and in the pop operation the previous last value
is no longer accessible. However, using the Omnibus approach, elementAt is not listed in the
changes clause since no values of elementAt that satisfy the pre-condition of the function before
and after the operation are changed.

Before discussing alternatives, recall that we can include model functions in changes clauses with
specific parameters. For example, we could specify that a replace operation changes only the last
element in a Stack:

operation replace(e:Element)
 requires size() > 0
 changes elementAt(size()-1)
 ensures elementAt(size()-1) = e

In the Omnibus approach we take the values that satisfy the pre-conditions both before and after the
method as the starting point for the frame conditions. The assertions that are calculated from the
changes clauses and added to the post-condition only refer to these values. Alternatively, we could
take the values that satisfy the pre-conditions before or after as the starting point. For example, we
could require that all the parameters of the model functions that are accessible after the operation call
and are not the same as before the operation be listed in the changes clause. This would lead to the
following specifications for push and pop:

operation push(e:Element)
 changes size, elementAt(size()-1)
 ensures size() = old size() + 1, elementAt(size()-1) = e

operation pop()
 requires size() > 0
 changes size
 ensures size() = old size() – 1

Using this technique we have to list elementAt(size()-1) in the changes clause of the
push operation because it is accessible after the method call and its value is not the same as it was
before the method. If it was not listed then, using this interpretation of changes clauses, an assertion
would be added asserting that elementAt(size()-1) = old elementAt(size()-1).
However, size()-1 is not a valid index of old elementAt and so this would be a logical error;
the pre-condition of the method call would be violated. In contrast, this approach would not require

3 Design issues for the Omnibus language

 28

elementAt to be mentioned in the changes clause of pop because all values of the elementAt
function that are accessible have the value they had before the operation call.

The mirror of this technique is to require that all the parameters of the model functions that are
accessible before the operation call and do not have the same value after the operation be listed in the
changes clause. This would lead to the following specifications for push and pop:

operation push(e:Element)
 changes size
 ensures size() = old size() + 1, elementAt(size()-1) = e

operation pop()
 requires size() > 0
 changes size, elementAt(old size()-1)
 ensures size() = old size() – 1

This time, the newly accessible value of elementAt in the push operation does not have to be
mentioned because it was not accessible before the operation. However, the value that was previously
at the end of the Stack does have to be mentioned in pop because it no longer has the same value as
it had before (it no longer has a value).

We could combine these two approaches, requiring that any parameters of the model functions that
are accessible either before or after the operation call and do not have the same value at those points
should be listed in the changes clause. This would lead to the following specifications for push and
pop:

operation push(e:Element)
 changes size, elementAt(size()-1)
 ensures size() = old size() + 1, elementAt(size()-1) = e

operation pop()
 requires size() > 0
 changes size, elementAt(old size()-1)
 ensures size() = old size() – 1

This may be more desirable for programmers because it is more intuitive despite requiring them to
write more code, particularly code that is essentially redundant. However, if we were to adopt this
approach then failure to include elementAt with the appropriate parameter in the changes clause
would become a difficult to detect error. Consider what would happen if we used this approach but
omitted any mention of elementAt from the changes clause.

operation push(e:Element)
 changes size
 ensures size() = old size() + 1, elementAt(size()-1) = e

Since elementAt is not listed in the changes clause, all indices of the function that are valid
either before or after the method are assumed not to change. Hence, elementAt(size()-1) will
be assumed to have the value it had before the operation which would be old
elementAt(size()-1). In other words, the assertion elementAt(size()-1) = old
elementAt(size()-1) will be added to the final post-condition. But size()-1 is not a valid
index of the old elementAt function and so this method call will not satisfy its pre-condition.
Furthermore, the generated assertion that elementAt(size()-1) is ‘unchanged’ will contradict
the assertion in the user provided ensures clause that it will equal the passed value e.

This is highly undesirable since contradictions can cause problems for our tool, like many other
verification tools, and lead to it reporting misleading errors. This final approach is the most prone to
introducing contradictions in the calculated post-condition with its generated frame condition because it
produces the strongest frame condition assertions. Our approach produces the weakest frame condition
assertions so that contradictions are minimised.

3.1.3 Vicious circle of logic

In this section we consider the complexities involved with the use of methods instead of fields in
defining class invariants.

3 Design issues for the Omnibus language

 29

3.1.3.1 The vicious circle of logic in JML and Spec#

The classical view of class invariants is that they should hold whenever a class is externally accessible,
i.e. in between public method calls. This can be demonstrated by showing that all constructors establish
the invariants and then, assuming that the invariants hold before an instance method, showing that they
hold after the method. That way, by induction, whenever another class has an instance of the object
they can assume that the invariant holds over it. We can naïvely implement this by implicitly
conjoining the invariants to the pre-conditions of all the methods of the class and then checking the
invariants at the end of the methods.

Normally Java methods cannot be used in JML assertions because they may have side-effects. If we
allowed this, then whether or not the assertions were evaluated would affect the behaviour of the
program, and testing of a program with assertion checking enabled would not necessarily be valid when
assertion-checking was disabled. However, there is no problem in using methods without side-effects
in assertions. Methods without side-effects are called pure methods in JML and Spec# and are declared
with the pure modifier. The tools then check that the methods do not change variables other than
those local to the method. Pure methods are extremely useful because they allow us to write
specifications that do not have to refer to only fields. We would like pure methods to be an extension of
normal methods, with the properties of normal methods applying to them along with the additional
properties: here that the method cannot have side-effects. Recall that one of these properties is that the
class invariants can be assumed at the start of the method and must be re-established at the end of the
method.

There is a problem of how to handle assertions which contain constructs such as method calls
whose pre-conditions are not satisfied. Often such occurrences indicate limitations in the thinking of
the programmer, coupled with logical errors. A run-time checker would normally check such pre-
conditions whether they were invoked via an assertion or a standard expression in an implementation.
We can adopt a similar approach within static verification: whenever an expression construct such as a
method call is used, check its pre-condition separately. Such a check is referred to as a side-condition.

We would like to be able to use pure methods in our specifications (in our requires clauses, our
ensures clauses and, crucially, in our invariants) and we would like to generate side-conditions to
check their use, but in doing so we hit a problem. Consider the following JML example:

public class PosCounter {
 /*@ spec_public */ int c;

 //@ public invariant count() >= 0;

 //@ ensures \result == c;
 public /*@ pure */ int count() {
 return c;
 }

 //@ requires count() > 0;
 public void dec() {
 c--;
 }
}

This simple class contains an integer attribute c, a pure method count for returning the value of c
and a method dec for decreasing c by one. An invariant asserts that count should be maintained to
be non-negative.

Using our naïve interpretation here, we include the invariants as part of the pre-condition of the
count method. Hence we have (ignoring the need to check the invariant is maintained in this trivial
case):

 //@ requires count() >= 0;
 //@ ensures \result == c;
 public /*@ pure */ int count() {
 return c;
 }

The cyclic reference of the method itself in its pre-condition is already worrying and may well
suggest to us that something is wrong, but let us continue regardless and now consider the method dec.

3 Design issues for the Omnibus language

 30

De-sugaring the method, we again add the invariant to the pre-condition (although in this case it is
implied by the original pre-condition and so we omit it) and also add an assert statement at the end
of the method to check the invariant. This gives us:

 //@ requires count() > 0;
 public void dec() {
 c--;
 assert count() >= 0;
 }

Now, consider the execution of the assert statement. The local method call yields a side-
condition that the pre-condition of that method is satisfied. The pre-condition of this method is
precisely:

 count() >= 0

From the ensures clause of the count method we know that we can re-write occurrences of the
count method using the value of the field c, but before we can use this re-write we have to show that
its pre-condition is satisfied. The problem is that methods used to define the invariants cannot have the
invariants as part of their pre-conditions (implicitly or explicitly). If they do then the situation
degenerates when we have an object whose validity (i.e. whether the invariants hold over it) we do not
know. In the example above the object whose validity we are not sure of is the this object after a
local assignment to one of its attributes. We cannot then check the invariants over this object because
these invariants may be described in terms of methods whose values are only defined for valid objects.

The things which previously allowed JML to side-step this problem were its formal modelling of
methods as underspecified total functions and its avoidance of side conditions for assertions. Were
these to be altered then this issue would have to be addressed.

The developers of the Spec# system ran into this problem because they generate side-conditions for
assertions. To address the problem, all invariants are private in accessibility and can only refer to
private members. Public methods cannot be used in the invariants because the invariants are part of
their pre-conditions.

3.1.3.2 The vicious circle of logic in Omnibus

Within Omnibus the same question is raised of whether the invariants should be part of the pre-
conditions of methods. Only methods without the invariants in their pre-conditions can be used to
define the invariant. The problem also arises through the use of local method calls (excluding those
with the old prefix) in ensures clauses of constructors and operations. Any such methods should
also not have the invariants as part of their pre-conditions. So should all methods have the invariants as
part of their pre-conditions? Should none?

There are three ways that we see of addressing this:
Functions and operations might no longer have invariants as part of their pre-conditions. This would

mean that all functions and operations could be freely used in invariants. This is the most extreme
response and is completely unworkable since it would destroy the verification approaches that are at
the heart of Omnibus. It is included here only for completeness.

Functions might no longer have invariants as part of their pre-conditions but operations might. This
means that any local function can be used in an invariant but local operations cannot (something which
is often very useful). A key problem with this is that often functions will not make sense when called
with parameters that would ordinarily be ruled out by the invariants implicitly included in their pre-
conditions. To counteract this, the programmer would have to repeat portions of the invariants in the
pre-conditions of the functions. This is highly undesirable.

Model functions might not have the invariants as part of their pre-conditions but derived functions
and operations might. This means that the ensures clauses of constructors and operations and
invariants must be completely defined in terms of the model functions. This sounds more workable
than it is. In reality, invariants will often be far more readily expressible via derived functions than
model functions, and the programmer will likely get annoyed if they are not permitted to do so.

Model functions and methods declared with a special modifier might not have the invariants as part
of their pre-conditions but the other methods might. This means model functions and selected other
methods can be used in invariants. This is a good compromise. It is a flexible approach and seems
sufficient to verify all existing Omnibus code.

The approach adopted by Omnibus is that model functions and methods declared with a special
helper modifier, with the same meaning as helper in JML, do not have the invariants as part of

3 Design issues for the Omnibus language

 31

their pre-conditions but the other methods do. This means model functions and selected other methods
can be used in invariants.

The same problem also appears in a number of other places in Omnibus, including ensures
clauses of operations and constructors and other types of requirements. The general rule is as follows:
only model functions and helper functions can be applied to this in invariants, constraints,
initiallys, and ensures clauses of operations and constructors. You are free to use any method over
old this since this is known to be valid. In ensures clauses for non-helper functions you are free
to apply any method to this, since again you have grounds to assume that it is valid.

3.2 Implementing value semantics
In this section we discuss the techniques used to implement value semantics for an object-oriented
language. References must be used to implement the objects in order to support dynamic binding. To
give value semantics, copying is then essential to ensure that objects that are referred to by multiple
references are not mutated. However, it is possible to make some optimisations to avoid unnecessary
copying.

3.2.1 Copy-on-update implementation of value semantics

In value semantics, operations cannot simply be implemented as mutations of objects as is done in
Java. If we did this and there were other references to the object then the values of these references
would change, violating value semantics. For example, suppose we have a Counter object whose
abstract state consists of a count value and can be increased and decreased by inc and dec
operations to increment and decrement the value of the Counter, respectively. Now, if we have only
a single reference to the object then we can freely implement the operations as mutations, but if there
are other references to the object then we must create a new object so that the value of the other
reference is unchanged.

The situation becomes more complicated when we are changing an object contained in a data
structure. To illustrate this, consider the following linked list example. Here, we have a classical linked
list with each node containing a link to the node’s value and a link to the next node in the chain. The
linked list is accessed via a reference, l, to its first node. Now suppose we want to update the value of
the final element in the linked list, which is currently a Counter with the value 3, by applying the
inc operation. For simplicity let us enforce that this operation must create a new object instead of
mutating its original value in case there were any other references to the Counter containing the 3.
As is standard we can then change the value pointer of the final node to point to the new Counter
value. This situation is illustrated diagrammatically below.

We were careful not to implement our inc operation as a mutation in case there were existing

references to it, so we may believe that this is an acceptable implementation, compatible with value

l

7

1

3

l

7

1

3

4

inc

3 Design issues for the Omnibus language

 32

semantics. However, consider the case shown below where there was an existing reference to the final
node.

In this scenario, the value of the node pointed to by x had the value of a Counter object with

count 3 before the operation and the value of a Counter object with count 4 after the operation. As
this operation was applied to the List and not x, x should not have changed.

The cause of this problem is that the node itself is also an object and so implementing changes to it
as mutations can also lead to violations of value semantics. So, if there are other references to the node
then we cannot update it via a mutation, and must instead create a new node. Similar reasoning dictates
that we must create copies of the intervening nodes in case there are references to these.

As an extreme, conservative solution to this problem we could implement all operations by creating
new objects. This would give us the diagram shown below.

This is clearly extremely inefficient. To change the value of a single element in the list we have had

to create new nodes for all the elements in the list.
However, there are some reasons why the situation is not quite as bad as this, and techniques that

we can use to further improve the situation.

l

7

1

3

l

7

1

3

4

inc

l

7

1

3

l

7

1

3

4

inc

x x

3 Design issues for the Omnibus language

 33

3.2.2 Optimisations of copy-on-update

3.2.2.1 Not everything is copied

Firstly, we are not creating a new copy of the entire list, i.e. all the nodes and all the object values. All
the object values which are unchanged are simply reused in the new list. This can be seen in the final
diagram: the first two nodes point to the same object values that their previous incarnations did. In this
case, that is not particularly significant because our object values are simply Counter objects and will
not be considerably larger in terms of memory usage than the nodes themselves. However, in more
realistic examples, the object values will likely be considerably larger than the nodes and so creating
copies of nodes will be far less costly than creating full copies of the object values themselves would
be. To summarise, a new copy of only one of the object values is created, specifically the one that is
being changed.

Also, we do not need to create copies of portions of the List that are unchanged. In the example
we used there were no such portions that were unchanged since we changed the value of the last node
and the next pointers of all the nodes preceding it. However, if we had updated the first node in the list
instead of the last then we could have reused the remainder of the list unchanged since neither the
values nor next node pointers need to be changed.

3.2.2.2 Balancing techniques can reduce amount of copying

We can view the internal structures of reference-based data structures as a hierarchy. The access point
is at the top of this hierarchy with remaining nodes arranged below it in order of the depth of references
that must be used to reach the object. For example, for our list, the first node would be at the top of the
hierarchy and the last node at the bottom.

Now, in the preceding section we saw that portions of the list that are unchanged can be reused
directly without the need for any copying. For such a portion to be directly reusable, its values and its
next pointers should not require any changes. We can exploit this by structuring our data structures so
that we minimise the depth of the data structure and/or ensure that nodes which are most likely to
change are higher up in the hierarchy. There is a limited amount that we can do to achieve these goals
in the list example. However, if we generalise the example to a tree data structure then we can use
existing techniques such as AVL trees and red-black trees [99] to enforce balancing and hence
minimise the depth of the hierarchy. We may also be able to devise a technique to ensure that the nodes
that are most likely to be changed are at the top of the hierarchy.

l

7

1

3

l

7

1

3

8 inc

3 Design issues for the Omnibus language

 34

3.2.2.3 Can use mutation if there is only a single reference to the object to be updated

In our discussion of the list example, we introduced complications by supposing that there were
existing references to the nodes in our data structure. In the most extreme case, if there may be existing
references to any of the nodes in our data structure then we must create new copies of any that we need
to update in any way. It is in this copying process that the inefficiencies arise. In contrast, if we knew
that there were no existing references to the nodes in our data structure then we could freely update any
of them using mutations, and our originally proposed solution would be perfectly acceptable. We can
freely use mutation to implement operations if we know that there are no existing references to the
object (other than the one via which we are accessing it). So, a possible solution is to use mutation to
update objects with only a single reference to them and create new objects during other operation calls.
This approach is known as uniqueness typing [84].

The problem is how we can detect how many references there are to an object which needs to be
updated. We can do this either statically or dynamically (e.g. reference counting). A static approach
would be the more desirable because it would not involve any run-time overheads. We cannot detect all
possible optimisations using a static modular approach but we can detect some. For example, consider
the following code snippet:

var s:Stack[String] := Stack[String].empty();
s.push("a");

We can statically deduce that at the point when the push operation call is encountered, there can
only be a single reference to the stack s. This is because we have just created the object and so there is
no possibility that there is another reference to it. Therefore, we can implement this operation call as a
mutation, illustrated by the following diagram.

However, the process falls down somewhat when we hit an interface boundary. For example,

suppose that instead of declaring a new Stack as a local variable, we have a Stack parameter passed
to our method.

function thirdTop(s:Stack[String]):String {
 var st:Stack[String] := s;
 st.pop();
 st.pop();
 return st.top();
}

In this case we cannot make any assumptions about how many references there are to the Stack
object that is passed into the method and so the first pop operation must create a new object. However,
we can statically deduce that there is only one reference to the Stack object held in st by the time we
reach the second operation call since this new Stack object was only created by the first pop
operation. Therefore, we can implement the second operation call as a mutation as shown below.

s size: 0, elements: <none>

s size: 0, elements: <none>

1 { “a” }

push operation

Note that the
original object is
mutated rather

than a new object
being created

3 Design issues for the Omnibus language

 35

The static deduction approach is necessarily incomplete. Perhaps, in a particular case, the Stack

passed to the thirdTop operation will only have a single reference to it and so we could implement
the first operation call via a mutation. We cannot detect this case statically in a modular fashion but we
could detect it dynamically. This would require a form of reference counting mechanism similar to that
used in primitive garbage collection algorithms. Ideally this would be implemented within the VM but
could be simulated within the generated code. However, it is not clear that the gains from using
mutation in these cases would compensate for the additional run-time overhead required to track the
number of references to each object. It is also not clear whether the number of cases that could be
dynamically deduced to be appropriate for mutation would be significantly higher than those that could
be statically deduced to be as such. This section described possible extensions to the Omnibus
verification tool. None of the approaches described are implemented in the current version of the
Omnibus verification tool.

3.3 Equality in Omnibus
Equality is a key concept within Omnibus. It is even more important in a system built upon value
semantics than it is in one built on reference semantics.

In Java, which is built on reference semantics, there are two concepts of object equality: equality of
references and equality of objects. The == and != operators allow the programmer to compare the
addresses held in two references for equality. If two object references hold the same address then these
references point to the same object on the heap. Equality of the objects themselves can be defined using
the special equals method. This is a normal method which returns the boolean value true iff the
passed object is equal to this. The writer of the class is free to give any implementation for this
function although there are some informal requirements that they should follow (it should be
commutative, etc.).

In Omnibus, there is only one concept for equality of objects which can be accessed via the = and
!= operators. This operator represents value equality and should evaluate to true whenever the two

s Stack[String]

st

s Stack[String]

We cannot mutate
this object because
there may be other

references to it

st

s Stack[String]

().pop()

We know that
there can only be
one reference to

these objects
because we have
just created them

so we can
implement the

second operation
call as a mutation

st

s Stack[String]

().pop().pop()

3 Design issues for the Omnibus language

 36

objects to which it is applied are interchangeable without observable differences. This is actually quite
a complicated concept and this section will explore the range of support which Omnibus provides for it.

3.3.1 Built-in concept of equality

In Java, if you do not define an equals method for your class, a default implementation is inherited
from the java.lang.Object class. This provides you with some concept of equality of objects
without the programmer having to do any work. Omnibus provides similar facilities to automatically
define an equality operator even if none is explicitly given.

While at this high level the two approaches to this problem appear similar, they are implemented in
diverse fashions. In Java, the default equality operator simply compares the references of the two
objects; this is enough because the programmer also has the concept of reference equality to work with.
However, in Omnibus, the equality operator has only one definition and this must be powerful enough
to reason effectively about the equality of many object expressions. As a result, the automatic
definition of equality in Omnibus is far more complex.

If no equality operator is defined for a class, the Omnibus system automatically defines one.
Leibnitz’s rule is used to reason about equality of object instances of the class for static verification. An
implementation of structural equality checking is provided for implementations and run-time assertion
checking. This gives an overly conservative but useful and safe automatic definition of equality. These
concepts are introduced in the remainder of this section.

Leibnitz’s rule is simply this: if the same method is applied to two objects that are equal with
parameters that are equal then the result will be equal. So, for example, if we have an object obj which
has a method func() then Leibnitz’s rule allows us to deduce that obj.func() = obj.func().
More interestingly, suppose we have objects obj1 and obj2 that we know are equal and p1 and p2
that we know are equal. Now if there is a method calc in the class of obj1 and obj2 that takes two
parameters then we can deduce that obj1.calc(p1,x) = obj2.calc(p2,x). This is true
because the objects are equal and the corresponding parameters are equal.

Leibnitz’s rule is of most use when coupled with substitutions. Suppose we know that an ensures
clause tells us that modFunc() = old modFunc().op(param), and an invariant requires us to
check that modFunc().isGood(). We can then substitute old modFunc().op(param) for
modFunc(), allowing us to demonstrate the invariant by showing old
modFunc().op(param).isGood(). This facility is used extensively throughout all Omnibus
examples which have been produced so far.

Leibnitz’s rule gives some very basic rules about equality. These rules are always respected by
Omnibus classes (it is not possible to write a method which returns different values for the same
parameters – there are no static variables) but obviously do not give the rich definition of equality that
will often be required. Programmers will often want objects that are constructed using different
sequences of method calls to be considered equal. For example, consider a Stack where an element is
pushed and then popped. The programmer would probably want these two Stack objects to be
considered equal, but Leibnitz’s rule alone does not permit you to deduce this.

Structural equality is a mechanism for comparing any two objects. Using structural equality, two
objects are equal if their dynamic classes are equal (i.e. they are instances of the same class) and all of
their corresponding attributes are equal. This is a recursive definition which checks the equality of two
objects by checking the equality of all of their subcomponents (i.e. the attributes that define the
implementation of the class).

Like Leibnitz’s rule, structural equality gives a basic definition for equality. Structural equality is
consistent with Leibnitz’s rule, since if all the attributes of two objects of the same class are equal then
the result of the same method with the same parameters will be the same. We will see later that, like
Leibnitz’s rule, there are limitations to structural equality. Again, though, in these cases the
programmer can provide an implementation for equality.

To illustrate the default definition of equality provided by Omnibus, consider the following Array
class.

class Array[Element] {
 model function length():integer
 model function access(i:integer):Optional[Element]
 requires i >= 0 && i < length()

 invariant length() >= 0

3 Design issues for the Omnibus language

 37

 constructor ofSize(n:integer)
 requires n >= 0
 ensures length() = n,
 forall (j:integer := 0 to n-1):
 access(j).isNil()

 operation assign(k:integer, e:Element)
 requires k >= 0 && k < length()
 changes access(k)
 ensures access(k) = Optional[Element].of(e)

 operation assignOptional(k:integer, e:Optional[Element])
 requires k >= 0 && k < length()
 changes access(k)
 ensures access(k) = e
}

Note that no definition for equality is given explicitly, so the default definition will be automatically
introduced by the system. Let us now consider some expressions involving this class in order to explore
what the default definition gives us. The expressions we will consider will refer to the following
variables:

p1:Person
arr:Array[Person] := Array[Person].ofSize(3).assign(1, p1)

We now know the following facts about model functions of the arr object:

arr.length() = 3
arr.access(0).isNil()
!arr.access(1).isNil()
arr.access(1) = p1
arr.access(2).isNil()

From Leibnitz’s rule we can then deduce the following:

 arr.assign(1, p1) = arr.assign(1, p1)

This is a straightforward application of Leibnitz’s rule.
However, we cannot deduce the following:

 arr = arr.assign(1, p1)

Intuitively, this should be true since, on assigning to the element at index value 1, the value that it
currently has should not change the array object. However, Leibnitz’s rule is not enough to deduce this.
To enforce this we need to provide a manual definition for equality of Arrays.

While we cannot deduce the equality of arr and arr.assign(1,p1), we can deduce the
equality of their model functions:

 arr.length() = arr.assign(1, p1).length()
 && (forall (i:integer := 0 to 2):
 arr.access(i) = arr.assign(1, p1).access(i))

3.3.2 Manually defining the equality operator

Let us now look at how programmers can provide their own definition for equality. Before looking at a
range of techniques for defining equality, let us quickly look at how an equality operator for the Array
class could be defined.

class Array[Element] {
 model function length():integer
 model function access(i:integer):Optional[Element]
 requires i >= 0 && i < length()
 ...
 function equals(a:Array[Element]):boolean

3 Design issues for the Omnibus language

 38

 returns length() = a.length()
 && forall (i:integer := 0 to length()-1):
 access(i) = a.access(i)
}

Note how equality is defined via an equals method which accepts an instance of the current class.
In the following sections we will look at how to define these methods.

3.3.2.1 Equality over model functions of no parameters

It is relatively straightforward to define an equality operator for a class whose abstract state consists
only of model functions of no parameters. Two objects are simply equal if all their model functions
evaluate to the same values. Consider the following Library class whose abstract state consists of a
Collection of Books, a Collection of Members and a Collection of Loans of Books to
Members. The equals method simply compares the values of these model functions.

class Library {
 model function books():Collection[Book]
 model function members():Collection[Member]
 model function loans():Collection[Loan]

 ...

 function equals(l:Library):boolean
 returns books() = l.books()
 && members() = l.members()
 && loans() = l.loans()
}

3.3.2.2 Equality over model functions with parameters of restricted range

The first example considered the simplified case where the model functions of the class had no
parameters. We will now consider a slight generalisation of this where the model functions have
parameters but they have a restricted range. In such cases, we can simply specify the equality operator
by quantifying over a variable in this range. Consider the following example of a List class which
contains a size model function with no parameters and an elementAt model function with a single
index parameter i. This parameter is restricted to range from zero to one less than the size. We can
then define equality of Lists by asserting that their sizes should be equal and that the values of the
elementAt model function from 0 up to the size()-1 are equal. In other words, the model
functions are equal for all values that satisfy their pre-conditions. This fits our intuition of equality of
Lists: two Lists should be considered equal if they contain the same elements.

class List[Element] {
 function size():integer
 function elementAt(i:integer):Element
 requires i >= 0 && i < size()

 ...

 function equals(l:List[Element]):boolean
 returns size() = l.size()
 && forall (i:integer := 0 to size()-1):
 elementAt(i) = l.elementAt(i)
}

3.3.2.3 Equality over model functions with parameters of restricted range with additional restrictions

In the previous section we considered the case where the only restriction on the parameters of a model
function was to limit its range. However, there may be other restrictions within the pre-condition of the
model function. In such cases we can simply add these additional restrictions to the quantification over
the parameters of the model function in the equals method using a where clause. Consider the
following example of a YahtzeeGame class. First, there is a model function containing the number of

3 Design issues for the Omnibus language

 39

rolls that have been taken in the current turn. This can range from 0 up to 3. Next there is a diceAt
model function used to hold the values of the Dice that are currently showing. The method can be
called with parameters from 1 up to 5 apart from when there have been no rolls yet (in which case the
dice do not have any values yet). These values then change as follows. Initially the number of rolls will
be 0, signifying that the dice have not been rolled yet in the current turn. The dice can then be rolled, at
which point the number of rolls is increased to one and values are given to the dice positions 1 up to 5.
The dice can then be rolled up to a limit of 2 further times before a position on the board is selected and
the number of rolls is reset to 0. There is also a range of other model functions that are not of interest to
us here. The key part of interest to us is the definition of the equality in relation to these two model
functions. The handling of the rolls model function is straightforward, and we can handle the
diceAt model function like the elementAt function in the List class, adding the additional
restriction that the number of rolls should be greater than zero in a where clause of the quantification
over the pos parameter.

class YahtzeeGame {
 model function rolls():integer
 model function diceAt(pos:integer):Dice
 requires pos >= 1 && pos <= 5,
 rolls() > 0

 ...

 function equals(g:YahtzeeGame):boolean
 returns rolls() = g.rolls()
 && (forall (pos:integer := 1 to 5 where rolls() > 0):
 diceAt(pos) = g.diceAt(pos))
 && ...
}

3.3.2.4 Equality over model functions with parameters of unrestricted range

So far we have only considered model functions with parameters of restricted ranges. In these cases we
can use a quantifier with the quantified variables restricted to that range. The advantage of this kind of
quantifier is that it can be evaluated at run-time. If a model function has a parameter without such a
restricted range, the situation is much harder to deal with because we cannot simply write an executable
specification. In such cases we have little alternative but to write separate specifications and
implementations for the method. Consider the following example of a Collection class which is
described in terms of a contains model function. The method takes an Element parameter whose
values cannot be enumerated over like the integer ranges we encountered earlier. So, we describe the
equals method using an ensures clause containing a universal quantification over Elements.
Two Collection objects are equal if their contains functions have the same value for every
possible Element. Note that we cannot use a returns clause here because the unconstrained
universal quantifier is not executable. The specification of this class is shown below:

class Collection[Element] {
 model function contains(e:Element):boolean

 ...

 function equals(c:Collection[Element]):boolean
 ensures result
 <==> forall (e:Element): contains(e) = c.contains(e)
}

Now let us consider how to define the implementation of the class and, specifically, the equals
method. First, we introduce a List attribute and define the contains model function in terms of it.
So we are using a List, which may contain duplicates, to implement our Collection, which
should not, and ruling duplicates out via an invariant. We can then implement our equals function by
iterating over the elements in each of the Lists in turn and checking that the other contains all of their

3 Design issues for the Omnibus language

 40

elements. If each Collection contains all of the Elements in the other, then the contains
functions must yield the same value for all Element values and hence the Collections are equal.

public class Collection[Element] {
 private attribute elements:List[Element]
 public model function contains(e:Element):boolean
 private returns elements.contains(e)

 private invariant
 forall (e:Element): elements.countOf(e) <= 1

 ...

 public function equals(c:Collection[Element]):boolean
 ensures result = true
 <==> forall (e:Element): contains(e) = c.contains(e)
 {
 foreach (e:Element in elements) {
 if (!c.contains(e)) {
 return false;
 }
 }
 foreach (e:Element in c.elements) {
 if (!contains(e)) {
 return false;
 }
 }
 return true;
 }
}

3.3.2.5 Coping with irrelevant information in the abstract state

The techniques that we have looked at so far for defining equality break down when the abstract state
contains information that is irrelevant. For example, consider the following specification of a Stack
class:

class Stack[Element] {
 model function elements():Array[Element]
 model function size():integer

 invariant size() >= 0
 invariant size() <= elements().length()

 invariant forall (i:integer := 0 to size()-1):
 !elements().access(i).isNil()

 constructor empty(capacity:integer)
 requires capacity >= 0
 ensures size() = 0,
 elements() = Array[Element].ofSize(capacity)

 operation push(e:Element)
 requires size() < elements.length()
 changes size, elements
 ensures size() = old size() + 1,
 elements() = old elements().assign(size()-1,e)

 operation pop()
 requires size() > 0
 changes size
 ensures size() = old size() - 1

3 Design issues for the Omnibus language

 41

 function top():Element
 requires size() > 0
 returns elements().access(size()-1)

 function equals(s:Stack[Element]):boolean
 returns size() = s.size()
 && elements() = s.elements()
}

Here the abstract state contains an Array, which is used to store the elements in the Stack, and
an integer to record the number of elements in the Stack. An element is deemed to be contained in the
Stack if it is in one of the first size() positions of the Array. The elements in the Array after the
first size() are not deemed to be in the Stack and their values are irrelevant. The standard
definition for equality is given which compares the values of the model functions of the current class
and the one passed to the equals method.

However, in this example, we cannot simply compare the values of the model functions. If we do
this then objects whose values differ only in irrelevant details will not be considered equal. For
example, consider we have a Stack s1 containing the elements “abc”, “def” and “ghi”, i.e.:

var s1:Stack[String] :=
 Stack[String].empty(5).push(“abc”).push(“def”).push(“ghi”);

From the specification it will have the following values:

 s1:Stack[String]
where s1.size() = 3
 && s1.elements().length() = 5
 && s1.elements().access(0) = “abc”
 && s1.elements().access(1) = “def”
 && s1.elements().access(2) = “ghi”
 && s1.elements().access(3).isNil()
 && s1.elements().access(4).isNil()

Now let us define a new Stack s2 formed by taking the Stack s1, pushing “jkl” onto it and
then popping it off i.e.

var s2:Stack[String] := s1.push(“jkl”).pop();

Intuitively, these two Stacks should be considered equal since they contain the same elements in
the same order but they would not be equal using our standard definition of equality. This is because
the values of the model functions are as follows:

 s1:Stack[String], s2:Stack[String]
where s1.size() = 3 && s2.size() = 3
 && s1.elements().access(0) = “abc”
 && s2.elements().access(0) = “abc”
 && s1.elements().access(1) = “def”
 && s2.elements().access(1) = “def”
 && s1.elements().access(2) = “ghi”
 && s2.elements().access(2) = “ghi”
 && s1.elements().access(3).isNil()
 && s2.elements().access(3) = “jkl”
 && s1.elements().access(4).isNil()
 && s2.elements().access(4).isNil()

The problem here is that the abstract state contains information that is irrelevant, namely the values
in the elements() Array at indices between size() and capacity()-1.

There are a number of techniques we can use to cope with this problem. Firstly, we could assert that
irrelevant information always has the same value. For example, in this case we could assert that the
information in the elements array at indices between size() and capacity()-1 should always be
null. This can be formalised in the following invariant:

3 Design issues for the Omnibus language

 42

private invariant forall(i:integer := size() to capacity()-1):
 elements.access(i).isNil()

We would then need to adjust the pop operation to set the newly irrelevant value from the
elements array to be null.

public operation pop()
 requires size() > 0
 changes size, elements
 ensures size() = old size() – 1,
 elements() = old elements().assignOptional(size()-1,
 Optional[Element].nil())

This would enable us to use the existing definition of equality to fulfil our intuition.
Alternatively we could adopt a different approach for the specification of the equality operator. We

could write a new function to return only the relevant elements of the abstract state and then compare
the results of these functions for the two objects. For example, we could define a
relevantElements function to return the range of values from the elements array that are relevant
and then specify our equality operator in terms of it.

private function relevantElements():Array[Element]
 returns elements().range(0, size())

function equals(s:Stack[Element]):boolean
 returns size() = s.size()
 && elements().size() = s.elements().size()
 && relevantElements() = s.relevantElements()

This section described possible extensions to the Omnibus verification tool. None of the approaches
described are implemented in the current version of the Omnibus verification tool.

 43

4 Challenges of reference semantics
The modular static verification of object-oriented languages which use reference semantics is
extremely complicated. Indeed, until recently, the state-of-the-art approaches had soundness holes for
data structures incorporating complex internal structures that utilised references [77]. This issue had
been side-stepped by the majority of the verification field working with languages like JML. Recent
work [37] has helped provide a sound basis for the modular verification of JML and other OO
languages with reference semantics. This chapter demonstrates the problems with the modular static
verification of OO languages built upon reference semantics and then discusses existing solutions.

Chapters 2 and 3 discussed the Omnibus language with its support for value semantics. This chapter
is concerned with reference semantics and uses examples presented in JML, not Omnibus. The chapter
describes existing approaches rather than presenting new ones. The support for value semantics that we
have previously described could be combined with the techniques for reference semantics presented
here. Either Omnibus could be extended with the techniques presented in this chapter, or the concepts
of Omnibus could be incorporated into the systems we describe.

4.1 Problems of modular reasoning about reference semantics
References are used extensively in Java programs. All objects are accessed via references. In this
section we will illustrate the problems this causes for modular static verification.

4.1.1 Review of the basics of reference semantics

Consider the following piece of code where we define a Java class BankAccount:

public class BankAccount {
 private int balance;

 public BankAccount() {
 balance = 0;
 }

 public int getBalance() {
 return balance;
 }

 public void deposit(int amount) {
 balance += amount;
 }

 public void withdraw(int amount) {
 balance -= amount;
 }
}

Now consider the following statements that use this class:

BankAccount a = new BankAccount();
BankAccount b = a;

In the first line we create a new BankAccount object and assign it to the local variable a. The
effect of this is that variable a is given the value of a reference to the newly created object. In the
second line we assign the value of a to a new variable b. The effect of this is that the new variable b is
given the value of the variable a which is a reference to the previously created BankAccount object.
Thus, both variables contain references to the same object. This situation, where multiple references
point to the same object, is called sharing and is common in OO programs.

Operations to alter the state of objects are implemented in Java using methods which change the
values of the attributes of the object. These are called destructive updates and they act to mutate the
object. If we use a method to change the value of the object via one of the references then the value of
the other reference will also have changed. Suppose we now execute the following line of code:

a.deposit(100);

4 Challenges of reference semantics

 44

Naturally, a.balance will now hold 100 since we have explicitly applied the deposit method
to the a reference. However, b.balance will now also hold the value 100 since b points to the same
object as a.

The dependencies appear relatively straightforward here; we have two objects that clearly point to
the same object. However, in modular verification we must consider the different parts of an
application separately. When we are passed a reference to an object via a parameter, we do not know
what other references there are to it. The passed reference may only be used as a local variable which
will not be used further and whose lifetime will end imminently after the method we are considering
returns. On the other hand, the passed reference may be used as an attribute of another object or may be
used as a local variable but will be manipulated further after our method returns. These later situations
can cause problems as we will see in the following sections.

4.1.2 A class with a mutable, reference-based internal state

Consider the following code:

public class Person {
 private BankAccount acc;

 public Person() {
 acc = new BankAccount();
 }

 public void setAccount(BankAccount a) {
 acc = a;
 }

 public BankAccount getAccount() {
 return acc;
 }
}

This code defines a class Person which contains a BankAccount attribute along with setter and
getter methods [105]. The constructor creates a new BankAccount object and stores a reference to it
in the private acc attribute. We can use the getAccount and setAccount methods to query and
change this value, respectively. In the setAccount method we do not know whether there are other
references to the passed BankAccount object. Likewise, callers of the getAccount method do not
know what references there are to the object we return. As it happens, it is part of the internal state of
this object but they would not know this from the type signature alone. If we are performing modular
verification then the interface is all we can use to reason about other classes.

To clearly illustrate the problems that can arise from this situation, let us introduce an invariant to
the Person class and attempt to verify it in a modular fashion. Let us alter the Person class as
follows:

public class Person {
 private BankAccount acc;

 //@ private invariant acc != null && acc.getBalance() >= 0;

 public Person() {
 acc = new BankAccount();
 }

 //@ requires a != null && a.getBalance() >= 0;
 public void setAccount(BankAccount a) {
 acc = a;
 }

 //@ ensures \result != null;
 public BankAccount getAccount() {
 return acc;
 }

4 Challenges of reference semantics

 45

}

We have introduced a series of JML annotations in special comments which start with //@. The
requires annotations provide pre-conditions, the ensures annotations provide post-conditions and
the invariant annotations provide class invariants. A class invariant should (crudely) hold
throughout the lifetime of all object instances of the class. More specifically, it should hold after the
execution of any of the class’s constructor methods and after any subsequent calls of its methods. It
may be temporarily invalidated within the body of a method as long as it is re-established by the end of
the method. Note that our invariant here has to be declared as private since it refers to a private field.
This follows from Meyer’s guideline that specifications at a specific accessibility level can only refer to
methods and fields declared at that accessibility level or above [68].

The invariant that we have added states that the acc attribute should not be null and its
balance should be non-negative. The requires clause of the setAccount method ensures that
any BankAccount values that we assign to the local variable satisfy this requirement. Therefore, the
invariant is respected. This class is correct JML and follows the principles of JML modular static
verification.

4.1.3 The representation exposure problem

Now let us consider some code which uses this class.

Person p = new Person();
BankAccount acc = p.getAccount();
acc.withdraw(100);

Here we start by constructing a new Person object and assigning it to the local variable p. We
then use the getAccount method from the Person class to retrieve a reference to the
BankAccount object of the Person. Finally, we use the withdraw method to withdraw the value
100 from the account. This code follows the principles of JML static verification since the code
respects the specifications of the Person and BankAccount classes. The Person constructor,
getAccount method in the Person class and the withdraw method in the BankAccount class
all have no pre-conditions and so our calls are valid.

However, the invariant of the Person object accessed by p is violated when we perform the
withdraw operation on the acc variable. This is because the BankAccount that getAccount
returns is used in the internal representation of our Person object. The problem is that the
getAccount method gives mutable access to the internals of our Person class. Code outside the
class can then use this reference to indirectly alter the value of the Person class. Because of the
information hiding required to support modular verification they cannot be aware of this dependency
because it is not described in the interface of the class.

This problem is called representation exposure and arises when a reference to an object used in the
internal representation of an object is made accessible to clients of the class. Clients can then
manipulate the object directly, bypassing the interface of the class which has been verified to maintain
the correctness of any invariants over it.

4.1.4 The argument object dependency problem

We can arrive at the same problem through a slightly different means. Suppose we, again, use the
Person class with the invariant. This time consider the following code instead:

Person p = new Person();
BankAccount a = new BankAccount();
a.deposit(100);
p.setAccount(acc);
a.withdraw(200);

Here we start by creating a new Person and assigning it to p. A default BankAccount object
will be created by the Person constructor and stored in its acc attribute. We then create a new
BankAccount and assign it to a local a variable. We then call the deposit method to deposit 100
into the BankAccount. Next we call the setAccount method of the Person p, passing the
BankAccount we created. The pre-condition of this method requires that the passed object is not
null and has a non-negative balance so that the invariant of the Person class is respected. Our

4 Challenges of reference semantics

 46

passed BankAccount reference passes both of these criteria. Finally we withdraw 200 from our
BankAccount. There is apparently nothing wrong with this since there is no pre-condition of the
withdraw method. Therefore, this code also passes JML modular static verification.

However, again, the invariant of the Person object accessed via p is violated by the final
statement. The setAccount method call takes a reference to our BankAccount object a and stores
it in the attribute of the Person class. At the end of this method, the invariant is satisfied, just as our
verification of the Person class ensured. However, when we use the withdraw method to remove
200 from the BankAccount the balance of the BankAccount goes to -100. This not only affects
a but also our Person object p and leads to a violation of the invariant. Again, this dependency is not
described in the interface of the Person class and so we do not know about it when verifying this
code.

This problem is called argument object dependency and arises when a reference is passed into a
constructor or method and incorporated into the internal representation of the object. Clients can then
use the passed reference to manipulate the object’s internal representation directly, bypassing its
interface which is supposed to protect the integrity of the data.

4.1.5 Different views of the same problem

These are essentially different mechanisms by which you can reach the same problem. Via both
approaches you end up with an object accessible through two reference variables where there is an
invariant relating to one of the references that is not known by the other. If the second of these
references is then used to mutate the object, the invariant relating to the first reference may be violated
in a way that cannot be detected by the modular static verification.

The standard type signature interfaces are not enough to prevent this problem. Neither are standard
pre- and post-conditions. Interfaces built out of these specification components alone say nothing about
the number of references to the objects that are passed about.

4.2 Sound modular static verification techniques
Until relatively recently, there was no widely-accepted approach to solve this problem [77]. Users and
tool developers working with JML had to work around this problem. The problem can be avoided if the
programmer is careful about the references they use (e.g. they could clone the BankAccount before
getting or setting it). However, there was no tool support to check for this which acted to limit the
soundness of the verification approach as a whole. These limitations led people such as myself and
David Crocker of the PerfectDeveloper project [33] to investigate the use of value semantics (which, in
any event, is of fundamental importance even within languages primarily built upon reference
semantics).

There are now two leading approaches to this problem. The first approach is to restrict the use of
sharing through alias control. This technique allows us to describe the allowed aliasing of an object
within the interface of a class. This approach is currently being incorporated into JML [37]. The second
approach requires that all the invariants relating to object instances of a specific class are visible
wherever those objects can be manipulated and that checks are made at the point of manipulation that
no invariants in the system are violated. This work is already supported within JML tools.

4.2.1 Alias control through Universes

Alias control is perhaps the most natural solution to this problem. The fundamental problem is the
unrestricted freedom in languages like Java for references to point to any object of the appropriate type.
With this fundamentally unstructured and non-modular starting point we cannot easily perform static
verification modularly. We cannot restrict the use of aliasing via existing specification languages, such
as JML, because there are no constructs to allow us to express such restrictions. We need a new
vocabulary which allows us to talk about aliasing so that we can describe suitable restrictions.

A number of alias control mechanisms were developed in the 90s [4, 29, 47] but most require a
range of complicated annotations. Muller has pulled together the best aspects of a range of approaches
to form his Universe type system [37, 46, 74-76, 78]. This provides a flexible alias control mechanism
with relatively lightweight annotation burdens.

In this section we will look at how the Universe type system addresses the problems we saw earlier,
and show how it can be used to implement a sophisticated example consisting of a doubly-linked list
with iterators supporting deletion (an example taken from [37]).

4 Challenges of reference semantics

 47

4.2.1.1 Basic principles of the Universe type system

The Universe type system arranges the objects in an application into so-called Universes. Every object
may have some other object declared as its owner. All objects which have the same owner are said to
be in the same universe. Only the owner of an object can mutate that object. All modifications of the
objects in a universe must go through the owner. This allows the system to ensure that the interface of a
data structure is not bypassed. A class can then only define invariants over objects that it owns. Since
only the considered object can update these objects, it is sufficient to verify that the invariant is
maintained by the methods in the considered class.

A key innovation by the Universe type system is that, instead of explicitly stating the owner object
of variables, it is generally sufficient to simply describe its relationship to this. Typically we require
the owner of a field to be either this or the owner of this. When we declare an object variable or
create a new object we must indicate what the owner of the object should be. To indicate that this
should be the owner, we use the rep modifier. Objects with the rep modifier are created in the
universe owned by this and can be viewed as part of its representation (hence the modifier used). To
indicate that the owner of this should be the owner, we use the peer modifier. Objects with the
peer modifier will be created in the same universe as this and, hence, can be viewed as peers of
this. References whose owners are anything else must be declared with the any modifier and cannot
be mutated.

4.2.1.2 Class with a mutable, reference-based internal state re-visited

Let us revisit our Person class. Our acc attribute is part of the internal representation of our Person
and so we should declare it with the rep modifier.

public class Person {
 private /*@ rep */ BankAccount acc;

 //@ private invariant acc != null && acc.getBalance() >= 0;

 public Person() {
 acc = new /*@ rep */ BankAccount();
 }

 //@ requires a != null && a.getBalance() >= 0;
 public void setAccount(/*@ rep */ BankAccount a) {
 acc = a;
 }

 //@ ensures \result != null;
 public /*@ rep */ BankAccount getAccount() {
 return acc;
 }
}

By adding the rep modifier to the declaration of the acc attribute we have implicitly stated that
the owner of acc is this. The result is that only this object is allowed to manipulate the value of that
object. We can also define an invariant over it because it is owned by this.

4.2.1.3 Prevention of representation exposure

So let us now re-consider the first troublesome block of code. It was as follows:

Person p = new Person();
BankAccount acc = p.getAccount();
acc.withdraw(100);

The first thing we must do is declare the universes of the variables. We can no longer simply
declare a variable p of type Person, we must also define what universe it is in. Let us assume that this
code is in the body of a method of a different class. We can declare each type using either rep, peer
or any. We want to mutate the variable p so we must declare it using rep.

/*@ rep */ Person p = new /*@ rep */ Person();

4 Challenges of reference semantics

 48

We would like to declare the acc local variable using rep as well so that we can mutate it. In other
words, we would like to declare ourselves as its owner. However, the return type of the getAccount
method is declared with the rep modifier which means that the owner of that object is the Person
object itself. Thus, we cannot assign it to a variable which we are claiming ownership of ourselves.
Instead, we can only declare it to be a any reference.

/*@ any */ BankAccount acc = p.getAccount();

Now, since we have a any reference, we cannot use the withdraw method to update acc. Only
the owner of acc can update it. If the getBalance method were declared to be pure (i.e. it just
calculates a value and does not mutate the object) then we could call it, but we cannot call non-pure
methods or assign to its fields.

4.2.1.4 Prevention of argument object dependency

Let us now re-consider the second block of code:

Person p = new Person();
BankAccount a = new BankAccount();
a.deposit(100);
p.setAccount(acc);
a.withdraw(200);

Again, we should declare p using the rep modifier so that we can manipulate it.

/*@ rep */ Person p = new /*@ rep */ Person();

This time, we can also declare a using the rep modifier since we are not constrained by a value
from elsewhere. Since we are the owners of a we can freely execute the next statement which makes a
deposit to the account.

/*@ rep */ BankAccount a = new /*@ rep */ BankAccount();
a.deposit(100);

However, we can no longer pass this BankAccount to the setAccount method of p since the
method requires as its parameter a BankAccount owned by p. Our BankAccount a is owned by
the object whose class contains the code being executed, which we have assumed in our premise was
not Person.

So the universe type system prevents both of these troublesome situations from arising by

associating with each object an owner and requiring that only the owner can update the object.

4.2.1.5 Exploring the restrictions of the Universe type system

Let us now explore a bit more of what can and cannot be done with the Universe type system.
Consider the following code:

/*@ rep */ Person p = new /*@ rep */ Person();
/*@ any */ BankAccount a = p.getAccount();
p.setAccount(a);

We saw earlier that we could not retrieve the BankAccount from a Person and then mutate it
ourselves. This time, we retrieve the BankAccount as a any reference and then pass it back to the
Person p using the setAccount method. This is fine since we can tell that the owner of a is p
from the return type of the getAccount method and this fulfils the requirement of the setAccount
parameter.

Consider this piece of code:

/*@ rep */ Person p1 = new /*@ rep */ Person();
/*@ rep */ Person p2 = new /*@ rep */ Person();
/*@ any */ BankAccount a1 = p1.getAccount();
p2.setAccount(a1);

4 Challenges of reference semantics

 49

Here we start by declaring two Person objects: p1 and p2. We retrieve the BankAccount of
a1 and then attempt to assign it to p2 using the setAccount method. This is not allowable since
although p1 and p2 are instances of the same class, they are different objects. Universes are structured
around objects, not classes. From the return type of getAccount we know that the owner of
p1.getAccount() is p1. The parameter of setAccount is also declared with rep and so the
owner of the parameter to p2.setAccount must be p2, which p1 is not.

4.2.1.6 A larger case study: doubly linked lists with iterators supporting deletion

Finally, consider the doubly-linked list with iterators which Müller uses to illustrate the approach [37].
This example is relatively complicated and cannot be handled by many of the other aliasing control
mechanisms.

Consider first the Node class which has references to the previous and next nodes (that are in the
same universe as this) and a any reference to the value contained at this node named elem.

class Node {
 public /*@ peer */ Node prev, next;
 public /*@ any */ Object elem;
}

Next let us consider the LinkedList class. Firstly, it contains references to the first and last
nodes. These are declared using rep and so are owned by this and stored within the universe owned
by this. This allows only this and the peers of this to manipulate them. The iterator method
constructs an Iterator as a peer. This, together with the remove method, is discussed in the next
section. We can also define an equals method which tests for deep equality. We can accept a any
reference to the other LinkedList (i.e. a LinkedList from any other universe) because we only
need to inspect it and do not need to manipulate it.

public class LinkedList {
 protected /*@ rep */ Node first, last;

 public /*@ peer */ Iterator iterator() {
 return new /*@ peer */ Iterator(this);
 }
 void remove(/*@ rep */ Node np) {
 ...
 }
 public boolean equals(/*@ any */ LinkedList l) {
 /*@ any */ Node f1 = first;
 /*@ any */ Node f2 = l.first;
 while (f1 != last && f2 != l.last && f1.elem == f2.elem) {
 f1 = f1.next;
 f2 = f2.next;
 }
 return f1 == last && f2 == l.last && f1.elem == f2.elem;
 }
 ...
}

Now let us consider the Iterator class. The iterator method of the LinkedList
constructs one of these and returns it to the clients. The iterator has two attributes: the LinkedList to
iterate over which is from the same universe (and hence declared with peer) and a reference to the
current Node. We must declare this Node using any since it is neither owned by this (rep) or by
the owner of this (peer). In fact, we know that the owner should be the LinkedList that we are
iterating over and we can formalise this in an invariant referring to the special owner field. The
remove method is of particular interest. We cannot implement the deletion ourselves because we are
not the owners of the Node and so cannot manipulate it. Only the LinkedList containing the nodes
can manipulate them. We can, however, define a delete method in LinkedList and pass our
Node to it.

public class Iterator {

4 Challenges of reference semantics

 50

 protected /*@ peer */ LinkedList list;
 protected /*@ any */ Node pos;

 //@ invariant pos.owner == list;

 Iterator(/*@ peer */ LinkedList l) {
 list = l;
 pos = l.first;
 }
 public /*@ any */ Object next() {
 /*@ any */ Object result = pos.elem;
 pos = pos.next;
 return result;
 }
 public void remove() {
 list.remove(pos);
 }
 ...
}

4.2.1.7 Evaluation of the Universe type system

We have seen that the Universe type system is fairly powerful. It was able to rule out the problems that
we met earlier but is still able to model interesting examples like doubly-linked lists with iterators that
incorporate deletion. Recent work has also shown that it can be applied to industrial examples [46].
Certain adjustments are typically needed in the structuring of the applications, but these changes
encourage a more modular and more maintainable architecture and so could be viewed quite
favourably.

There are, however, still some common implementation patterns that it does not support [78], e.g.
the composite pattern where there is no separate owner through which all manipulations take place
[60]. New techniques are needed to extend the work to handle these problems.

Currently there is no support for the transfer of ownership or multiple ownership. Transfer of
ownership could perhaps be achieved through the use of cloning like that which is currently used
within Omnibus to support value semantics. Handling of multiple ownership may require a hybrid
approach incorporating aspects of the techniques described in the next section.

4.2.2 Visibility-based invariants

The second approach is called visibility-based invariants and requires that all the invariants that can be
affected by a field assignment are visible in the methods that contain the updates. Whenever we assign
to a field of an object we not only check the invariant of the class the code is in but all the other
invariants that are visible and could be affected by the changes.

This approach does not work for the Person-BankAccount example as it is since the invariant
in class Person is private and so is not visible from the client code outside the class. To support this
verification mechanism we would have to make the invariant public which would require us to make
the acc attribute public so that we can refer to it in the invariant. We would also have to describe in
the specification how this attribute is manipulated so that clients can tell at all times what
BankAccount is owned by the object. Then any time we mutate a BankAccount object we have to
prove that either it is not referenced by a Person object and hence cannot violate the invariant or that
it is referenced by a Person object but maintains the invariant. For our example code snippets, this
process would raise an error at the final lines where we attempt to mutate the BankAccount objects
which are referenced by a Person object.

Visibility-based invariants are very powerful and can be applied in situations where ownership-
based verification is not possible. However, there are some serious problems with the approach [60].
Firstly, it is an intrinsically non-modular approach and involves the sort of complicated reasoning that
is characteristic of non-modular static verification. Considerably more proof obligations are generated
since invariants have to be checked whenever field assignments take place and not just at the end of the
methods in the class that contains the declarations of the fields. The proof obligations may also be very
complicated since they must refer to all the objects in the heap. Secondly, the visibility requirement is
very strict. For example, if an invariant involving an array is defined then any method that uses an array
must be checked to make sure it does not violate the invariant. Thirdly, subtyping causes real problems

4 Challenges of reference semantics

 51

for the visibility requirement since a subclass may be defined in a separate package where it cannot see
a relevant invariant.

The complexity of the visibility-based invariant approach compromises the ability to which it can
be automated and, by being non-modular, will not scale well.

Future work on the combination of support for reference semantics with the value semantics
techniques of the Omnibus language are discussed in section 9.3.1.

 52

5 Combining verification approaches
In this thesis we focus on three assertion-based techniques for the integrated specification,
implementation and verification of object-oriented software: Run-time Assertion Checking (RAC) [68],
Extended Static Checking (ESC) [41] and Full Formal Verification (FFV) [34]. RAC and ESC are
lightweight approaches which accept programs annotated with lightweight specifications that describe
some key properties, but do not attempt to be complete in any sense. In RAC, the lightweight assertion
annotations are converted into run-time checks and the application is then tested to uncover assertion
failures. The key contribution of RAC to the testing process is the ability to detect errors close to
source, easing analysis and correction. In ESC, the consistency between code and its assertion
annotations is checked statically allowing errors to be detected without testing. The process depends on
the presence of a powerful fully-automated theorem prover such as Simplify [36]. ESC is neither sound
nor complete, aiming simply to detect assertion violations and a range of common run-time errors.
FFV, or full formal verification, provides support for traditional, heavyweight assertion-based
verification. The approach requires the production of heavyweight specifications (also known as
Behavioural Interface Specifications [59]) for all components being verified and a range of code-
annotations such as loop invariants. Again, the code is statically analysed and verification is performed
with the use of either a fully-automated or interactive theorem prover.

The different assertion-based verification approaches provide different balances between rigour and
ease of use, matching the different balances between reliability requirements and development
resources in different parts of a software development project. The approaches also have neatly
complementing strengths and weaknesses. The lightweight RAC and ESC approaches allow reliability
to be improved without requiring prohibitive investments in time and effort, but ESC breaks down
somewhat in the presence of external components and RAC requires the use of testing to uncover
failures. In contrast, FFV is capable of sufficiently describing and statically verifying external
components, but its costs cannot typically be justified unless the component is going to be reused in
different projects or reliability is critical. We are interested in allowing the different approaches to be
used together in an integrated fashion within different parts of the same project.

Traditionally, support for these approaches has been developed by separate teams, yielding separate
tools often targeting separate languages. JML has provided a common language for a range of
lightweight and heavyweight assertion-based verification tools but those tools are still developed and
used separately. Even comparative case studies from the JML group have, until recently, used the tools
independently rather than in an integrated fashion [51] although there were suggestions of using the
approaches together. In [51], Jacobs et al. proposed using ESC to guide the selective application of
FFV. The idea is first to apply ESC to the entire project, verifying much of it, and then to use
interactive FFV to attempt to verify the remainder. In [30], Cok and Kiniry discussed how beneficial
they thought it would be to have an integration of tools that support JML, but at the time there was no
tool support for this.

Other tools have combined static and dynamic checking to some extent. Spec# [10] uses a
combination of static and dynamic techniques to verify its assertion annotations. They exploit the fact
that constructs that are difficult to statically check are often relatively easy to dynamically check and
vice versa. Their approach, however, uses a combination of static and dynamic checking to support
their single form of verification, whereas we offer a range of verification approaches of varying rigour.
Other tools like PerfectDeveloper [33] include provisions to generate RAC pre-condition checks to
ensure that the assumptions on which the proofs of correctness are made are not violated by calls made
from unverified code.

Our integrated support for ESC and FFV hinges on our generic logic which allows us to support
interactive and automated provers. While ESC and FFV tools have been implemented separately, many
FFV tools support the use of both automated and interactive provers (e.g. [2, 3, 9, 19]) and some
support different interactive theorem provers (e.g. [72]).

Independently of our own work on the integrated use of approaches together [97, 101-103], people
in the JML community have been working towards the integration of ESC and interactive verification
(which comes within our definition of FFV) [57]. More recently, an architecture of JML4 has been
proposed which will allow the integration of RAC, ESC and FFV [23]. The proposal does not include
anything similar to our concept of verification policies.

Portions of this chapter have previously been presented elsewhere [102, 103].

5 Combining verification approaches

 53

5.1 Addressing limitations of ESC with the other approaches
We start by selecting one approach, ESC, and discuss some of the reasons why it has been relatively
well received. We then illustrate a key flaw in the approach and show how the other approaches help
address it.

5.1.1 Strengths of ESC

The ESC approach provides a push-button technique to statically detect a range of possible run-time
errors and violations of lightweight specifications. It provides better error coverage than conventional
type checking, and allows problems to be uncovered earlier in the software development cycle than
RAC, when they are cheaper to correct, without the need to use testing. Furthermore, it requires
considerably less effort to use than FFV.

ESC tools feel like type checkers to use, producing type checker-like error messages that developers
are generally more receptive to than traditional formal methods. The approach uses lightweight
interface specifications that allow design decisions to be documented, and warns of inconsistencies
between these annotations and the code. While appearing like type checkers to the user, the
implementations of ESC tools have more in common with traditional formal verification tools, utilizing
fully automated theorem provers behind-the-scenes. The approach is neither sound (so it can miss
errors) nor complete (so it can report spurious warnings) but is relatively easy to use, fast and powerful.
ESC has been fairly well received [62] and appears to hold great promise.

5.1.2 A Problem with ESC

There is, however, a critical problem with ESC: the lightweight specifications developed while using
ESC to check a particular class may not be sufficient as a basis for later static modular checking of
classes that use this class. In this section we will illustrate this problem by presenting an example,
showing how the ESC approach is used to the point where it breaks down, show the facilities ESC
provides for coping with this situation, and then investigate how RAC and FFV handle the problem.

When applying ESC to a particular class, the process typically starts by taking an unannotated or
partially annotated piece of code and using an ESC tool to check for errors. This will usually yield a
number of warnings indicating a combination of bugs in the code and incompleteness in the
specifications of the current class or a class it uses. The user will then enter into a cycle of correcting
code and adding annotations to address the issues raised until the tool processes the class without
warnings.

Consider the following Omnibus example adapted from the classic example presented in the
founding paper on ESC/Java [41]. It represents a Bag class which is constructed from a List of
elements of which the minimums can subsequently be removed, in turn, using the extractMin
operation. Comparisons are carried out using a passed Comparator object. An Array is used to
store the elements, with the first size positions in the array arr containing the elements currently in
the Bag. The constructor copies all the elements from the passed List into the Array and sets size
to the size of the passed List. The extractMin operation calculates the index and value of the
minimum element and then copies the last element in the Array to that index, reduces the size by
one and returns the minimum element. The Optional class is used to model possibly null values.
This class has two constructors: nil for where no value is provided and of for where there is a value.
We will add annotations later as needed to respond to errors reported by our ESC tool.

 1: public class Bag[Element] {
 2: private attribute arr:Array[Element]
 3: private attribute size:integer
 4: private attribute comparer:Comparator[Element]
 5:
 6: public constructor containing
 7: (input:List[Element],
 8: comp:Comparator[Element])
 9: {
10: comparer := comp;
11: size := input.size();
12: arr := Array[Element].ofSize(size);
13: for (i := 0 to size - 1) {
14: arr.assign(i,
15: Optional[Element].of(input.elementAt(i)));

5 Combining verification approaches

 54

16: }
17: }
18:
19: public operation extractMin(out min:Element)
20: {
21: var minIndex:integer := 0;
22: min := arr.access(0).value();
23: for (i := 1 to size-1) {
24: if (comparer.compare(arr.access(i).value(),
25: min) = Ordering.before()) {
26: minIndex := i;
27: min := arr.access(i).value();
28: }
29: }
30: size := size - 1;
31: arr.assign(minIndex, arr.access(size));
32: }
33: }

Applying ESC to this example using our Omnibus IDE verification tool yields the following
warnings:

Bag.obs:22: Unable to verify public requires clause of the access
function declared in omni.lang.Array at line 6

Bag.obs:22: Unable to verify public requires clause of the value
function declared in omni.lang.Optional at line 6

Bag.obs:24: Unable to verify public requires clause of the access
function declared in omni.lang.Array at line 6

Bag.obs:24: Unable to verify public requires clause of the value
function declared in omni.lang.Optional at line 6

Bag.obs:31: Unable to verify public requires clause of the access
function declared in omni.lang.Array at line 6

These warnings expose undocumented design decisions. For example, the first of the errors at line
24 warns that i may not be a valid index of the arr array. We know from the loop condition that to
reach these lines i must be less than or equal to size-1 but there is no known connection between
size and arr.length() and so we cannot tell whether i < arr.length(). The reader may
argue that the implementation of the constructor together with the implementation of the
extractMin operation should be sufficient to deduce this but our ESC tool uses modular checking of
methods. When reasoning about the extractMin operation, it can reason about the other methods in
the class using only their specifications. The developers of the ESC/Java tool adopt the same position
since modular checking is essential if the approach is to scale [41].

In order to get the Omnibus ESC tool to accept the Bag class we need to add the following
invariants to formalize the intended relationship between size and arr, and a pre-condition that the
Bag must be non-empty before extractMin can be used. The invariants must be established by the
end of the body of the containing constructor, can be assumed at the start of the extractMin
operation, and must be re-established by the end of the body of extractMin. To describe the pre-
condition of extractMin we need to make the size of the Bag publicly accessible by introducing a
new public function to return it.

private invariant size >= 0 && size <= arr.length()
private invariant forall (i:integer := 0 to size-1):
 !arr.access(i).isNil()
public model function size():integer
 private returns size
public operation extractMin(out min:Element)
 requires size() > 0

These alterations permit the code to pass the checks performed by our ESC tool and so the user can
move on to another class. Consider the IntegerSorter class shown below which uses an instance
of the Bag class to sort a List of integers. It starts by constructing a Bag from the passed List and

5 Combining verification approaches

 55

an initially empty List named sortedInts into which the sorted values will be put. It then
repeatedly extracts the minimum from the Bag, adds it to the List until the Bag is empty at which
point it returns the sortedInts. The function contains an ensures clause asserting that the
sortedInts list is of the same size as the input list.

1: public class IntegerSorter {
2: public static function sort
3: (ints:List[Integer])
4: :List[Integer]
5: ensures result.size() = ints.size() {
6: var b:Bag := Bag.containing(ints,
7: DefaultIntegerComparator.init());
8: var sortedInts:List[Integer]
9: := List[Integer].empty();
10: while (b.size() > 0) {
11: var m:integer;
12: b.extractMin(out m);
13: sortedInts.add(m);
14: }
15: return sortedInts;
16: }
15: }

Applying ESC to this example yields the following warning:

IntegerSorter.obs:16: Unable to verify public ensures clause of sort
function declared at line 5 holds at return statement

The tool is unable to deduce that the size of the returned List is equal to the size of the passed
List. This is because the specification of the Bag class does not explain how the containing
constructor and extractMin operation alter the size of the Bag. Once again, this is a product of
the fact that, in the modular checking process, methods can only reason about other methods using their
specifications.

We have now hit the problem: the lightweight specification we developed through verification of
the Bag class is insufficient as a basis for the modular checking of our new class IntegerSorter.

In ESC there are two techniques we can use to cope with this eventuality:
1. iteratively increase the detail of the original specification or
2. use assumption constructs.

5.1.2.1 Iteratively increasing the detail of the original specification

The first and most obvious approach is to return to our Bag specification and add to the specification
the details the tool needs to verify the new class. In this case, we simply need to describe how the
containing constructor and extractMin operation change the size of the Bag. This is made
easier by the fact that we have already defined a public size function. Hence we can alter the headers
of the containing and extractMin methods in our Bag class to be:

public constructor containing(input:List[Element],
 comp:Comparator[Element])
 ensures size() = input.size()

public operation extractMin(out min:Element)
 requires size() > 0
 ensures size() = old size() - 1

With these additional annotations, the ESC tool is able to successfully deduce that the size of the
input and returned lists in the IntegerSorter.sort method are equal.

While this has solved the original problem, there is still a host of related problems lying in wait.
The problem was triggered by the ensures clause of the IntegerSorter.sort method which
stated that the sizes of the source List and the sorted List should be equal. Of course, we might
want to more completely characterize this method. For example, the entries in the result should be
ordered and result should be a permutation of the input. If we wanted to include such things in the

5 Combining verification approaches

 56

ensures clause of IntegerSorter.sort then we would need to further augment the Bag
specification to describe how the contents are manipulated and how the values returned relate to them.

This approach assumes that the users of the tool are developing the classes being analysed
themselves or at least have access to the original source code in order to deduce and add assertion
annotations. However, this may not always be the case. Realistic applications are made up of code
written specifically for the application being developed, components reused from built-in libraries, and
possibly components produced by third-party component vendors. If the specifications of the external
components (i.e. the components developed by others) are insufficient as a basis for the modular
checking then iteratively increasing the detail of the specification in this way is not an option.

A variation of this technique could be used for external components where specifications are
provided “out-of-band”, i.e. separately from the component [10]. So whereas the client may not have
access to the inner details of the external component, they do have read/write access to the specification
of the component. However, without access to the original code, they have no way of determining the
subtleties of exactly how the implementation handles different circumstances and no way of checking
their best guesses.

5.1.2.2 Use of assumption constructs

The other major technique which we can use to get around this problem in ESC is to make use of
assumption constructs. One such assumption construct is the assume statement which permits the user
to give an assertion to be added to the system’s current knowledge without further justification. So, for
example, when we found that the specification of the Bag class was insufficient to verify that the sizes
of the input List and sorted List are equal, we could simply have added an assume statement to
say that they should be. Such a statement could be placed just before the return statement and would
appear as follows:

15a: assume sortedInts.size() = ints.size();

This would then enable the system to deduce the truth of the ensures clause at the end of the
method.

The problem with assumption constructs is obvious: they are, as their name implies, assumptions
without formal justification within the system. They are unsound and allow the user to circumvent the
entire checking process. However, they do allow the user to suppress spurious warnings and can be
used in conjunction with external components as well as pieces of code written by the developers
themselves. Furthermore, while there is no basis for the assumptions within the system, the user can
base them upon informal information such as the names of the class and methods, associated interface
documentation and domain information. They can then include descriptions of informal justification as
comments within the code. We will also see how they can be used in conjunction with RAC.

5.1.3 Plugging the gaps in ESC with RAC and FFV

Let us now consider how the other approaches can help address this problem.

5.1.3.1 Incorporating RAC

RAC is another approach that we can use to verify the correctness of an application relative to
lightweight specifications. We can take our Bag and IntegerSorter classes with their
specifications, generate an implementation incorporating run-time assertion checks, and then test it to
detect failures. The key advantage of RAC in tackling this problem is that while in ESC the
specification of a class forms the sole basis for verification of its use in classes that use it, in RAC the
implementation can be used to check properties that were not described by the specification. Taking
our example, the incompleteness of the lightweight specification of the Bag class would not cause a
problem for the verification of the IntegerSorter class using RAC. This is because, although the
specification does not explicitly describe how the size changes, the implementation does and that is
what is used to check assertions in RAC. Another way of looking at this is that RAC never gives a
warning unless there is a run-time error or a violation of an assertion, whereas ESC also reports
warnings if the specifications are insufficient to perform static modular checking. So RAC does not
suffer from this crucial limitation although it has its own limitations (like the need to be associated with
a testing strategy in order to detect assertion failures) that prevent it being an ideal replacement.

We have seen how assumption constructs are a useful way to provide additional information about
components although they have no formal basis within the ESC system and so can be used to
circumvent the verification process. However, while the assumption constructs cannot be verified

5 Combining verification approaches

 57

statically, they can be converted into RAC checks. Thus ESC can be used to check everything except
the assumption constructs, and RAC can be used to check the assumption constructs. This can be
applied to our IntegerSorter example, the class being verified by the ESC tool, assuming that the
assume statement holds, something that can then be verified by testing the application with its
generated RAC run-time checks. This technique is used by the Spec# tool [10].

5.1.3.2 Incorporating FFV

Up until this point, we have considered only lightweight specifications and approaches. However, an
obvious solution to the problem of lightweight specifications not providing sufficient information is to
write more descriptive heavyweight specifications. By using these together with FFV we can get
around the problem, since a heavyweight specification can be sufficiently informative to provide a
basis for static modular checking. However, FFV is too costly to form an ideal complete replacement
for ESC.

Let us for the moment restrict our attention to reusable components, i.e. components that have been
written by another developer, whose source code we have no access to, and whose specification we
have read-only access to. There has been a wide range of work on reusable software components. To
safely reuse components from external sources we need two things:

1. specifications that sufficiently describe the interface of the component [71], and
2. sufficient basis to trust that the implementation satisfies the specification [70].

The problem is that ESC does not completely address either of these issues. However, FFV can.
The heavyweight specifications produced for FFV provide a way of sufficiently describing the
interface of a component and its associated verification approach provides a basis for trusting a hidden
implementation. Also, while the costs of FFV cannot typically be justified for entire applications, the
economies of scale make it a more attractive proposition for reusable components. So suppose the Bag
class was developed by a third-party component vendor. They could use FFV to fully specify and
verify their component, giving a specification with all the information needed to check the
IntegerSorter class. An outline of a heavyweight specification of the Bag class is given below:

public class Bag[Element] {
 private attribute arr:Array[Element]
 private attribute size:integer
 private attribute comparer:Comparator[Element]
 ...
 public model function contents():List[Element]
 private returns arr.range(0,size).toList()

 public model function comparer():Comparator[Element]
 private returns comparer

 public function size():integer
 returns contents().size()

 public constructor containing
 (input:List[Element],
 comp:Comparator[Element])
 ensures contents() = input,
 comparer() = comp
 { ... }

 public operation extractMin(out min:Element)
 requires size() > 0
 changes contents
 ensures old contents().contains(min),
 forall (e:Element in old contents()):
 comparer()
 .compare(min, e).isBeforeOrSame(),
 forall (e:Element in old contents()):
 if e = min then
 contents().countOf(e)
 = old contents().countOf(e)– 1

5 Combining verification approaches

 58

 else
 contents().countOf(e)
 = old contents().countOf(e)
 { ... }
}

If we are verifying the IntegerSorter class using FFV then the tool can use this heavyweight
specification to reason about the Bag class. However, the ESC tool is not able to effectively reason
about it because of its use of the recursive countOf method. We will look at how we can ESC-check
the IntegerSorter class using this specification in a later section.

5.2 Guidance on how to use the approaches together
There are a number of problems that can arise when using the approaches together. These occur when,
in using a particular approach to verify a class, we have to reason about the use of a class that was
verified using a different approach. In this section we present some guidelines for avoiding conflicts
between the approaches. We have included “unverified” as a class of verification since the application
may contain classes that are not verified with any of the approaches; interactions with such classes may
be particularly troublesome.

Note that we consider the problems from the point of view of a class using another class, where the
usage is strictly directed. For example, the IntegerSorter class uses the Bag class, but the Bag
class does not use the IntegerSorter class, so we only consider the problems caused by the
incompatibilities of the two specifications from the point of view of the IntegerSorter class. Of
course, it may be possible to have bi-directional usage links; where these occur we treat them as two
separate usage links.

5.2.1 RAC- and ESC-compatibility

A key problem with combining the different assertion-based verification approaches is that not all
specifications can be converted to efficient run-time checks and handled by the automated provers used
by ESC. We refer to these properties as RAC- and ESC-compatibility, respectively.

RAC-compatibility is the more straightforward to define. Certain specification constructs like
quantifiers and recursion can cause problems for run-time assertion checkers. We can check quantifiers
at run-time if their variables are restricted to enumerable ranges, but even if we do this it may not be
practical for efficiency reasons. Care must also be taken with recursion so as to avoid non-termination
(a potential source of unsoundness in our approach) and situations where evaluation of the assertion
describing the intended behaviour of the method is as costly as the execution of the method itself. To
ensure RAC-compatibility the developer must ensure that all specifications that need to be checked at
run-time can be converted into efficient checks. In the next section we will see that we must consider
RAC-compatibility even when we are using one of the other approaches to verify a component.

The Omnibus tool is able to check whether assertions are executable by ensuring they do not use
certain constructs like quantifiers without enumerable ranges. The efficiency aspect is trickier. Test
harnesses can be used to help assess the efficiency but what is acceptable will be dependent on the
context. Run-time overheads may prevent the use of assertion checks in certain final products, but they
may still be useful in pre-release testing.

ESC-compatibility is more complex to define. Firstly, certain constructs like recursion cannot
typically be handled by automated provers and so are not ESC-compatible. However, automated
provers can run into problems even when using specifications that do not use such features. Although
quantifiers can usually be handled, complicated combinations will often defeat them. Every prover will
have things that it can handle well and, as a consequence of undecidability of the problem, will also
have things that it handles poorly. A possible approach is to define ESC-compatibility relative to the
specific theorem proving capabilities of the ESC tool being used. To determine whether a specification
is ESC-compatible for a particular tool, we must experiment with that tool. The Omnibus IDE supports
the definition of test harnesses which can be used to carry out this experimentation. A problem with
this definition of ESC-compatibility is that it is implementation dependent, which will become more of
an issue as the community moves towards interchangeable provers.

5.2.2 Guidelines for avoiding conflicts between approaches

We have developed a set of guidelines to help developers to avoid conflicts between the approaches.
1. All pre-conditions of methods should be RAC- and ESC-compatible if they are called from

RAC- or ESC-verified classes.

5 Combining verification approaches

 59

2. All post-conditions of methods should be ESC-compatible if they are called from ESC-
verified classes.

3. All assertions should be checked using at least one of the approaches.
4. A class should not directly use a less rigorously verified one where RAC, ESC and FFV

offer verification at increasing levels of rigour.
Guidelines 1 and 2 are to do with the compatibility of specifications between approaches. Guideline

3 ensures that when the approaches are used together, no assertion checks are missed. Guideline 4
describes forms of integration that will be troublesome and should be avoided.

5.2.2.1 Guideline 1: Pre-condition compatibility

Guideline 1 says that the pre-conditions for all methods should be RAC- and ESC-compatible if an
RAC- or ESC-verified class calls the method. As was discussed earlier, to ensure RAC- and ESC-
compatibility, the developer should attempt to write the pre-conditions in a suitable form, e.g. avoiding
the use of recursion and providing enumerable ranges for quantified variables wherever possible,
allowing them to be converted into run-time checks. However, to sufficiently describe the pre-
condition of a method, it may be necessary to use assertions that cannot be handled by RAC and ESC.

As a somewhat artificial example, consider the following extract of a Set class verified using FFV.
The public specifications are described in terms of the contains and size public model functions,
which are implemented using a private List attribute named contents. We ensure that contents
contains no duplicates by using an invariant so that we can calculate the size of the Set by taking
the size of the contents List and do not need to remove any duplicates first. We define a
unionOfDisjoints operation to calculate the union of the set with another set. The pre-condition
of the unionOfDisjoints operation is expressed in terms of the contains model function using
a quantifier without an enumerable range. Thus, the system cannot automatically generate an
appropriate run-time check to guard this method. We may wish to write a quantifier to iterate over the
contents attribute that is used to implement the contains model function, but we cannot refer to
this private attribute in the public specification of unionOfDisjoints.

public class Set[Element] {
 private attribute contents:List[Element]

 private invariant "No duplicates in contents":
 !(exists (i:integer := 0 to contents.size()-1,
 j:integer := 0 to contents.size()-1):
 i != j
 && contents.elementAt(i)
 = contents.elementAt(j))

 public model function contains(e:Element):boolean
 private returns contents.contains(e)

 public model function size():integer
 private returns contents.size()

 ...

 public operation unionOfDisjoints(s2:Set[Element])
 requires "Sets must be disjoint":
 forall (e:Element):
 !(this.contains(e) && s2.contains(e))
 changes contains
 ensures
 contains(e) = old contains(e) || s2.contains(e),
 size() = old size() + s2.size()
}

We can combat this problem by rewriting pre-conditions involving unconstrained quantifiers using
separate new functions that are described using a method with the troublesome assertion in its post-
condition and an implementation defining how to implement the check. This solves the problem of
RAC-compatibility since the dynamic checks will use the implementation of the new function to check

5 Combining verification approaches

 60

the pre-condition, whereas the static approach can use the post-condition of the new function described
using the unexecutable assertion. What we have exploited here is that RAC only requires that the pre-
conditions and the implementations of called classes can be executed.

For example, in the Set class we could introduce an isDisjointTo function and define the pre-
condition of the unionOfDisjoints operation in terms of it. The system will then be able to
convert the pre-condition of the unionOfDisjoints operation into a run-time check, using the
implementation of the isDisjointTo function. Run-time checks do not need to be generated for the
post-conditions in the Set class since the verification of the Set class using FFV will prove these,
provided that the pre-conditions hold at the start of the method (which the run-time checks ensure). The
FFV verification of the Set class can still reason about the pre-condition of the
unionOfDisjoints operation in terms of the unconstrained quantifier which now appears in the
post-condition of the isDisjointTo function. Furthermore, the FFV verification of the Set class
will require the developer to prove that the isDisjointTo function satisfies its post-condition,
ensuring that the developer has implemented the check properly.

 public operation unionOfDisjoints(s2:Set[Element])
 requires "Sets must be disjoint":
 this.isDisjointTo(s2)
 changes contains
 ensures
 contains(e) = old contains(e) || s2.contains(e),
 size() = old size() + s2.size()
 { ... }

 public function isDisjointTo(s2:Set[Element]):boolean
 ensures result <==>
 (forall (e:Element):
 !(this.contains(e)
 && s2.contains(e)))
 {
 // Check all elements in 'this' are not in 's2'
 foreach (e:Element in contents) {
 if (s2.contains(e)) {
 return false;
 }
 }
 // Check all elements in 's2' are not in 'this'
 foreach (e:Element in s2.contents) {
 if (contains(e)) {
 return false;
 }
 }
 return true;
 }

This approach can also be used to ensure ESC-compatibility when used in conjunction with
guideline 2. A new function can be introduced to move a non ESC-compatible assertion from the pre-
condition of the original method to the post-condition of a new method where redundant specifications
can be used to provide a partial, ESC-compatible description of the method. Additional assumptions
about the value of the method can then be easily formulated in the client code as appropriate.

5.2.2.2 Guideline 2: Post-condition compatibility

Guideline 2 says that the post-conditions for all methods should be ESC-compatible if an ESC-verified
class calls the method. Post-conditions are even more prone to ESC-compatibility problems since, in
FFV, heavyweight specifications may have been required to sufficiently describe the method.

This problem can be addressed by using which ensures clauses to provide lightweight ESC-
compatible redundant specifications for non ESC-compatible ensures clauses. Redundant
specifications are generally used to express properties that should follow from the standard
specification. Our idea is that if the post-condition of a method in a FFV-verified class cannot be
handled by ESC, then a redundant specification is provided giving a lightweight specification that

5 Combining verification approaches

 61

should follow from the original specification but does not have to be complete in any sense. For
example, while the heavyweight Bag specification in section 5.1.3 provides all the information
necessary to verify our IntegerSorter class, its use of the recursive countOf method means the
ESC tool cannot effectively deduce that the size of the Bag is decreased by one in the extractMin
method. We can provide this information in a form accessible to the ESC tool via a lightweight
redundant specification like the one shown below.

public operation extractMin(out min:Element)
 requires size() > 0
 changes contents
 ensures ...
 which ensures size() = old size() - 1

In this case we discovered that the heavyweight Bag specification from section 5.1.3 was not ESC-
compatible when we attempted to verify the IntegerSorter class using ESC. Alternatively we
could have defined a test case within the Bag class to check its ESC-compatibility. Omnibus tests can
have a policy specified in a policy clause; if present, this indicates that the specified approach should
be used to verify the test. So an FFV-verified Bag class we can define a test to be verified using ESC.
We refer to tests to be verified with RAC, ESC or FFV as RAC-targeted, ESC-targeted or FFV-
targeted tests, respectively.

Now, if we are using FFV to verify the use of a class that was verified using FFV then we would
use its original heavyweight specification and, if we are using ESC to verify the use of a class that was
verified using FFV, we would use its lightweight redundant specification. Of course, the lightweight
redundant specifications suffer from the same incompleteness problems as any other lightweight
specifications. Normally, when using ESC, the lightweight specification and the code is all we have. If
we do not have access to the code then we have to use assumption constructs based on informal domain
knowledge or interface documentation. However, in this situation the developer can refer to the
heavyweight specification in order to determine if assumption constructs are valid. These justifications
could be informally documented in comments within the code or formally verified with FFV.

In our experience, the majority of methods can be written to be ESC-compatible and, for those that
cannot, redundant specifications are generally easy to write and are useful to verify some desired
properties of the specification.

5.2.2.3 Guideline 3: Assertion coverage

Guideline 3 states that all assertions should be checked using at least one of the approaches. For
example, every time a method is called, its pre-condition should be checked and every time an ESC
assume statement is used it should be checked by another approach to ensure that it is true. The use of
different approaches for different classes can make it possible for assertions to be missed because RAC
checks assertions in a different way from ESC and FFV. In ESC and FFV, the caller of a method is
responsible for checking the pre-condition of the method whereas, in our RAC approach, the called
method is responsible for checking its own pre-condition.

The Omnibus IDE provides two tools for tracking the verification performed: the check viewer and
the obligation viewer. The check viewer displays the details of the verification that was performed on a
file. This is useful because the errors only describe the things that were checked and failed, but the
programmer may be interested in reviewing the things that were checked and passed.

Consider the situation where we use ESC to verify the Bag class and RAC to verify the
IntegerSorter class. Since we use RAC to verify the IntegerSorter class, a run-time check
will be generated for the ensures clause of the sort function. This is the only check that is
generated for the file and, given an appropriate test case, it is checked so the check viewer (shown
below) reports that the verification was successful.

5 Combining verification approaches

 62

No run-time check was generated for the pre-condition of the extractMin operation of the Bag
class called from the sort function in the IntegerSorter class because in our RAC approach it is
the responsibility of the method being called to run-time check its pre-condition. However, the Bag
class has no checks because it was verified using ESC, not RAC. So there is a gap in the assertion
coverage of the approaches. The assertion to check the requires clause of the extractMin
operation call is not being checked by any of the approaches. The first problem is how we can detect
this situation, the second being how we can correct it.

In order to detect the situation, Omnibus supports the generation of correctness obligations which
give details of all the assertions that need to be checked for each class. In order to ensure assertion
coverage, justification should be provided for each correctness obligation. Justification can take the
form of the execution of a run-time assertion check or the proof of an appropriate VC. The obligation
viewer tool displays the correctness obligations for a class together with any corresponding
justification. A screenshot of the tool is shown below. The correctness obligations are shown as special
comments within a tree display of the source of the class. Ticks indicate that there are no unjustified
correctness obligations in a branch. Exclamation marks indicate that there are some unjustified
correctness obligations in a branch. Crosses are used to indicate errors (i.e. obligations which have a
failed run-time check or failed VC as justification). The screenshot indicates that, when RAC is used
for the IntegerSorter class and ESC is used for the Bag class, there is an unjustified correctness
obligation that the requires clause of the extractMin operation is satisfied. ESC assume
statements would also appear as unjustified correctness obligations unless they were checked using one
of the other approaches.

Correctness obligations are also used to identify special cases which should be verified using

different policies, as discussed in section 5.3.2, and as the basis for the certification system discussed in
chapter 6.

In order to ensure no pre-condition checks are missed, all classes should, in general, include run-
time checks of their pre-conditions because, while calls made from statically verified code should
satisfy the pre-conditions, calls from RAC-verified or unverified code may not. Hence, ESC- and FFV-
verified classes that were verified under the assumption that their pre-conditions are always respected,
may have that assumption broken. This may lead to a run-time error or assertion failure being
generated within the execution of the statically verified class, even though the cause of the error was
the silent violation of the pre-condition by the calling class, and not a fault in the implementation of the
statically verified class. To guard against this we must ensure that any methods called by unverified or
RAC-verified classes must have their pre-conditions checked at run-time so that invalid calls of these
methods can be identified and reported correctly to the user. If, however, the class being considered is
for use only within this system and all the classes that use the class have been statically checked then,
for efficiency reasons, the checks can be omitted.

5.2.2.4 Guideline 4: Non-decreasing rigour

Guideline 4 advises that a class should not directly use (i.e. instantiate and call methods of) another
class which was verified using a less rigorous verification approach. RAC, ESC and FFV provide
verification at increasing levels of rigour. An ESC-verified class should not directly use an unverified
class because the unverified class will have no specification that can be used to reason about its method
calls. If an ESC-verified class uses an RAC-verified class, the specifications in the RAC-verified class

5 Combining verification approaches

 63

may need to be enhanced so that they include constructs, such as private ensures clauses for model
functions and changes clauses, which are not required for RAC but are essential for the use of ESC.
Similarly, FFV-verified classes should not directly use unverified, RAC-verified or ESC-verified
classes because the specifications of those classes will not be sufficient.

Guideline 4 states that these combinations of approaches should be avoided. If the entire application
has been developed by a single person then it is always possible to structure the application so that
these combinations are avoided. We can achieve this by either increasing the level of verification used
for the client class or by decreasing the level of verification for the supplier class. For example, it is not
allowable to use FFV to verify the IntegerSorter along with ESC for the Bag class, but we can either
increase the verification of the Bag class to FFV or decrease the verification of the IntegerSorter
class to ESC. The situation may be complicated by the relationships with other classes in the system.
For example, there may be another class in the system that uses Bag and is also verified using FFV, in
which case we should probably increase the verification of Bag to FFV rather than decrease the
verification of IntegerSorter to ESC. In the extreme we will be forced to increase the verification
level of the entire application to FFV or decrease it to RAC/ESC but, in general, it will be possible to
have intermediate levels of verification. We will discuss this further in section 5.2.3.

While we can always follow guideline 4 if we have developed all the classes in the application
ourselves, applications will usually make some use of external components either from built-in libraries
or component vendors. These pose a problem since we cannot change their level of verification to fit
the verification levels of the other classes in our application. Let us suppose that the Bag class is an
external component. If it was verified using ESC/RAC then we are constrained to use ESC/RAC to
verify the IntegerSorter class. However, if it was verified using FFV then, assuming guidelines 1,
2 and 3 are followed, we are free to use any one of RAC, ESC or FFV to verify our IntegerSorter
class. We view this as a sufficient justification to favour the use of FFV for reusable components
wherever possible [97].

The following table enumerates the allowable calling relationships between classes verified using
the different approaches along with the corresponding constraints. This table is read as follows.
Suppose, for example, that we wish to work out whether, when verifying the IntegerSorter class
using ESC, we can use a version of the Bag class verified using FFV. To do this, we look up the ESC
row and FFV column and find we can, providing that non ESC-compatible post-conditions have
lightweight redundant specification substitutes.

Can use classes verified using Approach

None RAC ESC FFV

Unverified Y Y Y1 Y1

RAC Y Y Y1 Y1

ESC N2 Y3,4 Y4 Y5

FFV N6 N6 N6 Y

Constraints:

1. Providing that pre-conditions are dynamically checked and do not contain non RAC-
compatible constructs like unconstrained quantifiers.

2. Unless all calls of the methods of this class are guarded by appropriate assume and
assert statements. This will be cumbersome unless the number of calls is small.

3. Providing that the specifications are ESC-compatible.
4. Using assumption constructs or, if the class is not an external component, iterative

strengthening of specifications to handle incompleteness problems.
5. Providing non ESC-compatible post-conditions have lightweight redundant specification

substitutes.
6. Unless the FFV approach is weakened to allow assumptions (as discussed in section 5.2.3)

and all calls of the methods of this class are guarded by appropriate assume and assert
statements. This will be cumbersome unless the number of calls is small

5 Combining verification approaches

 64

5.2.3 Recommendations for when to use each approach

The preceding section described the ways in which it is possible to use the approaches together. It
described which combinations are invalid and the constraints that the combinations of the other
approaches must satisfy in order to be valid. However, for realistic systems, there will still be multiple
ways in which the system could be divided up into sections where different approaches are used. While
there are no definite rules on how to select a particular verification approach for each section, and part
of the point of our work is to give developers flexibility to make such choices themselves, we have
created some general guidelines to assist the developer. Developers must also be conscious of the
consequences of their choices of verification approaches for the different classes in their application,
and we also discuss this.

5.2.3.1 General guidelines

When to use ESC: Our opinion is that ESC, together with dynamic checking of assume statements, is
the best approach for the majority of classes. We recommend the use of ESC unless the class being
verified falls into one of the categories described below.

When to use RAC instead of ESC: ESC requires considerable up-front effort in order to provide the
tool with enough annotations to perform static modular checking. Even if a system has no bugs, the
ESC tool will keep reporting warnings until the developer has provided sufficient assertion annotations.
If this up-front investment is not practically possible then RAC can be used instead. In RAC, the
verification effort is carried out in the traditional testing phase.

When to use FFV instead of ESC: There are two main situations where a developer might prefer
FFV to ESC: (1) to verify critical classes and (2) to verify reusable components. If the cost of an error
in the class is very high then the developer may decide that the additional error coverage provided by
FFV, albeit at a considerable cost, make it the most desirable approach. If RAC or ESC is used to
verify a reusable component then the specifications will likely be lightweight and relatively incomplete.
This will hamper clients using ESC to verify classes that use the component. There may be properties
of the component that are needed to verify the client’s class but are not expressed in the lightweight
specification. Assumption constructs will have to be used to address this because the source of an
external component is not available to be iteratively strengthened. This will involve extra work and
complicates the use of the components. As a result, if RAC or ESC is used to verify a reusable
component then it may be better to dynamically check usage of the component using RAC rather than
using ESC, since clients using RAC do not need to provide additional assumption constructs when
using components with lightweight specifications.

When to use none of the approaches: We strongly recommend that at the very least developers use
lightweight specifications to document key design decisions and RAC to report when they are violated.
This involves modest additional effort but can greatly assist in debugging and provides a springboard to
the use of static approaches.

5.2.3.2 Structuring the verification of an application

The decisions about what verification approaches to use for each class in an application cannot be taken
in isolation. The verification approach we use to verify a class will have repercussions for the classes
that use it. The main hard requirement is that we cannot use FFV to verify a class unless we have used
FFV to verify all the classes that it uses. We should also look to avoid using unverified classes in ESC
verified classes. So, when we use anything other than FFV to verify a class, we are restricting the
verification of the classes that use it to not be FFV, and when we do not use any of the approaches we
make it difficult to use ESC. Thus it is clear that the interactions between the verification approaches
for the classes in the application are focussed around the uses relationships, so it may be useful to
produce a diagrammatic overview of an application and its uses relationships. We can do this by
breaking the application into horizontal levels where the classes in each level may be used by those in
levels above but not by those below. The bottom level will be the built-in libraries, which necessarily
do not use any classes from the application or components from third-party component vendors. Above
this will be levels for third-party components which may use the built-in libraries but not the classes in
the application. Similar levels should be identified within the application itself. For example, in a
Model-View-Controller (MVC) application, the model classes would be below the views and
controllers. Figure 1 shows an example of how the verification of an MVC application might be
structured.

5 Combining verification approaches

 65

As was discussed earlier, a software developer has no control over which verification approach was

used for library components and third-party components (shown below the dashed line in the figure).
The limits this imposes on the other classes are clearly visible in the diagram above. For example, if
3rd_party_component_1 was verified with RAC instead of FFV, then the developer would not
be permitted to use FFV for verifying the Model and View_3. In order to provide the developer with
as much flexibility as possible in configuring the verification of their application, we therefore
recommend that FFV should be used for all third-party components and library components [97].

5.3 Verification policies
The Omnibus IDE manages the support for different verification approaches through the concept of
verification policies. A verification policy defines precisely how to manage the verification of the
assertion annotations in a class. This consists of whether to use dynamic and/or static checking, what
checks to generate, the theorem prover to use and various other configuration options. RAC, ESC and
FFV are defined as built-in verification policies but the user is also free to combine aspects of the
different approaches to create new policies. A single policy can combine the use of run-time checking
and static verification and different policies can even be used within a single class.

5.3.1 Configuring the approaches

In this section we will discuss some ways in which the run-time checking and static verification can be
configured. Static verification encompasses ESC and FFV. Related work includes the configurable
options in tools such as ESC/Java2 [30] and PerfectDeveloper [33]. Full details of the settings for
Omnibus verification policies are given in appendix C.

5.3.1.1 Configuring run-time checking

There are a number of ways in which the run-time checking process, whereby assertion annotations are
converted into run-time checks, can be customized. The most basic customization is the range of
checks to perform. The developer may decide that they only want to dynamically check certain types of
assertions. The case discussed earlier where only assume statements are run-time checked is a good
example. Another example would be reducing the number of checks in order to decrease the time
overhead.

It may also be useful to customize the information contained in the assertion failure reports. There
is a trade-off between the level of information in the failure messages and run-time efficiency of the
compiled executable. By default, the user may want to include just basic information like a description
of the failure, the relevant source code and a stack trace. However, if the information in these messages
is not sufficient to pinpoint the exact circumstances of a failure then they may prefer to generate more
comprehensive error reports including current parameter, attribute and local variable values at the point

View_1: ESC View_2: RAC View_3: FFV Controller: ESC

Model: FFV

3rd_party_component_1: FFV

Library_component_1: FFV

3rd_party_component_2: FFV

Library_component_2: FFV

5 Combining verification approaches

 66

of failure, and detailed information on the execution path (e.g. how many times was each loop
executed).

There are a number of constructs in the Omnibus assertion language which are not always
convertible into efficient run-time checks (e.g. quantifiers). Some quantifier expressions can be
converted into run-time checks, e.g. those using only variable declarations associated with a range of
integer values, but those without such restrictions cannot be. Even those that can be converted into run-
time checks will likely be expensive to check. The developer may want the system to either ignore (i.e.
treat as true) or prohibit (i.e. generate a type checking error if found) quantifiers that cannot be
dynamically checked, and may want to ignore or translate quantifiers that can be dynamically checked.

5.3.1.2 Configuring static verification

Omnibus provides support for both the ESC and FFV static verification approaches. These are distinct
approaches with different aims, but the underlying processes they use are strikingly similar. They are
both used in conjunction with a theorem prover, start by translating the specifications of the classes and
methods used in the application into the logic of the corresponding prover, and then generate a range of
Verification Conditions (VCs) over these specifications. These should be valid if the program is free of
the class of errors being checked.

The most immediately apparent difference is that ESC uses relatively lightweight specifications
whereas FFV requires relatively heavyweight specifications. Our ESC approach also makes a range of
compromises in soundness in order to make the approach easier to use. Loops are analysed by
unravelling them a finite number of times, instead of requiring loop invariants and proving them
inductively. Assumption constructs are permitted to help tackle the incompleteness of the lightweight
specifications and automated prover. ESC always uses an automated prover, whereas FFV can use
either automated or interactive provers. Finally, our ESC approach is a code-centric approach where all
verification involves analysis of code, whereas in FFV it is possible to analyse the consistency of
specifications independent of any implementation.

As with run-time checking, the most basic customization is the range of checks that should be
performed. The user may want to statically check only certain kinds of assertions. The user may also
want to verify requirements such as invariants in different ways. Either the behaviour specifications
should imply them (our FFV approach) or the implementation should (the ESC approach).

The next most fundamental way in which static checking can be configured is in the choice of
theorem prover. Currently our system supports the use of the fully automated Simplify prover [36] and
the interactive PVS prover [81]. Which prover is appropriate is dependent on the skills of the available
users and the complexity of the required proof. The selection of the prover has repercussions for other
customizations, mainly the handling of certain heavyweight constructs that the PVS prover can handle
but which Simplify often cannot.

The other major configurable options are concerned with the soundness of the process. Firstly, users
can specify whether loops are required to have loop invariants provided. If the approach is to be sound
then it must. In this case, a type checking error will be generated if a loop without an invariant is found.
Otherwise, if a loop invariant is not provided, the loop will be analysed by unravelling it up to a finite
number of times that can be configured by the user (defaulting to 1). Secondly, users can specify
whether assumption constructs are permitted. If the approach is to be sound it should not permit these.

As with run-time checking, a number of constructs from the assertion language may cause
problems, so it may be useful to specify special handling for them. Recursion can cause the Simplify
prover to either enter into an infinite loop or to crash, and can be difficult to manage even in the PVS
prover. As such, the user may want to disallow its use in assertions, use redundant specifications in its
place or ignore it.

5.3.1.3 Creating new approaches

Through this configuration process, we can create new approaches that combine aspects of the
traditional approaches. For example, we could develop different configurations for: (i) FFV, but with
the loop unravelling technique from ESC to avoid the need for loop invariants; (ii) ESC and FFV with
and without dynamic pre-condition checks; (iii) ESC with and without assume statements
dynamically checked; (iv) RAC with different levels of failure reports. Details of these and other
policies is given in appendix C.

5.3.2 Verification policy tool support

There are three main tools that allow the developer to use policies within Omnibus: the policy manager,
the policy editor and the policy selector. These are discussed in the following sections.

5 Combining verification approaches

 67

5.3.2.1 Policy Manager

The Policy Manager is a tool for managing the definitions of verification policies. It displays all the
policies currently loaded into the system and provides options to delete them, edit them and extend
them to create new policies. A screenshot of the tool is shown below. The upper area displays the
verification policy names along with whether they are built-in or saved in the current project. The
lower area displays details of the currently selected policy, including the policy it is based on and a
description of how it differs from the policy it is based on.

5.3.2.2 Policy Editor

Creation and editing of policies is achieved through the policy editor, a dialogue allowing the developer
to completely configure a particular policy. A screenshot of this dialogue is shown below. The upper
area allows the name of the policy, the policy it is based on and the location where it is saved to be
edited. Immediately below that is a preview of the automatically generated description of the policy
describing how it differs from the policy it is based on. In the centre of the dialogue are a series of
tabbed panes for specifying the properties of the policy. Information on the configurable properties for
policies can be found in appendix C along with details of the property settings for the built-in policies.

5 Combining verification approaches

 68

5.3.2.3 Policy Selector

Finally, the Policy Selector tool is used to describe how verification policies should be used to verify an
Omnibus project. This tool contains two parts, the first of which allows the policies to be used on a file-
by-file basis. A screenshot of this part of the tool is shown below. For convenience, the policies to be
used for each file can be specified in one of two ways. A single policy can be specified for all files in
the project, or different policies can be specified for each file using the provided table.

5 Combining verification approaches

 69

The second part of the Policy Selector allows particular correctness obligations to be identified as

special cases and use a different policy from the rest of the file. A screenshot of this part of the tool is
shown below. For each special case, the file and ID of the obligation are given and then the policy to be
used for the obligation is selected.

5 Combining verification approaches

 70

Section 8.5.2 demonstrates the power of the use of special cases.

 71

6 Safe software component reuse
In this chapter we consider the use of the Omnibus tool with its integrated verification approaches for
the development of software components in a way that enables them to be reused safely. We assume
that the developers of components and the users of the component may be distinct. Crucially, we must
implement the component, verify it and then distribute it. Once it is distributed, we cannot easily alter it
to correct errors. So, as responsible component vendors, we would like to ensure that our component is
well documented and free from errors before we distribute it.

There has been much work on reusable software components. The work of Meyer has greatly
influenced us. To allow software components to be reused safely Meyer states we require two things:

1. a clear, unambiguous description of what the each component should do [71], and
2. some form of assurance that it does it [70].

6.1 State-of-practice for reusable components
Currently, in practice, software components are described using type signature interfaces supplemented
by interface documentation (e.g. javadoc, docgen). A system of digital signatures is typically used to
provide assurances of correctness. This approach uses encryption techniques to allow components to be
digitally signed by an organisation which users can decide whether they trust or not. When the
producer of the component is an organisation like Sun this works relatively well since the interfaces of
their libraries of components are comprehensively documented and the components contain very few
implementation errors. However, the system does not always work as well when applied in general to
third-party component vendors. There are no requirements on the level of documentation of reusable
component interfaces and so it is often patchy. It is also not clear if a hidden implementation of a
component can be trusted to be free from errors. The producers of the component may attempt to get
their code digitally signed by a trusted organisation but there are no clear procedures to govern this
process and so this causes a signification bottleneck [12]. As an alternative, the producers of the
component may simply sign their own code but then the process has contributed no further assurances.
As a result, the reuse of software components in this way often introduces problems. To protect
themselves against this, many programmers develop “not invented here” syndrome and prefer re-
implementation to reuse of existing components when the implementer of the component is not known
to be dependable. This has acted to limit the spread of reusable software components.

6.2 Use of the approaches for reusable components
In this section we discuss the use of the different verification approaches we have considered to support
the safe reuse of software components.

6.2.1 Developing reusable components with RAC and ESC

Run-time assertion checking and extended static checking help the situation somewhat. The assertion
annotations on which they are based provide a structured framework which can be used to provide
unambiguous documentation. The associated verification methodologies also give some basis on which
to found trust in the hidden implementation. If ESC has been used to verify that the given assertion
annotations constituting the interface of the component are met by the implementation, then the user of
the component can have some reasonable confidence in its correctness. Similarly if RAC is used in
conjunction with a specified test harness (which should also be included in the interface of the
component) then we can have some confidence that the hidden implementation meets the specification
of the component. Unfortunately we have to make compromises in the expressiveness of the assertion
annotations we use in conjunction with these approaches.

Using ESC we may not be able to verify the correctness of some implementations relative to a full,
heavyweight specification of correctness and so we may have to use a relatively incomplete
specification. At this point the assertion annotations and our conception of the correctness of the
component diverge. We can document the additional requirements in interface documentation, but they
cannot be included within the assertion annotations because they cannot be verified by the approach.
This limits the extent to which the vendor can provide a clear and comprehensive description of what
the component should do. Also, concessions have to be made in the soundness of the verification
approach (e.g. considering loops by unravelling them a finite number of times) in order to make it
possible to use an automated theorem prover. This limits the extent to which successful verification can
be taken as an assurance of correctness.

6 Safe software component reuse

 72

Using RAC it is possible to check more expressive heavyweight specifications. The main problem
with the run-time checking of the assertions is that the more expressive the assertion annotations are,
the more time it will take to execute the run-time checks. This problem can be extreme. If full
specifications are used then the evaluation of the run-time assertion checks will often take at least as
long as the execution of the implementation itself (because for full specifications both the things that
are changed and the things that are not changed must be checked, whereas implementations only
describe what changes are made). This may be acceptable during the testing process performed by the
implementer of the component, but retaining the full run-time checks after the component is distributed
will often compromise the efficiency of the component too much.

To combat this we can either:
1. disable the checks of the supplier obligations (e.g. the post-conditions) before distribution

or
2. adjust the assertions to make them cheaper to check and then retain the run-time checks.

Disabling the checks of the supplier obligations is fine if the test harnesses that were used to check
the implementation were sufficient to uncover all possible implementation errors, but a dangerous
situation arises if they are not. In such a case the user of the component may make a call of the
component, satisfying their obligations but exposing a scenario not covered by the test harness, where
the component’s implementation is not correct and violates its assertion annotations. Crucially, if the
assertion checks in the component’s implementation are disabled then an assertion failure will not be
automatically triggered and the component will simply silently return a value violating its own
assertion annotations. Such problems could be hard to track down since the user will, rightly, initially
assume that the implementations of the components meet their specifications. In order to uncover the
error they will have to consider the possibility that each of the components do not meet their
obligations. This is highly undesirable and seriously compromises the basis for trusting the hidden
implementation.

If we take the alternative approach and adjust the assertion annotations to make them cheaper to
check (e.g. limiting the use of quantifiers) then we will compromise our ability to provide
comprehensive descriptions of what the component should do, just as is the case with ESC. In this case
concessions are made in the completeness of the verification in order to make it practical to check the
assertion annotations at run-time.

6.2.2 Developing reusable components with FFV

The needs of reusable components can be more completely met by the FFV approach. Heavyweight
specifications can be used to provide comprehensive, unambiguous descriptions of what the component
should do and the formal verification mechanism can give a rigorous assurance that the implementation
does this. Using RAC and ESC we may have to make concessions in the specifications we use, but we
are not forced to do this in FFV because the interactive prover can be used to verify any expressible
properties. RAC and ESC also have soundness and completeness loopholes which FFV does not. The
error coverage of RAC is limited by the coverage of the test harness and the completeness of the
specifications. The error coverage of ESC can be limited by the use of assumption constructs and,
again, incompleteness of the specifications. FFV can be used to avoid these restrictions. The interactive
proof mechanism allows complicated properties to be verified, allowing programmers to use more
sophisticated specifications. The resulting proofs can be re-run by any user to independently check the
proof. This provides a powerful basis to support the safe reuse of software components.

FFV is, however, a costly approach. Our FFV approach does not support loop invariant generation
and instead requires the user to devise suitable loop invariants. It can take several attempts to get these
right, and often the loop invariants can be more error-prone than the code itself. It can be discouraging
when a product of the verification process is harder to debug than the original code. Uncovering errors
using interactive verification is also particularly costly. It may not be clear whether an obligation
should be provable or not. The user may believe that it should be, but reach an unprovable sub-goal and
be unsure whether they made a mistake in their proof attempt or if the original obligation was invalid.
Even if they decide that the original obligation was faulty, a suitable correction may not be readily
apparent.

The costs of FFV will often be beyond acceptable levels unless reliability is critical. However, for
reusable components, the economies of scale may help justify this additional effort. For example,
consider the extent to which components in the standard Java libraries are reused. It may be considered
worthwhile to use FFV to verify these kinds of components so that comprehensive heavyweight
specifications can be used to describe the interfaces and the implementations can be rigorously shown
to respect them before distribution.

6 Safe software component reuse

 73

Using FFV for a component also gives clients that use the component maximum freedom in which
verification approaches to use themselves. We saw earlier that our guideline 4 rules out certain
combinations of verification approaches. If we verify a component using RAC or ESC we cannot verify
clients that use the component subject to FFV. If the producer and user of the component are the same
people, they could adjust the component to use FFV if they wished to use FFV for clients. However, if
the producer and users are different this may not be possible. In that case the clients will have to work
around this constraint and only use RAC or ESC for their classes which use the RAC- or ESC-verified
component. Consider again the case of components in standard libraries. If we used RAC or ESC for
these, they could not be used in projects that are FFV-verified. If we use FFV though, we could use
RAC, ESC or FFV to verify classes which use the components.

6.3 Specialised support for open source components
The Omnibus IDE provides a range of special facilities to directly address the needs of safe software
component reuse providing that the components have their source code distributed with them. These
facilities are discussed in this section. Techniques for components which do not have their source
distributed with them are discussed in section 6.4.

6.3.1 Interface documentation

The first requirement for safe software component reuse is a clear, unambiguous description of what
the each component should do. The assertion annotations in our RAC, ESC and FFV approaches
provide a framework for the unambiguous specification of the intended behaviour of components. It is,
however, important that support is provided to extract these specifications from the files so the users do
not have to refer to the source files themselves to find these specifications.

There is a standard solution to this problem. It is to provide tools to automatically generate interface
documentation from the source files. The JavaDoc tool [96] provides such support for Java, taking the
type signature interface and special documentation comments and generating summaries in an HTML
form. The JMLdoc [87] tool provides the same facilities, but also includes any JML assertion
annotations in the generated documentation. We have followed this approach in the Omnibus system.

The Omnibus IDE provides an option to generate interface documentation for each Omnibus
project. This documentation uses the same frame-based layout as JavaDoc. There is an index with links
to all the files in the project in the left frame. A summary page for the project is initially displayed in
the right frame. The summary includes the description of the project provided in the Project Window of
the Project in the IDE and descriptions of the source files taken from their description clauses.

6 Safe software component reuse

 74

Each class in the project has its own specification page which again follows the standard JavaDoc

structure. The specification of each method is included in the file along with details of the requirements
specifications and test cases.

6 Safe software component reuse

 75

6 Safe software component reuse

 76

6.3.2 Verification certificates

The other requirement for supporting safe software component reuse is some sort of basis for trust in
the hidden implementation. If the source code of the component is made available to the users of the
component then the assertion-based verification processes provide such a basis, but the users should
not have to manually re-verify the component themselves to determine the correctness of the
component. The Omnibus system uses the concept of verification certificates to manage the
justification of hidden implementations for open-source components. The Omnibus system does not
support closed-source components although there are approaches, which we discuss at the end of the
chapter, which can be used to handle these. Each verification certificate provides a summary of the
verification that has been applied to the component along with any evidence needed to re-verify the
component.

A verification certificate must be user-readable so that users of the component can refer to it and
easily find the verification information they need. A summary of the verification details could be
incorporated into the standard documentation generator. However, it is essential that a verification
certificate can be re-verified in order to guarantee its validity. If the verification information is
embedded within the HTML documentation, the HTML could easily be edited to adjust the verification
summary to make it more favourable before the component is distributed.

One approach to address this is to support the verification of the HTML documentation
(incorporating the verification certificate) by re-verifying the component, re-generating the HTML
documentation and then checking the new documentation against the old documentation. The files
would have to be textually identical to verify the certificate. However, this approach is very brittle. If,
for example, we changed the format of the generated documentation in any way, this process would
report that the distributed certificate did not match the re-generated one. We really need the verification
certificate to have the summary of the verification details and nothing else. We need to be able to
change the layout and add additional explanatory text without breaking the re-verification system.

So there are two requirements for verification certificates: they must be user-readable and they must
contain just the raw verification information. These requirements are in apparent conflict but XML can
be used to address them both. The raw details of the verification certificate are written to an XML file
and then an XSL stylesheet is used to re-format this data into a presentable form.

The format of the XML file is quite straightforward. Each file has a top-level project entry which
contains the name of the project, a summary of the verification of the project, and details of each of the
classes. Each class entry contains the name of the class and a summary of the verification for the class.
The verification details consist of the total number, passed number, failed number and unchecked
number of correctness obligations, run-time assertion checks, automated static verification VCs and
interactive static verification VCs. An extract of an XML verification certificate is shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="certificate.xsl"?>
<project>

6 Safe software component reuse

 77

 <name>LibraryImpl4.opj</name>
 <verification>
 <obligations>
 <total>498</total><passed>487</passed>
 <failed>0</failed><unchecked>11</unchecked>
 </obligations>
 <runtime-checks>
 <total>1096</total><passed>1092</passed>
 <failed>0</failed><unchecked>4</unchecked>
 </runtime-checks>
 <automatic-static-verification>
 <total>0</total><passed>0</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </automatic-static-verification>
 <interactive-static-verification>
 <total>0</total><passed>0</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </interactive-static-verification>
 </verification>
 <class>
 <name>Book</name>
 <verification>
 <obligations>
 <total>4</total><passed>4</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </obligations>
 <runtime-checks>
 <total>16</total><passed>16</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </runtime-checks>
 <automatic-static-verification>
 <total>0</total><passed>0</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </automatic-static-verification>
 <interactive-static-verification>
 <total>0</total><passed>0</passed>
 <failed>0</failed><unchecked>0</unchecked>
 </interactive-static-verification>
 </verification>
 </class>
 <class>
 <name>Card</name>
 ...
 </class>
 ...
</project>

This file provides just the raw details of the verification process, without additional formatting
information. However, it is not very readable. So, it is coupled with an XSL stylesheet which translates
the XML into a readable form. When the XML certificate file is opened, the XSL stylesheet is used to
format it and the results are as follows:

6 Safe software component reuse

 78

This is a more user-readable form. While being user-readable, the verification certificate itself in

uncluttered by presentation details and so can be easily re-generated and checked against the distributed
file. The XML file will be the same even if the IDE versions used to originally generate and now re-
verify the certificate are different. The XSL presentation of the certificate may be improved between
versions of the IDE, but that does not affect the re-verification process.

6.3.2.1 Certification Levels

It is important to provide some kind of assistance for the interpretation of the verification information
in the verification certificate. The users need to know what the different numbers mean and what they
should be looking for.

To do this, we could use a Certification Level system. Such a system could have 4 levels: 0 to 3.
The appropriate certification level would be determined from the status of the correctness obligations
and the soundness compromises made. Level 0 would be awarded if there were any failed correctness
obligations. Level 1 would be awarded if there were no failures but some correctness obligations were
unchecked. Level 2 would be awarded if all correctness obligations were passed but this either involved
run-time checking which is incomplete because of its use of testing or unsound static verification
techniques like loop unravelling or assumption constructs. Level 3 would be awarded if all correctness
obligations were justified using static verification without use of unsound facilities.

Using this approach, ESC could be used to perform verification to level 3 as long as loop invariants
were provided for any loops, and assumption constructs were either not used or separately verified with
FFV.

6.3.3 Distribution and use of components

It is also important to provide a convenient mechanism for distributing components. The Omnibus IDE
does this, again following the lead of Java, through jar files. Users can select an option in the IDE to
build a project jar file. These special jar files contain the original Omnibus source files, executable
bytecode versions of the source files, any PVS proof files (so that PVS proofs can be re-run),
documentation files for the project, the verification certificate, and other project details including the
verification policies used.

6 Safe software component reuse

 79

It is easy for other developers to use these jar files: they simply add them as references to their
projects and they will be automatically extracted and read by the IDE during the verification of their
project. The IDE provides options to display the documentation and certificate for a jar file. When
these are selected, the jar file is automatically extracted and the documentation or certificate opened
within the IDE. This allows these elements to be accessed by users without requiring them to extract
the jar file themselves.

Support for the distribution of reusable software components through component repositories is
discussed in section 9.3.4.

6.3.4 Re-verification of components

Omnibus project jar files contain the original Omnibus source files along with a range of derived
elements such as executable bytecode versions, documentation files and the verification certificate. Of
course, the derived elements could be re-generated from the Omnibus source, but this would require
further use of the IDE which may not be convenient. It is more convenient to include copies of these
derived elements. However, this introduces the potential for these derived elements to be maliciously or
accidentally edited, making them inconsistent with the original Omnibus source and other derived
elements. We may wish to re-verify the project jar file to ensure that the derived elements are
consistent. We first consider how verification certificates can be checked and then consider the other
derived elements.

6.3.4.1 Checking verification certificates

Users of a component can see the verification details of a component from its verification certificate.
This certificate is no more than an XML file containing a summary of the verification details. As such,
it would be possible for malicious users to generate a project jar file, extract it, edit the certificate XML
file, and repackage it as a jar file. Such a process could be used to present the verification of the
component as more favourable than it is in reality. If verification certificates are to be trustable, it is
important to be able to combat this.

The Omnibus IDE provides facilities to check the verification certificate of a jar file. The user
simply selects the Verify Certificate for Jar File option and specifies the jar file. The tool then opens
the project contained in the jar file, re-runs the verification process and checks the verification
certificate this produces against the one included in the jar file. This process is carried out
automatically by re-running the run-time tests and automated prover and checking the distributed
interactive proofs. For the certificate to be valid, it must be identical to the one which is reproduced.

This process will catch two kinds of malicious alterations. First, if the producer of a component
manually adjusts the XML certificate, this will be detected because the newly generated certificate will
not match the manually edited one. Second, if the producer of a component manually adjusts the
original Omnibus source files for the project and this alters the correctness obligations then the newly
generated verification certificate will be different and an error will again be reported.

This approach requires the presence of the original Omnibus source files in the jar file. As such, it
could be termed an open source reuse approach. We could adjust the approach to operate without the
presence of the original source by password encrypting the jar files. This could allow us to ensure that
only the IDE can read and write these jar files. Then we would know that all verification certificates in
one of these jar files would have to have been generated by the IDE and so must be consistent with the
project. The problem with this approach is that encryption processes are always vulnerable to being
deciphered, and forged assurances of correctness may be at least as damaging as the original system
without any assurances of correctness.

6.3.4.2 Checking other derived elements

The verification certificate checking process checks that the derived verification certificate is consistent
with the original Omnibus source. It would be desirable to have similar checks for the other derived
elements in the jar file: the bytecode implementations and the HTML interface documentation.

It is not as straightforward to check these elements. We could attempt to use the same approach as
the verification certificates: to re-generate them and compare with the derived versions, requiring the
distributed versions to be identical to re-generated versions. However, unlike the XML verification
certificates which have a simple, fixed format, the bytecode implementations and HTML
documentation are complicated files with changing formats. For example, we may want to add an
optimisation to the bytecode generator in the IDE or improve the layout of the HTML interface
documentation. The problem is that the bytecode and HTML generated for a project with versions of

6 Safe software component reuse

 80

the IDE before and after such changes would not be identical and so, using this re-generation approach,
a failure would be reported.

One way the problem could be addressed is by recording the versions of the bytecode generator and
HTML interface generator used to generate a project jar file and having the re-verifier download these
same versions and use them to re-generate the files. The identical file comparison could then be used.
This process could be automated by separating and archiving these generator modules and
incorporating a facility to automatically download the appropriate versions from some central
repository site into the IDE.

6.4 Specialised support for closed source components
The previous section presented techniques which can be used to manage the safe reuse of components
which are distributed with their source code. However, the assertion-based verification techniques
within the Omnibus system are still relevant for components for which the source code is not (and
perhaps cannot be) supplied. There is still the need to clearly describe what the component should do
and to provide this in an accessible form. The assertion-based interface specifications and interface
documentation generator are still sufficient for this. However, the verification certification system is
built around the source code verification techniques of the Omnibus tool and the executables cannot be
re-verified via this certificate without the presence of the source code. A fundamentally different
approach is needed to address this.

Proof-Carrying Code (PCC) [79, 80] is an approach which can be used to certify that untrusted code
(such as components from unknown third-party component vendors) satisfies specific safety rules.
Using the approach, a safety proof is produced by the code producer and distributed with the
executable. This provides justification that the executable satisfies a set of safety rules. The code
consumer is then provided with a proof validator tool which they can use to easily check that the proof
provides adequate justification of the safety of the code.

PCC has much in common with the Omnibus approach described in the previous section. PCC, like
the Omnibus approach, is based upon verification rather than the concepts of trust and encryption
which underpin the digital signatures approach. PCC places the burden of producing the safety proof on
the code producer just like the Omnibus approach places the burden of producing the verification
certificate on the component vendor.

The crucial difference between the approaches is that PCC safety proofs provide justification that
the executable satisfies the safety property while Omnibus verification certificates provide justification
that the source code satisfies its specification. By providing justification of the executable, the source
code is not needed by the code consumer in order to re-check the code. However, the ideas of PCC
have not been used widely in practice yet and one of the biggest outstanding challenges is how the
safety proofs are produced. This problem is of a similar order of difficulty to the verification process
itself and suffers from many of the same challenges. Indeed, PCC systems are generally built upon
existing formal verification techniques.

Recent work in the MOBIUS project [12] aims to support the PCC approach for a variant of Java
for the embedded industry. They provide two certification approaches: logic-based verification and
type-based verification. Their logic-based verification approach is similar to the Omnibus approach
except extended to support PCC. As in the Omnibus approach, the code producer produces an
implementation and performs formal verification to demonstrate that the code satisfies its specification
and any safety rules (expressed using JML in the MOBIUS project). A special proof transforming
compiler would then be used to produce the executables, in place of the standard compiler. This tool
takes the source code and source level justification and produces a bytecode program and a safety proof
for the bytecode program corresponding to the source level verification. A new annotation language for
Java bytecode is being developed in order to support this called the Bytecode Modelling Language
(BML) [21]. The supporting tools are still in development but the approach seems to hold great
promise.

 81

7 Tool support
The Omnibus IDE provides tool support for the techniques presented in this thesis. It consists of a
number of components including a type checker, documentation generator, bytecode generator with
support for RAC checks, and an integrated static verifier supporting ESC and FFV. The components of
most technical interest are the bytecode generator and the integrated static verifier. The next section
discusses the RAC facilities provided via the bytecode generator. The remainder of the chapter is
devoted to a discussion of the integrated static verifier.

The implementation of the Omnibus IDE was written using the Java programming language and
verified using testing. It was based upon an earlier system called JOOSE (Java-based Object-Oriented
Symbolic Executor). We were unable to use verification tools such as JML’s run-time assertion
checker or ESC/Java2 because our implementation required the use of version 1.5 of the Java SDK
which those tools were not compatible with at the time. This was not very desirable but we had to work
with the tools that were available when the project begun.

7.1 Run-time assertion checking
This section discusses the run-time assertion checking support within the Omnibus IDE. In order to be
executed, Omnibus files are translated to bytecode via an intermediary Java form. Run-time assertion
checks are embedded within the generated Java, which is then compiled to bytecode using the standard
Java compiler.

7.1.1 Translation of general file structure

The translation of the Omnibus file structure to the Java file structure is relatively straightforward. The
package, import and class structures are purposely very similar.

7.1.2 Special Java methods

A range of special methods is generated for each class when it is translated to Java, not defined
explicitly in the corresponding Omnibus class.

Each class has an equals method which provides an implementation for equality. The default is
an automatically generated implementation of structural equality which checks the other object is an
instance of the same class and then compares the corresponding attribute values if it is.

A toString method is also automatically defined. This returns a String containing the full
name of the class and the attribute values of the object. This method is used by the run-time assertion
checker to report variable values.

Finally, special quantifier functions are defined for each quantifier used in an assertion within the
class. To be executable, each quantified variable in the quantifier must be restricted with either a range
or in clause. If a range clause is used, a for loop is used to iterate over the possible values for the
quantified variable. If an in clause is used, an omni.lang.Iterator is retrieved from the
collection specified and used to iterate over the values in the collection.

7.1.3 Translation of Omnibus class members

Omnibus attributes map directly to Java fields. All Omnibus attributes are encoded in Java with the
protected modifier so as to prevent direct modification from client classes, but accessor functions
are automatically introduced so the values of the attributes can still be read.

Omnibus functions map to Java methods returning a value of the return type specified in the
Omnibus declaration. The type checking phase ensures that the class attributes cannot be changed by a
function, so there can be no side-effect on the value of the this object.

Omnibus constructors map to Java static methods returning a new object instance of the current
class. Omnibus operations map to Java instance methods returning a new object instance of the current
class.

Omnibus tests are translated to special Java static methods which cannot be directly called from
normal Omnibus code in method implementations. Instead, these methods are called by the IDE to
perform testing of the class. A special test_class static method is also defined which runs all the
tests in the same class. Within the implementation for each test is code to record timing info and catch
assertion failures generated during the test.

7 Tool support

 82

7.1.4 Translation of method bodies

The body of each Omnibus method when translated to Java has the same basic form. First, for non-
static methods, local variables are declared for each of the attributes and initialised to the corresponding
attribute values. Within the remainder of the code, it is these local variables that are manipulated, the
attribute values of the object on which the method was called remaining unaltered so as to preserve
value semantics. Where local method calls are made via an implicit or explicit this object, a new
object instance of the class is constructed with the current attribute variable values.

Next, checks are written for the pre-condition of the method and any requirements that should hold
at the start of the method (e.g. the invariants should hold at the start of each operation). After this, the
starting of the method is recorded. This involves the opening of a new frame in the call stack. The
Omnibus run-time system maintains its own call stack, independent of the one used by Java, so that
line numbers can be reported relative to the Omnibus source, not the generated Java.

The code which is provided as the implementation of the method in the Omnibus source file is then
translated to Java. This is discussed below.

If the method is a constructor or an operation, the end of the method is recorded, checks are
generated for the changes and ensures clauses and appropriate requirements, and a new instance
of the current class is constructed from the local attribute variables and returned.

7.1.5 Translation of statements

Each statement in the Omnibus assertion language is mapped to a series of Java statements. The
Omnibus implementation language is purposely similar to the Java implementation language and so
this mapping is quite straightforward. Special additional support that is added includes tracking of the
current line numbers in the Omnibus call stack and the appropriate generation of assertion checks.

7.1.6 Generation of assertion checks

Assertion checks are generated for the specifications of methods and assertions within the
implementations (e.g. assert statements, loop invariants). All the checks have the same form. First,
the policy for the obligation is looked up and the tool ensures that we are meant to use run-time
assertion checking for the obligation. A check for the assertion is then generated. If it fails, an error
message will be reported along with the level of context information specified in the corresponding
verification policy. A report of the check will be recorded in the run-time check report file containing
details of the source of the assertion and whether it passed or failed. This report file is read by the IDE
in order to give details of the assertions that were checked and to identify those that were not checked.

7.2 Integrated static verifier
Previously, support for extended static checking and full formal verification have been provided by
separate tools produced by separate teams. There have been relatively few “extended static checkers”,
and they have been implemented separately from FFV tools.

However, ESC and FFV are very similar processes. Both are static verification processes which
involve the production of theories in the logic of a specific prover. These must then be proved either
automatically or interactively to successfully complete the verification. These theories contain a
formalisation of core semantic properties of the language, definitions and axioms describing the
specifications of the classes in the project, and VCs over these specifications. The differences between
the approaches are largely concerned with the handling of particular language features (such as
assumption constructs and loops) and the theorem provers used to process the VCs.

Conventional verification tools are closely linked to a specific theorem prover and generated
theories in the logic of that prover. However, separate theorem provers can be supported if the static
verification module instead produces theories in an intermediary generic logic which can then be
translated into the logic of a specific prover.

We can use the concept of a generic logic together with a configurable static verifier to support both
ESC and FFV within one tool. This is what our integrated static verifier does, and this chapter
describes how it is implemented. We discuss the implementation in three parts: the translation into
generic logic, the mapping of this generic logic into the logics of two specific provers, and prover-
specific interfacing.

7 Tool support

 83

7.3 Translation to generic logic
The first step in the Omnibus static verification process is to produce theories in the generic logic.
These theories contain axiomatic descriptions of the specifications of the classes in the project and the
VCs which must be proved.

7.3.1 Base level for generic logic specifications

When attempting to use a generic logic, we have a similar problem to that encountered in the definition
of specifications within the language: what is the base level for the specifications? In this case our
specific challenge is: what mathematical apparatus do we use to define the specification of the classes
within the generic logic?

Firstly, we must select a core logic and for this we use first-order predicate calculus with equality
and function symbols. This choice is heavily influenced by the need to support effective automated
verification to enable extended static checking. Such a logic is expressive enough to model interesting
properties but not so expressive that it hampers the automation level of the verification. This design
choice is compatible with our two target theorem provers: Simplify [36] and PVS [81].

Secondly, it is useful to build some of the core concepts of the language into the generic logic itself.
The two main built-in functions are is and valid. The is function is equivalent to the
instanceof expression in Java. It accepts an object and a class and yields true iff the specified class
is a static class of the object. The valid function accepts an object and a class, and yields true iff the
object also satisfies the invariants of the specified class. These functions are not defined within the
generic logic itself and are instead defined separately in the specific logics of the underlying provers as
we will see later. In this way, they can be thought of as being built into the generic logic, but they must
then be defined for each of the underlying provers. The definition of core concepts in this way is
sometimes referred to as the background predicate [32].

7.3.2 Structure of theories

The theories in the generic logic simply consist of a series of declarations, axioms and VCs. A
declaration is used to introduce a function symbol which can be used to model concepts from the
Omnibus language using functions in logic. Axioms are used in the generic logic to describe properties
of the introduced functions. Finally, VCs over the defined functions are expressed. A range of context
information is stored along with the actual formula to check in order to aid error reporting. For
example, the following information is stored for each VC:

1. The source of the VC: parent file, parent method, line number
2. The corresponding error message
3. If the VC is from an implementation: the path condition, the path information, local

variable and parameter values

7.3.3 Translation of classes into generic logic

The first phase of the translation of a class into generic logic is a formalisation of the type hierarchies.
As described in section 2.2.3, a class level is introduced for the public and private accessibility levels of
each class and the protected level if it has any members. The public class level of a class inherits from
the protected class level of its superclass, or the public level if the superclass has no protected class
level. The protected and private class levels of a class inherit from the level immediately above them in
the class.

For each class level, axioms are generated describing the built-in is and valid functions for the
specific class level. The first axiom describes that if an object is an instance of the current class level
that it is also an instance of the parent class level. The second axiom describes the validity for the
current class level in terms of the invariants for that level. Special functions are introduced for each of
the requirements at the current class level, along with axioms describing their truth in terms of the
corresponding assertions with which they are declared.

If the current class is not declared with the spec or native modifier, axioms are also generated
for a special build constructor. The build constructor is a special function used internally by the
static verifier to create an instance of the specified class from a set of attribute values. It accepts as its
parameters the values for all the template parameters of the class and the values for all the attributes of
the class. An axiom is used to define the special build constructor for the current class level. Further
axioms are used to describe attribute and template parameter values for objects constructed using the
build constructor.

7 Tool support

 84

 For example, suppose we have an Omnibus class Shape:

public class Shape {}

The following declarations and axioms would be generated. The syntax used is that of our generic
logic. Declarations consist of the declare keyword followed by the name of the function, the formal
parameters of the function and the return type. Axioms consist of the axiom keyword followed by the
name of the axiom and then a boolean expression.

axiom Shape_is_ax: forall (this:Shape):
 is(this, omni.lang.Object)

axiom priv_Shape_is_ax: forall (this:priv_Shape):
 is(this, Shape)

axiom Shape_valid_ax: forall (this:Shape):
 valid(this, Shape) = true

axiom priv_Shape_valid_ax: forall (this:priv_Shape):
 valid(this, priv_Shape) = true

declare Shape_build():Shape

axiom Shape_build_ax: is(Shape_build(), priv_Shape)

For an Omnibus class Set with a template parameter:

public class Set[Element] {}

The following axioms would be generated:

axiom Set_is_ax: forall (this:Set):
 is(this,omni.lang.Object)

axiom priv_Set_is_ax: forall (this:priv_Set):
 is(this,Set)

axiom Set_valid_ax: forall (this:Set):
 valid(this,Set) = true

axiom priv_Set_valid_ax: forall (this:priv_Set):
 valid(this,priv_Set) = true

declare Set_build(ElementClass:Class):priv_Set

axiom Set_build_ax: forall (ElementClass:Class):
 is(Set_build(ElementClass),priv_Set)

declare Set_ElementClass(ElementClass:Class):Class

axiom Set_ElementClass_ax: forall (ElementClass:Class):
 Set_ElementClass(Set_build(ElementClass))
 = ElementClass

7.3.4 Translation of methods into generic logic

The inheritance system for methods is built around method levels just as the system for classes is built
around class levels. Separate method levels are defined for each class and accessibility level for which
a specification is given, as described in section 2.2. A particular method level inherits from the method
level immediately above it (if there is one). This will be either at a higher accessibility level in the
current class or at the lowest accessibility level above private in the corresponding definition in a
superclass.

7 Tool support

 85

Four special functions are introduced in the generic logic for each method level: the so-called pre-
condition function, post-condition function, guard function and method function.

The pre- and post-condition functions provide convenient ways to refer to the pre- and post-
conditions of the method, respectively. The pre-condition function is a predicate over the input
parameters of the method. Its axiom describes that the predicate is true when the specified pre-
condition of the method is met. The post-condition function is a predicate over the input parameters
and result of the method. Its axiom describes that the predicate is true when the specified post-
condition of the method is met.

Unlike the pre- and post-condition functions, the guard and method functions are defined only once
for the root of the method level hierarchy, but axioms are provided for all the method levels. The guard
function is used to express the pre-condition of a method in a manner compatible with dynamic
binding. Because of dynamic binding, it is not possible to define precisely what the pre-condition of a
method is for this purpose since the same method may have different pre-conditions at different method
levels. So, we introduce a special guard function along with axioms describing when that guard is true
for each specific level only. This is achieved using an implication rather than an equality in the axiom.
If we had used equality, there would have been a possible contradiction if the pre-condition was
weakened since for the additional values allowed by the subclass, the superclass would claim the pre-
condition was false whereas the subclass would claim it was true.

The method function is the most important of the functions for a method. It models to the original
method within the logic. It accepts the input parameters of the method and produces the appropriate
result. It is only defined for the root of the method level hierarchy to permit dynamic binding. The
axioms describing the method at each method level are formed by substituting the result variable
(either result or this) in the post-condition, with an instance of the method applied to the input
parameters.

For example, suppose we have the following Shape class with an area method:

public abstract class Shape {
 public abstract function area():integer
 ensures result >= 0
}

The method does not define a pre-condition and so no pre-condition or guard functions are
generated. The method does not override a method in another class, so a new function symbol is
defined for the method.

declare Shape_area_pub_post(this:Shape,result:integer):bool

axiom Shape_area_pub_post_ax: forall (this:Shape,
 result:integer):
 Shape_area_pub_post(this,result) = result >= 0

declare Shape_area(this:Shape):integer

axiom Shape_area_pub_ax: forall (this:Shape):
 Shape_area(this) >= 0

Now consider a Rectangle class which extends the Shape class and overrides the area
function.

public class Rectangle isa Shape {
 private attribute width:integer
 private attribute height:integer

 public model function width():integer
 private ensures result = width
 { ... }

 public model function height():integer
 private ensures result = height
 { ... }

 public constructor ofSize(w:integer, h:integer)

7 Tool support

 86

 requires w >= 0 && h >= 0
 ensures width() = w, height() = h
 { ... }

 public function area():integer
 ensures result = width() * height()
 { ... }
}

The Rectangle class has public width and height model functions which are described at the
private level in terms of private width and height attributes. The public ofSize constructor can
be used to create instances of the Rectangle and the public area function overrides the definition
in class Shape.

Firstly, functions are defined for the private attributes:

declare Rectangle_width_att(this:Rectangle):integer

declare Rectangle_height_att(this:Rectangle):integer

Now consider the width function. It has public and private behaviour specifications. At the public
level it is declared to be a model function while at the private level its behaviour is described in terms
of the width attribute. This leads to the following axioms:

declare Rectangle_width(this:Rectangle):integer

declare Rectangle_width_priv_post(this:Rectangle,
 result:integer):bool

axiom Rectangle_width_priv_post_ax:
 forall (this:Rectangle,result:integer):bool
 Rectangle_width_priv_post(this,result) =
 (result = Rectangle_width_att(this))

declare Rectangle_width(this:Rectangle):integer

axiom Rectangle_width_priv_ax: forall (this:Rectangle):
 Rectangle_width(this) = Rectangle_width_att(this)

The height function is defined similarly.
The ofSize constructor has a pre-condition, so pre-condition and guard functions are defined.

declare Rectangle_ofSize_pub_pre(w:integer,h:integer):bool

axiom Rectangle_ofSize_pub_pre_ax:
 forall (w:integer,h:integer):
 w >= 0 && h >= 0

declare Rectangle_ofSize_guard(w:integer,h:integer):bool

axiom Rectangle_ofSize_pub_guard_ax:
 forall (w:integer,h:integer):
 w >= 0 && h >= 0 ==> Rectangle_ofSize_guard(w,h)

declare Rectangle_ofSize_pub_post(w:integer,h:integer,
 this:Rectangle):bool

axiom Rectangle_ofSize_pub_post_ax:
 forall (w:integer,h:integer,this:Rectangle):
 Rectangle_ofSize_guard(w,h) ==>
 Rectangle_ofSize_pub_post(w,h,this) =
 (Rectangle_width(this) = w
 && Rectangle_height(this) = h)

7 Tool support

 87

declare Rectangle_ofSize(w:integer,h:integer):Rectangle

axiom Rectangle_ofSize_pub_ax:
 forall (w:integer,h:integer):
 Rectangle_ofSize_guard(w,h) ==>
 Rectangle_width(Rectangle_ofSize(w,h)) = w
 && Rectangle_height(Rectangle_ofSize(w,h)) = h

The definition of the area function in the Rectangle class overrides the definition in the
Shape class. For this reason, a new function symbol is not introduced for the method and, instead, the
method axiom refers to the root function definition Shape_area.

declare Rectangle_area_pub_post(this:Rectangle,
 result:integer):bool

axiom Rectangle_area_pub_post_ax:
 forall (this:Rectangle,result:integer):
 Rectangle_area_pub_post(this,result) =
 result = Rectangle_width(this)
 * Rectangle_height(this)

axiom Rectangle_area_pub_ax: forall (this:Rectangle):
 Shape_area(this) = Rectangle_width(this)
 * Rectangle_height(this)

7.3.5 Generation of VCs

Once the specifications of the classes in the project have been translated into logic, the verification
process can begin. Verification is performed via the generation of a range of VCs which must then be
discharged using a theorem prover. The VCs are also expressed in the generic logic so that they can be
translated into the logic of the appropriate theorem prover.

There are two types of VCs: specification consistency VCs and implementation VCs.

7.3.5.1 Specification consistency VCs

In Omnibus, requirements specifications can be verified in one of two ways. They can either be proved
to follow from the behaviour specifications of the methods in the class or from the implementations.
For FFV, the requirements should follow from the behaviour specifications. This provides a powerful
mechanism for verifying the correctness of the behaviour specifications. The laws described in section
2.3.2 can be used to check this.

The previous sections have described the process whereby the behaviour and requirements
specifications are translated into the generic logic. Specifically, we have a special function for each
requirement and special functions for the pre- and post-conditions of each method. We can make direct
use of these functions in the definition of our specification consistency VCs.

To illustrate this, consider the following PosCounter specification.

public spec class PosCounter {
 model function value():integer

 initially value() = 0
 invariant value() >= 0
 constraint value() != old value()

 constructor zero()
 ensures value() = 0

 operation inc()
 changes value
 ensures value() = old value() + 1

 operation dec()

7 Tool support

 88

 requires value() > 0
 changes value
 ensures value() = old value() - 1
}

This simple class has an abstract state consisting of a single integer value. The initially, invariant
and constraint requirement specifications state that the value should be initialised to 0 by all
constructors, must always be greater than or equal to 0 and should be changed by all operations,
respectively. There is a single constructor and operations to increment and decrement the value. The
corresponding specification consistency VCs are as follows:

vc vc_1: forall (this:PosCounter):
 PosCounter_zero_pub_post(this)
 ==> PosCounter_invariant_0(this)

vc vc_2: forall (this:PosCounter):
 PosCounter_zero_pub_post(this)
 ==> PosCounter_initially_0(this)

vc vc_3: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_inc_pub_post(old_this,this)
 ==> PosCounter_invariant_0(this)

vc vc_4: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_inc_pub_post(old_this,this)
 ==> PosCounter_constraint_0(old_this,this)

vc vc_5: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_dec_pub_pre(old_this)
 && PosCounter_dec_pub_post(old_this,this)
 ==> PosCounter_invariant_0(this)

vc vc_6: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_dec_pub_pre(old_this)
 && PosCounter_dec_pub_post(old_this,this)
 ==> PosCounter_constraint_0(old_this,this)

 VCs 1 and 2 check that the behaviour specification of the zero constructor satisfies the invariant
and initially. VCs 3 and 4 check that the inc operation satisfies the invariant and constraint. VCs 5 and
6 check that the dec operation satisfies the invariant and constraint.

Verification Conditions are also generated to ensure that the use of inheritance is consistent with the
principle of substitutability. To illustrate the generation of generic logic VCs for this, consider the
following example:

spec class CurrentAccount {
 model function balance():integer

 constructor open()
 ensures balance() = 0

 operation withdraw(amount:integer)
 requires amount >= 0
 changes balance
 ensures balance() = old balance() - amount

 operation deposit(amount:integer)
 requires amount >= 0
 changes balance
 ensures balance() = old balance() + amount
}

7 Tool support

 89

This class represents a simple bank account with withdraw and deposit operations. There are
no restrictions on the balance: users of the class may withdraw more than they deposit. Now suppose
we define a SavingsAccount class as a subclass of this class.

spec class SavingsAccount isa CurrentAccount {
 invariant balance() >= 0

 constructor open()
 ensures balance() = 0

 operation withdraw(amount:integer)
 requires amount >= 0, balance() >= amount
 // error: strengthens pre-condition
 changes balance
 ensures balance() = old balance() - amount
}

The corresponding generic logic VCs for the SavingsAccount class are as follows:

vc vc_1: forall (this:SavingsAccount):
 SavingsAccount_open_pub_post(this)
 ==> SavingsAccount_invariant_0(this)

vc vc_2: forall (old_this:v_SavingsAccount, amount:integer,
 this:SavingsAccount):
 CurrentAccount_withdraw_pub_pre(old_this,amount)
 && SavingsAccount_withdraw_pub_post(old_this,
 amount,this)
 ==> SavingsAccount_invariant_0(this)

vc vc_3: forall (this:v_SavingsAccount, amount:integer):
 CurrentAccount_withdraw_pub_pre(this,amount)
 ==> SavingsAccount_withdraw_pub_pre(this,amount)

vc vc_4: forall (old_this:v_SavingsAccount, amount:integer,
 this:SavingsAccount):
 CurrentAccount_withdraw_pub_pre(old_this,amount)
 && SavingsAccount_withdraw_pub_post(old_this,
 amount,this)
 ==> CurrentAccount_withdraw_pub_post(old_this,
 amount,this)

vc vc_5: forall (old_this:v_SavingsAccount, amount:integer,
 this:SavingsAccount):
 SavingsAccount_deposit_pub_pre(old_this,amount)
 && SavingsAccount_deposit_pub_post(old_this,
 amount,this)
 ==> SavingsAccount_invariant_0(this)

VC 1 checks that the open constructor of the SavingsAccount class satisfies the invariant that
the balance should be non-negative. VC 2 checks that the withdraw operation maintains the
invariant. Note that the pre-condition from the overridden method is used since that is all the caller can
be assured to have established. VCs 3 and 4 check that the specification of the withdraw method
provided in the SavingsAccount class is consistent with the specification it overrides in the
CurrentAccount class. Finally, VC 5 checks that the deposit method inherited from the
CurrentAccount class satisfies the newly defined invariant. The reader may note that VC 3 is not
valid: the pre-condition of the withdraw operation as defined in CurrentAccount does not imply
the pre-condition of the withdraw operation as defined in SavingsAccount.

7 Tool support

 90

7.3.5.2 Implementation VCs

Implementations are verified using a symbolic execution process [55, 56]. This section includes the
details of the symbolic execution rules for the Omnibus language. These provide a description of the
semantics of the language. A worked example of the symbolic execution process is given in appendix
D.

Symbolic execution is a process for the symbolic analysis of implementations. It is used within the
Omnibus project to support static verification. A component which performs the symbolic execution
process is called a symbolic executor.

The basic idea behind symbolic execution is to generalise the normal execution rules for a language
to support algebraic symbols. Assumptions can be made about the initial validity of these symbols.
Then the implementation can be executed with these values, with any additional assumptions recorded
as the execution progresses. Any assertions that are met should be provable from the assumptions of
the specific path. This approach allows general properties of the correctness of implementations to be
verified as it is not tied to any specific concrete test values.

During the standard execution of a method, the system must keep track of the next statement to be
executed (the program counter) and the current values for each variable in the program. The symbolic
executor is a generalisation of this. In the normal execution of a method, only one path through the
implementation is considered for each invocation. In symbolic execution, all paths are considered. If
there is a branching point then the different branches are all considered in parallel under their own
specific assumptions. The state of the symbolic executor reflects this. Instead of a single mapping of
variables to values, there is one for each path. The symbolic executor allows symbolic values (i.e.
expressions containing unevaluated symbols) as well as conventional concrete values (i.e. values
evaluated to literal values without symbols) to be assigned to variables. Each path also has a Path
Condition which is an expression used to keep track of the assumptions that are known to be valid for
that specific path. The state information is arranged into a hierarchy of scope levels which can be
opened and closed to be consistent with scope level system within the Omnibus language.

Symbols are a crucial part of the symbolic execution approach. A symbol is simply an arbitrary
constant value of a specific type whose precise value is not known. They allow the verification of a
system to be modularised via the interfaces of the different modules. For example, suppose we wish to
verify the correctness of a method with declared pre- and post-conditions. We are interested in its
correctness for all values, not just specific test values. We know from the static typing information that
the parameters of the method have specific known types but we do not know their specific values.
Therefore, we can assign symbol constants of the specified type to these parameters. We may assume
that the pre-condition holds over the symbolic values, provided that we separately verify that all calls
of this method satisfy it. We can then execute the implementation using the symbolic values, and verify
at the end of the implementation that the post-condition is met.

We will often find that we need to verify the correctness of an assertion during the symbolic
execution of an implementation. We stated earlier that any encountered assertions should follow from
the assumptions that are known to be true for the specific path being considered. This can be checked
by ensuring that the specific path condition logically implies the assertion to be proved. The formulae
to check this is referred to as a Verification Condition (VC).

7.3.5.2.1 Symbolic execution primitives
A procedure must be defined for the handling of each construct in the language by the symbolic
executor. For each statement, a symbolic execution rule must be defined to describe how the statement
is executed. Likewise, procedures must be defined for the verification of each class and method.
Finally, the process of evaluating each expression and checking of the pre-conditions within a method
must be defined.

These symbolic execution procedures are defined in terms of a set of primitive statements for
manipulating the state of the symbolic executor.

7.3.5.2.1.1 Variable manipulation primitives
declare varName, type The declare primitive declares a new variable of the specified

type. The typing information is used in the production of a suitable
symbol.

init varName The init primitive initialises a new variable with an undefined
value.

reassign varName The reassign primitive assigns a fresh symbolic value to the
specified variable. No information about the variable’s value is

7 Tool support

 91

known other than its validity. This is analogous to havoc
statements in Boogie.

reassignExcept varNames The reassignExcept primitive assigns fresh symbolic values to all
the variables which can be assigned to, apart from those in the
passed list. No information about the new variable values are
known other than their validity.

7.3.5.2.1.2 Knowledge manipulation primitives
assume exp The assume primitive conjoins an expression to the Path Condition of the

current path. The expression is evaluated first.
check exp The check primitive generates a VC to check that the specified assertion is

satisfied. The generated VC checks that current path condition logically
implies the specified assertion. The expression is evaluated first.

clearKnowledge The clearKnowledge primitive clears the Path Condition for the current
path. In does this by assigning the Path Condition to the boolean literal
true.

deny exp The deny primitive is similar to the check primitive except that the desired
truth of the corresponding VC is false, not true. The expression is evaluated
first.

localAssume exp The localAssume primitive adds an assumption that is included within the
Path Condition but it is removed when the current scope level is closed.
The expression is evaluated first.

7.3.5.2.1.3 Scope level primitives
openLevel The openLevel primitive opens a new temporary scope level where

variables can be added which will be subsequently removed when the scope
level is closed.

closeLevel The closeLevel primitive closes the current scope level, removing any local
variables.

7.3.5.2.1.4 Branching primitives
branch The branch primitive allows the symbolic execution procedure for a

construct to be defined in separate cases.
terminate The terminate primitive indicates that termination should halt at the

specified point and execution should not continue into subsequent
statements.

7.3.5.2.1.5 Expression primitives
value(exp) The value function is used to evaluate a particular expression. It yields the

evaluated equivalent of the expression. This function is defined recursively
for each expression construct as outlined below.

checkPres exp The checkPres primitive is used to check that the pre-conditions of all the
sub-expressions within a specified expression are met. This is defined
recursively for each expression construct as outlined below.

7.3.5.2.1.6 Statement primitives
execute stmt The execute primitive is used to symbolically execute a specific statement.

This is defined recursively for each statement as outlined below.

7.3.5.2.2 Constants
For convenience, we introduce a range of special constants to refer to elements from the class or
method definition. The classAttributes, classInvariants and classTemplateParameters constants refer to
the attributes, invariants and template parameters of the current class, respectively. The
methodPrecondition and methodPostcondition constants refer to the pre- and post-conditions of the
current method, respectively.

7 Tool support

 92

7.3.5.2.3 Symbolic execution procedures
This section gives the symbolic execution procedures for each language construct in terms of the
primitives defined in the previous section.

7.3.5.2.3.1 Classes and class members
package packPath;
uses usesList;
class name[tempParams] isa suprCls {
 members
}

load ‘top level package variables’
load ‘imported + local class variables’
load ‘local + inherited methods’
declare “this”, name
declare tempParams
declare classAttributes
process members

function name(params):type
 behaviour
{
 code;
}

openLevel
clearKnowledge
declare params
reassign classTemplateParameters
reassign classAttributes
reassign params
assume methodPrecondition
assume classInvariants
execute code
closeLevel

constructor name(params)
 behaviour
{
 code;
}

openLevel
clearKnowledge
declare params
reassign classTemplateParameters
init classAttributes
reassign params
assume methodPrecondition
execute code
closeLevel

operation name(params)
 behaviour
{
 code;
}

openLevel
clearKnowledge
declare params
reassign classTemplateParameters
reassign classAttributes
reassign params
assume methodPrecondition
assume classInvariants
execute code
check methodPostCondition
closeLevel

test name {
 code;
}

openLevel
clearKnowledge
execute code
closeLevel

7.3.5.2.3.2 Statements
assert exp; checkPres exp

check exp
target := exp; checkPres exp

assign target, exp
assume exp; checkPres exp

assume exp
var varName:type; checkPres type

declare varName, type
init varName

var varName:type := exp; checkPres type
checkPres exp

7 Tool support

 93

declare varName, type
assign varName, exp

deny exp; checkPres exp
deny exp

if (cond) {
 trueCode;
}

checkPres cond
branch 1 branch 2
assume cond assume !cond
execute trueCode

if (cond) {
 trueCode;
} else {
 elseCode;
}

checkPres cond
branch 1 branch 2
assume cond assume !cond
execute trueCode execute elseCode

To symbolically execute an if statement, the system splits the statement up into branches for each
of the paths through the statement. Firstly, it considers the case where the condition of the if is
true. In this case, it assumes the condition of the if, executes the statements in the if and then
continues execution after the if. Then, for each of the elseif clauses, it assumes the condition of the
elseif along with the negation of the preceding conditions, executes the statements in the elseif and
then continues execution after the if. Finally, it assumes the negation of the if and elseif
conditions, if an else clause is provided, then it executes the statements in it and continues
execution after the if.
while (cond)
 alters alts
 maintains maint
{
 code;
}

checkPres maint
check maint
reassignExcept alts
assume maint
checkPres cond
branch 1 branch 2
assume !cond assume cond
 execute code
 check maint
 terminate

There are two techniques for symbolically executing loops: invariant-based proofs and loop
unravelling. A loop invariant can be provided via alters and maintains clauses. If a loop
invariant is provided, symbolic execution is used to prove that the invariant holds initially and that
it is maintained by an arbitrary execution of the loop body. This involves the following steps:

1. Checking the loop invariant holds initially:
a. The maintains expression is checked, ensuring that the loop

invariant holds initially.
2. Checking the loop invariant is maintained by an arbitrary iteration of the

loop:
a. All variables in the alters clause are assigned fresh symbolic

values.
b. The knowledge is adjusted to hold only the maintains clause

and the loop condition.
c. The body of the while loop is executed.
d. The maintains clause is checked and

3. Checking the remainder of the method:
a. All variables in the alters clause are assigned fresh

symbolic values.
b. The knowledge is adjusted to hold only the maintains

clause and the negation of the loop condition.
while (cond) {
 code;
}

checkPres cond
branch 1 branch 2
assume !cond assume cond
 execute code
 assume !cond

Verification using loop invariants is the only sound way of proving code involving loops.
However, it can be extremely difficult to devise suitable loop invariants. As such, the developer
may prefer to use the loop unravelling technique which checks some finite number of iterations of

7 Tool support

 94

the loop. Loop unravelling will be used if no loop invariant is specified and loop unravelling is
enabled. Unravelling the loop 0 times involves assuming the negation of the loop condition and
then executing the remainder of the method. Unravelling the loop once involves assuming the loop
condition, executing the body of the loop once, assuming the negation of the loop condition and
then executing the remainder of the method. And so on.
return exp; checkPres exp

declare “result”, methodReturnType
assign “result”, exp
check methodPostcondition
terminate

The return statement supports abrupt termination, i.e. all paths executing a return statement
terminate with that statement. The ensures and changes clauses should also be checked along
with requirements if the developer selected to check requirements hold over the implementations.
Before these checks are made, the value to be returned is assigned to the special result variable.
unreachable; check false

terminate
Like the return statement, the unreachable statement also terminates execution paths. When it is
encountered during symbolic execution, the system attempts to prove the truth of the assertion
false. The only way that this can be proved is if there is a contradiction in the current path
condition signifying that there is a logical flaw in the assumptions taken in selecting the current
execution path.

7.3.5.2.4 Expression evaluation and pre-condition checking

7.3.5.2.4.1 Standard binary operators
The following rules apply for the standard binary operators: addition (‘+’), subtraction (‘-’),
multiplication (‘*’), equality (‘=’, ‘!=’), inequality (‘<’, ‘<=’, ‘>’, ‘>=’), static typing (‘is’, ‘as’) and
logical equivalence (‘<==>’).
left op right checkPres left

checkPres right
value(left) op value(right)

7.3.5.2.4.2 Division operators
The following rules apply for the division (‘/’) and modulus (‘%’) operators.
left op right checkPres left

checkPres right
check right != 0

value(left) op value(right)

7.3.5.2.4.3 Short-circuited logical operators
The following rules apply for the disjunction (‘||’) operator.
left op right checkPres left

openLevel
localAssume ! left
checkPres right
closeLevel

value(left) op value(right)

The following rules apply for the conjunction (‘&&’) and implication (‘==>’) operators.
left op right checkPres left

openLevel
localAssume left
checkPres right
closeLevel

value(left) op value(right)

The following rules apply for the if..then..else.. operator.
if cond then trueExp
 else falseExp

checkPres cond
openLevel
localAssume cond
checkPres trueExp
closeLevel
openLevel
localAssume ! cond

if value(cond)
 then value(trueExp)
 else value(falseExp)

7 Tool support

 95

checkPres falseExp
closeLevel

7.3.5.2.4.4 Method calls
The following rules apply for method calls in expressions.
object.methodName(params) checkPres object

check object.methodName_guard(params)

value(object).methodName(values(params))

7.3.5.2.4.5 Variables
name Returns corresponding

variable value (may be a
package, class, template
parameter type, “this” or a
normal variable value)

7.4 Mapping generic logic to specific provers
The verification process starts with the generation of the generic logic definitions, axioms and VCs.
Once this has been completed, the generic logic is translated into the logic of the appropriate prover.

The Omnibus static verifier currently supports two theorem provers: Simplify and PVS. For each
prover, we must define how to formalise the background, how to express definitions, axioms and VCs,
and how to translate all elements of the expression language.

7.4.1 Translation of generic logic into Simplify

Simplify [36] is a fully automated theorem prover developed specifically with ESC in mind. Simplify’s
input language is an untyped first-order logic with function symbols and equality, and a LISP-style
syntax. It includes a theory of arithmetic defining function symbols +, -, * and relation symbols >, <,
>=, <= with the usual meaning. While the theory is untyped, it distinguishes between propositional
values and terms. An important consequence of this is that propositional operators such as IMPLIES
and < cannot be used as terms.

Definition of background in Simplify: The definition of the background is and valid functions
in Simplify is relatively straightforward. Simplify does not need these to be declared in the background
before they can be referred to in the generated axioms.

The main purpose of the background axioms in Simplify is to define term-space equivalents of the
predicate symbols. Simplify provides built-in functions for equality, implication, negation, inequality,
conjunction, disjunction, etc. but they are defined as predicates. As such, they cannot be used as sub-
expressions. We follow Cok’s solution to this problem [32]: we define term-space equivalents for each
predicate and use these in our expressions. The effect of this is that everything is lifted into the term-
space and the distinction can then be ignored. We will see later that this does, however, complicate the
handling of quantifiers.

The first step in this process is to define term symbols for the logical values true and false.
This can be done as follows in terms of a single special symbol |@true|. The following logic is
included within the axiom file passed to Simplify on start-up.

(EQ true |@true|)
(NEQ false |@true|)

Let us now, for example, consider the conjunction operator. Simplify has a built-in predicate AND
which takes two predicates and evaluates to true iff both are true. To illustrate the problem, we
could not use a call of a boolean method as one of the operands of an AND predicate since methods are
defined using function symbols that are part of the term-space. However, we can introduce a new term-
space operator && which is equal to the special term true iff both its operands are equal to true,
defined using the AND predicate. The axiom formalising this is:

(FORALL (x y)
 (PATS (&& x y))
 (IFF
 (EQ (&& x y) true)

7 Tool support

 96

 (AND (EQ x true) (EQ y true))
))

A special predicate, PRED, is defined at the start of each Simplify logic file. PRED is a predicate
which accepts a boolean term value and is equivalent to a predicate asking whether the value is equal to
the true symbol. This allows boolean expressions in the term space to be lowered to the predicate
space.

(DEFPRED (PRED x) (EQ x true))

These axioms and definitions are the only things that we need to define in the Simplify background
in order to translate Omnibus classes and methods into Simplify.

Translation of expressions into Simplify: A mapping must be defined for each expression in the
Omnibus expression language to a corresponding expression in Simplify. The framework established
makes this relatively easy for the basic operators. For example, we saw how a special term-space &&
operator is defined for conjunction. So to translate an Omnibus conjunction into Simplify we write
“(&&”, translate the two operands of the conjunction and then write “)”.

The translation of method calls is also relatively straightforward. We simply write a call of the
special function used to define the method.

The main challenge is in the handling of quantifiers. Quantifier predicates can be defined in
Simplify but, as was explained earlier, in the translation of Omnibus into Simplify all expressions are
lifted into the term-space. So, we can translate a quantifier to Simplify if it is used as the top-level
expression in an axiom or VC but not as a sub-expression, say, within a post-condition assertion. To
combat this, term-space skolem functions are introduced, and axioms are added describing them in the
same way that term-space equivalents of the built-in logical operators were defined in the background.

For example, consider the following specification of a Set class. The post-condition contains a
quantification.

public spec class Set[Element] {
 public model function contains(e:Element):boolean

 public constructor empty()
 ensures forall (e:Element):
 !contains(e)
}

Consider the translation of the following axiom for the post-condition.

declare Set_empty_pub_post(ElementClass:Class,this:Set):bool

axiom Set_empty_pub_post_ax: forall (ElementClass:Class,
 this:Set):
 Set_empty_pub_post(ElementClass,this)
 = (forall (e:Element): !Set_contains(this, e))

Within the post-condition axiom, the forall quantification is the right operand of an equality
operator. When the equality operator is translated to Simplify, it takes two term parameters and so we
cannot use the built-in FORALL predicate. The universal quantification is left in its unevaluated
Omnibus form, surrounded by double angle brackets, in the following piece of Simplify.

 (BG_PUSH
 (FORALL (ElementClass this)
 (PATS (Set_empty_pub_post ElementClass this))
 (PRED
 (==>
 (is this Set)
 (=
 (Set_empty_pub_post ElementClass this)
 << forall (e:Element): !contains(e) >>
)
)
)
)

7 Tool support

 97

)

Note how the type information of the this variable is formalised within the body of the quantifier
expression using an implication preceding the original quantified expression.

The solution we adopt for the expression of the quantification is to introduce a special boolean term
skolem function for each quantifier and define its meaning using a separate axiom at the start of the
Simplify file. The post-condition axiom then becomes:

 (BG_PUSH
 (FORALL (ElementClass this)
 (PATS (Set_empty_pub_post ElementClass this))
 (PRED
 (==>
 (is this Set)
 (=
 (Set_empty_pub_post ElementClass this)
 (forall_0 ElementClass this)
)
)
)
)
)

With the forall_0 skolem function defined as follows:

(BG_PUSH (FORALL (ElementClass this)
 (PATS (forall_0 ElementClass this))
 (IFF
 (EQ (forall_0 ElementClass this) true)
 (FORALL (e)
 (PRED
 (==>
 (is this Set)
 (! (Set_contains this e))
)
)
)
)
))

Translation of declarations, axioms and VCs into Simplify: The axioms and VCs in the generic
logic are written to a Simplify logic file ready to be processed by the prover. The declarations do not
need to be translated since Simplify does not require the declaration of function symbols. Axioms can
be defined in this file using the BG_PUSH instruction. PRED must be used within BG_PUSH to convert
the term-space expression back to the predicate-space which BG_PUSH requires. If the top-level
expression is a quantifier, then the use of PRED and a skolem function may be avoided by directly
using the built-in quantifier predicates and using PRED within its body.

VCs can be defined by simply including the corresponding expression in the logic file. Again,
PRED may need to be used to lower the term-space expression to the predicate space.

As an example of the translation of an axiom from the generic logic into Simplify, consider the
following axiom defining the invariant of the Rectangle class we saw earlier.

declare Rectangle_invariant_0(this:Rectangle):bool

axiom Rectangle_invariant_0_ax: forall (this:Rectangle):
 Rectangle_invariant_0(this) =
 Rectangle_width(this) >= 0
 && Rectangle_height(this) >= 0

This is translated into the following Simplify axiom.

(BG_PUSH
 (FORALL (this)

7 Tool support

 98

 (PATS (Rectangle_invariant_0 this))
 (PRED
 (==>
 (is this Rectangle)
 (=
 (Rectangle_invariant_0 this)
 (&&
 (GE (Rectangle_width this) 0)
 (GE (Rectangle_height this) 0)
)
)
)
)
)
)

Note the use of the && and GE operators which are the term-space equivalents of the built-in AND
and >= predicates.

As an example of the translation of a VC, consider this VC from the PosCounter class we saw
earlier.

vc vc_6: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_dec_pub_pre(old_this)
 && PosCounter_dec_pub_post(old_this,this)
 ==> PosCounter_constraint_0(old_this,this)

This is translated into the following Simplify:

(FORALL (old_this this)
 (PRED
 (==>
 (&&
 (&&
 (is old_this PosCounter)
 (valid old_this PosCounter)
)
 (is this PosCounter)
)
 (==>
 (&&
 (PosCounter_dec_pub_pre old_this)
 (PosCounter_dec_pub_post old_this this)
)
 (PosCounter_constraint_0 old_this this)
)
)
)
)

The key aspect here is the use of the built-in valid function. This comes from the fact that the
type of old_this in the axiom is v_PosCounter, i.e. a valid instance of PosCounter and thus
satisfying its invariants as well as being an instance of PosCounter.

7.4.2 Translation of generic logic into PVS

PVS (Prototype Verification System) [81] is a sophisticated theorem prover developed by SRI
International. It is available for Linux and Solaris systems and is executed as a plug-in for the emacs
editor. The PVS system contains a specification language, a parser, a type checker, a prover,
specification libraries and various associated tools. The specification language is based upon typed
higher-order logic. PVS specifications are made up of theories which may contain, among other things,
collections of type and constant definitions, axioms and conjectures. PVS types can be defined from the
base types (Booleans, integers, etc.) using functions, records and a range of other standard formal
mechanisms. PVS also allows the definition of additional, uninterpreted base types and predicate sub-

7 Tool support

 99

types (a subset of individuals from another type which satisfy some predicate). The inclusion of
predicate sub-types means that type checking is undecidable and may lead to the production of proof
obligations called Type Correctness Conditions (TCCs) which must be proved in order to show that a
theory is well-typed. In PVS, all functions are total, but partial functions can be modelled using
predicate subtypes to restrict the domain of the input parameters. There is a range of built-in proof
tactics for semi-automating proofs. For example the (grind) tactic applies rewrite rules, simplifies
using decision procedures, and carries out heuristic quantifier instantiation.

PVS has a declare-before-use requirement within its theories. This can cause a problem in the
formalisation of languages such as Omnibus which have no such requirements themselves. In
Omnibus, the ordering of methods within a class is irrelevant: the specification of any method can refer
to any other method. To address this problem we followed the approach taken by the LOOP project
[49] of splitting the generated PVS theories into levels. At the top level we have the formalisation of
the background in PVS. Then we have the definition of the special PVS types for each class. This is
followed by the type signature declarations of the functions defined by the generic logic declarations,
declarations of any required symbol constants, and then the generic logic axioms. Finally, there are
conjecture files for each class to be verified along with lemma files for defining useful intermediary
lemmas for use in the proof of multiple VCs.

Definition of background in PVS: The definition of the background starts with the definition of

the basic concepts of objects and classes in PVS. There is a non-empty set of Classes and a set of
Objects. For each class we will introduce a Class constant and subtype of Object for the object
instances of that class. We then also declare the built-in is and valid predicates which each accept
an object and class. For convenience we also introduce InstanceOf and v_InstanceOf predicate
subtypes. These accept a Class constant and yield a type for the object instances and valid object
instances of that class, respectively.

Class: TYPE+

ObjectClass: Class
Object: TYPE

is: [Object,Class -> bool]
valid: [Object,Class -> bool]

InstanceOf(c:Class): TYPE = {this:Object | is(this,c)}
v_InstanceOf(c:Class): TYPE = {this:InstanceOf(c) | valid(this,c)}

The above definitions constitute the application-independent PVS prelude for Omnibus in its
entirety. These definitions establish a framework within PVS which is sufficient to describe Omnibus
classes and methods. No further definitions are needed, e.g. there is no formalisation of a heap.

Let us now consider the generation of the type information for each class. The system is simplest
for classes without template parameters. Consider the Shape class:

Axioms
Header
Types

Signatures
Semantics

Footer

Lemmas

Obligations

Lemmas

Obligations

Lemmas

Obligations

7 Tool support

 100

public class Shape {}

Special class constants and types for valid and invalid objects are defined for each class level. Here,
there are no protected members and the class is not declared to be spec or native so there are two
class levels: public and private. The object types are declared as predicate subtypes of their
corresponding super class levels. The public Shape class level (‘Shape’ without an accessibility
prefix) inherits from the public omni.lang.Object class level, and the private Shape class level
inherits from the public Shape class level.

ShapeClass: Class
Shape: TYPE = {this:omni_lang_Object | is(this,ShapeClass)}
v_Shape: TYPE = {this:Shape | valid(this,ShapeClass)}

priv_ShapeClass: Class
priv_Shape: TYPE = {this:Shape | is(this,priv_ShapeClass)}
v_priv_Shape: TYPE = {this:priv_Shape | valid(this,priv_ShapeClass)}

The situation is a bit more complicated when it comes to classes with template parameters.
Consider a parameterised Set class.

public class Set[Element] {}

The first stage is the same as for the Shape class, defining SetClass, Set, v_Set,
priv_SetClass, priv_Set and v_priv_Set elements in the same way. A special function is
also defined for the template parameter. This function maps the Set object to the actual template
parameter value for the Set. Predicate subtypes are then defined for Set with a specific template
parameter. The predicate restrictions assert that the value of the template parameter type is equal to the
type passed.

Set_ElementClass: [Set -> Class]

SetOf(ElementClass:Class): TYPE = { this:Set | Set_ElementClass(this)

= ElementClass}
v_SetOf(ElementClass:Class): TYPE = { this:v_Set |

Set_ElementClass(this) = ElementClass}

priv_SetOf(ElementClass:Class): TYPE = { this:priv_Set |

Set_ElementClass(this) = ElementClass}
v_priv_SetOf(ElementClass:Class): TYPE = { this:v_priv_Set |

Set_ElementClass(this) = ElementClass}

Translation of expressions into PVS: The translation of Omnibus expressions to PVS is more
straightforward than the translation into Simplify. There is no hard distinction between terms and
predicates, so the built-in operators and quantifiers can be used directly.

For example, reconsider the declaration and axiom for the post-condition of the Set class discussed
earlier.

declare Set_empty_pub_post(ElementClass:Class,this:Set):bool

axiom Set_empty_pub_post_ax: forall (ElementClass:Class,
 this:Set):
 Set_empty_pub_post(ElementClass,this)
 = (forall (e:Element): !Set_contains(this, e))

The translation of this declaration and axiom into PVS is relatively straightforward. First there is
the declaration of the type signature of the post-condition function in the Signatures section. Then
there is the axiom describing the function. The built-in FORALL quantifier is used directly within the
expression. This was possible in Simplify because of the separate term and predicate spaces. Note how
the v_InstanceOf predicate subtype is used in the translation of the quantification over Element.

Set_empty_pub_post(ElementClass:Class, this:Set):bool

Set_empty_pub_post_ax: AXIOM

7 Tool support

 101

 (FORALL (ElementClass:Class), (this:Set):
 (Set_empty_pub_post(ElementClass, this) = (FORALL

(e:v_InstanceOf(ElementClass)):
 (NOT Set_contains(this, e))
))
)

Translation of declarations, axioms and VCs into PVS: Declarations, axioms and VCs are again
relatively straightforward to formalise in PVS. Declarations map naturally to PVS function declarations
and the axioms of the generic logic map naturally to PVS axioms. The function declarations are added
to the Signatures section. The VCs in the generic logic map to PVS conjectures.

As an example of the translation of generic logic declarations and axioms to PVS, consider the
area function in the Rectangle class we saw earlier. Crucially, this method overrides the definition
given in the Shape class. There are two axioms for this method, one for the post-condition function
and one for method function itself. There is no declaration for the method function, it just provides an
axiom for reasoning about the corresponding root method function which it overrides.

declare Rectangle_area_pub_post(this:Rectangle,
 result:integer):bool

axiom Rectangle_area_pub_post_ax:
 forall (this:Rectangle,result:integer):
 Rectangle_area_pub_post(this,result) =
 result = Rectangle_width(this)
 * Rectangle_height(this)

axiom Rectangle_area_pub_ax: forall (this:Rectangle):
 Shape_area(this) = Rectangle_width(this)
 * Rectangle_height(this)

In the generated PVS, the post-condition function is declared in the Signatures section. No
declaration is needed for the method axiom. The post-condition and method function axioms are fairly
direct translations of the generic logic axioms.

Rectangle_area_pub_post(this:v_Rectangle, result:int):bool

Rectangle_area_pub_post_ax: AXIOM
 (FORALL (this:v_Rectangle), (result:int):
 (Rectangle_area_pub_post(this, result) = (result =

(Rectangle_width(this) * Rectangle_height(this))))
)
AUTO_REWRITE+ Rectangle_area_pub_post_ax

Rectangle_area_pub_ax: AXIOM
 (FORALL (this:v_Rectangle):
 (Shape_area(this) = (Rectangle_width(this) *

Rectangle_height(this)))
)
AUTO_REWRITE+ Rectangle_area_pub_ax

Again let us consider the translation of the VC to verify that the dec operation of the
PosCounter class satisfies the constraint. The VC in the generic logic was:

vc vc_6: forall (old_this:v_PosCounter, this:PosCounter):
 PosCounter_dec_pub_pre(old_this)
 && PosCounter_dec_pub_post(old_this,this)
 ==> PosCounter_constraint_0(old_this,this)

This is translated into the following PVS:

vc_6: CONJECTURE
 (FORALL (old_this:v_PosCounter), (this:PosCounter):

7 Tool support

 102

 ((PosCounter_dec_pub_pre(old_this) AND
PosCounter_dec_pub_post(old_this, this)) IMPLIES
PosCounter_constraint_0(old_this, this))

)

The PVS version of this VC is more concise than the Simplify version. This is because the typing
information of the quantified variables is expressed through the typing, whereas it must be explicitly
described within the quantified expression in the Simplify version.

7.5 Prover-specific interaction
The Omnibus IDE provides a range of support for managing the process of proving the generated VCs.

7.5.1 Simplify prover support

The automated verification process starts with the generation of generic logic axioms and VCs and the
translation of these into Simplify. The generated file is then passed to the Simplify prover for
processing. The prover is automatically launched by the Omnibus IDE and its output monitored. This
process is carried out in a new thread so that the user can carry out other tasks while the prover is
running. The automated prover pane (shown below) allows the user to track the process of the prover
and gives them the option to terminate it.

When the prover has finished, the IDE checks that each VC has the expected validity. If a VC has

the wrong validity then the corresponding error message stored with that VC is displayed. An example
error message is displayed below.

The full details of the proof process are recorded and can be viewed through the check viewer.

7.5.2 PVS prover support

The interactive verification process starts with the generation of a set of PVS theories from the generic
logic definitions, axioms and VCs. Each Omnibus project has a setting for where the PVS files should
be generated. The PVS prover should then be independently used by the developer to prove the
conjectures in the generated files. Lemma files are automatically generated and can be used to support
reuse within proofs. Proof files are used by PVS to record proof attempts. The IDE generates default
proofs for each VC. These simply consist of the (grind) tactic. However, together with the auto-
rewrites, this is sufficient to prove many simple VCs.

The IDE tool is able to track the progress of the user-made proofs in PVS by parsing the proof files.
This information on the validity of the PVS VCs can be viewed via the check viewer in the same way
that it is used for the automated verifier.

 103

8 Case study
This chapter discusses a case study carried out using Omnibus. The initial version of the project was
written by a student as part of their Honours dissertation and this was used as a basis for a case study in
verification with Omnibus. Our aim was to gain feedback on the ease with which the Omnibus system
could be applied by a member of our target audience, someone without extensive formal methods
training. The student produced an implementation and a heavyweight specification of correctness. This
gave us an example with real errors generated by another person to which we could apply the Omnibus
process. We derived lightweight specifications from the heavyweight specifications and then carried
out the verification process and corrected errors. The case study does not provide industrial-scale
justification of the Omnibus approach but does allow the ideas it contains to be explored in some more
detail.

We start the discussion of the verification of the case study by presenting an implementation with
assertion annotations and using the Omnibus tool to RAC-check it. This process uncovers some errors
which we correct. We then attempt to ESC-check the RAC-corrected implementation. This uncovers
further errors which we, again, correct. Next we consider the FFV approach and verify that a
heavyweight behaviour specification, with corrections that are equivalent to those made after RAC and
ESC checking, meets its requirements. This uncovers still further errors which we correct. Finally, we
explore the benefits of greater levels of integration between the approaches using verification policies.

We are not recommending that the verification approaches be applied to real examples in this way.
We perform verification using each of the approaches on the same example in order to permit direct
comparison of their error coverage.

The assertion annotations are adapted from those produced by the student and, unsurprisingly,
contain errors. Often it was possible for us to spot these errors without the use of the verification tools.
However, we purposely retained these errors in our adapted versions so that we could test the error
detection facilities of the Omnibus verification tool.

8.1 Process used in the development of the Library system
This section describes the process that was used to develop the Library system. The initial version of
the Library case study was produced following a process devised for use with the Omnibus FFV
approach. First, a specification was produced and checked, and then a corresponding implementation
produced and checked. This process consists of the following steps, taken from section 3.1 of the
student’s dissertation [14]:

1. Produce a heavyweight specification
a. Elicit requirements and model the problem. This initial work must be done

outside the Omnibus language, perhaps using UML use case diagrams.
b. Outline the public type signature interface of the class, perhaps using a variation

of UML class diagrams. Skeleton class definitions can then be described in
Omnibus. Methods must be divided up into constructors, functions and
operations.

c. Select a subset of the functions of the class that together represent the abstract
state of object instances of the class and declare these as model functions. If the
functions in the class are not sufficient to do this then additional specification-
only functions should be introduced to enable this to be done. Define the
remaining functions in terms of the model functions.

d. Write requirements over the model functions using initiallys, invariants and
constraints. What should hold over the model functions initially? What should
hold over them at all times? How should they be allowed to change?

e. Describe the constructors and operations in terms of the model functions using
requires, changes and ensures clauses. Care should be taken to use the changes
clauses correctly.

f. Verify that the behaviour specifications satisfy the requirements.
2. Produce an implementation for the specification

a. Devise private attributes to implement the model functions and hence provide a
concrete representation for the state of each class.

b. Write any additional requirements over the attributes using private initiallys,
invariants and constraints.

c. Describe the model functions in terms of the attributes using private ensures
clauses.

8 Case study

 104

d. Write code for all the methods in the class. The specifications should be used to
guide the developer in the production of the code.

e. Verify that the implementation satisfies the behaviour.
The student derived the requirements of her Library system from a range of formal specification

textbooks. She produced an informal description of the requirements together with a series of UML use
case diagrams. The design of the system then began through the use of UML class diagrams. This class
diagram was then translated into Omnibus type signature interfaces for the classes in the system.

Heavyweight specifications were then produced for each of the classes. First the functions were
split into model functions and derived functions and their behaviour specified. Then high-level
requirements were defined over these, using invariants. Specifications could then be provided for the
constructors and operations for each class. The next stage in the process outlined above was to verify
that the behaviour specifications satisfied the requirements specifications. The author of this thesis
attempted to verify properties of the specification using the Omnibus static verifier and PVS theorem
prover. The errors which were found are reported in section 3.1.4.5 of the student’s dissertation [14]
and described later in this chapter. Errors are uncovered by this process when an unprovable VC is
discovered. During the proof process, the user has to think quite deeply about the specification and
often has a clear idea of where the specification is erroneous by the time the proof is abandoned. For
example, the user may have expected to have a piece of knowledge available to them but found that it
was not because it had not been provided by a suitable requires clause.

The student then produced an implementation of the heavyweight specification. Since the
heavyweight specification was very detailed, this stage was relatively straightforward. A private
attribute was introduced for each model function and the model functions defined in terms of them
using private ensures clauses. Implementations were then provided for the other methods in the classes
of the system. The implementation of each method was derived from the heavyweight specification of
its behaviour as described in the ensures clause of the method. The student used a number of coding
patterns developed by the author of this thesis in order to convert assertions involving quantifiers into
Omnibus code. Finally, the author of the thesis used the Omnibus static verifier and PVS theorem
prover to check that the implementations of the selected methods satisfied their behaviour
specifications. Again, errors are uncovered by the discovery of unprovable VCs.

This process produced a heavyweight specification for the system along with a corresponding
implementation. This was ideal for use with the FFV approach. In order to enable the RAC and ESC
approaches to be used, the author of this thesis adapted the heavyweight specification produced by the
student to make it amenable to RAC and ESC. This involved a reduction in the detail provided in the
ensures clauses of the behaviour specifications, e.g. only specifying how the sizes of collections should
be changed rather than precisely specifying what elements the resulting collection should hold.

The use of the RAC approach requires the development of test cases to exercise the
implementations suitably to ensure that all the assertions checks are executed. Tests should be defined
for each usage scenario, e.g. adding/updating/deleting a book or loaning/returning an item. The crucial
thing is that the tests for the class should involve the execution of all the assertion checks in all of the
methods in the class. This may require that there are multiple invocations for a single method in the
tests to cover the different paths through that method. The obligation viewer can be used to determine
which assertion checks are being covered and which are not. If an assertion check is not being covered
then the test cases should be adjusted to check it. The process for the definition of a test case is as
follows:

1. Declare and instantiate variable to hold object instance of the class containing the test, i.e.
the class to be tested.

2. For each operation within the particular usage scenario:
a. Apply the operation to the instance of the object to be tested. Declare variables

for each of the parameters of the operation, instantiate them with appropriate
values, and then pass these variables when the operation is called.

b. Check the values of any relevant derived functions through assert statements
preceded by declarations of variables for any values needed to be passed as
parameters to the functions

Errors are detected by the RAC approach via run-time assertion failure messages. These indicate the
precise assertion check which has failed along with the relevant context information such as the
parameters of the call and the current attribute values. These can be used by the user to determine the
logical cause of the failure.

The rest of this chapter describes the system as if it was developed first for use with RAC and then
adapted for use with ESC and FFV. We feel that this order of presentation is more natural. The RAC
and ESC Omnibus tools were not used as part of the original case study by the student because they

8 Case study

 105

had not been fully implemented at the time. If they had been, we would have applied the tools in this
order.

8.2 Informal description
The Library contains a set of Items which can be loaned out. Each Item has a unique itemNo and a
title. There are three concrete types of Item: Books, CDs and DVDs. In addition to its itemNo and
title, a Book has an ISBN, a list of authors (which should not contain duplicates), a publisher and a
published date. A CD has an itemNo, a title, a group (i.e. the band or artist name) and a release
date. A DVD has an itemNo, a title, a list of actors (which should not contain duplicates), a
director and a release date.

The Library can hold multiple copies of each Item. Each Copy has a unique copyNo along with
the itemNo identifying the item of which it is a copy. Each copy also has a status which is either
‘available’ or ‘lost’. Items and copies can be searched, added, deleted or changed. The addition of a
new item automatically creates a new copy and the deletion of the last copy of an item automatically
deletes the Item’s details from the system.

People must register with the library as members before they can loan out a copy of an item. There
is a Member record in the library for each member. This contains a unique memberNo, their name,
their address, their telephone number, whether they are an adult, whether they are a member of staff,
their current status (either active, inactive or banned), the amount of any fines they owe, and the PIN
for use when logging into the system. Each Member has associated with them a Card with a unique
cardNo and the memberNo. Members can be searched, added, deleted or changed.

Members of the library can loan out copies of items in the library. For each Loan, the details of the
memberNo, copyNo and start and end dates of the Loan are recorded. A member can choose to
renew or return their copy at any time. Fines may be made if the endDate of the loan is exceeded.
The details of the loans can be searched, added, deleted or changed via a standard loan/return/renew
procedure.

The system is described in more detail in section 3.1 of [14].

8.3 Run-time assertion checking
In this section, we will consider the production of an implementation with lightweight assertion
annotations and its verification using run-time assertion checking with associated test cases.

The full implementation consists of 15 classes with a total of 2278 lines of Omnibus code
(including lightweight assertion annotations and test cases). There are 1034 separate assertion checks
generated. The remainder of this section discusses interesting aspects of the example.

8.3.1 Auxiliary classes

Most of the classes in the Library case study are simple data structures that are used by the main Lib
class.

8.3.1.1 Simple data structure classes

The following classes all follow the same simple structure: Book, CD, Card, Copy, DVD, Item,
Loan, Member and Name. The files which define them contain a number of sections: the abstract
state, a constructor and update operations.

As an example, consider the Book class. The public accessor functions should be declared to be
model functions so we can use them in changes clauses. They can be implemented by returning the
corresponding attribute value. We could include private specifications describing the methods in terms
of the private attributes at the private level but, for run-time assertion checking, this is not required.

public class Book isa Item {
 private attribute isbn:ISBN
 private attribute authors:List[Name]
 private attribute publisher:String
 private attribute pubDate:Date

 public model function isbn():ISBN {
 return isbn;
 }

8 Case study

 106

 public model function authors():List[Name] {
 return authors;
 }

 public model function publisher():String {
 return publisher;
 }

 public model function pubDate():Date {
 return pubDate;
 }

Requirement specifications such as invariants should be used to describe restrictions on the
abstract state. For example, there should not be any duplicates in the list of authors. The
omni.lang.List class that is used to model the lists contains a function called
containsDuplicates which can be used to describe this.

 public invariant noDuplicatesInAuthors:
 !authors().containsDuplicates()

The constructor is implemented by assigning the passed parameters to the corresponding attribute.

 public constructor newBook(iNo:integer, t:String, isbnNo:ISBN,
auths:List[Name], pub:String, pDate:Date)

 {
 itemNo := iNo;
 title := t;
 isbn := isbnNo;
 authors := auths;
 publisher := pub;
 pubDate := pDate;
 }

Finally, the operations to support the updating of the newly introduced state elements are added.
These are declared to change the relevant state element.

 public operation setISBN(isbnNo:ISBN)
 changes isbn
 {
 isbn := isbnNo;
 }

 public operation setAuthors(auths:List[Name])
 changes authors
 {
 authors := auths;
 }

 public operation setPublisher(pub:String)
 changes publisher
 {
 publisher := pub;
 }

 public operation setPubDate(pDate:Date)
 changes pubDate
 {
 pubDate := pDate;
 }
}

8 Case study

 107

8.3.1.2 Predicate restricted classes

The ISBN class consists of a single state element, a String, whose range of values is restricted to be
within some valid range. The methods of the class guard assignments to the internal value with checks
of the validity assertion. This provides a means of ensuring that all values that can be encapsulated by
such a class satisfy its validity requirement.

The definition of the class starts with the declaration of the private attribute and public model
function for the value.

public class ISBN {
 private attribute value:String

 public model function value():String {
 return value;
 }

The validity requirement is defined using a static boolean function, here called isValidISBN.
The invariant is then defined using this function.

 public static function isValidISBN(s:String):boolean
 ensures result = (s.length() = 13 &&
 (forall (i:integer := 0 to s.length()-1):
 Character.isDigit(s.charAt(i))
 || s.charAt(i) = '-'
 || s.charAt(i) = ' '))
 {
 if (s.length() != 13) {
 return false;
 }
 for (j := 0 to s.length()-1) {
 if (!Character.isDigit(s.charAt(j))
 && s.charAt(j) != '-'
 && s.charAt(j) != ' ') {
 return false;
 }
 }
 return true;
 }

 public invariant ISBN.isValidISBN(value())

Finally, the constructor accepts a value for the internal value and checks in a requires clause
that the value is valid.

 public constructor fromString(s:String)
 requires ISBN.isValidISBN(s)
 ensures value() = s
 {
 value := s;
 }
}

8.3.1.3 Enumeration classes

The ItemStatus and MemberStatus classes are similar to the ISBN class in that they guard a
single value to ensure that it is valid as defined by some invariant. However, these classes have a small
number of known possible values. Each of the possible values is allocated an integer value and an
invariant ensures that the value of the state element is always one of these valid values. Constructors
are then defined for each value, constructing an object with the corresponding value. For convenience,
functions can also be defined to easily check which of the values the object has.

public class ItemStatus {
 private attribute value:integer

8 Case study

 108

 public model function value():integer {
 return value;
 }

 public invariant value() >= 0 && value() <= 1

 public constructor lost()
 ensures value() = 0
 {
 value := 0;
 }

 public constructor available()
 ensures value() = 1
 {
 value := 1;
 }

 public function isLost():boolean
 ensures result = true <==> value() = 0
 {
 if (value = 0){
 return true;
 } else {
 return false;
 }
 }

 public function isAvailable():boolean
 ensures result = true <==> value() = 1
 {
 if (value = 1){
 return true;
 } else {
 return false;
 }
 }
}

8.3.1.4 Miscellaneous classes

Finally, there is the Date class which does not fit into any of the other categories. It has an abstract
state consisting of day, month and year elements. There is a constructor for creating a new Date
object. There are static functions for querying properties of the date and local functions for carrying out
date calculations.

public class Date {
 private attribute day:integer
 private attribute month:integer
 private attribute year:integer

 public model function day():integer {
 return day;
 }

 public model function month():integer {
 return month;
 }

 public model function year():integer {

8 Case study

 109

 return year;
 }

 public invariant day() <= 31
 public invariant month() <= 12

 public constructor newDate(d:integer, m:integer, y:integer)
 {
 day := d;
 month := m;
 year := y;
 }

 public function nDaysLater(n:integer):Date
 { ... }

 public static function isLeapYear(year:integer):boolean
 ensures result = (year % 4 = 0)
 { ... }

 public static function isNewYear(day:integer,

month:integer):boolean
 ensures result = ((day > 31) && (month = 12))
 { ... }

 public static function isNewMonthAfterThirty(day:integer,

month:integer):boolean
 ensures result = (((month = 4) || (month = 6) || (month = 9) ||

(month = 11))
 && day > 30)
 { ... }

 public static function isNewMonthAfterThirtyOne
 (day:integer, month:integer):boolean
 ensures result = (((month = 1) || (month = 3) || (month = 5) ||

(month = 7)
 || (month = 8) || (month = 10)) && day > 31)
 { ... }

 public function calcDaysLate(d:Date):integer
 requires d.laterThan(this)
 { ... }

 public function laterThan(d:Date):boolean
 ensures result = !(year() < d.year()
 || year() = d.year() && month() < d.month()
 || year() = d.year() && month() = d.month() && day() < d.day())
 { ... }
}

8.3.2 Central Lib class

The bulk of the code of the application is within the Lib class. This contains the items, copies,
members, cards and loans currently in the library along with methods to manipulate them.

8.3.2.1 Accessor functions

Again, the accessor functions for the private attributes should be declared as public model functions to
enable them to be used in changes clauses.

The model functions for the Lib class are:

 public model function items():Collection[Item] {

8 Case study

 110

 return items;
 }

 public model function copies():Collection[Copy] {
 return copies;
 }

 public model function members():Collection[Member] {
 return members;
 }

 public model function cards():Collection[Card] {
 return cards;
 }

 public model function loans():Collection[Loan] {
 return loans;
 }

8.3.2.2 Formalisation of invariants of Lib class

Seven high-level correctness properties are laid out in the undergraduate student’s informal
specification [14]. Four properties state that the identification numbers used for each item, copy, card
and member (item number, copy number, card number and member number, respectively) are unique.
Two properties state that the copies and members that are referred to in any loan must be in the
library’s recorded copies and members, respectively. The final property expresses that a single copy
cannot be recorded as on loan more than once at any one time.

These correctness properties can be expressed as invariants within the Lib class. To define the
uniqueness of the identification numbers we can use nested universal quantifiers. For example, the
invariant that the itemNos of the Items in the items collection are unique is:

 public invariant itemNosInItemsUnique:
 forall (i:Item in items()):
 forall (i2:Item in items()):
 i.itemNo() != i2.itemNo() || i = i2

We can use the following as the invariant that every copy that is on loan is in the copies
collection with a similar invariant for the memberNo for each loan.

 public invariant allCopiesOnLoanInCopies:
 forall (l:Loan in loans()):
 exists (c:Copy in copies()):
 l.copyNo() = c.copyNo()

For the invariant that no copies are on loan more than once we can assert that if two loans have the
same copyNo, they must be equal.

 public invariant noCopiesOnLoanMoreThanOnce:
 forall (l:Loan in loans()):
 forall (l2:Loan in loans()):
 l.copyNo() != l2.copyNo() || l = l2

8.3.2.3 Lib operations

As an example of the definition of an operation from the Lib class, consider the takeOutCopy
operation which is used to take a copy of an item from the library and loan it out to a member. This
method accepts a member number (memNo), a copy number (cNo) and a date (date) and takes out a
new loan.

 public operation takeOutCopy(memNo:integer, cNo:integer,
date:Date)

 requires exists (m:Member in members()):
 m.memberNo() = memNo,

8 Case study

 111

 exists (c:Copy in copies()):
 c.copyNo() = cNo,
 forall (l:Loan in loans()):
 l.copyNo() != cNo
 changes loans
 ensures loans().size() = old loans().size() + 1
 {
 loans.add(Loan.borrows(memNo, cNo, date,
 calcNewDate(
 lookupItemFromCopy(cNo).itemNo(),
 date)));
 }

The requires clause asserts that there must be a Member in members with memNo as its
memberNo, that there must be a Copy in copies with cNo as its copyNo and that there should not
be any Loan in loans which has cNo as its copyNo. These assertions help assure that after the new
Loan is added with the passed details that the invariants are maintained. The changes clause
specifies only the loans element (referring to the public model function) and so the other state
elements (the other public model functions) should not be changed. A lightweight specification of the
behaviour of the method is given in the ensures clause. This simply states that the size of the loans
collection increases by one. Of course, this is an incomplete characterisation of the behaviour of the
method but it is sufficient as a simple assertion to run-time check for this method.

The implementation constructs a new Loan object with memNo, cNo, the passed date as the start
date of the loan and an end date calculated using the calcNewDate function. The
lookupItemFromCopy function is used to retrieve the itemNo of the copy to pass to this function.

As an example of one of the update methods, consider the changeMemberName operation which
is used to change the name associated with a member of the library. This accepts a memberNo, a first
and last name and updates the name of the Member with this memberNo to hold this value.

 public operation changeMemberName(memberNo:integer, f:String,
s:String)

 requires exists (m:Member in members()):
 m.memberNo() = memberNo
 changes members
 ensures members().size() = old members().size(),
 lookupMember(memberNo).name() = Name.newName(f, s)
 {
 var memberObj:Member:= lookupMember(memberNo);
 members.remove(memberObj);
 memberObj.setName(Name.newName(f, s));
 members.add(memberObj);
 }

The requires clause of the operation asserts that there should be a Member with the specified
memberNo. This is required to ensure that the lookupMember function will always succeed. The
changes clause specifies that only the members state element is changed. The ensures clause
gives a lightweight specification of the behaviour of the method. It asserts that the size of the
members collection should not have changed and that, after the method, the member with the
specified memberNo should have the passed name.

The implementation starts by using the lookupMember function to retrieve the Member object
with the specified memberNo. It removes this Member from the members collection, updates it using
the setName operation and then re-adds it to members. As a result, the old Member with this
memberNo should have been renamed and all other Members should have been unchanged.

8.3.2.4 Lib functions

There are also functions to query aspects of the library. For example, consider the
lookupBookFromISBN function which is an example of one of the lookup functions. This function
accepts an ISBN and returns a Book with that ISBN from books.

 public function lookupBookFromISBN(isbn:ISBN):Book

8 Case study

 112

 requires exists (i:Item in items() where i is Book):
 (i as Book).isbn() = isbn
 ensures result.isbn() = isbn,
 items().contains(result)
 {
 foreach (i:Item in items){
 if (i is Book){
 var book:Book := i as Book;
 if (book.isbn() = isbn){
 return book;
 }
 }
 }
 unreachable;
 }

The requires clause asserts that there should be an Item in the items collection which is a
Book and has the specified ISBN. The ensures clause asserts that the isbn of the returned Book
should equal the passed ISBN and that the Book should be in the items collection.

The implementation iterates through the elements in the items collection. If it finds a Book, it
checks the isbn and returns that Book if it matches the passed ISBN. The unreachable statement
should never be reached because, from the requires clause, the return statement should be
reached for one of the iterations through the loop.

The memberLoans function is an example of one of the search functions. This accepts a
memberNo and returns a collection containing all the Items for which a Copy is on loan to that
Member.

 public function memberLoans(memberNo:integer)
 :Collection[Item]
 ensures forall (i:Item in result):
 exists (l:Loan in loans()):
 l.memberNo() = memberNo
 && lookupItemFromCopy(l.copyNo()).itemNo()
 = i.itemNo()
 {
 var memberLoansCol:Collection[Item]
 :=Collection[Item].empty();
 foreach (l:Loan in loans){
 if (l.memberNo() = memberNo){
 memberLoansCol.add(lookupItemFromCopy(l.copyNo()));
 }
 }
 return memberLoansCol;
 }

There is no requires clause. If there is no Member with the specified memberNo, an empty
collection will be returned. The ensures clause gives a lightweight specification of the behaviour of
the function. It asserts that for all the Items in the returned collection, there should be a loan with the
passed memberNo and a Copy of the Item.

The implementation creates an empty collection and then iterates through the Loan objects in
loans, adding Items which are on loan to the specified Member. The collection is then returned at
the end of the function.

8.3.3 Testing

Verification with run-time assertion checking is built around the use of testing. Tests must be used to
ensure that the application performs its intended function without violation of any of the assertion
annotations.

In Omnibus, we can test the application in one of three ways: defining a command-line application,
using a separate GUI or defining test cases.

8 Case study

 113

8.3.3.1 Command-line applications

Omnibus provides the facilities to define command-line applications. We can define a command-line
application to test out the Lib class and then execute it. Application start points are defined by
defining a subclass of the omni.app.Application class. The following application adds a new
CD and loans it out to the existing member named Joe.

uses omni.app

public class Main isa Application {
 public constructor init() {}

 public operation execute(args:List[String],
 var env:Environment) {
 env.println("Starting Library...");
 var lib:Lib := Lib.testDataLibrary();
 printState(var env, lib);
 env.println("Adding Eels Souljacker CD...");
 var sjCopyNo:integer := lib.getNewCopyNo();
 lib.acquireCD("Souljacker", "Eels",
 Date.newDate(24,9,2001));
 printState(var env, lib);
 env.println("Loaning Eels Souljacker CD to Joe...");
 var joeMemNo:integer := 1;
 lib.takeOutCopy(joeMemNo, sjCopyNo,
 Date.newDate(16, 5, 2007));
 printState(var env, lib);
 }

 private operation printState(var env:Environment,
 lib:Lib)
 {
 env.println("Members:");
 foreach (m:Member in lib.members()) {
 env.println(" "+m.memberNo()+":"+m.name().fName()
 +" "+m.name().sName());
 }
 env.println("Items:");
 foreach (i:Item in lib.items()) {
 env.println(" "+i.itemNo()+":"+i.title());
 }
 env.println("Copies:");
 foreach (c:Copy in lib.copies()) {
 env.println(" "+c.copyNo()+": copy of item "
 +c.itemNo());
 }
 env.println("Loans:");
 foreach (l:Loan in lib.loans()) {
 env.println(" loan of "+l.copyNo()+" to "
 +l.memberNo());
 }
 }
}

This application can be executed to perform limited testing of the application. The check viewer can
be used to see exactly which assertions have been checked:

8 Case study

 114

This tells us that there were 1036 run-time assertions generated. 148 of them were checked at least

once. The remaining 888 were not checked by this particular test.

8.3.3.2 A separate GUI

Another way to test the application is through the use of a GUI written in another language. The
student implemented a GUI for the Library Omnibus application in Java. This can be used to interact
with the application and perform tests.

The following screenshots show the use of the GUI to login, loan out a book, lookup the details of
the loan, renew it on the same day without a fine and then return it late with a fine.

8 Case study

 115

The check viewer (shown below) can be used in the same way to check the details of the run-time

assertion checks that are made during this manual test. This test covered 245 of the 1036 assertions in
the file. However, to repeat the test the user would have to repeat their actions with the GUI.

8.3.3.3 Test cases

Omnibus provides the facility to define test cases within each class. These can then be automatically re-
executed by the user at any time.

8 Case study

 116

To cover all the assertion checks we can use 7 tests: emptyTest, loginTest, bookTest,
cdTest, dvdTest, memberTest and loanTest. Each of these tests a particular aspect of the
example. As an example, the bookTest is displayed below. This tests the addition, retrieval, updating
and changing of the loan status of books.

 test bookTest {
 var lib:Lib := Lib.testDataLibrary();

 // check addition of book
 // declare new book details
 var cplTitle:String
 := "Comparative Programming Languages";
 var cplISBN:ISBN := ISBN.fromString("0-201-71012-0");
 var rgcName:Name := Name.newName("Robert G.", "Clark");
 var lbwName:Name := Name.newName("Leslie B.",
 "Wilson");
 var cplAuths:List[Name] :=
 List[Name].empty().add(rgcName).add(lbwName);
 var cplPub:String := "Addison Wesley";
 var cplPubDate:Date := Date.newDate(6,11,2000);
 var cplItemNo:integer := lib.getNewItemNo();
 var cplCopyNo:integer := lib.getNewCopyNo();
 // add the new book
 lib.acquireBook(cplTitle, cplISBN, cplAuths, cplPub,
 cplPubDate);

 // check details of added book
 var cplItem:Item := lib.lookupItem(cplItemNo);
 assert cplItem is Book;
 var cplBk:Book := lib.lookupBook(cplItemNo);
 assert cplItem = cplBk;
 // check search functions
 assert lib.lookupItemFromTitle(cplTitle) = cplBk;
 assert lib.lookupBookFromISBN(cplISBN) = cplBk;
 var cplOnlyList:Collection[Book]
 := Collection[Book].empty().add(cplBk);
 assert lib.lookupBooksFromAuthor(rgcName).size() = 1;
 assert lib.lookupBooksFromAuthor(rgcName)
 .contains(cplBk);
 var rgcBooks:Collection[Book]
 := lib.lookupBooksFromAuthor(rgcName);
 assert lib.lookupBooksFromAuthor(rgcName)
 = cplOnlyList;
 assert lib.lookupBooksFromPublisher(cplPub)
 = cplOnlyList;
 assert lib.lookupBooksFromPubYear(cplPubDate.year())
 = cplOnlyList;
 // check details of copy
 assert lib.lookupCopy(cplCopyNo).copyNo() = cplCopyNo;
 assert lib.lookupCopy(cplCopyNo).itemNo() = cplItemNo;
 assert lib.lookupItemFromCopy(cplCopyNo) = cplBk;

 // change book details
 var cplTitle2:String :=
 "Comparative Programming Languages (Third Edition)";
 lib.changeItemTitle(cplItemNo, cplTitle2);
 assert lib.lookupBook(cplItemNo).title() = cplTitle2;
 var cplISBN2:ISBN := ISBN.fromString("9780201710120");
 lib.changeBookISBN(cplItemNo, cplISBN2);
 assert lib.lookupBook(cplItemNo).isbn() = cplISBN2;
 var cplAuths2:List[Name] :=

8 Case study

 117

 List[Name].empty().add(rgcName);
 lib.changeBookAuthors(cplItemNo, cplAuths2);
 assert lib.lookupBook(cplItemNo).authors() = cplAuths2;
 var cplPub2:String := "Addison-Wesley";
 lib.changeBookPub(cplItemNo, cplPub2);
 assert lib.lookupBook(cplItemNo).publisher() = cplPub2;
 var cplPubDate2:Date := Date.newDate(1,1,2001);
 lib.changeBookPubDate(cplItemNo, cplPubDate2);
 assert lib.lookupBook(cplItemNo).pubDate()
 = cplPubDate2;

 // change book copy status
 assert lib.lookupCopy(cplCopyNo).status()
 .isAvailable();
 assert !lib.lookupCopy(cplCopyNo).status().isLost();
 lib.changeCopyStatus(cplCopyNo, ItemStatus.lost());
 assert lib.lookupCopy(cplCopyNo).status().isLost();
 assert !lib.lookupCopy(cplCopyNo).status()
 .isAvailable();
 lib.changeCopyStatus(cplCopyNo,
 ItemStatus.available());
 assert lib.lookupCopy(cplCopyNo).status()
 .isAvailable();
 assert !lib.lookupCopy(cplCopyNo).status().isLost();

 // delete book
 var oldCopiesCount:integer := lib.copies().size();
 lib.disposeOfCopy(cplCopyNo);
 assert !(exists (c:Copy in lib.copies()):
 c.copyNo() = cplCopyNo);
 assert lib.copies().size() = oldCopiesCount - 1;
 }

The check viewer (shown below) shows us that all the assertions have been checked this time. To
achieve this, we had to produce tests totalling 240 lines excluding comments. These cover every
generated run-time assertion check at least once.

8 Case study

 118

8.3.4 Errors detected

As you would expect, some errors were made in the specification and implementation of the library
system by the student. In this section we will discuss some of the errors that the run-time assertion
checking process enabled us to uncover.

8.3.4.1 Missing olds

The most common error that was detected by the run-time assertion checking process was missing old
operators in ensures clauses of operations. For example, consider the specification of the
disposeOfCopy operation as originally produced by the student.

 public operation disposeOfCopy(copyNo:integer)
 requires exists (c:Copy in copies()):
 c.copyNo() = copyNo
 changes copies, items
 ensures copies().size() = old copies().size() - 1,
 if (isOnlyOneCopy(lookupCopy(copyNo).itemNo())) then
 items().size() = old items().size() - 1
 else
 items() = old items()
 { ... }

This operation should remove the Copy with the specified number and, if it is the last Copy, delete
the associated Item. On run-time assertion checking this operation, we get the following error reported
where line 248 is the location of the closing curly bracket at the end of the disposeOfCopy
operation.

 ** Executing bookTest test...
C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-

rac\Lib.obs:248: Failure of public requires clause of the
lookupCopy function declared in Lib at line 780

Source:
 exists ((c:Copy) in copies()): c.copyNo() = copyNo
Attributes:
 members: {omni.lang.Collection: [Member: memberNo: 2, name:

[Name: fName: Kate, sName: Brown], address1: 1A London Road,
address2: Stirling, postcode: FK9 1BB, telNo: 1786477557,
isAdult: true, isStaff: true, status: [MemberStatus: value: 0],
fineDue: 0, pinNo: 5555], [Member: memberNo: 1, name: [Name:
fName: Joe, sName: Bloggs], address1: 17 Queen Street,
address2: Stirling, postcode: FK9 1AA, telNo: 1786466666,
isAdult: true, isStaff: false, status: [MemberStatus: value:
0], fineDue: 0, pinNo: 5555]}

 loans: {omni.lang.Collection: }
 copies: {omni.lang.Collection: [Copy: copyNo: 1, itemNo: 1,

status: [ItemStatus: value: 1]]}
 items: {omni.lang.Collection: [Book: isbn: [ISBN: value: 01-303-

23-772], authors: {omni.lang.List: [Name: fName: Doug, sName:
Bell]}, publisher: Prentice Hall, pubDate: [Date: day: 1,
month: 7, year: 2001], itemNo: 1, title: Java For Students]}

 cards: {omni.lang.Collection: [Card: cardNo: 1, memberNo: 1]}
Parameters:
 copyNo: 2
Call stack:
 at Lib.disposeOfCopy(Lib:248)
 at Lib.test_bookTest(Lib:1307)
 -- Test aborted after 93 ms

The functions isOnlyOneCopy and lookupCopy are used in the condition of the if expression
in the ensures clause. The intention was to assert that if there was only one copy of the associated
Item before the operation then the size of the items collection is reduced by one; otherwise it stays
the same. However, the calls of isOnlyOneCopy and lookupCopy, without an old operator

8 Case study

 119

prefix, refer to the library after the operation, not before it. Thus, the evaluation of lookupCopy with
the specified copyNo after the operation will result in a violation of its requires clause since the
Copy with that copyNo will have been removed by the end of the method. Instead, the user should
have used the old operator before both of these function calls to indicate that these functions should
have been evaluated at the start of the implementation. The ensures should have been written as
follows:

 ensures copies().size() = old copies().size() - 1,
 if (old isOnlyOneCopy(
 old lookupCopy(copyNo).itemNo())) then
 items().size() = old items().size() - 1
 else
 items() = old items()

This alteration allows the operation to be successfully run-time assertion checked.

8.3.4.2 Genuine mistakes

There were a number of conventional mistakes that were made in the specification of the library system
and picked up by the run-time assertion checker. A good example is from the acquireBook
operation.

 public operation acquireBook(title:String, isbn:ISBN,
authors:List[Name], pub:String, pubDate:Date)

 changes items, copies
 ensures
 if (forall (i:Item in old items() where i is Book):
 ((i as Book).title() != title
 && (i as Book).authors() != authors)) then
 items().size() = old items().size() + 1
 && copies().size() = old copies().size() + 1
 else
 copies().size() = old copies().size() + 1
 && items() = old items()
 {
 var countOfCopies:integer := 0;
 foreach (i:Item in items){
 if (i is Book){
 var b:Book := i as Book;
 if (b.title() = title && b.authors() = authors){
 countOfCopies := countOfCopies + 1;
 }
 }
 }
 if (countOfCopies = 0){
 items.add(Book.newBook(getNewItemNo(), title, isbn,
 authors, pub, pubDate));
 }
 copies.add(Copy.newCopy(getNewCopyNo(),
 lookupItemFromTitle(title).itemNo()));

 }

Again, items() was originally used instead of old items() but we have made that correction
first. Even after that correction, the run-time assertion checker reports a failure of the ensures clause
at the end of the operation.

The intention of the operation is to check for an existing Book with the specified title and authors,
if there is one, add a new Copy of it and if there is not then add a new Item and Copy. On invoking
the run-time assertion checker, we get the following error where line 172 is the closing curly bracket of
the acquireBook implementation and line 1312 is the point in the bookTest test where a second
Book authored by ‘Robert G. Clark’ is added.

8 Case study

 120

 ** Executing bookTest test...
C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-

rac\Lib.obs:172: Failure of public ensures clause of the
acquireBook operation declared in Lib at line 145

Source:
 if (forall ((i:Item) in old items() where i is Book): ((i as

Book).title() != title && (i as Book).authors() != authors))
then (items().size() = old items().size() + 1 &&
copies().size() = old copies().size() + 1) else
(copies().size() = old copies().size() + 1 && items() = old
items())

Attributes:
 members: {omni.lang.Collection: [Member: memberNo: 2, name:

[Name: fName: Kate, sName: Brown], ...], [Member: memberNo: 1,
name: [Name: fName: Joe, sName: Bloggs], ...]}

 loans: {omni.lang.Collection: }
 copies: {omni.lang.Collection: [Copy: copyNo: 3, itemNo: 3,

...], [Copy: copyNo: 2, itemNo: 2, ...], [Copy: copyNo: 1,
itemNo: 1, ...]}

 items: {omni.lang.Collection: [Book: authors: {omni.lang.List:
[Name: fName: Robert G., sName: Clark]}, title: Programming in
Ada: A First Course, ...], [Book: authors: {omni.lang.List:
[Name: fName: Robert G., sName: Clark]}, title: Comparative
Programming Languages (Third Edition), ...], [Book: authors:
{omni.lang.List: [Name: fName: Doug, sName: Bell]}, title: Java
For Students, ...]}

 cards: {omni.lang.Collection: [Card: cardNo: 1, memberNo: 1]}
Old Attributes:
 old members: {omni.lang.Collection: [Member: memberNo: 2, name:

[Name: fName: Kate, sName: Brown], ...], [Member: memberNo: 1,
name: [Name: fName: Joe, sName: Bloggs], ...]}

 old loans: {omni.lang.Collection: }
 old copies: {omni.lang.Collection: [Copy: copyNo: 2, itemNo: 2,

...], [Copy: copyNo: 1, itemNo: 1, ...]}
 old items: {omni.lang.Collection: [Book: authors:

{omni.lang.List: [Name: fName: Robert G., sName: Clark]},
title: Comparative Programming Languages (Third Edition), ...],
[Book: authors: {omni.lang.List: [Name: fName: Doug, sName:
Bell]}, title: Java For Students, ...]}

 old cards: {omni.lang.Collection: [Card: cardNo: 1, memberNo:
1]}

Parameters:
 title: Programming in Ada: A First Course
 pubDate: [Date: day: 31, month: 5, year: 1985]
 isbn: [ISBN: value: 9780521257282]
 authors: {omni.lang.List: [Name: fName: Robert G., sName:

Clark]}
 pub: Cambridge University Press
Call stack:
 at Lib.acquireBook(Lib:172)
 at Lib.test_bookTest(Lib:1312)
 -- Test aborted after 109 ms

The implementation iterates through the items collection and counts the number of Books that
have the specified title and authors. If this is zero, it adds a new Item and then in all cases it adds a
new Copy.

The ensures clause consists of an if expression. The condition checks whether all the Books
have a different title and list of authors from those passed to acquireBook. This is inconsistent with
the implementation which counts the number of Books whose title and list of authors are the same as
those passed. Instead, the condition of the if expression in the ensures clause should check that

8 Case study

 121

either the title or the authors are different from those passed. The corrected ensures clause is shown
below.

 ensures
 if (forall (i:Item in old items() where i is Book):
 ((i as Book).title() != title
 || (i as Book).authors() != authors)) then
 items().size() = old items().size() + 1
 && copies().size() = old copies().size() + 1
 else
 copies().size() = old copies().size() + 1
 && items() = old items()

After this correction, the operation can be run-time assertion checked without errors.
This error was only picked up because of the comprehensiveness of the bookTest test case. The

inconsistency between the quantification in the condition of the if expression and the implementation
is only exposed when a new Book is added with the same title but different authors or same authors
but different title. It would have been easy to have missed this scenario in our test case, in which
circumstance the error would have gone undetected by the run-time assertion checking process.

8.3.5 Conclusions

The student was able to produce an implementation of the described library system in Omnibus and we
were able to use run-time assertion checking to verify it. This allowed us to identify a range of errors in
the original application. However, as we will see in later sections, there are other errors which the run-
time assertion checking approach was not able to detect.

8.4 Extended static checking
Next we will consider the use of the extended static checking approach to check the library project. We
will take as our starting point the Omnibus implementation with lightweight specifications produced in
the previous section. We will see that ESC allows us to uncover errors that were not detected by RAC.

8.4.1 Using the ESC tool

ESC tools are straightforward to use: the programmer simply selects the ESC policy in the Policy
Selector and then clicks ‘Verify Project’. The tool generates appropriate theories in the generic logic
and then invokes the automated Simplify prover. While the prover is running, its progress can be
tracked via the Prover pane.

8.4.2 New errors detected

The ESC tool uncovers a range of errors and omissions which were not detected by the run-time
assertion checking process.

8.4.2.1 Missing private specifications for public model functions

In the specifications produced for the RAC approach, we did not give private specifications for the
public model functions. These were not needed to run-time check the classes and so in accordance with
the freedoms of lightweight specifications we were allowed to omit them. For example, the public
model functions for the Item class were declared as follows:

 public model function itemNo():integer {
 return itemNo;
 }

8 Case study

 122

 public model function title():String {
 return title;
 }

The Item class contains a single operation setTitle which is declared with a changes clause
expressing that only the title model function should be changed, i.e. the itemNo model function
should not be changed.

 public operation setTitle(t:String)
 changes title
 {
 title := t;
 }

On attempting to ESC-check this file we get the following error:

C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-
esc\Item.obs:23: Unable to verify the implementation of the
setTitle operation respects the public changes clause at line
20

Attributes:
 title: t_0
 itemNo: itemNo_0
Old Attributes:
 title: title_0
 itemNo: itemNo_0
Parameters:
 t: t_0
Knowledge:
 {itemNo_0:integer},
 {title_0:String},
 {t_0:String},
 true
Assertion to check (unevaluated):
 old itemNo() = itemNo()
Assertion to check (evaluated):
 this{itemNo := itemNo_0, title := title_0}.itemNo() =

this{itemNo := itemNo_0, title := t_0}.itemNo()
Path:
 Started setTitle operation
 Check the implementation of the setTitle operation respects the

public changes clause at line 20
1 error

The problem is that the ESC tool is unable to deduce the relationship between the itemNo()
function and the itemNo attribute because there is no specification of this relationship. Remember that
our ESC tool uses modular checking and can only reason about other methods using their
specifications. The relationship between the model function and the attribute is clear from the trivial
implementation of the function, but the tool cannot refer to this from within the setTitle operation.

To address this problem, we must add a private specification to the public model functions
expressing the relationship between the public model functions and the private attributes. We could
adjust the definitions of the public model functions in Item to be the following:

 public model function itemNo():integer
 private ensures result = itemNo
 {
 return itemNo;
 }

 public model function title():String
 private ensures result = title

8 Case study

 123

 {
 return title;
 }

This allows the file to be ESC checked. These missing specifications are not really a mistake in the
original code, more an additional annotation burden for using ESC. We note that it was not clear from
the error message that this was the problem.

8.4.2.2 Missing requires clauses

When producing lightweight specifications, it is acceptable to specify as little as the programmer
wishes in the ensures clauses. However, the requires clauses should completely describe the
assumptions which a method makes about the state in which it is called. A method can only reasonably
expect that the caller respects its declared requires clause and so if the requires clause of a
method is met and then an assertion failure occurs during the execution of the method, that is a mistake
in the called method.

Consider the Book class as implemented by the student and RAC-checked. It is declared with an
invariant that there are no duplicates in the authors.

 public invariant noDuplicatesInAuthors:
 !authors().containsDuplicates()

Two methods have the ability to change the authors: the newBook constructor and the
setAuthors operation.

 public constructor newBook(iNo:integer, t:String, isbnNo:ISBN,
auths:List[Name], pub:String, pDate:Date)

 {
 itemNo := iNo;
 title := t;
 isbn := isbnNo;
 authors := auths;
 publisher := pub;
 pubDate := pDate;
 }

 public operation setAuthors(auths:List[Name])
 changes authors
 {
 authors := auths;
 }

If we try to ESC-check this file we get the following errors:

C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-
esc\Book.obs:51: Unable to verify the implementation of the
newBook constructor establishes the public invariant at line 35

...
C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-

esc\Book.obs:68: Unable to verify the implementation of the
setAuthors operation maintains the public invariant at line 35

...
2 errors

The problem is that the author lists that are passed into the newBook and setAuthors
methods are not constrained to not contain duplicates. The ESC tool correctly picks up this omission.

We can address the problem by adding the following requires clause to both the newBook
constructor and setAuthors operation.

 requires !auths.containsDuplicates()

The RAC approach was not able to detect this missing requires clause. The first reason for this
was that the associated test cases were written to test correct execution for expected values, not
graceful failure for invalid inputs. We did not define a test case to check the rejection of the addition of

8 Case study

 124

a Book with duplicate authors. Let us consider what would have happened if we had defined such a
test. We could allow for the addition of a second book by RGC into bookTest just before the deletion
of the first book.

test bookTest {
 ...

 // add second book by RGC
 var paTitle:String
 := "Programming in Ada: A First Course";
 var paISBN:ISBN := ISBN.fromString("9780521257282");
 var paAuths:List[Name] :=
 List[Name].empty().add(rgcName);
 var paPub:String := "Cambridge University Press";
 var paPubDate:Date := Date.newDate(31,5,1985);
 var paItemNo:integer := lib.getNewItemNo();
 var paCopyNo:integer := lib.getNewCopyNo();
 // add the new book
 lib.acquireBook(paTitle, paISBN, paAuths, paPub,
 paPubDate);

 // delete book
 ...
}

Without the requires clause in the newBook constructor we would get the following error when
executing the test case:

 ** Executing bookTest test...
C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-

rac\Book.obs:36: Failure of public invariant declared in Book
at line 24 at end of newBook constructor

Source:
 !authors().containsDuplicates()
Parameters:
 auths: {omni.lang.List: [Name: fName: Robert G., sName: Clark],

[Name: fName: Robert G., sName: Clark]}
 iNo: 3
 isbnNo: [ISBN: value: 9780521257282]
 t: Programming in Ada: A First Course
 pub: Cambridge University Press
 pDate: [Date: day: 31, month: 5, year: 1985]
Call stack:
 at Book.newBook(Book:36)
 at Lib.acquireBook(Lib:165)
 at Lib.test_bookTest(Lib:1312)
 -- Test aborted after 78 ms.

So, we get a failure report for the invariant at the end of the newBook constructor. Since this is not
a requires clause failure, this should indicate an error by the implementer of the newBook
constructor. However, it is not an error in the implementation, it is the omission of a suitable
requires clause. This is a much more awkward way to detect missing requires clauses than the
ESC tool.

8.4.2.3 Truisms in ensures clauses

A subtle mistake was made in the entry of the changeFineDue operation in the Member class. The
operation was defined by the student as follows:

 public operation changeFineDue(fine:integer)
 changes fineDue
 ensures fineDue() = fineDue()

8 Case study

 125

 {
 fineDue := fine;
 }

This was obviously an entry error and what they intended was:

 public operation changeFineDue(fine:integer)
 changes fineDue
 ensures fineDue() = fine
 {
 fineDue := fine;
 }

The later specification asserts that the fineDue function is equal to the passed fine value after
the operation whereas the former specification simply asserts that the fineDue function is equal to
itself, which tells us nothing useful about its value.

However, the error was not picked up by the run-time assertion checker since fineDue() =
fineDue() always evaluates to true and so no assertion failure is ever triggered in the execution of
the test cases. Error detection within run-time assertion checking is built upon the failure of assertion
checks.

The same problem occurs in the ESC-checking of the Member class. The ensures clause is
checked at the end of the implementation of the changeFineDue operation and it evaluates to true,
as it would regardless of what the implementation of the method did.

Unlike in the RAC-checking, the error is picked up though when we check the Lib class,
specifically the changeMemberFine operation. The lightweight specification of this operation
asserts that the fineDue for the specified Member should be set to the passed value. This is
implemented via a call of the changeFineDue operation in the body of the method.

 public operation changeMemberFine(memberNo:integer,
fineDue:integer)

 requires exists (m:Member in members()):
 m.memberNo() = memberNo
 changes members
 ensures members().size() = old members().size(),
 lookupMember(memberNo).fineDue() = fineDue
 {
 var memberObj:Member := lookupMember(memberNo);
 members.remove(memberObj);
 memberObj.changeFineDue(fineDue);
 members.add(memberObj);
 }

As always, when reasoning about another method in ESC, the specification of that method is used.
Here the specification of the changeFineDue operation is used to reason about how memberObj is
changed. But that specification does not give us the information we require to prove that the fineDue
function of memberObj is changed to fineDue. Thus, an error is reported, picking up the mistake in
the changeFineDue operation.

This mistake was not picked up in this way by RAC because RAC interprets other methods by
executing their implementations, not by reasoning about their specifications. It is this property of RAC
which makes it excellent for working with external components with limited specifications but here it
is a hindrance and prevents the detection of a genuine error.

8.4.3 Limitations of the ESC tool

The Omnibus ESC tool is not able to verify the Lib and Date classes. If the programmer attempts to
verify these files then the prover hangs. The specification of the Lib class is too sophisticated to be
ESC-checked. The problem with the Date class is that it was not completely specified.

8.4.4 Conclusions

ESC was able to detect a range of further mistakes that RAC was not able to detect. This is, firstly,
because the ESC process considers the execution of the methods for arbitrary symbolic values, not a

8 Case study

 126

specific set of inputs covered by associated test cases. In particular, this helped identify errors in the
handling of invalid input values which required additional requires clauses. Also, when verifying a
method the ESC approach reasons about other methods using their specifications and this can help us
find errors in the specifications. However, the tool was not able to verify the entire project because
some of the specifications were too complex or incomplete.

8.5 Full formal verification
Finally, we consider the full formal verification of the library project. We will see that FFV discovers
further issues that even ESC did not detect.

Instead of considering an implementation with lightweight specifications, in this section we
consider a heavyweight specification. Using RAC and ESC, the behaviour of methods can be described
using very incomplete ensures clauses. Requirements such as invariants are verified separately
at the end of each constructor/operation. In FFV, the behaviour of methods should be described more
completely in the ensures clauses. Crucially, in our FFV approach the requirements must follow
from the behaviour specifications. This helps ensure a greater level of completeness in the
specifications.

8.5.1 Automatic and interactive FFV

Full formal verification can be performed using either an automated or interactive theorem prover.

8.5.1.1 FFV with an automated prover

After corrections, it is possible to verify the specifications of the auxiliary classes (i.e. all the classes in
the project apart from Lib) using the automated Simplify prover. This involves the proof of 19 VCs
which are discharged in 2 seconds.

The verification of the central Lib class with the automated prover is less successful. The first 7
VCs corresponding to the proofs of each of the invariants for the empty constructor are proved in a
total of just over 4 seconds, but then the prover hangs whilst trying to prove the main operations. This
is not an unexpected result and is consistent with previous attempts to use the Simplify prover for full
formal verification projects.

8.5.1.2 FFV with an interactive prover

To fully verify the main Lib class we must use an interactive prover. The Omnibus IDE uses PVS as
its interactive prover.

As an example of the interactive verification of the Lib class, consider the verification that the
registerMember operation satisfies the invariants. The registerMember specification is given
below. It is quite straightforward, simply constructing a new Member with the passed attributes and
adding it to the members collection.

public operation registerMember(name:Name, ad1:String, ad2:String,
pCode:String, telNo:integer, isAdult:boolean, isStaff:boolean)

 changes members
 ensures members() = old members().add(
 Member.newMember(old getNewMemberNo(),
 name, ad1, ad2, pCode,
 telNo, isAdult, isStaff))

The memberNo for the new Member is calculated using the getNewMemberNo function. The
specification of this function simply states that it returns an integer which is not being used as the
memberNo of any Member in the members collection.

public function getNewMemberNo():integer
 ensures !(exists (m:Member in members()):
 m.memberNo() = result)

Now let us consider the verification of the invariants. We can assume that the invariants hold before
the operation is called and we must demonstrate that they hold at the end of the operation. The
changes clause specified that only the public members model function is changed, so any invariant
which does not refer to members will be trivially maintained because its truth will not be altered by
the method. This covers the 5 of the 7 invariants from the Lib class, which are repeated below.

8 Case study

 127

 public invariant itemNosInItemsUnique:
 forall (i:Item in items()):
 forall (i2:Item in items()):
 i.itemNo() != i2.itemNo() || i = i2
 public invariant copyNosInCopiesUnique:
 forall (c:Copy in copies()):
 forall (c2:Copy in copies()):
 c.copyNo() != c2.copyNo() || c = c2
 public invariant cardNosInCardsUnique:
 forall (c:Card in cards()):
 forall (c2:Card in cards()):
 c.cardNo() != c2.cardNo() || c = c2
 public invariant allCopiesOnLoanInCopies:
 forall (l:Loan in loans()):
 exists (c:Copy in copies()):
 l.copyNo() = c.copyNo()
 public invariant noCopiesOnLoanMoreThanOnce:
 forall (l:Loan in loans()):
 forall (l2:Loan in loans()):
 l.copyNo() != l2.copyNo() || l = l2

Next, we have the invariant that for all memberNos referred to in an entry in the loans collection
there is a Member with that memberNo in the members collection. This is also relatively trivial to
demonstrate since we have made an addition to the members collection, and hence all elements that
were previously in the members collection will still be in it.

 public invariant allMembersWithLoansInMembers:
 forall (l:Loan in loans()):
 exists (m:Member in members()):
 l.memberNo() = m.memberNo()

Finally, consider the invariant that there are no two Members in the members collection with the
same memberNo. This is slightly more complicated and relies on the specification of the
getNewMemberNo function. The getNewMemberNo function returns an integer value which is not
used as the memberNo of any of the Members in the members collection before the operation is
called, so it should be allowable to add a new Member with that memberNo.

 public invariant memberNosInMembersUnique:
 forall (m:Member in members()):
 forall (m2:Member in members()):
 m.memberNo() != m2.memberNo() || m = m2

As an illustration of the PVS proof process, the verification of this invariant is worked through in
detail in appendix E.

8.5.2 New errors detected

The full formal verification process requires more sophisticated specifications, leading to detection of
further errors and omissions.

8.5.2.1 Missing ensures clauses

As part of the ESC process, we had to add requires clauses to the newBook and setAuthors
methods in order to ensure the invariant. However, we did not have to provide ensures clauses since
the invariant was checked at the end of the implementation of each method. The specifications
sufficient to ESC-check the Book class were:

 public constructor newBook(iNo:integer, t:String, isbnNo:ISBN,
auths:List[Name], pub:String, pDate:Date)

 requires !auths.containsDuplicates()

 public operation setAuthors(auths:List[Name])
 requires !auths.containsDuplicates()

8 Case study

 128

 changes authors

When using FFV, we must verify that the specification alone is sufficient to verify the invariant. If
we attempt to verify this class using automated FFV, we get the following errors:

C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-
ffv\Book.obs:13: Unable to verify the public behaviour of the
newBook constructor satisfies the public invariant at line 7

C:\Program Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-
ffv\Book.obs:27: Unable to verify the public behaviour of the
setAuthors operation satisfies the public invariant at line 7

2 errors

This is because there are no ensures clauses to describe how the value of the public authors
model function relates to the passed auths lists at the end of the methods. We must add ensures
clauses to describe this.

 public constructor newBook(iNo:integer, t:String, isbnNo:ISBN,
auths:List[Name], pub:String, pDate:Date)

 requires !auths.containsDuplicates()
 ensures itemNo() = iNo,
 title() = t,
 isbn() = isbnNo,
 authors() = auths,
 publisher() = pub,
 pubDate() = pDate

 operation setAuthors(auths:List[Name])
 requires !auths.containsDuplicates()
 changes authors
 ensures authors() = auths

On the addition of these assertions, the file can be automatically verified.

8.5.2.2 Ensures clauses not strong enough

We have already made a number of corrections to the acquireBook operation. Using RAC we
detected missing old operators in the ensures clause and a mistake in the checking for an existing
instance of the Book. Using ESC we detected a missing requires clause. However, there is still a
remaining error in the heavyweight specification produced by the student. This specification with all
the existing corrections is shown below.

public operation acquireBook(title:String, isbn:ISBN,
authors:List[Name], pub:String, pubDate:Date)

 requires !authors.containsDuplicates()
 changes items, copies
 ensures if (forall (i:Item in old items()
 where i is Book):
 (i.title() != title
 || (i as Book).authors() != authors)) then
 items() = old items().add(
 Book.newBook(old getNewItemNo(), title,
 isbn, authors, pub, pubDate))
 && copies() = old copies().add(
 Copy.newCopy(old getNewCopyNo(),
 old lookupItemFromTitle(title).itemNo()))
 else
 copies() = old copies().add(
 Copy.newCopy(old getNewCopyNo(),
 old lookupItemFromTitle(title).itemNo()))

This specification is not sufficient to verify the invariant that the itemNos in the items collection
are unique.

8 Case study

 129

 public invariant itemNosInItemsUnique:
 forall (i:Item in items()):
 forall (i2:Item in items()):
 i.itemNo() != i2.itemNo() || i = i2

The problem is that in the case where there is an existing entry for the Book, the new value of
items() is not described. It is not assumed to be unchanged from the changes clause because it is
mentioned there to allow it to be changed when a new Book needs to be created. The intention was
that, when a new Book is not to be added, the contents of items should not be changed, but this is not
documented in the ensures clause. This is clearly the result of the programmer thinking in
imperative terms about the declarative specification.

The problem can be addressed by the addition of an explicit assertion that items does not change
in the else part of the existing assertion.

 else
 copies() = old copies().add(
 Copy.newCopy(old getNewCopyNo(),
 old lookupItemFromTitle(title).itemNo()))
 && items() = old items()

This permits the invariant to be verified.
The problem was not picked up by RAC because RAC does not test the completeness of ensures

clauses. It was not picked up by ESC because, when verifying the Lib class, the invariant was checked
at the end of the implementation and not from the specification. We would have been able to identify
the omission if we had checked ESC-checked a class that uses the Lib class and needed to assert some
property about the items collection after the addition of a new copy of a Book.

8.5.3 Conclusions

FFV allows the specifications of the project to be improved still further. Richer specifications can be
used since the user can guide the PVS prover through proofs that are beyond the automated Simplify
prover. However, the costs are much higher. Appendix E describes the proof of a single VC. This proof
took considerable time and mathematical ingenuity and would be beyond many users.

8.6 Integrated verification
In the preceding sections we considered the use of the different approaches, in turn, to verify the
entirety of the library project. In this section we consider how we can use the different verification
approaches offered by Omnibus in a more integrated fashion. We use the example to demonstrate how
the different features of the integrated support can be used to fully exploit the integration.

8.6.1 Using different policies for different files

The simplest way in which we can combine the use of the different approaches is to select different
verification policies for different files in the project. For example, ESC was very good at verifying the
auxiliary classes in the library project but it could not handle the central Lib class or the incompletely
specified Date class. The Policy Selector permits different policies to be specified for different files.
So we could select the RAC policy for the Lib and Date classes and ESC for the others, as shown
below.

8 Case study

 130

The integrated verification process can be started via the Verify project option. If the versions of the

files before corrections are used then the errors will be detected and displayed together in the Errors
tab, as shown below.

If we use the corrected versions, no errors will be reported and the check viewer will report that all

run-time assertion checks in the Date and Lib classes were covered and all the automated VCs for the
other classes were proved. This is shown below.

8 Case study

 131

All the classes were translated into Java and compiled to bytecode, but only Lib and Date had

their assertions translated into run-time checks because only those classes used a policy with run-time
checks enabled. The ESC policy used by the other classes incorporates no run-time checks.

This absence of run-time pre-condition checks violates guideline 3 from section 5.2.2 and causes a
clash between the approaches. The tests used to run-time check the assertions in the Lib class use
instances of the other classes which were statically verified and have no run-time pre-condition checks.
This means the tests may be silently violating the pre-conditions of the other classes, invalidating their
verification which was based on the assumption that the pre-conditions of their methods are respected
by calls.

Consider the acquireBook operation in the Lib class as an example. There are correctness
obligations for the changes and ensures clauses at the end of the method body and these have been
checked via the generated run-time checks for the Lib class. However, there is also a correctness
obligation that the pre-condition of the newBook constructor is respected when the new Book object
is created. This has not been checked because the ESC policy was used for the Book class which has
no run-time assertion checks at all. So, the tool is right to present a warning as can be seen by the
exclamation mark next to the relevant statement in the screenshot below.

8 Case study

 132

To address this problem we should follow guideline 2 and generate run-time checks of the pre-

conditions of the Book class since we use it in an RAC-verified class. We can do this by changing the
verification policy for the Book class to be ‘ESC with RAC client checks’. This policy includes run-
time checks of the pre-conditions as well as statically verifying the implementation. The change is
made via the Policy Selector, as shown below.

8 Case study

 133

The pre-condition of the newBook constructor will now be checked when the call is made. This
provides justification for the correctness obligation when the project is re-verified. Note how in the
screenshot below, the exclamation mark has been replaced by a tick.

8.6.2 Fully integrating the verification approaches

Special cases and targeted tests can be used to support higher levels of integration between the different
approaches. This section describes how these facilities can be used to fulfil a number of purposes. A
summary of the uses we consider is given in the following table. The contents of the table are described
in the rest of this section.

Policy for
class

Feature Purpose

RAC ESC/FFV special case Statically verify to omit non RAC-compatible
obligations

" " Statically verify pre-condition of method without
any run-time checks

" ESC targeted test Check ESC-compatibility
ESC RAC special case and

RAC targeted test
Run-time checking non ESC-compatible

obligations
" FFV special case Interactive proof of non ESC-compatible

obligation
Automated

FFV
FFV special case Interactive proof of non ESC-compatible

obligation
(not discussed)

ESC/FFV RAC targeted test Check presence and RAC-compatibility of run-
time pre-condition checks

FFV ESC targeted test Check ESC-compatibility

8.6.2.1 Using static verification special cases to omit non RAC-compatible obligations

Policy for class: RAC
Feature used: ESC/FFV special case
Certain obligations in an RAC-checked project may not be RAC-compatible. They may use constructs
that cannot be translated into run-time checks or may be too costly to evaluate. Assertions in methods

8 Case study

 134

that are called frequently can often be too costly to run-time check. So it may be worthwhile to
statically verify particular obligations in an RAC-checked project.

As an example, consider items model function of the Lib class. We did not produce any
specification for this method because none was required to RAC-verify the class. However, we may
wish to add one in order to make the specification of the class more amenable to ESC verification of
client code. To use ESC, private ensures clauses are essential for the public model functions. So let
us add a private ensures clause like the following.

public model function items():Collection[Item]
 private ensures result = items
{
 return items;
}

If we now re-verify the application the Omnibus IDE runs out of memory and crashes whilst
reading the run-time check report file. The problem is that these functions are called so often in the
application that their check reports flood the check report file. Using the standard test cases which
cover all the assertions in the project, the private ensures clause of the items function alone is
executed 1,531 times.

One option would be to remove the assertion. We may deem that it is not RAC-compatible because
it cannot be efficiently run-time checked. When using RAC, we must be conscious of the limitations of
the verification approach and adjust our specifications to what can be efficiently run-time checked. Of
course, then there would be no specification of how the public items function relates to the private
items attribute. This could prevent us using ESC within any part of the file because we would need to
know that to use ESC.

A better option would be to define the verification of the private ensures clause of the items
function as a special case. We could then use ESC to verify it instead of RAC. The method is easy to
statically verify, and this approach enables us to retain the specification and ensure that it is respected.
This can be done using the Policy Selector as shown in the screenshot below.

If we open the obligations, we can see that it is justified by a VC, unlike the other obligations which

are all run-time checked:

8 Case study

 135

This technique can also be used to statically check obligations that cannot be translated into run-

time checks by our tool. For example, obligations involving quantifiers that are not restricted to
enumerable ranges could be statically verified as special cases.

8.6.2.2 Statically checking missing run-time pre-condition checks

Policy for class: RAC
Feature used: ESC/FFV special case
We have already seen that statically verified classes must contain run-time checks of their pre-
conditions if they are to be called from RAC-checked code or else unjustified correctness obligations
will be reported. If the class is to be reusable by classes that are RAC-checked then the distributor of
the component should generate their code with run-time pre-condition checks, but what if they do not?
One option open to users of the component is to define the correctness obligation to check the pre-
condition of the method as an ESC or FFV special case.

Consider the Name class in the Library project. We have seen that a Book is constructed with,
among other things, a list of author names. Suppose we want to define a new function in Name which
constructs a Book with the specified parameters and this Name as the only author. We could
implement this as follows.

public class Name {
 ...
 function bookByMe(iNo:integer, t:String, isbn:ISBN,
 pub:String, pDate:Date):Book {
 return Book.newBook(iNo, t, isbn,
 List[Name].empty().add(this),
 pub,pDate);
 }
 ...
}

Now suppose that the Book class uses the ESC policy which has no run-time pre-condition checks.
We would have an outstanding proof obligation that the requires clause of the Book constructor is
respected. This can be seen in the screenshot below as an exclamation mark next to the return statement
and in the comment following it.

8 Case study

 136

We could define this obligation as a special case and use ESC for it (as shown below). While RAC

requires that pre-condition checks are generated within the called method, ESC checks the pre-
condition independently, using the specification of the method. So the fact that the newBook
constructor does not have run-time pre-condition checks does not cause it problems.

We can see below that this technique enables us to justify the correctness obligation that the

requires clause of the newBook constructor is respected. The justification is provided by ESC even
though the rest of the file is RAC-checked.

8.6.2.3 Check ESC-compatibility of RAC-verified class

Policy for class: RAC
Feature used: ESC targeted test

8 Case study

 137

RAC specifications are often not ESC-compatible. The problem is generally that they do not have
expressive enough ensures clauses. We can use ESC targeted tests to detect these insufficiencies.

Consider the lightweight specification of the RAC-checked Book class. It has extremely minimal
specifications. That is acceptable to RAC-check the file, and RAC does not report errors for omissions
in specifications.

public class Book isa Item {
 ...
 public model function isbn():ISBN {
 return isbn;
 }
 ...
 constructor newBook(iNo:integer, t:String, isbnNo:ISBN,
 auths:List[Name], pub:String, pDate:Date)
 {
 itemNo := iNo;
 title := t;
 isbn := isbnNo;
 authors := auths;
 publisher := pub;
 pubDate := pDate;
 }
 ...
}

This specification is acceptable for RAC, but is it acceptable for ESC? It would be desirable to
discover the answer to this question before distributing the class. We may do this using an ESC
targeted test.

test bookTest
 policy "ESC"
{
 var cplItemNo:integer := 0;
 var cplTitle:String := "Comparative Programming Languages";
 var cplISBN:ISBN := ISBN.fromString("0-201-71012-0");
 var rgcName:Name := Name.newName("Robert G.", "Clark");
 var lbwName:Name := Name.newName("Leslie B.", "Wilson");
 var cplAuths:List[Name] :=

List[Name].empty().add(rgcName).add(lbwName);
 var cplPub:String := "Addison Wesley";
 var cplPubDate:Date := Date.newDate(6,11,2000);
 // add the new book
 var b:Book := Book.newBook(cplItemNo, cplTitle, cplISBN, cplAuths,

cplPub, cplPubDate);
 // check details of book
 assert b.itemNo() = cplItemNo;
 assert b.title() = cplTitle;
 assert b.isbn() = cplISBN;
 assert b.authors() = cplAuths;
 assert b.publisher() = cplPub;
 assert b.pubDate() = cplPubDate;
}

When we now re-verify the file, the tool will check the main body of the class with RAC but verify
the ESC targeted bookTest test case using the specification of the Book class. This process checks
that the specification is expressive enough for use with ESC. In this case it is not. The newBook
constructor has no ensures clause, so we cannot deduce that the model functions of Book have the
respective values passed into the constructor. As a result we get errors shown below in the ESC-
compatibility test.

8 Case study

 138

To be ESC-compatible, a specification should be sufficient to ESC-check simple properties such as

these.

8.6.2.4 Run-time checking non ESC-compatible obligations

Policy for class: ESC
Feature used: RAC special case and RAC targeted test
There are limits to what can be proved with automated provers. For example, the automated Simplify
prover used by Omnibus is poor at handling recursion, arithmetic and complex quantified expressions.
This can lead to VCs which should be provable being reported as failures by the ESC tool. Within ESC
we could combat this by adjusting the specifications to remain within the bounds of what the tool can
do or using assumption constructs. Alternatively, we could define the troublesome VCs as special cases
and use RAC with associated tests to justify them.

To illustrate one of the limitations of ESC, consider the simple Shape and Rectangle classes
shown below. This example is not, in fact, part of the case study described in the rest of this chapter but
we include it here because it illustrates the point we are discussing nicely.

public abstract class Shape {
 public abstract function area():integer
 ensures result >= 0
}

public class Rectangle isa Shape {
 ...
 public invariant width() >= 0 && height() >= 0
 ...
 public function area():integer
 ensures result = width() * height()
 {
 return width * height;
 }
}

The abstract area function in the Shape class has an ensures clause asserting that the result of
the function should be non-negative. This method is overridden in the Rectangle class where its
value is defined as being equal to the product of the width and height. Both the width and
height are constrained to be non-negative by an invariant and so the behaviour of the area method
in Rectangle should be consistent with the definition in Shape.

8 Case study

 139

However, the Simplify prover is not very good at arithmetic and cannot, by default, deduce that the
product of two non-negative numbers is non negative. This shows up via the error shown below.

To address this we can define the correctness obligation as a special case and use RAC. However,

without the definition of any test cases, the obligation will still be unjustified. We could add a normal
test case to the file but then while we could use the test to execute the assertion check, we would also
have to ESC-check it because all normal tests in an ESC-checked class must be ESC-checked. What we
need is an RAC targeted test which we can use to define a test to cover the run-time assertion check,
without the burden of also having to be ESC-checked.

This technique can also be used to define assumptions within the ESC process which are then
justified by RAC checks. A similar facility is available directly through the verification policy system.
A policy can define separate handling of assumption constructs for static verification and run-time
checking. Specifying that the static verifier should treat them as assumptions and the run-time checker
should check them gives the same thing.

8.6.2.5 Interactive proof of non ESC-compatible obligation

Policy for class: ESC
Feature used: FFV special case
When faced with the limitations of the ESC tool, another alternative is to use the interactive prover to
verify the obligation.

This works similarly to the use of RAC in the previous section except that it does not require the
use of a targeted test since FFV does not require the production of a test suite. This technique can be
used to give a form of lemma reuse across approaches. An assume statement can be used to introduce
an assumption in ESC with the corresponding VC being proved as an FFV special case.

8.6.2.6 Check presence and RAC-compatibility of run-time pre-condition checks

Policy for class: ESC/FFV
Feature used: RAC targeted test
We must ensure that any statically verified classes have RAC-compatible pre-conditions that are run-
time checked if they are to be called from RAC-verified classes. We can use RAC targeted tests to
check for this.

Consider the Book class in the Library project. The abstract state of this class consists of an
itemNo, title, ISBN, list of authors, publisher and publish date. There is an invariant that the
list of authors should not contain duplicates and corresponding pre-condition checks to guard the
constructor and setAuthors operation. Suppose that we are ESC-verifying this class. The ESC tool
reports no errors as long as we include the pre-conditions of the constructor and the setAuthors
operation, so we may conclude that the class is correct and distribute it to clients.

However, clients that use the class from RAC-verified code will encounter unjustified correctness
obligations corresponding (indicated in the screenshot below via exclamation marks) for the pre-
conditions of the constructor and setAuthors operation of Book. This is because, while we
statically verified the Book class, we used the ESC policy which does not include run-time pre-
condition checks. The users of the class may send us feedback of this problem and we could then re-
build the project with these checks. But it would be better for the developers of the component to detect
these problems before distribution of the component.

8 Case study

 140

RAC targeted test cases give us a way of simulating the conditions of RAC-verified client code. For

example, we could define a test in our Book class and specify the use of the RAC policy to verify it.
This test carries out a simple construction of a new Book.

test bookTest
 policy "RAC"
{
 var cplItemNo:integer := 0;
 var cplTitle:String := "Comparative Programming Languages";
 var cplISBN:ISBN := ISBN.fromString("0-201-71012-0");
 var rgcName:Name := Name.newName("Robert G.", "Clark");
 var lbwName:Name := Name.newName("Leslie B.", "Wilson");
 var cplAuths:List[Name] :=

List[Name].empty().add(rgcName).add(lbwName);
 var cplPub:String := "Addison Wesley";
 var cplPubDate:Date := Date.newDate(6,11,2000);
 // add the new book
 var b:Book := Book.newBook(cplItemNo, cplTitle, cplISBN, cplAuths,

cplPub, cplPubDate);
 // check details of book
 assert b.itemNo() = cplItemNo;
 assert b.title() = cplTitle;
 assert b.isbn() = cplISBN;
 assert b.authors() = cplAuths;
 assert b.publisher() = cplPub;
 assert b.pubDate() = cplPubDate;
}

If we now re-verify the Book class we get an unjustified obligation (indicated in the screenshot
below via an exclamation mark) that the requires clause of the constructor is respected. This is the
problem of the missing run-time pre-condition checks, but the test has enabled us to detect it ourselves
before distribution.

8 Case study

 141

The RAC tests also allow us to check other aspects of the RAC-compatibility of the class such as

the efficiency of the checks and the use of assertion constructs that cannot be converted into run-time
checks.

The RAC tests also permit conventional test cases to be defined which can be used to check the
performance of the class for specific concrete values. Even when a class has been statically verified, it
is still a good idea to define conventional tests for concrete values. RAC targeted tests can be used to
do this.

8.6.2.7 Check ESC-compatibility of FFV-verified class

Policy for class: FFV
Feature used: ESC targeted test
Like RAC specifications, FFV specifications may not be ESC-compatible. With FFV specifications the
problem is generally that the ensures clauses are too expressive and specify properties beyond what
can be checked by ESC’s automated prover. Again, ESC targeted tests can be used to detect ESC-
compatibility.

Consider the following extract of the specification of an FFV-verified List class. It has a
relatively rich specification. While it can be interactively verified using FFV, it is not clear if it is ESC-
compatible. Again, this example is not taken directly from the library case study but is used here for
convenience.

class List[Element] {
 model function size():integer
 model function elementAt(i:integer):Element
 requires i >= 0 && i < size()

 invariant size() >= 0

 function contains(e:Element):boolean
 ensures result = (exists (i:integer := 0 to size()-1):

elementAt(i) = e)
 constructor empty()
 ensures size() = 0
 operation add(e:Element)
 changes size,elementAt
 ensures size() = old size() + 1,
 elementAt(size()-1) = e,
 forall (j:integer := 0 to old size()-1):

8 Case study

 142

 elementAt(j) = old elementAt(j)
 function indexOf(e:Element):integer
 ensures if !contains(e) then
 result = -1
 else
 result >= 0 && result < size()
 && elementAt(result) = e
 && !(exists (i:integer where i >= 0 && i < result):
 elementAt(i) = e)
 operation removeFirstOf(e:Element)
 requires contains(e)
 changes size, elementAt
 ensures size() = old size() - 1,
 forall (j:integer := 0 to old indexOf(e) - 1):
 elementAt(j) = old elementAt(j),
 forall (k:integer := old indexOf(e) to size()-1):
 elementAt(k) = old elementAt(k+1)
}

To check the ESC-compatibility of this specification, we can write an ESC targeted test. We can
manipulate an instance of the class in this test and the system will attempt to ESC-check it.

test lstTest
 policy "ESC"
{
 var int0:IntegerObject := IntegerObject.withValue(0);
 var int1:IntegerObject := IntegerObject.withValue(1);
 var int2:IntegerObject := IntegerObject.withValue(2);

 var lst:List[IntegerObject] := List[IntegerObject].empty();
 assert lst.size() = 0;
 assert !lst.contains(int0);
 lst.add(int1);
 assert lst.size() = 1;
 assert lst.elementAt(0) = int1;
 deny lst.elementAt(0) = int0;
 assert lst.contains(int1);
 deny lst.contains(int0);
 lst.add(int2);
 assert lst.size() = 2;
 assert lst.elementAt(1) = int2;
 assert lst.elementAt(0) = int1;
 assert lst.contains(int2);
 assert lst.contains(int1);
 deny lst.contains(int0);
 assert lst.indexOf(int1) = 0;
 deny lst.indexOf(int2) = 2;
 assert lst.indexOf(int0) = -1;
 lst.removeFirstOf(int2);
 assert lst.size() = 1;
 assert lst.elementAt(0) = int1;
}

The ESC tool is able to prove all but the final assertion. After some further experimentation we can
deduce that the specification of the removeFirstOf operation is not ESC-compatible. The
quantifications are too complicated for the automated prover to handle. If this class is to be used in
ESC-checked classes, it should provide a lightweight substitute via a which ensures clause.

Such a substitute could be the following which simply describes whether an element is contained in
the List after the removal but says nothing about the indices.

 which ensures size() = old size() - 1,
 forall (e2:Element):

8 Case study

 143

 if e = e2 then
 ! contains(e2)
 else
 contains(e2) = old contains(e2)

8.7 Summary
The Library system described in this chapter was fully run-time assertion checked relative to the
lightweight specification described in section 8.2. A set of test cases was developed which were
sufficient to exercise every assertion check generated by the tool from the lightweight assertion
annotations. However, a range of errors still remained after this process and they were picked up by the
use of the other approaches.

The ESC approach was used to check all of the classes in the Library system apart from the Lib
and Date classes. This checking was relative to the lightweight specification based on the one
produced for the RAC approach with enhancements described in section 8.3. This offered increased
error coverage which allowed further errors to be detected.

The FFV approach was used to fully verify a heavyweight specification of the Library system. The
classes other than Lib and Date were fully verified. This involved interactively proving that the
behaviour specifications satisfied the requirements specifications. Selected parts of the Lib class were
also fully verified. The FFV approach offered the greatest error coverage and required the production
of more complete behaviour specifications.

Finally, a number of ways of using verification policies were explored which enable greater levels
of integration between the different verification approaches.

 144

9 Conclusions and future work
This section starts with a presentation of the conclusions of this thesis. These are split in to two
sections: one on the language and one on the integrated tool support. Some areas of possible future
work are then discussed.

9.1 Conclusions on the Omnibus language
This thesis presented the details of the new Omnibus language. In this section we assess the
contribution of the language and discuss the conclusions we have drawn from its development.

9.1.1 Suitability of the language for different purposes

9.1.1.1 Good for modelling classes

The Omnibus language is well suited to the specification of modelling classes. The model function
approach provides adequate facilities to describe the base levels of the specifications of a project. The
contribution by Omnibus is the changes clause semantics which extend the classical base function
approach with a useful frame-condition facility. This makes it suitable for static verification approaches
without the need for the developer to manually write frame-conditions. Appendix B describes how the
language can be used to model core set, sequence and map classes.

9.1.1.2 Usable for applications

While being well suited for modelling classes, the Omnibus language is also usable as an
implementation language for applications. This was illustrated by the library case study. The example
was a reasonable size with the implementation consisting of 2278 lines of Omnibus code. The code
generation seems to be reasonably efficient, with the full tests involving the execution of over 8000
assertion checks and taking only 734 milliseconds. The code generation also seemed to fare relatively
favourably to the similar PerfectDeveloper tool when compared using benchmarks [14]. Of course,
there would be the potential for efficiency problems in larger applications but we are encouraged by
these results.

9.1.1.3 Problems with use for applications

Our library case study showed that it was possible to use Omnibus for the implementation of
applications but Omnibus was not ideal for this task. The main problems stemmed from the use of
value semantics. The library application needed to manage a series of mutable data structures which
cross-referenced each other. Such a scenario would be naturally representable using reference
semantics but does not naturally fit the value semantics model. Using reference semantics we could
simply store references to objects in fields of other objects. The built-in aliasing would allow all the
objects accessed via these references to be automatically updated. We could not use the same approach
in our value semantics language. The problem is that an update to one of the references to an aliased
object would create a new object and leave the value of the object accessed via the other references
unchanged.

To get around this, the student had to essentially manually implement reference semantics. Special
identification numbers were introduced for each of the referenceable objects (the Members, Items,
Copys, etc.). Collections of all the objects were held by the central Lib class. If a reference to another
object was required (e.g. a reference to an Item within a Copy), the identification number of the
associated object was stored and functions were provided in Lib to lookup the values of objects from
their identification number. The lookup functions provide a manual implementation of dereferencing.

Operations had to be added to the Lib class to update the details of any of the state elements. The
referenceable objects could not be updated via objects retrieved from the lookup functions for the same
reason. Attempts to update them would create new objects, leaving their values held by the Lib class
unchanged. The requirement to provide update operations for all the state elements contributed to a
large Lib class of nearly 1500 lines. Much of the code for the update operations was very similar,
consisting of the same get-update-set pattern for the different elements of the referenceable objects.
This is clearly undesirable. It directly inhibits the modularity of the system, which is a bad thing for a
language to do.

9 Conclusions and future work

 145

9.1.1.4 Native reference semantics

This is further evidence that native support for references is certainly needed. This support must be
managed in some kind of structured way, such as the Universe type system discussed in chapter 4, in
order to make it amenable to static modular verification. However, some of the problems we
encountered in our case study are likely to be shared by these approaches since they use a similar kind
of hierarchical structuring mechanism.

9.1.2 Problems with the use of the language

There were some other problems with the use of the language in our case study which were not specific
to our language itself and may apply equally to other languages.

9.1.2.1 Specifications more prone to errors than implementations

A disappointing aspect of the case study was the lack of implementation errors that were detected. The
vast majority of the errors that were detected using the different approaches were mistakes or omissions
in the specifications. Part of the reason for this was that the implementation was tested conventionally
without assertion annotations first, before the full verification support was available. Thus, the
implementations had been checked in some way by the time we received them while the specifications
had not.

Despite this bias, we can still speculate that the specifications produced by most programmers are
more prone to errors than their implementations. This should not be a particularly surprising result
since these programmers have been taught to think in the imperative style of implementations. By far
the most common error that was made in the case study was missing instances of the old keyword.
This seemed to result from the developer thinking in an imperative style about the declarative
specifications.

We believe this problem will always be present in some form until assertions are incorporated more
prominently into the software development world and featured more prominently in software
engineering courses.

9.1.2.2 Repetition between heavyweight specifications and implementations

When using the Omnibus language to perform full formal verification, the developer can end up
writing the same description of the method twice in two slightly different ways: once in the
heavyweight specification and once in the implementation. All assertion-based verification approaches
require some level of redundancy in order to perform their verification, but in our full formal
verification approach, this seems to have gone too far. It is not so much of a problem in our RAC and
ESC approaches since the developer only writes lightweight specifications that express some particular
properties of the implementation. In FFV, for both the specification and implementation, the developer
attempts to completely describe the desired behaviour of the method.

There seem to be two alternative approaches to this problem: automatically generating
specifications from implementations or automatically generating implementations from specifications.
A number of tools have aimed to automatically generate specifications for implementations. Daikon
[39] and Houdini [40] seem to be the most prominent of these, both having achieved some success at
assisting a developer in adding annotations. However, a crucial flaw is that these processes generate
specifications over the private attributes of the class rather than the public methods. As a result, they
are better suited to the detection of invariants than pre- or post-conditions. There are different ways that
an implementation could be automatically generated from a specification. PerfectDeveloper [33] uses a
fairly standard assertion language and automatically generates implementations for some
specifications. If an implementation cannot be automatically generated, then the user must give one.

9.1.2.3 Assertion expressiveness

The Omnibus assertion language is built upon the expression language with a few additions which
include an old operator, quantifiers (universal and existential) and additional logical operators like
implication. Most assertion languages are based upon the same principles. Unfortunately, an assertion
language containing only these facilities is not expressive enough to fully describe the behaviour of all
the methods programmers write. In our work with Omnibus we sometimes encountered methods that
we could implement but were unable to specify using the assertion language without the use of
recursion. We tried to avoid the use of recursion in specifications wherever possible because we found
static proofs involving recursion to be extremely difficult and time-consuming.

9 Conclusions and future work

 146

JML incorporates a number of additions that help address this issue. For example, generalised
quantifiers allow you to express that a value is equal to the sum, product, maximum, minimum or count
of the values satisfying a given predicate and allows specifications to be given in terms of “model
programs”, simple imperative descriptions given using the implementation language. Many JML tools,
such as LOOP [49], also allow unspecified Java methods to be reasoned about using their
implementation. OCL [98] provides a range of special Collection operations which help express many
properties which cannot otherwise be specified. The iterate operation is the most general of these,
representing a generic loop operation. These offer the greatest expressiveness but are difficult to
perform proofs with for the same reasons that it is hard to prove properties of recursive specifications.

We believe it would be useful to have a specification construct for iteratively describing properties
and verifying them inductively. The challenge is to combine expressive power with ease of verification.

9.2 Conclusions on our integrated verification approach
The thesis also described an integrated verification approach which allows RAC, ESC and FFV to be
used together in different parts of a single application. In this section we assess the contributions of this
work.

9.2.1 Combining approaches to address limitations

9.2.1.1 Different error coverage and ease of use of approaches

For the library case study, we started by using RAC, ESC and FFV, in turn, for the project in its
entirety. We found that the approaches offered increasing error coverage in return for increasing user
burdens such as the need for more comprehensive specifications and, for FFV, user assistance in the
proof process. This provides justification for our claim that the approaches offer different balances
between error coverage and ease of use, making them suitable for different parts of a project with
different reliability requirements.

9.2.1.2 Main problems with the different approaches

All of the approaches we support have key problems that prevent them being an ideal solution on their
own.

The main problem with RAC is the need for users to produce test harnesses to sufficiently exercise
the project to check all the assertion annotations. Part of the problem is that it may not be clear whether
all the assertion annotations are being checked. The Omnibus IDE’s check viewer helps somewhat by
allowing the user to easily identify which assertion checks have been covered by a specific test harness.
The problem of producing the test cases still remains, but users should produce test cases anyway and
the assertion check coverage provides a useful measure for the sufficiency of these tests. As such, we
see RAC as the most practically accessible of the verification approaches we support. There is work on
the automated generation of test cases which could help address this problem [17, 100].

ESC is a very powerful approach allowing projects to be statically verified automatically. It does
not require test cases or user-guided proofs. However, it has limits. For example, we were unable to
verify the central Lib class of the library project using ESC. Many of the VCs were beyond the limits
of the associated automated prover. This can lead to the situation where the user is not sure whether an
ESC error report corresponds to a real error or results from a limitation in the prover. To determine
which of these is the case requires intimate knowledge of the underlying prover.

Our FFV approach requires the use of the interactive PVS prover to discharge the generated VCs.
Default proof attempts are generated by the system and these were sufficient to prove a handful of the
VCs in the auxiliary classes of the library project. We were able to verify the rest of the auxiliary
classes relatively easily. However, many of the VCs from the central Lib class were very challenging
to prove and we were not able to complete proofs of them all. Appendix E includes the details of the
proof of just one of these VCs. It is clear from this that the burden of our FFV approach is very high.
This has prompted us to focus most of our efforts on the RAC and ESC approaches.

9.2.1.3 Using different approaches for different files

Our verification policy system enables us to use different verification approaches for different files
within a single project. For example, we were unable to use ESC for the entire library case study, but
we were able to use ESC successfully for the auxiliary files and RAC for the remaining classes. When
doing this, it is possible for there to be conflicts between the different verification approaches. We
defined a set of guidelines for avoiding these conflicts and our tool can be used to ensure that they are
obeyed.

9 Conclusions and future work

 147

9.2.1.4 Greater levels of integration with special cases

Our tool offers the possibility of even greater levels of integration between the different approaches
through special cases. The special cases facility hinges on the correctness obligations concept. The
correctness obligations of a file are the abstract properties which must all be verified in some way in
order to complete the verification process. A verification policy may define that some types of
correctness obligations be run-time checked and others statically verified. For example, an ESC policy
may be adjusted to include run-time checks of assume statements so that all correctness obligations
will be covered. Specific correctness obligations may also be defined as special cases and have a
different policy. This gives great flexibility and means other approaches can be used to directly address
the key flaws in the other approaches.

9.2.2 Supporting the safe reuse of software components

The assertion-based verification approaches we considered provide for two of the basic requirements of
safe software component reuse: clear descriptions of what the components should do, and some
assurance that the implementations do this. The assertion annotations in the interface specifications
provide the clear descriptions and the verification process provides the basis for trusting the
implementations follow these descriptions. However, without specialised support:

1. users would have to either browse the source or re-generate the documentation to get clear
descriptions,

2. users would have to manually re-verify the component to ensure that it was correct, and
3. component producers would have to develop their own means of packaging and

distributing their components.
The Omnibus IDE provides dedicated tool support for addressing these three problems. The first

two problems relate to the identified theoretical requirements for safe reuse, while the final one
addresses a practical need for managing the distribution of components.

We follow the lead of JavaDoc and JMLdoc in providing facilities to automatically generate
interface documentation from the input files. The documentation of each file contains the type
signature details, any textual documentation provided in the files, and details of the interface
specifications.

The assertion-based verification approaches provide the basis for trusting the hidden
implementations. Verification certificates are used to present a summary of the verification of the
component in an accessible form. A certification level system is proposed to distil the verification
information into a single reliability value based on how the different verification approaches were used
together to verify the component.

Finally, the tool allows project jar files to be built which contain the original Omnibus source,
executable bytecode implementations, HTML interface documentation and the verification certificate
of the component, among other things. These jar files are a convenient way of distributing components.
These jar files can be used directly in Java applications. The IDE supports the automatic extraction and
opening of the interface documentation of a project jar file and the checking of verification certificates.
The checking of bytecode implementations and HTML interface documentation was also discussed.

9.3 Future work
There are a number of ways in which the work presented in this thesis could be extended. An overview
of these is presented in this section.

9.3.1 Formal definition for the Omnibus language

It would be desirable to have a formal definition of the Omnibus language. This thesis described the
semantics of the language in informal terms and indirectly through its translation to logic via the static
verification process. It would be better to also have an independent formal definition for the language.
This should include a formalisation of the type system as well as full details of the semantics of the
language. One of the motivating goals of the Omnibus language was to produce a language which was
well-suited to formal verification. If we have achieved this goal then the formal definition of the
language should be comparatively straightforward. The presentation of such a relatively simple formal
definition would help justify the language.

9.3.2 Combining value and reference semantics

The language presented in this thesis is primarily built upon value semantics. This enables us to reduce
annotation burdens and make formal verification more amenable to automation. However, support for

9 Conclusions and future work

 148

reference semantics is required to increase the expressiveness and efficiency of the language. It would
be desirable for the language presented in this thesis to be extended to include facilities for modelling
reference semantics. However, this would be challenging.

The first problem with combining support for value and reference semantics is a superficial one. In
Java, all objects are implicitly accessed via reference. In Omnibus, all objects are implicitly treated as
values. This makes things easy to parse and understand. Whenever the name of a class is used as a type
then this is interpreted as a reference in Java and a value in Omnibus. In each language there is one
concept which is the default. However, if we are to combine the value semantics and reference
semantics then there will be two concepts. This immediately complicates the language and could lead
to confusion and mistakes by the programmers. It may complicate the language sufficiently that a
prospective user of the language finds it too alien and rejects it. On a syntactic level, how should the
language differentiate between the two forms of objects? We could introduce additional type modifiers
to indicate whether a type is to be treated as a value or reference. However, this increases the verbosity
of the language, something which we should look to limit as much as possible. One measure we could
take to combat this would be to adopt one of the approaches as the default and not require type
modifiers in that case. But which form should be the default? Since our work is primarily focused on
value semantics, it would be natural for us to adopt that as the default. However, if we adopted
reference semantics as the default and required type modifiers where value semantics was intended,
then this could be viewed by programmers as an extension of Java. We note that C++ [94] has the same
problem. In JML, value semantics classes are manually implemented and tagged with the pure
modifier.

The second, and more technical problem with extending our work to incorporate support for
reference semantics is that we would need to extend our run-time checking and static verification
techniques to handle the complexities of reference semantics. Currently we are able to make a range of
simplifications through our use of value semantics exclusively. For example, we do not need any
formal model of the heap for the static verification process and we can use simpler, more lightweight
specification techniques. If we are to support reference semantics then we will have to develop a formal
model of the heap and support the kinds of heavyweight specification techniques of languages like
JML. However, there has been much work in this area and it has been well documented. In particular,
the work on ownership type systems is of great relevance and could act as a foundation for a restricted
form of reference semantics. We hope we can use the existing state-of-the-art techniques for reference
semantics to provides us with a good starting point for our new support.

While we wish to add support for reference semantics, we do not simply wish to produce a replica
of the JML language with specialised value semantics support. JML is designed to be fully backward
compatible with Java. We would like to explore the development of a Java-like language with reference
semantics but will not take full backward compatibility with Java as a hard requirement. This will
allow us to explore restrictions that can be made which ease the task of formal verification by
compromising backward compatibility.

We also need to extend the language to handle a range of other facilities that are essential for
commercial programming. These include static data and exceptions.

9.3.3 Integrating latest theorem provers and model checkers

Currently the Omnibus IDE supports extended static checking through the fully-automated Simplify
theorem prover and full formal verification through the interactive PVS theorem prover. Both of these
theorem provers are used by a number of leading verification projects. The most notable project to use
PVS is LOOP, while both ESC/Java2 and Spec# both still currently use Simplify. There are problems
with both of these provers. The interactive PVS prover is only available for the Linux and Solaris
Operating Systems, and uses its own language which people would also have to become familiar with
in order to perform interactive verification with it. The main problem with the fully-automated
Simplify prover is that it is no longer being maintained. Work stopped on the project some time ago
and, while the source and binary versions are available, it is unable to keep pace with the demands of
the verification tool developers. As a consequence of this, both the ESC/Java2 and Spec# projects have
said they are looking for replacements. The fact that these two clearly imperfect theorem provers are
being used by a number of current projects suggests that there are currently no ideal theorem provers
for verification. This is a problem and we are dependent on people in the theorem proving field to
develop better tools. The SMT-LIB project seems to be one of the most promising projects. We also
note that the presentation of proofs in terms of the input language appears to make the proof process far
more accessible to everyday programmers. However, to support this we would need to develop our
own theorem prover which we are reluctant to do.

9 Conclusions and future work

 149

We currently only support run-time checking, extended static checking and full formal verification.
Crucially, we provide no support for model checking. Traditionally, model checking has been used for
verifying properties of concurrent or communicating systems, and has relied on the use of special
temporal and modal logics for specification, e.g. the JavaPathFinder project. However, the SpEx
project [88] has developed a way of applying model checking to JML. Their tool is built on top of the
extensible Bogor model checker in a similar way that our ESC is built upon the Simplify prover and
our FFV is built upon the PVS prover. The tool takes JML-annotated Java programs and translates
them into the input languages of the Bogor model checker. It would be possible to use this approach to
add model checking to our integrated verification suite. However, we note that the SpEx project had to
implement a range of custom model checking optimisations in order to make the process suitably
efficient.

9.3.4 Distribution of reusable software components

We have discussed our support for the description and certification of reusable components. However,
component description and certification are just two of the challenges inhibiting the full adoption of
software component reuse. Other questions involve the deployment and retrieval of reusable
components. How should third parties make their components available? How can software developers
find the components they need? There may be many versions of each component; how is this managed?
Specialised tool support could be provided to support the distribution and retrieval of components. This
could focus on repository manager and component finder tools. The repository manager would support
the automatic construction and maintenance of online component repositories. These could be built into
web servers and provide access to the components through a web interface. The sites could be managed
like e-commerce sites. When components are uploaded to a repository, their verification certificates
could be checked so that users could be assured that all of the components in a repository can be
trusted. We imagine that there should be a central repository for the standard library components, but
support could be provided to allow anyone to set up their own. The repositories would provide
dedicated support for the management of different versions of each component. The component finder
would allow software developers to search component repositories for the components they needed.
This tool could be integrated into the Omnibus IDE and allow a number of repositories to be searched
at once.

A large amount of research has been carried out into the management and retrieval of software
components. Early systems used primitive techniques such as keyword searches [42], enumerated
classification [1], and faceted classification [86]. The following projects enhance these basic
approaches. CRECOR [61] provides a window-based drag-and-drop GUI that supports the location,
adaptation, deployment and testing of components. ComponentRank [48] uses techniques from Internet
search engines to rank components by significance when performing searches. Agora [91] adds
introspection techniques to Internet search engine techniques which allow the type signature interfaces
of components to be viewed within the search engine. The Semantic-Based Method Retrieval approach
[95] uses domain knowledge to assist searches. These projects mentioned so far all depend upon the
developer instigating a search request when they think a useful software component may exist.
However, a developer may not be aware of the existence of all the different types of component and so
may not know to instigate a search. To address this, tools like RASCAL [67] and CodeBroker [104]
monitor the developer’s actions, infer the need for reusable components, perform relevant searches in
the background, and actively recommend the results.

9.3.5 Other future work

There are a few remaining areas that we would like to explore further.
Firstly, we would like to develop a range of specialised specification and verification support for a

number of specific programming domains. Suitable domains are GUIs, databases and parsers. GUIs are
essential parts of modern software applications yet have received relatively little attention from the
formal verification community. We would like to develop an assertion-based specification and
verification approach that is applicable to GUIs. We will embrace the point-and-click approach to GUI
development present in IDEs like Visual Studio, jBuilder and Eclipse, augmenting it with the
specification facilities of an assertion-based language, and allowing invariants to be defined over the
display widgets. Databases could also be formally modelled with the intention of eliminating errors
resulting in the evaluation of database queries. Parsers are also very applicable to formal verification,
so we would like to provide specific support for them.

We have carried out a number of case studies, the largest one of which is reported in chapter 8. We
would like to carry out further, commercial-scale case studies to further assess our work.

9 Conclusions and future work

 150

Finally, our Omnibus IDE is implemented as a stand-alone tool. We would like to investigate
whether we could integrate the tool into an existing IDE such as Eclipse.

9.4 Concluding remarks
I decided to study for a PhD in order to pursue ideas that I had about assertion-based verification. The
Omnibus language and its supporting tools are a realisation of these ideas. I hope that others in the field
can find material of worth in my work which can be incorporated into their own languages and tools. I
believe that we can make an important contribution together.

 151

References

[1] ACM, "The Full Computing Reviews Classification System," ACM, 1992.
[2] J. R. Abrial, Assigning Programs to Meaning, Prentice Hall, 1993.
[3] W. Ahrendt, T. Baar, B. Beckert, et al, "The KeY tool," Software and Systems Modeling, vol. 4,

no. 1, 2005.
[4] P. S. Almeida, "Balloon types: Controlling sharing of state in data types", In Proceedings of

European Conference on Object-Oriented Programming (ECOOP 97), 1997.
[5] NASA Earth Science Data Systems Reuse Working Group, NASA Earth Science Data Systems

Reuse Working Group Survey 2005 preliminary results, Available at:
http://www.esdswg.org/softwarereuse, 2005.

[6] Computer Business Review Staff, NHS IT systems crisis: the story so far, Available at:
http://www.computer-business-review.com/article_cbr.asp?guid=35AC0F09-6C33-4D0E-
AC2C-D912E2AA6042, 2006.

[7] Forum on Risks to the Public in Computers and Related Systems, Available at:
http://catless.ncl.ac.uk/risks, 2007.

[8] B. Auernheimer and R. A. Kemmerer, ASLAN User's Manual, Technical report TRCS84-10,
Department of Computer Science, University of California, Santa Barbara, 1985.

[9] J. Barnes and J. G. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security, Addison-Wesley, 2003.

[10] M. Barnett, K. R. M. Leino and W. Schulte, "The Spec# programming system: An overview", In
Proceedings of International Workshop on Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS 2004), 2004.

[11] D. Bartetzko, C. Fischer, M. Moller, et al, "Jass - Java with Assertions," Electronic Notes in
Theoretical Computer Science, vol. 55, no. 2, 2001.

[12] G. Barthe, L. Beringer, P. Crégut, et al, "Mobius: Mobility, ubiquity, security. objectives and
progress report", In Proceedings of Second symposium on Trustworthy Global Computing (TGC
2006), 2006.

[13] P. Behm, P. Benoit, A. Faivre, et al, "Météor: A Successful Application of B in a Large
Project", In Proceedings of Formal Methods in the Development of Computing Systems (FM
99), 1999.

[14] K. A. Bell, "Developing Reliable Software Using Omnibus," Honours Dissertation, Department
of Computing Science and Mathematics, University of Stirling, 2005.

[15] J. P. Bowen and M. G. Hinchey, "Ten commandments of formal methods," Computer, vol. 28,
no. 4, 1995.

[16] J. P. Bowen, Formal Methods Virtual Library, Available at: http://vl.fmnet.info/, 2005.
[17] C. Boyapati, S. Khurshid and D. Marinov, "Korat: automated testing based on Java predicates",

In Proceedings of International Symposium on Software Testing and Analysis (ISSTA 2002),
2002.

[18] F. P. Brooks, "No Silver Bullet: Essence and Accidents of Software Engineering," Computer,
vol. 20, no. 4, 1987.

[19] L. Burdy, A. Requet and J. L. Lanet, "Java Applet Correctness: a Developer-Oriented
Approach", In Proceedings of Formal Methods Europe (FME 2003), 2003.

[20] L. Burdy, Y. Cheon, D. R. Cok, et al, "An overview of JML tools and applications,"
International Journal on Software Tools for Technology Transfer (STTT), vol. 7, no. 3, 2005.

[21] L. Burdy, M. Huisman and M. Pavlova, "Preliminary Design of BML: A Behavioral Interface
Specification Language for Java bytecode", In Proceedings of Fundamental Approaches to
Software Engineering (FASE 2007), 2007.

[22] P. Chalin, "Logical foundations of program assertions: what do practitioners want?", In
Proceedings of Software Engineering and Formal Methods (SEFM 2005), 2005.

[23] P. Chalin, P. R. James and G. Karabotsos, The Architecture of JML4, a Proposed Integrated
Verification Environment for JML, Technical report ENCS-CSE-TR 2007-006, Concordia
University, 2007.

[24] R. Chapman, "Industrial Experience with SPARK," Ada Letters, 2000.
[25] R. N. Charette, "Why Software Fails," IEEE Spectrum, vol. 42, no. 9, 2005.
[26] Z. Chen, JavaCard Technology for Smart Cards: architecture and programmer's guide,

Addison-Wesley, 2000.

References

 152

[27] Y. Cheon, A Runtime Assertion Checker for the Java Modeling Language, Technical report TR
#03-09, Iowa State University, 2003.

[28] E. M. Clarke and J. M. Wing, "Formal methods: state of the art and future directions," ACM
Computing Surveys (CSUR), vol. 28, no. 4, 1996.

[29] D. G. Clarke, J. M. Potter and J. Noble, "Ownership Types for Flexible Alias Protection", In
Proceedings of Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 98), 1998.

[30] D. R. Cok and J. R. Kiniry, "ESC/Java2: Uniting ESC/Java and JML", In Proceedings of
CASSIS, 2004.

[31] D. R. Cok and J. R. Kiniry, Esc/Java2 implementation notes, 2004.
[32] D. R. Cok, "Reasoning with specifications containing method calls and model fields," Journal

of Object Technology, vol. 4, no. 8, 2005.
[33] D. Crocker, "Development of Formally Verified Object-Oriented Systems with Perfect

Developer", In Proceedings of Precise Modelling and Deduction for Object-oriented Software
Development (PMD 01), 2001.

[34] D. Crocker, "Safe Object-Oriented Software: The Verified Design-By-Contract Paradigm", In
Proceedings of Twelfth Safety-Critical Systems Symposium, 2004.

[35] D. L. Detlefs, Extended Static Checking, Technical report 159, Compaq Systems Research
Center, 1998.

[36] D. L. Detlefs, G. Nelson and J. B. Saxe, "Simplify: a theorem prover for program checking,"
Journal of the ACM (JACM), vol. 52, no. 3, 2005.

[37] W. Dietl and P. Müller, "Universes: Lightweight ownership for JML," Journal of Object
Technology (JOT), vol. 4, no. 8, 2005.

[38] E. W. Dijkstra, "The end of computing science?," Communications of the ACM, vol. 44, no. 3,
2001.

[39] M. D. Ernst, J. Cockrell, W. G. Griswold, et al, "Dynamically discovering likely program
invariants to support program evolution," IEEE Transactions on Software Engineering, vol. 27,
no. 2, 2001.

[40] C. Flanagan and K. R. M. Leino, "Houdini, an annotation assistant for ESC/Java", In
Proceedings of Formal Methods Europe (FME 2001), 2001.

[41] C. Flanagan, K. R. M. Leino, M. Lillibridge, et al, "Extended static checking for Java," ACM
SIGPLAN Notices, vol. 37, no. 5, 2002.

[42] W. B. Frakes and B. A. Nejmeh, "Software Reuse Through Information Retrieval", In
Proceedings of 20th Hawaii International Conference on System Sciences, 1987.

[43] C. George, A. E. Haxthausen, S. Hughes, et al, The RAISE Development Method, Prentice Hall,
1995.

[44] W. W. Gibbs, "Software's chronic crisis," Scientific American, vol. 271, no. 3, 1994.
[45] M. G. Tassy, The Economic Impacts of Inadequate Infrastructure for Software Testing,

Technical report , National Institute of Standards and Technology (NIST), 2002.
[46] T. Hachler, "Applying the Universe type system to an industrial application: case study," MSc

Dissertation, Department of Computer Science, Swiss Federal Institute of Technology, 2005.
[47] J. Hogg, "Islands: aliasing protection in object-oriented languages", In Proceedings of Object

Oriented Programming Systems Languages and Applications (OOPSLA 91), 1991.
[48] K. Inoue, "Component Rank: Relative Significance Rank for Software Component Search", In

Proceedings of 25th International Conference on Software Engineering, 2003.
[49] B. P. F. Jacobs and E. Poll, "A logic for the Java modeling language JML", In Proceedings of

Fundamental Approaches to Software Engineering (FASE 2000), 2000.
[50] B. Jacobs, H. Meijer and E. Poll, "VerifiCard: A european project for smart card verification,"

Newsletter 5 of the Dutch Association for Theoretical Computer Science (NVTI), 2001.
[51] B. Jacobs, C. Marche and N. Rauch, "Formal verification of a commercial smart card applet

with multiple tools", In Proceedings of Algebraic Methodology and Software Technology
(AMAST 2004), 2004.

[52] J. M. Jézéquel and B. Meyer, "Put it in the Contract: The Lessons of Ariane," IEEE Computer,
vol. 30, no. 7, 1997.

[53] M. Karaorman, U. Holzle and J. Bruno, "jContractor: A Reflective Java Library to Support
Design by Contract", In Proceedings of Meta-Level Architectures and Reflection (Reflection
99), 1999.

[54] M. Kaufmann and J. Moore, "Maintaining the ACL2 Theorem Proving System", In Proceedings
of FLoC'06 Workshop on Empirically Successful Computerized Reasoning, 2006.

[55] J. C. King, "A Program Verifier," PhD Thesis, Carnegie-Mellon University, 1969.

References

 153

[56] J. C. King, "Symbolic execution and program testing," Communications of the ACM, vol. 19,
no. 7, 1976.

[57] J. R. Kiniry, P. Chalin and C. Hurlin, "Integrating Static Checking and Interactive Verification:
Supporting Multiple Theories and Provers in Verification", In Proceedings of International
Conference on Verified Software: Theories, Tools, Experiments (VSTTE), 2005.

[58] R. Kramer and C. T. Partners, "iContract - the JavaTM Design by ContractTM tool", In
Proceedings of Technology of Object-Oriented Languages (TOOLS 26), 1998.

[59] G. T. Leavens, A. L. Baker and C. Ruby, "Preliminary design of JML: a behavioral interface
specification language for Java," ACM SIGSOFT Software Engineering Notes, vol. 31, no. 3,
2006.

[60] G. T. Leavens, K. R. M. Leino and P. Müller, "Specification and verification challenges for
sequential object-oriented programs," Formal Aspects of Computing, vol. 19, no. 2, 2007.

[61] J. Lee, J. Kim and G. S. Shin, "Facilitating Reuse of Software Components using Repository
Technology", In Proceedings of Tenth Asia-Pacific SE Conference (APS03EC), 2003.

[62] K. R. M. Leino, "Extended static checking: A ten-year perspective," Informatics 10 Years Back,
vol. 10, 2001.

[63] B. H. Liskov and J. M. Wing, "A behavioral notion of subtyping," ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 6, 1994.

[64] B. H. Liskov and J. M. Wing, "Behavioural subtyping using invariants and constraints," Formal
methods for distributed processing: a survey of object-oriented approaches, 2001.

[65] C. C. Mann, "Why software is so bad," Technology Review, vol. 105, no. 6, 2002.
[66] C. Marché, C. Paulin-Mohring and X. Urbain, "The KRAKATOA tool for certification of

JAVA/JAVACARD programs annotated in JML," Journal of Logic and Algebraic
Programming, vol. 58, no. 1-2, 2004.

[67] F. McCarey, M. O. Cinneide and N. Kushmerick, "RASCAL: A Recommender Agent for
Software Components in an Agile Environment," Artificial Intelligence Review, vol. 24, no. 3,
2005.

[68] B. Meyer, Eiffel: the language, Prentice Hall, 1992.
[69] B. Meyer, "The Next Software Breakthrough," Computer, vol. 30, no. 7, 1997.
[70] B. Meyer, "On to Components," Computer, vol. 32, no. 1, 1999.
[71] B. Meyer, "Contracts for Components," Software Development, vol. 8, no. 7, 2000.
[72] J. Meyer and A. Poetzsch-Heffter, "An architecture for interactive program provers", In

Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2000), 2000.

[73] P. Müller, J. Meyer and A. Poetzsch-Heffter, "Making executable interface specifications more
expressive," Java-Informations-Tage (JIT), vol. 99, 1999.

[74] P. Müller and A. Poetzsch-Heffter, "Universes: A type system for controlling representation
exposure," Programming Languages and Fundamentals of Programming. Fernuniversitat
Hagen, vol. 176, 1999.

[75] P. Müller and A. Poetzsch-Heffter, Universes: A Type System for Alias and Dependency
Control, Fernuniversitat Hagen, Fachbereich Informatik, 2001.

[76] P. Müller, "Modular specification and verification of object-oriented programs," PhD Thesis,
Fernuniversitat Hagen, Fachbereich Informatik, 2002.

[77] P. Müller, A. Poetzsch-Heffter and G. T. Leavens, "Modular invariants for layered object
structures," Science of Computer Programming, vol. 62, no. 3, 2006.

[78] S. Nageli, "Ownership in design patterns," MSc Dissertation, Software Component Technology
Group, Department of Computer Science, ETH Zurich, 2006.

[79] G. C. Necula and P. Lee, "Safe Kernel Extensions Without Run-Time Checking", In
Proceedings of Second Symposium on Operating System Design and Implementation (OSDI),
1996.

[80] G. C. Necula, "Proof Carrying Code", In Proceedings of Principles of Programming Languages
(POPL 97), 1997.

[81] S. Owre, N. Shankar, J. M. Rushby, et al, PVS Language Reference, Technical report ,
Computer Science Laboratory, SRI International, 1999.

[82] T. Parr, "ANTLR Reference Manual," MageLang Institute, document version, vol. 2, no. 0, .
[83] P. B. Larkin, The Ariane 5 Failure - Computer-Related Incidents with Commercial Aircraft,

Available at: http://www.rvs.uni-
bielefeld.de/publications/compendium/incidents_and_accidents/ariane5.html, 1996.

[84] R. Plasmeijer and M. van Eekelen, Functional programming and parallel graph rewriting, ,
1993.

References

 154

[85] J. S. Poulin, Measuring software reuse: principles, practices, and economic models, Addison-
Wesley, 1996.

[86] R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability," IEEE Software, vol. 4,
no. 1, 1987.

[87] A. D. Raghavan, Design of a JML documentation generator, Technical report TR #00-12, Iowa
State University, 2000.

[88] E. Rodriguez, M. B. Dwyer and J. Hatcliff, "Checking JML specifications using an extensible
software model checking framework," International Journal on Software Tools for Technology
Transfer (STTT), vol. 8, no. 3, 2006.

[89] D. Sannella, "Formal program development in Extended ML for the working programmer", In
Proceedings of 3rd BCS/FACS Workshop on Refinement, 1990.

[90] B. Schoeller, T. Widmer and B. Meyer, "Making specifications complete through models,"
Architecting Systems with Trustworthy Components, vol. 3938, 2006.

[91] R. C. Seacord, S. A. Hissam and K. C. Wallnau, Agora: A Search Engine for Software
Components, Technical report CMU/SEI-98-TR-011, Carnegie Mellon University, 1998.

[92] T. Standish, "Essay on software reuse," IEEE Transactions on Software Engineering, vol. 10,
no. 5, 1984.

[93] S. Stepney, D. Cooper and J. Woodcock, An Electronic Purse: Specification, Refinement, and
Proof, Oxford University Computing Laboratory, Programming Research Group, 2000.

[94] B. Stroustrup, The C++ Programming Language: Special Edition, Addison-Wesley, 2000.
[95] V. Sugurmaran and V. Storey, "A semantic-based approach to component retrieval," ACM

SIGMIS Database, vol. 34, 2003.
[96] Sun Microsystems Inc, Javadoc tool home page, Available at: http://java.sun.com/j2se/javadoc/,

2002.
[97] T. Wilson, S. Maharaj and R. G. Clark, Push-button tools for software developers, full formal

verification for component vendors, Technical report CSM-167, Department of Computing
Science and Mathematics, University of Stirling, 2006.

[98] J. Warmer and A. Kleppe, The object constraint language: precise modeling with UML,
Addison-Wesley Object Technology Series, 1998.

[99] M. A. Weiss, Data structures and algorithm analysis in C++, Benjamin-Cummings Publishing,
1994.

[100] E. Weyuker, T. Goradia and A. Singh, "Automatically generating test data from a Boolean
specification," IEEE Transactions on Software Engineering, vol. 20, no. 5, 1994.

[101] T. Wilson, S. Maharaj and R. G. Clark, "Omnibus: A clean language and supporting tool for
integrating different assertion-based verification techniques", In Proceedings of Rigorous
Engineering of Fault-Tolerant Systems Workshop (REFT 05), Technical report, University of
Newcastle upon Tyne, 2005.

[102] T. Wilson, S. Maharaj and R. G. Clark, "Omnibus Verification Policies: A flexible, configurable
approach to assertion-based software verification", In Proceedings of Third IEEE International
Conference on Software Engineering and Formal Methods (SEFM), 2005.

[103] T. Wilson, S. Maharaj and R. G. Clark, "Flexible and configurable verification policies with
Omnibus," Software and Systems Modeling, 2007.

[104] Y. Yunwen and G. Fischer, "Information delivery in support of learning reusable software
components on demand", In Proceedings of 7th international conference on Intelligent user
interfaces, 2002.

[105] J. Zukowski, Java collections, Apress Berkely, 2001.
[106] M. de Mol, M. van Eekelen and R. Plasmeijer, "Theorem Proving for Functional Programmers -

SPARKLE: A Functional Theorem Prover", In Proceedings of 13th International Workshop on
the Implementation of Functional Languages (IFL 2001), 2001.

 155

A Language syntax
This appendix gives a description of the syntax and informal discussion of the semantics of the
Omnibus language.

A.1 Syntax notation
We use a variation of EBNF (Extended Backus-Naur Form) adapted from ANTLR syntax. This section
on the syntax notation is adapted from the “ANTLR Reference Manual” [82].

Character literals are specified just like in Java. They may contain the usual special character
escapes recognized by Java ('\b', '\r', '\t', '\n', '\f', '\'', '\\').

String literals are sequences of characters enclosed in double quotes. The characters in the string
may be represented using the same range of characters that are valid in character literals.

The following table summarizes the punctuation used in our syntax descriptions.
Symbol Description
(...) subrule
(...)* closure subrule, i.e. zero or more
(...)+ positive closure, i.e. subrule one or more
(...)? Optional, i.e. zero or one
| alternative operator
.. range operator
~ not operator
: label operator, rule start
; rule end

For convenience, in this document we will write keywords as unquoted bold tokens since we feel it

makes the rules more readable.

A.2 Lexical form

A.2.1 Ignored elements

A.2.1.1. Whitespace

Whitespace characters such as spaces, tabs, carriage returns, formfeeds and newlines are ignored by the
compiler except to separate tokens.

whitespace : ' ' | '\t' | '\f' | newline;

newline : ('\r' ('\n')? | '\n');

A.2.1.2. Comments

Omnibus supports Java-style comments, either from “//” until the end of the line or between “/*” and
“*/”.

singlelinecomment : "//" (~('\r' | '\n'))* newline;

multilinecomment:
 “/*”
 ('*' ~’/’
 | newline
 | ('*'|'\n'|'\r')
)*
 “*/” ;

A.2.2 Special tokens

A.2.2.1. Operators

&& : := , . = ! > >=
 ({ <==> ==> [< <= - !=

A Language syntax

 156

 % + ?) }] ; / *
 ||

A.2.2.2. Keywords

 abstract also alters as
 assert assume attribute behaviour
 boolean changes character class
 constraint constructor deny description
 else elseif ensures exists
 false for forall foreach
 function if in initially
 integer invariant is isa
 library maintains model native
 nothing null old operation
 out package prev private
 protected public requires return
 returns spec static test
 then to true unreachable
 uses var where which
 while

A.2.3 Identifiers

Identifiers consist of a letter followed by zero or more letters, digits and underscores. Note that
identifiers starting with underscores are not permitted; these are reserved for internal use by the
compiler.

ident : letter (letter | digit | '_')*;

digit : '0'..'9' ;

letter : 'a'..'z' | 'A'..'Z' ;

A.2.4 Literals

A.2.4.1. Character literals

Similar to Java, character literals are written between single quote characters and can be an ordinary
single character or an escaped character. Currently only newline, tab, single quote and backslash
characters are supported.

characterliteral : '\'' singlecharacter '\'' ;

singlecharacter :
 '\\' ('n' | 't' | '\'' | '\\')
 | ~'\\' ;

A.2.4.2. String literals

String literals are written as a sequence of characters written between double quote characters.

stringliteral : '\"' (~'\"')* '\"'

A.2.4.3. Integer literals

Integer literals simply consist of one or more digits.

integerliteral : (digit)+;

A.2.5 Primitive types and expressions

The Omnibus type system is partitioned into primitive types and objects like Java. Here we discuss the
primitive types and expressions.

A Language syntax

 157

A.2.5.1. Primitive types and literals

Omnibus supports three primitive types: integer, boolean and character. These correspond to
the int, boolean and char types in Java. Omnibus does not support the shortened byte or short
types, the widened long type or the floating point float or double types from Java. Numeric
overflow of integers is not handled within the static verification modules.

A.2.5.2. Standard operators

Five logical operators are provided within the expression language: negation, disjunction, conjunction,
implication and bi-implication. As in Java, the disjunction, conjunction and implication operators are
short-circuited, i.e. their second operands are only evaluated if, given the value of the first operand,
they can affect the value of the expression. The symbols ‘==>’ and ‘<==>’ are used for implication
and bi-implication, respectively.

Six standard integer operators are provided: addition, subtraction, multiplication, division, modulus
and minus. Division by zero is handled and an assertion failure results if a divisor evaluates to zero.
This is checked as part of the static verification process.

Four relational (or inequality) operators are provided: less than, less than or equal to, greater than,
and greater than or equal to.

A.2.5.3. Equality operators

In Java, the ‘==’ and ‘!=’ operators are used for equality of primitive values and its negation. In
Omnibus we use ‘=’ and ‘!=’. The equality operators are overloaded and also used for object equality.
We will consider the use of the equality operators in this way in section 3.3.

A.2.5.4. If .. then .. else ..

An ‘if .. then .. else ..’ operator is provided within the Omnibus expression language.
This is a textual form of the ternary ‘?:’ operator from Java. The first operand should provide a
boolean condition whose truth determines whether the value taken in the then or else clause is used
as the value of the expression. The types of the expressions in the then and else parts of the
expression must be the same.

A.2.5.5. Variables

Variables can be referred to in expressions via their corresponding identifier in the standard way. There
are different kinds of variables. For example, variables are used for parameters, fields, quantifier
variables and special variables such as this and result. We will discuss each of these as
appropriate in the rest of this section.

A.2.5.6. Quantifiers

The Omnibus language supports universal and existential quantifiers within its expression language.
Quantification expressions consist of a series of variable declarations, restrictions over those variables,
and an assertion over the variables. For objects, the declared variables are interpreted to range over all
possible valid values of the specified type, not all allocated values of the specified type as they are in
JML. Each variable declaration can be directly restricted to range over a delimited integer range or the
contents of a specified collection. A further assertion can be used to restrict the values of the variables
that are quantified over through a where clause. The assertion provided in a where clause can refer to
any of the quantified variables. A single assertion is calculated from the restrictions (if present) from
the variable declarations and where clause. This is then combined with the assertion over the
variables. In the case of existential quantifiers, the conjunction operator is used. In the case of universal
quantifiers, the implication operator is used.

The syntax for quantifier expressions is given below:

quantifierexpression :
 (forall | exists)
 “(“ quantvardeclarations (whererestriction)? “)” “:”
 expression;

quantvardeclarations :
 (quantvardeclaration (“,” quantvardeclaration)*)?;

A Language syntax

 158

quantvardeclaration :
 vardeclaration (quantvarrestriction)?;

quantvarrestriction :
 rangerestriction | inrestriction;

rangerestriction :
 “:=” expression to expression;

inrestriction :
 in expression;

vardeclarations : (vardeclaration (“,” vardeclaration)*)?;

vardeclaration : ident “:” expression;

whererestriction :
 where expression;

A.2.5.7. Evaluation order

The evaluation order of the previously discussed operators is as follows (from lowest to highest
precedence):

Quantifiers

If expression

Logical Implication, Logical OR, Logical AND

Equality operators

Relational operators

Addition, Subtraction

Multiplication, Division, Modulus

Logical NOT

Arithmetic negation

As in Java, the evaluation order can be overridden by parenthesising sub-expressions. The type of a
parenthesised expression is the type of the expression contained within the parentheses.

A.2.5.8. Full expression syntax

The full syntax of the expression language is given below.

expression : quantifierexpression;

quantifierexpression :
 (forall | exists) “(“ quantvardeclarations (whererestriction)? “)”

“:” expression
 | iffexpression;

iffexpression : impliesexpression (“<==>” impliesexpression)?;

impliesexpression : orexpression (“==>” orexpression)?;

orexpression : andexpression (“||” orexpression)?;

andexpression : eqcompareexpression (“&&” andexpression)?;

A Language syntax

 159

eqcompareexpression : compareexpression ((“=” | “!=”)
compareexpression)?;

compareexpression : addsubexpression ((“<” | “>” | “<=” | “>=”)

addsubexpression)?;

addsubexpression : multdivexpression ((“+” | “-“)

addsubexpression)?;

multdivexpression : isasexpression ((“*” | “/” | “%”)

isasexpression)?;

isasexpression : notexpression ((is | as) notexpression)?;

notexpression : (“!”)? negexpression;

negexpression : (“-“)? suffixexpression;

suffixexpression : atomicexpression (“.” variableorfunctioncall)*;

atomicexpression :
 “(“ expression “)”
 | true | false
 | integer | boolean | character
 | ident (actualparameters | actualsquareparameters)?;
 | old ident (actualparameters)?
 | stringliteral | characterliteral | integerliteral
 | if expression then expression else expression
 ;

A.3 Source files
As in Java, Omnibus applications are made up of a collection of class definitions. Each Omnibus class
must be defined in a separate source file. A package definition and a number of uses clauses may be
provided. The syntax of an Omnibus source file is given below.

file : (packagedef)? (usesclause)* classdecl;

A.3.1.1. Package definitions

A package definition gives the package that this class should be part of. Like C# and unlike Java, the
package path does not have to match the directory structuring of the source files. No terminating semi-
colon is needed.

packagedef : package path;

path : ident (“.” ident)*;

A.3.1.2. Uses clauses

A uses clause is equivalent to a Java import statement. To import all the files in a package, the name
of the package should simply be specified, without the “.*” suffix used in Java. The type checker will
report an error if there is not a class or directory with the specified path.

usesclause : uses path;

A.3.1.3. Class definitions

For presentation purposes, we consider the class definitions in two parts, the class header and the class
body.

classdecl : classhead classbody;

A Language syntax

 160

A.3.1.4. Class headers

The headers of Omnibus classes are similar to the headers of Java classes. As with Java classes,
accessibility and abstract modifiers are provided. If no accessibility is specified, it defaults to
public. The abstract modifier behaves as in Java, permitting the class to define abstract methods
and preventing the class from being directly instantiated.

An Omnibus class can also be declared with either the spec or native modifiers, but not both.
We refer to a class declared with the spec modifier as a spec class and a class declared with the native
modifier as a native class. A spec class is a class without an implementation. Spec classes can be used
to declare the specifications and reason about them before proceeding to produce an implementation.
Without the spec modifier, the presence of non-abstract methods without implementations would
result in a type checking error. A spec class defines no implementation and so cannot be compiled to
bytecode. A type checking error will result if an attempt is made to compile a spec class to bytecode. A
native class, like a spec class, does not have implementations for its methods. However, these classes
can be used by other non-specification classes. The system assumes that a corresponding native
bytecode implementation will be provided in the run-time system. Of course, such an implementation
must be compatible with the principles of the bytecode generated from Omnibus classes and should be
independently verified to be consistent with the specification given in the native Omnibus class. This is
similar to the use of non-bytecode implementations in Java through Java’s native modifier.

Like Java 1.5, Omnibus supports generics. In Omnibus, template parameters are surrounded by
square brackets. The template parameter list, if present, specifies a sequence of identifiers to hold
generic type parameters. Within the body of the class, variables with these names will be introduced
holding class values. This allows these identifiers to be used wherever a type is expected.

Inheritance is supported via the isa clause. The keyword isa is used in place of extends
because the underlying concept of inheritance is slightly different in Omnibus and Java. In Java,
inheritance is often used in ways that do not obey the principle of substitutability relative to the natural
full specifications of correctness. This can lead to problems in modular verification. To avoid this
problem, Omnibus enforces behavioural inheritance, sometimes referred to as the “is a” relationship. A
class inherits non-static functions and operations from the superclass if they are not redefined in the
current class. A class inherits all the requirements of its superclass. Where methods are overridden, the
specifications of the two methods must be consistent as defined later. As of yet, only single behavioural
inheritance is supported. There is no support for multiple superclasses (like those in C++ or Eiffel) or
Java-style interfaces.

Classes may include a description clause which can be used to provide a short description of the
class. This is similar to a JavaDoc comment and is treated in an analogous manner by the Omnibus
documentation generator. The description must be given as a String literal.

classhead : (accessibility)? (abstract)? (spec | native)?
 class ident (templateparameters)?
 (isa ident)?
 (description)? ;

accessibility : (public | protected | private);

templateparameters : [identifierlist];

identifierlist : ident (, ident)*;

description : description text;

text : stringliteral;

A.3.1.5. Class bodies

The body of a class definition consists of a sequence of zero or more member declarations which
declare attributes, methods or requirements. There three forms of method: functions, operations and
constructors. Requirements are discussed in section 2.3.

classbodyelement :
 attributedecl
 | functiondecl

A Language syntax

 161

 | constructordecl
 | operationdecl
 | requirementdecl
 | testdecl;

A.3.1.6. Attributes

Attribute declarations are used to declare the concrete fields used to implement an object. The value of
the attribute can be accessed within the body of the class via a variable of the same name.

attributedecl : (accessibility)?
 attribute ident “:” expression
 (description)?;

A.3.1.7. Constructors

Constructors are used to create instances of classes. An implementation for the constructor should be
given unless the containing class is declared with the spec or native modifier. Omnibus
constructors are implemented as class methods and create a new object instance of the containing class.
They are equivalent in function to Java constructors but are called like Java static methods. Unlike
Java, there are no default constructors because of the possibility of invariants. The specification of
constructors is discussed in section 2.2.

constructordecl : (accessibility)?
 constructor ident parameters
 (description)?
 behaviour
 (code)?;

A.3.1.8. Functions

Functions accept a number of parameters and calculate a single value to return to the caller without any
side-effects. Functions can be declared with the static modifier. Static functions, like in Java, are used
to define class methods. An implementation should be given for each static function unless the class is
declared with the spec or native modifier. Static functions cannot also be declared as abstract.
Functions declared without the static modifier are standard object methods. Implementations for
non-static functions should be provided unless the abstract modifier is used or they appear in a spec
or native class. The specification and use of the model modifier in function declarations is discussed
in section 2.2.

functiondecl : (accessibility)? (static | abstract)?
 (model)?
 function ident parameters “:” expression
 (description)?
 behaviour
 (code)?;

A.3.1.9. Operations

Operations are used to manipulate the values of objects. There are two different types of operations:
simple operations and complex operations. Simple operations are operations without any var/out
parameters. These are equivalent to functions which return a new object that is calculated from the
initial object by applying the corresponding manipulation. These methods are semantically
indistinguishable from functions returning values of the same type as the class in which the declaration
occurs. This allows them to be used in expressions and assertions as if they were functions as well as
being used in operation call statements. Complex operations are operations which contain at least one
var or out parameter. These cannot be converted to functions which, by our definition, should calculate
a single value without side-effects. As such, complex operations cannot be used in expressions.

operationdecl : (accessibility)? (abstract)?
 operation ident parameters
 (description)?
 behaviour

A Language syntax

 162

 (code)?;

A.3.1.10. Parameters

Parameters consist of a parenthesised set of declarations, optionally preceded by var or out.
Parameters without a var or out prefix correspond to call-by-constant-value input parameters.
Omnibus does not permit the values of these parameters to be changed within the body of a method.
Parameters with a var prefix correspond to call-by-value-result input-output parameters. The values of
these parameters can be changed within the body of a method, and their resulting values will be copied
to the input variables after the call completes. Parameters with an out prefix are like var parameters
except that they are initially undefined and have no value passed in. Omnibus only allows var and
out parameters to be used in conjunction with operations.

parameters : “(” (declarations)? “)”;

declarations : (declaration (“,” declaration)*)?;

declaration : (var | out)? ident “:” expression;

A.3.1.11. Tests

Omnibus allows unit tests to be defined within a class. These can be used to express the intended
behaviour of object instances of the current class for specific concrete values. The tests are treated like
static methods with no parameters and no return value. Test data must be constructed within the body
of the test, and can then be used to manipulate instances of the class and check properties of its
behaviour. By default, a test case is verified using the same verification policy as the class which
contains it. However, a policy clause may be provided, specifying an alternative policy to use.

testdecl : (accessibility)? test ident (policy)? code;

policy : policy text;

A.4 Classes as types and objects
In Omnibus, programmers can define their own types through the class definitions discussed in the
previous section. The methods defined in the class definitions can be used to create, query and
manipulate instances of the classes which are referred to as objects.

A.4.1 Classes as types

Wherever a type is required, a class expression can be provided. Like Java, all the classes that are used
by a class (i.e. which are imported by uses clauses either directly or are in a package that is imported)
are made available through variables with the same name as the class. The top-level packages are also
made available as variables and can be dereferenced to yield sub-packages and contained classes.
Template parameters can be specified in square brackets. Class expressions should be provided as the
template parameters.

classexpression :
 (ident “.”)* ident
 (“[“ (expression (“,” expression)*)? “]”)?

Some examples of class expressions are given below:

Environment
omni.lang.String
Collection[String]
omni.lang.Collection[omni.lang.String]
Map[String, Collection[String]]

A.4.2 Using Objects

Objects are created using constructors. Object instances of a class are initially created by calling one of
the constructor methods of the class. In Omnibus, constructors are named class methods and, unlike
Java, there is no new operator. When creating an instance of a class with some generic parameters,

A Language syntax

 163

concrete type values should be passed for those parameters in square bracketed parameters following
the name of the class. An object can be queried by calling one of its functions and updated by calling
one of its operations. Functions and operations are object methods, called using standard dot notation.
Method calls can be made in expressions using the following method syntax. Constructor calls are
made by providing a class expression as the first expression.

objectmemberexpression :
 expression “.” ident
 (“(“ (expression (“,” expression)*)? “)”)? ;

For example, we can calculate the balance of a savings BankAccount which was opened with a
deposit of 300, had 50 withdrawn and then a further 80 deposited using the following expression:

BankAccount.openSavings(300).withdraw(50).deposit(80)
 .balance()

As in Java, within the body of a class definition, the methods of the current class can also be
referred to directly.

functionexpression :
 ident “(“ (expression (“,” expression)*)? “)”
| old ident “(“ (expression (“,” expression)*)? “)”

A.4.3 Special variables

There are a range of special variables that are available within the Omnibus language. For example, the
this keyword is used to refer to the instance of the containing class that a method is being applied to.
The result keyword is used to refer to the value to be returned from a function in an ensures clause.
The local attributes of a class can also be referred to via variables.

A.4.4 Casting

As with any statically typed object-oriented language, at times it will be necessary to check the run-
time class of an object against some other class and perform a cast to convert it to an instance of that
class. We support both of these functions through is and as operators, respectively. These correspond
to the instanceof operator and cast expression in Java.

The is expression returns whether the left operand is an instance of the right operand, i.e. is its
dynamic class equal to the specified class or a subclass of it.

isexpression :
 expression is expression

The as expression casts the left operand to an object instance of the right operand.

asexpression :
 expression as expression

A.5 Specifications
Omnibus specifications are discussed in detail in chapter 2. Here we present the details of the syntax of
Omnibus behaviour and requirement specifications

A.5.1 Behaviour specifications

behaviour:
 lightbehaviour | fullbehaviour;

lightbehaviour:
 (requiresclause)? (changesclause)?
 (ensuresclause)? (whichensuresclause)?;

fullbehaviour:
 (behaviourlevel)+;

behaviourlevel:

A Language syntax

 164

 (public | protected | private) (model)? (spec)?
 (requiresclause)? (changesclause)?
 (ensuresclause)? (whichensuresclause)?;

requiresclause : requires assertion (“,” assertion)*;

changesclause : changes expression (“,” expression)*;

ensuresclause : ensures assertion (“,” assertion)*;

whichensuresclause : which ensures assertion (“,” assertion)*;

assertion :
 text “:” expression
 | expression;

A.5.2 Requirements specifications

requirementdecl :
 invariantdecl
 | constraintdecl
 | initiallydecl;

invariantdecl : (accessibility)? invariant assertion;

constraintdecl : (accessibility)? constraint assertion;

initiallydecl : (accessibility)? initially assertion;

A.6 Implementation language

A.6.1 Code

Omnibus implementations consist of a number of statements enclosed by curly brackets.

code : “{” (statement)* “}”;

A.6.2 Statements

The Omnibus implementation language is fairly simple, consisting of 11 statements.

statement :
 assignmentstatement | callstatement | declarestatement
 | assertstatement | assumestatement | ifstatement
 | forstatement | foreachstatement | whilestatement
 | returnstatement | unreachablestatement ;

A.6.2.1. Assignment statements

The assignment statement is used to assign the value of an expression to a variable.

assignmentstatement:
 ident “:=” expression ‘;’ ;

A variable with the specified name must exist, the variable must be assignable (i.e. be an attribute in
a constructor or operation, local variable, var parameter, out parameter or one of the special variables
result or this), the expression must be executable (e.g. no quantifiers without variable restrictions)
and the type of the expression must be acceptable in place of the type of the identifier.

A.6.2.2. Operation call statements

There are two types of operation call statement: local operation call statements and object operation
call statements. Local operation call statements update the current object (this) by applying one of
the operations from the local class. Object operation call statements update the value of a specified
object variable by applying an operation to that object.

A Language syntax

 165

callstatement:
 ident “(“ (callparameter (“,” callparameter)*)? “)”
 | ident “.” ident “(“ (callparameter (“,” callparameter)*)? “)”)

‘;’;

The parameters to an operation call statement are either expressions or variable names prefixed with
var or out, depending on the declaration of the corresponding parameter.

callparameter :
 var ident | out ident | expression;

If no object is specified, there should be a local operation with the specified name and the
parameters should be acceptable. This check includes checks of the types of the parameters and
whether they are var/out parameters. For example, if a formal parameter is declared with the var
modifier then the corresponding actual parameter should also start with the var modifier. If an object
is specified, a variable with the specified name should exist and should be assignable, the type of the
variable should be an object, and that object should contain an operation with the specified name. We
enforce this in an attempt to make whether a parameter can be changed more explicit to readers of the
calling code. The parameters should also match as was described before.

A.6.2.3. Declaration statements

A declaration statement is used to declare a new local variable. The new variable may also be given an
initial value.

declarestatement :
 var ident “:” expression (“:=” expression)? “;”;

There should not be an existing local variable with the specified name, the expression after the
colon should be a type. If an initial value is specified then it should be executable and should be
acceptable as a value of this type.

A.6.2.4. Assert statements

Assert statements are used to specify assertions that should hold at the point when the statement is
reached. These assertions will be checked either statically or at run-time to ensure they are valid. Like
other assertions, the assertion specified can optionally be given a label.

assertstatement :
 assert (text “:”)? expression “;”;

The type of the expression representing the assertion to check should be boolean. If run-time
checking of assert statements is turned on, the assertion should also be executable.

A.6.2.5. Assume statements

Assume statements are also used to specify assertions that should hold at the point when the statement
is reached. However, unlike assert statements, their assertions are taken by the system to be true
without further justification. Again, the assertion specified can optionally be given a label.

assumestatement :
 assume (text “:”)? expression “;”;

The type of the expression representing the assertion to check should be boolean. If run-time
checking of assume statements is turned on, the assertion should also be executable.

A.6.2.6. If statements

If statements are used to execute one of a number of sections of code depending on the values of a
number of conditions.

ifstatement :
 if “(” expression “)” code
 (elseif “(” expression “)” code)*
 (else code)?;

The type of the conditions should be boolean and they should be executable.

A Language syntax

 166

A.6.2.7. While statements

The while statement is used to execute a block of code repeatedly while a condition evaluates to true.
Loop invariants can be provided using alters and maintains clauses.

whilestatement :
 while “(“ expression “)”
 ((altersclause)? maintainsclause)?
 code;

The loop condition should be a value of type boolean and should be executable.

A.6.2.8. Loop invariants

Loop invariants are specified using alters and maintains clauses. Alters clauses are similar to
changes clauses, and maintains clauses are similar to ensures clauses. While changes
clauses can refer to model functions and attributes, alters clauses may only refer to attributes. Alters
clauses make the specification of invariants easier just as changes clauses make the specification of
operations easier.

altersclause : alters ident (“,” ident)*;

maintainsclause : maintains assertion (“,” assertion)*;

assertion :
 text “:” expression
 | expression;

All of the identifiers specified in an alters list should be the names of existing variables that are
assignable. The expressions specified in each of the assertions in a maintains clause should be of
type boolean. There are no loop variants in Omnibus.

A.6.2.9. For statements

For statements can be used to iterate over a range of integer values. For statements implicitly declare a
new local variable. An integer iterator variable is declared with the specified name and initialised to the
low value. Execution of the loop proceeds while the value of the iterator variable is less than or equal to
the high value. At the end of each iteration, the iterator variable is incremented. Loop invariants can be
provided using alters and maintains clauses. If a loop invariant is present and run-time checking
of loop invariants is enabled, then the invariant is checked before each iteration of the loop body.

forstatement :
 for “(“ ident “:=” expression to expression “)”
 ((altersclause)? maintainsclause)?
 code;

As was mentioned, for statements implicitly declare new local variables. As such, there should not
be an existing local variable with the name specified before the := operator. The expressions before
and after the to keyword should be integer expressions.

A.6.2.10. Foreach statement

Foreach statements can be used for iterating over the values in a subclass of the
omni.lang.Iterable class. Again, Foreach statements implicitly declare a new local variable. At
the start of the loop, an iterator is retrieved from the Iterable object. While the iterator has a next
element it retrieves the next value, places it in a local variable with the same name as the iterator
variable, executes the body of the loop, and then removes the next element. If a loop invariant is
present then the invariant is checked before each iteration of the loop body.

foreachstatement :
 foreach “(” ident “:” expression in expression “)”
 ((altersclause)? maintainsclause)?
 code;

A Language syntax

 167

Since foreach statements also implicitly declare a new local variable, there should not be an existing
local variable with the name specified before the : operator. The expression before the in keyword
should be an object type and the expression after the in keyword should be an
omni.lang.Collection value. Additionally, the second expression should be a Collection of
instances of the first expression. This is overly restrictive and should be replaced with a generic
iteration concept.

A.6.2.11. Return statements

The return statement is used within functions to return a value from the method and halt its execution.
Each path through the function should end with a return statement. The ensures clause of the
function should hold at the return statement with the special result variable assigned the specified
value.

returnstatement :
 return expression “;”;

This statement can only appear in the body of a function. The type of the expression should match
the return type of the function.

A.6.2.12. Unreachable statements

The unreachable statement is used in place of a return statement when the path through the method
ending at the statement should never be reached. It is needed to avoid warnings of missing return
statements in the generated Java that are known to be spurious from the method pre-conditions.

unreachablestatement :
 unreachable “;”;

Run-time assertion checks are generated in place of unreachable statements, reporting a failure if
execution reaches the statement.

 168

B Modelling types
The model function specification approach of the Omnibus language is well-suited to the specification
of modelling types that can be used to describe the rest of a system. These provide core specification
facilities such as sets, maps and sequences. This appendix describes basic versions of the specifications
for some modelling types provided in the Omnibus standard libraries. We present the public
specifications of the classes and describe unit tests to ensure the specifications are ESC-compatible.
The implementations of the classes are not shown although implementations are provided in the
standard libraries to allow run-time assertion checking of specifications described using modelling
types.

B.1 Collection class
The omni.lang.Collection class is used to represent a logical set of values. It is a parameterised
class which can be used to store values of a specific class, referred to internally as Element. In this
section we present a simplified version of this class. The specification of the class is built around a
contains function which yields the boolean value true if the passed element is in the collection and
false otherwise. The class header and contains model function are shown below.

spec class Collection[Element] {
 model function contains(elem:Element):boolean

The empty constructor can be used to construct a collection containing no values. This is described
by saying that for all elements, the contains function yields false. The specification of this operation
is shown below.

 constructor empty()
 ensures forall (e:Element): !contains(e)

The add operation is used to add a value to the collection. Its specification is relatively
straightforward using the Omnibus frame condition logic. The contains model function is adjusted
so that it yields true for the passed element and whether all other elements are contained in the
collection is unchanged. To express this we simply state that the model function contains is
changed for the parameter value e and that the assertion contains(e) holds at the end of the
operation, i.e. that contains(e) = true. This can be done using the following specification.

 operation add(e:Element)
 changes contains(e)
 ensures contains(e)

The operation could also be specified in Omnibus without the use of the parameterised changes
clause entry. We could instead specify that the contains function is changed for all values (indicated
by the lack of a parameter) and then add an additional assertion in the ensures clause to manually
express the frame condition. This is the approach that would have to be used in JML. Such an
alternative specification for the add operation is given below.

 operation add(e:Element) // Alternative version
 changes contains
 ensures contains(e),
 forall (e2:Element where e != e2):
 contains(e2) = old contains(e2)

The remove operation is used to remove a value from the collection. It is similarly straightforward
to specify in Omnibus. Again, we can specify that the contains model function is changed for the
passed value, and this time assert that the contains function yields false for that value after the
operation. The specification is given below.

 operation remove(e:Element)
 changes contains(e)
 ensures !contains(e)

Again we could provide an alternative specification with a manual frame condition.

B Modelling types

 169

We need to ensure that the specification we have produced expresses the class we intended and that
the automated prover can effectively reason about it, i.e. there is ESC-compatibility. Both of these
things can be checked using test cases. We can write a test case to create and manipulate object
instances of the class and check that the functions can be proved to have the values we would expect.
This checks the meaning and ESC-compatibility. The test starts with its header, including the policy
clause indicating that “ESC” should be used, and the declaration of object which will be used in the
following code. This code is shown below.

 test escCompatibilityTest
 policy “ESC”
 {
 var int0:IntegerObject := IntegerObject.withValue(0);
 var int1:IntegerObject := IntegerObject.withValue(1);

The empty constructor is then used to construct a new collection. This collection should not
contain any objects and so it should be possible to prove that the objects int0 and int1 are not
contained in the collection. The tool is able to do this. The code is shown below.

 var s:Collection[IntegerObject] :=
Collection[IntegerObject].empty();

 assert !s.contains(int0);
 assert !s.contains(int1);

The add operation is then used to add the object int0. This should result in the int0 object
being contained in the collection after the operation but the int1 object should still not be in the
collection. The code to test this is shown below.

 s.add(int0);
 assert s.contains(int0);
 assert !s.contains(int1);

The add operation is then used again to add the int1 object. This should result in both int0 and
int1 being contained by the collection. The code to check this is shown below.

 s.add(int1);
 assert s.contains(int0);
 assert s.contains(int1);

The remove operation is then used to remove int0. The int0 object should then no longer be
contained in the collection but int1 should still be.

 s.remove(int0);
 assert !s.contains(int0);
 assert s.contains(int1);

Finally, a deny statement is used to ensure that false cannot be proved. This allows contradictions
to be detected.

 deny false;
 }
}

This completes the test and the class which the Omnibus verification tool is able to verify
successfully. The full specification of the omni.lang.Collection class also contains a size
model function and methods for comparing and combining collections in different ways.

B.2 Map class
The omni.lang.Map class is used to represent a mapping of keys to values. It has two type
parameters, one for the key, Key, and one for the value, Value. In this section we present a simplified
version of this class. The specification is built around a contains function yielding true iff there is a
value for the passed key, and a value function which returns the value assigned to a specific key.
Only values for keys that are contained by the map can be retrieved. The class header and model
function declarations are shown below.

B Modelling types

 170

spec class Map[Key,Value] {
 model function contains(key1:Key):boolean
 model function value(key2:Key):Value
 requires contains(key2)

The empty constructor is similar to that of the Collection class. It asserts that for all keys, the
contains function evaluates to false after the constructor. This also implies that there are no valid
parameters for the value model function.

 constructor empty()
 ensures forall (k:Key): !contains(k)

The put operation is used to add a new key-value pair to the map. This can be specified by stating
that the contains model function is changed for the parameter k and that after the operation,
contains(k) is true and value(k) is equal to the specified value. The value model function
does not need to be referred to in the changes clause since no values that are valid before and after
the operation change (as was discussed in section 3.1.2).

 operation put(k:Key, v:Value)
 changes contains(k)
 ensures contains(k),
 value(k) = v

The remove operation is used to remove a key-value pair from the map. Again, the contains
model function is changed for the specified key value, but this time contains(k) is false after the
operation.

 operation remove(k:Key)
 changes contains(k)
 ensures !contains(k)

Again, an ESC-compatibility test can be defined. The preliminaries are the same:

 test escCompatibilityTest
 policy “ESC”
 {
 var int0:IntegerObject := IntegerObject.withValue(0);
 var int1:IntegerObject := IntegerObject.withValue(1);

The test starts by creating a new empty Map of IntegerObject to IntegerObject. Both
int0 and int1 should not be contained by this map.

 var m:Map[IntegerObject,IntegerObject] :=
Map[IntegerObject,IntegerObject].empty();

 assert !m.contains(int0);
 assert !m.contains(int1);

The put operation is then used to put the key int0 into the map with the value int0. From the
frame condition, int1 is still not contained by the map.

 m.put(int0, int0);
 assert m.contains(int0);
 assert m.value(int0) = int0;
 assert !m.contains(int1);

The put operation can be used again to put the key int1 into the map with the value int1. The
int0 and int1 objects should now both be contained in the map with the appropriate values.

 m.put(int1, int1);
 assert m.contains(int0);
 assert m.value(int0) = int0;
 assert m.contains(int1);
 assert m.value(int1) = int1;

B Modelling types

 171

The remove operation can then be used to remove the int0 key from the map. The int0 object
is then no longer contained in the map but int1 is, with the same value.

 m.remove(int0);
 assert !m.contains(int0);
 assert m.contains(int1);
 assert m.value(int1) = int1;

Finally, a deny statement is used to check that there are no contradictions.

 deny false;
 }
}

This completes the test and the class which is successfully verified. The full specification of the
omni.lang.Map class also contains a size model function and methods for combining maps in
different ways.

B.3 List class
The omni.lang.List class is used to represent a sequence of values. It has a single type parameter
referring to the types of the elements it can contain. In this section we present a simplified version of
this class. The specification is built around a size function which returns the current size of the list
and an elementAt function which returns the element currently at a specified index in the list. The
valid indexes of the list run from 0 up to size()-1. An invariant is used to assert that the size of the
list is always non-negative. The class header and model function and invariant declarations are shown
below.

spec class List[Element] {
 model function size():integer
 model function elementAt(ind:integer):Element
 requires ind >= 0 && ind < size()

 invariant size() >= 0

This time derived functions are also defined in the specification. The first of these is the
contains function which yields true iff the specified element is contained in the list. The
specification asserts that the result of the function is true iff there exists a valid index whose element at
that index is equal to the specified element. The specification is shown below.

 function contains(e:Element):boolean
 ensures result = (exists (i:integer := 0 to size()-1):

elementAt(i) = e)

The empty constructor is used to create an empty list. It can be described by simply asserting that
the size is equal to zero at the end of the constructor. This implies that elements are not accessible at
any index.

 constructor empty()
 ensures size() = 0

The add operation is used to add an element to the end of the list. As was described in section
3.1.2, we can specify such an operation including the size model function in the changes clause,
asserting that this is increased by one and asserting that the newly accessible index value is equal to the
passed element.

 operation add(e:Element)
 changes size
 ensures size() = old size() + 1,
 elementAt(size()-1) = e

The swap operation is used to interchange the values at two indices of the list. This specification
can exploit the ability to include a model function in the changes clause with different parameters.

B Modelling types

 172

Here, the elementAt model function is asserted to be changed for indices j and k. The ensures
clause describes the interchange. The specification is shown below.

 operation swap(j:integer, k:integer)
 requires j >= 0 && j < size(),
 k >= 0 && k < size()
 changes elementAt(j), elementAt(k)
 ensures elementAt(j) = old elementAt(k),
 elementAt(k) = old elementAt(j)

The indexOf function is used to return the first index at which a specified element occurs in the
list or -1 if it is not in the list. This can be specified using an if expression asserting that if the
specified element is not in the list then -1 is returned. Otherwise a valid index with the specified
element at that position, and no occurrence of the element before it, is returned.

 function indexOf(e:Element):integer
 ensures if !contains(e) then
 result = -1
 else
 result >= 0 && result < size()
 && elementAt(result) = e
 && !(exists (i:integer where i >= 0 && i < result):
 elementAt(i) = e)

The removeFirstOf operation is used to remove the first occurrence of a specified element.
This can be specified using quantifiers asserting that the elements previously before the first occurrence
of the element are unchanged, and those after are shuffled forward one place. We will see during the
testing of this operation that the full specification is not ESC-compatible and so a lightweight substitute
is provided via a which ensures clause. The specification is shown below.

 operation removeFirstOf(e:Element)
 requires size() > 0, contains(e)
 changes size, elementAt
 ensures size() = old size() - 1,
 forall (j:integer := 0 to old indexOf(e) - 1):
 elementAt(j) = old elementAt(j),
 forall (k:integer := old indexOf(e) to size()-1):
 elementAt(k) = old elementAt(k+1)
 which ensures size() = old size() - 1,
 forall (e2:Element):
 if e = e2 then
 ! contains(e2)
 else
 contains(e2) = old contains(e2)

Again, we use an ESC-compatibility test with the same preliminaries:

 test escCompatibilityTest
 policy “ESC”
 {
 var int0:IntegerObject := IntegerObject.withValue(0);
 var int1:IntegerObject := IntegerObject.withValue(1);
 var int2:IntegerObject := IntegerObject.withValue(2);

The test starts by creating an empty list and checking that the size is zero and all the declared
objects are not contained in it.

 var lst:List[IntegerObject] := List[IntegerObject].empty();
 assert lst.size() = 0;
 assert !lst.contains(int0);
 assert !lst.contains(int1);
 assert !lst.contains(int2);

B Modelling types

 173

The add operation is then used to add the int0 object to the end of the list. This makes the size
equal to one and the element at index 0 equal to int0. The int1 and int2 objects are still not in the
list.

 lst.add(int0);
 assert lst.size() = 1;
 assert lst.elementAt(0) = int0;
 assert !lst.contains(int1);
 assert !lst.contains(int2);

The add operation is then used again to add the int1 object to the end of the list. The size of the
list is now two with int1 now at index 1 and int0 unchanged at index 0. The int2 object is still
not contained in the list.

 lst.add(int1);
 assert lst.size() = 2;
 assert lst.elementAt(1) = int1;
 assert lst.elementAt(0) = int0;
 assert !lst.contains(int2);

The swap operation is then used to swap the elements at indexes 0 and 1, and back again.

 lst.swap(0, 1);
 assert lst.size() = 2;
 assert lst.elementAt(0) = int1;
 assert lst.elementAt(1) = int0;
 lst.swap(0, 1);
 assert lst.size() = 2;
 assert lst.elementAt(0) = int0;
 assert lst.elementAt(1) = int1;

Now the indexOf function is tested. The index of int0 should be 0, the index of int1 should
be 1 and the index of int2 should be -1 because it is not in the list.

 assert lst.indexOf(int0) = 0;
 assert lst.indexOf(int1) = 1;
 assert lst.indexOf(int2) = -1;

For convenience we now add int2 to the end of the list.

 lst.add(int2);
 assert lst.size() = 3;
 assert lst.elementAt(0) = int0;
 assert lst.elementAt(1) = int1;
 assert lst.elementAt(2) = int2;

Everything to this point is verified successfully by the tool.
Finally, we attempt to remove the first occurrence of int1.

 lst.removeFirstOf(int1);
 assert lst.size() = 2;
 assert lst.elementAt(0) = int0; // fails
 assert lst.elementAt(1) = int2; // fails

The tool is not able to prove the final two assert statements because the specification of
removeFirstOf is not ESC-compatible. Its complex use of quantifiers is beyond the automated
prover we use. However, the lightweight substitute does at least allow the elements that are contained
in a list to be reasoned about after the removeFirstOf operation is called although the ordering
information is lost.

 }
}

This completes the test and the class which is successfully verified. The full specification of the
omni.lang.List class also contains methods for comparing and combining lists in different ways.

 174

C Verification policy definitions
This appendix defines the configurable options for the verification policy system, and then gives the
full details of the built-in verification policies.

C.1 Configurable options for verification policies
Omnibus verification policies are defined in a hierarchical fashion, each policy being based on another
policy with some changes. There is a root policy called ‘Blank’ which is at the root of all policy
hierarchies and has no parent. For example, we define ‘RAC – Unhalting’, a kind of RAC that reports
assertion failures but then continues, to be based upon the ‘RAC’ policy but with the ‘Action on
failure’ property set to ‘Report and continue’. This makes it much easier to define related policies than
if they all had to be configured separately.

Each policy has its own name and can be saved either within the settings of the IDE installation or
in the currently open project. A description field keeps track of how the verification policy is different
from the one it is based upon.

There is then a range of configurable options which are divided into two groups: run-time checking
and static verification. Both these groups have a property for whether they are enabled and then three
sub-groups of properties: general properties, checks and failure reports. Each property has either a
boolean Y/N value specified via a check box or a value from a list selected via series of option buttons.
If run-time checking or static verification is disabled then the settings used in that section are not used
and that particular form of verification is not used for the class.

A screenshot of the Policy Editor is shown below.

C Verification policy definitions

 175

C.1.1 Run-time checking properties

The details of the run-time checking properties and their corresponding options are given in the table
below.
Group Property Options
None a. Enabled Y/N
General b. Action on Failure 1. Terminate execution

2. Report and continue
" c. Quantifiers with enumerable

ranges
1. Check them
2. Ignore assertions with them

" d. Quantifiers without
enumerable ranges

1. Report error if found
2. Report warning if found
3. Ignore assertions with them

Checks e. Check requires clauses Y/N
" f. changes clauses 1. Check if possible, error if not

2. Check if possible, warn if not
3. Check if possible, ignore if not
4. Ignore them

" g. Check ensures clauses Y/N
" h. Check requirements Y/N

C Verification policy definitions

 176

" i. Check assert statements Y/N
" j. assume statements 1. Check them

2. Generate error if found
3. Ignore them

" k. Check loop invariants Y/N
Failure reports l. Include description Y/N
" m. Include source Y/N
" n. Include stack trace Y/N
" o. Include parameter values Y/N
" p. Include attribute values Y/N
" q. Include local variable values Y/N
" r. Include execution path info Y/N

C.1.2 Static verification properties

The details of all the static verification properties and their corresponding options are given in the table
below.
Group Property Options
None a. Enabled Y/N
General b. Prover 1. Interactive PVS prover

2. Automated Simplify prover
" c. Generate PVS lemma files Y/N
" d. Recursion 1. Check assertions with recursion

2. Generate error if found
3. Warn and check
4. Ignore assertions with recursion

" e. which ensures clauses 1. Always use
2. Use when recursion in ensures
3. Never use

Checks f. Check requires clauses Y/N
" g. Check changes clauses Y/N
" h. Check ensures clauses Y/N
" i. Requirements 1. Check from behaviour

2. Check from implementation
" j. Check assert statements Y/N
" k. assume statements 1. Check them

2. Generate error if found
3. Ignore them

" l. Loops without invariants 1. Unravel them
2. Warn and then unravel them
3. Generate error if found

Failure reports m. Include description Y/N
" n. Include source Y/N
" o. Include stack trace Y/N
" p. Include parameter values Y/N
" q. Include attribute values Y/N
" r. Include local variable values Y/N
" s. Include execution path info Y/N

C.2 Built-in verification policies
In this section we give the details of the built-in policies in terms of the properties defined in the
previous section. First we give the full property settings for the 3 core built-in policies (RAC, ESC and
FFV) and then we describe customisations of them.

C.2.1 Properties for RAC, ESC and FFV

The following tables present the policy settings for the RAC, ESC and FFV approaches. The column
labels a-r and a-s correspond to the properties defined in C.1.1 and C.1.2, respectively. The values in
the cells below these column labels correspond to the options from the properties which are used for
that policy. The values in italics are not relevant for that policy because the appropriate form of

C Verification policy definitions

 177

verification is disabled but is relevant to some policies discussed in section C.2.2 which are based on
these.

Run-time checking properties:
Policy a b c d E f g h i j k l m n o p q r
RAC Y 1 1 1 Y 1 Y Y Y 1 Y Y Y Y N N N N
ESC N 1 1 1 Y 1 Y Y Y 1 Y Y Y Y N N N N
FFV N 1 1 1 Y 1 Y Y Y 1 Y Y Y Y N N N N

Static verification properties:
Policy a b c d e f g h i j k l m n o p q r s
RAC N 1 Y 1 1 Y Y Y 1 Y 1 1 Y Y Y N N N N
ESC Y 2 Y 2 1 Y Y Y 2 Y 3 1 Y Y Y N N N N
FFV Y 1 Y 1 3 Y Y Y 1 Y 2 3 Y Y Y N N N N

C.2.2 Extensions of RAC, ESC and FFV

The full policy properties for the 3 core policies were defined in the previous section. In this section we
describe some other policies that are based upon them. Instead of giving the full property details, we
simply describe how they differ from the policy which they are based upon.
Policy Based on Property changes
RAC – Verbose RAC Run-time checking:

o = Y
p = Y
q = Y
r = Y

RAC – Unhalting RAC Run-time checking:
b = 2

RAC – Minimal Unhalting RAC – Unhalting Run-time checking:
l = N
m = N
n = N

ESC – Verbose ESC Static verification:
p = Y
q = Y
r = Y
s = Y

ESC with RAC client checks ESC Run-time checking:
a = Y
f = 4
g = N
h = N
i = N
j = 3
k = N

ESC with RAC assume
checks

ESC Run-time checking:
a = Y
e = N
f = 4
g = N
h = N
i = N
k = N

FFV with RAC client checks FFV Run-time checking:
a = Y
f = 4
g = N
h = N
i = N
j = 3

C Verification policy definitions

 178

k = N
FFV with loop unravelling FFV Static verification:

l = 2
FFV – Automated FFV Static verification:

b = 2
d = 3
e = 2

 179

D Symbolic execution example

This appendix will work through the symbolic execution of a sorting implementation. The algorithm
used is insertion sort [99]. The algorithm is implemented as a static function which accepts a List
parameter and returns a sorted version of the List. Some simple correctness annotations are provided
in an ensures clause. These express that the resulting List should be sorted and that the size of the
input and output lists should be the same. The implementation involves the use of nested while loops.
We consider the use of the ESC approach which involves the loop unravelling technique.

D.1 A sorting example
The source of the example is given below. This example has previously been presented [97] where the
use of RAC, ESC and FFV to verify it was discussed.

 1: public class Sorter {
 2: public static function insertSort(inList:List):List
 3: ensures "The returned List is sorted":
 4: forall (i:integer := 1 to result.size()-1):
 5: result.elementAt(i) >= result.elementAt(i-1),
 6: "The size of the sorted List is the same as the size of the

input List":
 7: result.size() = inList.size()
 8: {
 9: var a:List := inList;
10: var m:integer := 1;
11: while (m < a.size()) {
12: var key:integer := a.elementAt(m);
13: var l:integer := m-1;
14: while (l >= 0 && l < a.size()
15: && a.elementAt(l) >= key) {
16: a.set(l+1,a.elementAt(l));
17: l := l-1;
18: }
19: a.set(l+1,key);
20: m := m+1;
21: }
22: return a;
23: }
24: }

D.2 The symbolic execution process
The symbolic execution of this example begins with the processing of the Sorter class and the
loading of the top-level packages, local and imported classes and local methods. The members, here
only a single static function, are then processed.

The state of the symbolic executor consists of 3 components: the program counter, the path
condition, and the current values for each variable. Initially, the program counter is the header of the
function (line 2), the path condition is empty and there are no local variables.

Program Counter:
 2: public static function insertSort(inList:List):List
Path Condition:
 true
Variables:
 None

We then start processing the static function. New variables are declared for the parameters and
reassigned arbitrary values. The typing information of the new symbol is recorded in the path
condition. The program counter advances to the start of the code, ready for symbolic execution of the
implementation.

D Symbolic execution example

 180

Program Counter:
 8: {
Path Condition:
 {inList_0:List}
Variables:
 inList: inList_0

The first statements are two declarations, shown below:

 9: var a:List := inList;
10: var m:integer := 1;

These declare new local variables and assign them values. The a variable is assigned the current
value of the inList parameter which is the symbol inList_0. The m variable is assigned the literal
value 1. The program counter then advances to line 11.

Program Counter:
 11: while (m < a.size()) {
Path Condition:
 {inList_0:List}
Variables:
 inList: inList_0
 a: inList_0
 m: 1

The first while statement, shown below, is then reached.

11: while (m < a.size()) {

This involves two branches. In the first, the condition is assumed to be false when the loop is first
reached and the code following the loop is executed. In the second, the condition is assumed to be true
when the loop is first reached, the body of the loop is executed and then the condition is assumed to be
false after this iteration.

D.2.1.1. Branch 1 of while loop at line 11 (no iterations)

For branch 1, the condition is assumed to be false. This involves the evaluation of the negation of the
loop condition being added to the path condition. Flow then moves to the statement immediately after
the loop, the return statement.

Program Counter:
 22: return a;
Path Condition:
 {inList_0:List},
 !(1 < inList_0.size())
Variables:
 inList: inList_0
 a: inList_0
 m: 1

The symbolic execution of the return statement first involves the declaration of a result
variable which is assigned the evaluated of the expression to be returned. The post-conditions are then
checked. This generates VCs that the path condition implies each ensures clause.

VC #1:
 {inList_0:List}
 && !(1 < inList_0.size())
==>
 forall (i:integer := 1 to inList_0.size()-1):
 inList_0.elementAt(i) >= inList_0.elementAt(i-1)

VC #2:
 {inList_0:List}

D Symbolic execution example

 181

 && !(1 < inList_0.size())
==>
 inList_0.size() = inList_0.size()

This completes the symbolic execution of this branch as indicated by the terminate primitive in the
symbolic execution rule of the return statement.

D.2.1.2. Branch 2 of while loop at line 11 (one iteration)

In branch 2, we consider the execution of one iteration of the body of the while loop. We start by
assuming that the loop condition is true. So we know that inList_0.size() is greater than 1.

Program Counter:
 12: var key:integer := a.elementAt(m);
Path Condition:
 {inList_0:List},
 1 < inList_0.size()
Variables:
 inList: inList_0
 a: inList_0
 m: 1

We now reach the two declaration statements. These add new local variables and assign them
values derived from the existing variables.

12: var key:integer := a.elementAt(m);
13: var l:integer := m-1;

The statement at line 12 involves a call of the elementAt function which contains a pre-
condition. This generates a VC that this pre-condition is met.

VC #3:
 {inList_0:List}
 && 1 < inList_0.size()
==>
 inList_0.elementAt_pre(1)

After symbolic execution of these statements, the state of the symbolic executor is as follows:

Program Counter:
 14: while (l >= 0 && l < a.size()
 15: && a.elementAt(l) >= key) {
Path Condition:
 {inList_0:List},
 1 < inList_0.size()
Variables:
 inList: inList_0
 a: inList_0
 m: 1
 key: inList_0.elementAt(1)
 l: 1-1

We now reach the while loop. As described in the symbolic execution rule for while loops, the
first stage is to check any pre-conditions in the loop condition. The elementAt function call requires
such a check.

VC #4:
 {inList_0:List}
 && 1 < inList_0.size()
==>
 inList_0.elementAt_pre(1-1)

We can now consider the separate branches of the symbolic execution of the while loop: one for
no iterations of the loop body and one for a single iteration of the loop body.

D Symbolic execution example

 182

D.2.1.3. Branch 1 of while loop at line 14 (no iterations)

For branch 1, the condition is assumed to be false. This involves the evaluation of the negation of the
loop condition being added to the path condition. Flow then moves to the statement immediately after
the loop, the call of the set operation.

Program Counter:
 19: a.set(l+1,key);
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
Variables:
 inList: inList_0
 a: inList_0
 m: 1
 key: inList_0.elementAt(1)
 l: 0

The loop is immediately followed by two statements: a call of the set operation and an assignment
to increment the value of m by one.

19: a.set(l+1,key);
20: m := m+1;

The set operation has a pre-condition that the passed index is valid. A VC is generated to check
this.

VC #5:
 {inList_0:List}
 && 1 < inList_0.size()
 && !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
==>
 inList_0.set_pre(0+1, inList_elementAt(1))

The statements on lines 19 and 20 can then be executed with the following consequences for the
state of the symbolic executor. The program counter moves to the statement after the loop, the return
statement.

Program Counter:
 22: return a;
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
Variables:
 inList: inList_0
 a: inList_0.set(0+1, inList_0.elementAt(1))
 m: 1+1
 key: inList_0.elementAt(1)
 l: 0

VCs are then generated for the checks of the ensures clauses at the return statement.

VC #6:
 {inList_0:List}
 && 1 < inList_0.size()
 && !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
==>
 forall (i:integer := 1 to

D Symbolic execution example

 183

 inList_0.set(1, inList_0.elementAt(1)).size()-1):
 inList_0.set(1,inList_0.elementAt(1)).elementAt(i)
 >= inList_0.set(1,inList_0.elementAt(1)).elementAt(i-1)

VC #7:
 {inList_0:List}
 && 1 < inList_0.size()
 && !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
==>
 inList_0.set(1,inList_0.elementAt(1)).size()
 = inList_0.size()

This completes this branch.

D.2.1.4. Branch 2 of while loop at line 14 (one iteration)

In branch 2, we consider the execution of one iteration of the body of the while loop. We start by
assuming that the loop condition is true.

Program Counter:
 16: a.set(l+1,a.elementAt(l));
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
Variables:
 inList: inList_0
 a: inList_0
 m: 1
 key: inList_0.elementAt(1)
 l: 0

Flow then moves to the statements in the body of the loop. These are another call of the set
operation and an assignment to decrement l by one.

16: a.set(l+1,a.elementAt(l));
17: l := l-1;

The statement at line 16 involves calls of the elementAt function and set operation, both of
which have pre-conditions. This generates two VCs:

VC #8:
 {inList_0:List}
 && 1 < inList_0.size()
 && 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
==>
 inList_0.elementAt_pre(0)

VC #9:
 {inList_0:List}
 && 1 < inList_0.size()
 && 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
==>
 inList_0.set_pre(0+1, inList_0.elementAt(0))

D Symbolic execution example

 184

The statements at lines 16 and 17 can then be symbolically executed with the following
consequences for the state of the symbolic executor. The program counter moves back to the header of
the loop at line 14.

Program Counter:
 14: while (l >= 0 && l < a.size()
 15: && a.elementAt(l) >= key) {
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
Variables:
 inList: inList_0
 a: inList_0.set(1, inList_0.elementAt(0))
 m: 1
 key: inList_0.elementAt(1)
 l: 0-1

The pre-conditions of the method calls in the loop condition are then re-checked. The call of the
elementAt function in line 15 generates another VC, shown below. The last two conjuncts of the
path condition are derived from the evaluation order. The elementAt function will only be evaluated
(and hence its pre-condition have to hold) if the first conjuncts of the loop condition are true. Since
there is a contradiction (-1 >= 0) in the path condition for the VC, it is okay that the pre-condition of
the elementAt function is not satisfied.

VC #10:
 {inList_0:List}
 && 1 < inList_0.size()
 && 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
 && -1 >= 0
 && -1 < inList_0.set(1, inList_0.elementAt(0)).size()
==>
 inList_0.set(1, inList_0.elementAt(0)).elementAt_pre(-1)

The loop condition is then assumed to be false to complete the single iteration and the program
counter advances to the statement immediately after the loop.

Program Counter:
 19: a.set(l+1,key);
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1),
 !(-1 >= 0
 && -1 < inList_0.set(1, inList_0.elementAt(0)).size()
 && inList_0.set(1, inList_0.elementAt(0))
 .elementAt(-1)
 >= inList_0.elementAt(1))
Variables:
 inList: inList_0
 a: inList_0.set(1, inList_0.elementAt(0))
 m: 1
 key: inList_0.elementAt(1)
 l: -1

The next two statements are another call of the set operation and an assignment to increment m by
one.

19: a.set(l+1,key);
20: m := m+1;

D Symbolic execution example

 185

The set operation call at line 19 involves the generation of another VC:

VC #11:
 {inList_0:List}
 && 1 < inList_0.size()
 && 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1)
 && !(-1 >= 0
 && -1 < inList_0.set(1, inList_0.elementAt(0)).size()
 && inList_0.set(1, inList_0.elementAt(0))
 .elementAt(-1)
 >= inList_0.elementAt(1))
==>
 inList_0.set(1, inList_0.elementAt(0)).set_pre(0,
 inList_0.elementAt(1)

The statements at lines 19 and 20 can then be symbolically executed with the following
consequences for the state of the symbolic executor. The program counter then moves back to the
header of the loop at line 11.

Program Counter:
 11: while (m < a.size()) {
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1),
 !(-1 >= 0
 && -1 < inList_0.set(1, inList_0.elementAt(0)).size()
 && inList_0.set(1, inList_0.elementAt(0))
 .elementAt(-1)
 >= inList_0.elementAt(1))
Variables:
 inList: inList_0
 a: inList_0.set(1, inList_0.elementAt(0)).set(0,
 inList_0.elementAt(1)
 m: 1+1
 key: inList_0.elementAt(1)
 l: -1

The loop condition of this loop is then also assumed to be false to complete its single iteration and
the program counter advances to the return statement following the loop.

Program Counter:
 22: return a;
Path Condition:
 {inList_0:List},
 1 < inList_0.size(),
 0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1),
 !(-1 >= 0
 && -1 < inList_0.set(1, inList_0.elementAt(0)).size()
 && inList_0.set(1, inList_0.elementAt(0))
 .elementAt(-1)
 >= inList_0.elementAt(1))
Variables:
 inList: inList_0
 a: inList_0.set(1, inList_0.elementAt(0)).set(0,
 inList_0.elementAt(1)
 m: 1+1
 key: inList_0.elementAt(1)
 l: -1

D Symbolic execution example

 186

VCs are then generated for the checks of the ensures clauses at the return statement.

VC #12:
 {inList_0:List}
 && 1 < inList_0.size()
 && !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
==>
 forall (i:integer := 1 to
 inList_0.set(1, inList_0.elementAt(0))
 .set(0, inList_0.elementAt(1).size()-1):
 inList_0.set(1, inList_0.elementAt(0))
 .set(0, inList_0.elementAt(1).elementAt(i)
 >= inList_0.set(1, inList_0.elementAt(0))
 .set(0, inList_0.elementAt(1).elementAt(i-1)

VC #13:
 {inList_0:List}
 && 1 < inList_0.size()
 && !(0 >= 0 && 0 < inList_0.size()
 && inList_0.elementAt(0) >= inList_0.elementAt(1))
==>
 inList_0.set(1, inList_0.elementAt(0))
 .set(0, inList_0.elementAt(1).size()
 = inList_0.size()

This completes this branch and the symbolic execution of the example.

 187

E An interactive PVS proof
This appendix works through the details of the proof of a particular VC using PVS. The VC is from the
full formal verification of the library project discussed in chapter 8.

E.1 Relevant Omnibus source code
We consider a proof for the following registerMember operation.

public operation registerMember(name:Name, ad1:String, ad2:String,
pCode:String, telNo:integer, isAdult:boolean, isStaff:boolean)

 changes members
 ensures members() = old members().add(
 Member.newMember(old getNewMemberNo(),
 name, ad1, ad2, pCode,
 telNo, isAdult, isStaff))

We will prove that it satisfies the memberNosInMembersUnique invariant.

public invariant memberNosInMembersUnique:
 forall (m:Member in members()):
 forall (m2:Member in members()):
 m.memberNo() != m2.memberNo() || m = m2

These definitions make use of two local methods: the members model function and the
getNewMemberNo function.

public model function members():Collection[Member]

public function getNewMemberNo():integer
 ensures !(exists (m:Member in members()):
 m.memberNo() = result)

The newMember constructor of the Member class is used to construct the new Member to add to
the members collection.

public class Member {
 public model function memberNo():integer
 public model function name():Name
 ...

 public constructor newMember(memNo:integer, na:Name, ad1:String,

ad2:String, pCode:String, tNo:integer, isAd:boolean,
isSta:boolean)

 ensures memberNo() = memNo,
 name() = na,
 ...
 ...
}

The members model function of Lib holds a Collection object for which a simplified
specification is given below:

public class Collection[Element] isa Iterable[Element] {
 public model function contains(e2:Element):boolean

 public operation add(e:Element)
 changes contains(e)
 ensures contains(e)
 ...
}

E An interactive PVS proof

 188

The post-condition of the add function includes the assertion that all elements other than e remain
unchanged as implied by the changes clause.

E.2 Generated PVS
The verification process starts with the selection of ‘Interactive FFV’ as the verification process to use
for the Lib class. On selecting ‘Verify Project’, the project is translated into the generic logic and then
PVS. The axioms file containing the formalisation of the specifications of the project and used libraries
is 6718 lines long. There is then a series of obligation files and default proof attempts for each file in
the project which is to be verified using PVS. The obligations file for the Lib class is 2337 lines long
and contains 231 VCs.

The VC we are concerned with is VC number 67 which is shown below.

 % VC #67:
 % Source file: C:\Program

Files\eclipse\workspace\OmnibusIDE\myprojects\Impl4-ffv\Lib.obs
 % Line number: 160
 % Method: registerMember
 % Name: Check the public behaviour of the registerMember

operation satisfies the public invariant at line 23
 vc_67: CONJECTURE
 (FORALL (old_this:v_Lib), (name:v_Name),
 (ad1:v_omni_lang_String),
 (ad2:v_omni_lang_String),
 (pCode:v_omni_lang_String), (telNo:int),
 (isAdult:bool), (isStaff:bool), (this:Lib):
 (Lib_registerMember_pub_post(old_this, name, ad1,
 ad2, pCode, telNo, isAdult,
 isStaff, this)
 IMPLIES Lib_invariant_3(this))
)

The VC is expressed using the function symbols defining the post-condition of the method and the
invariant. Lib_registerMember_pub_post is declared and then specified as follows:

Lib_registerMember_pub_post(old_this:v_Lib, name:v_Name,
ad1:v_omni_lang_String, ad2:v_omni_lang_String,
pCode:v_omni_lang_String, telNo:int, isAdult:bool,
isStaff:bool, this:Lib):bool

Lib_registerMember_pub_post_ax: AXIOM
 (FORALL (old_this:v_Lib), (name:v_Name),
 (ad1:v_omni_lang_String),
 (ad2:v_omni_lang_String),
 (pCode:v_omni_lang_String), (telNo:int),
 (isAdult:bool), (isStaff:bool), (this:Lib):
 (Lib_registerMember_pub_post(old_this, name, ad1, ad2,
 pCode, telNo, isAdult,
 isStaff, this)
 = ((((Lib_loans(old_this) = Lib_loans(this)) AND
 (Lib_copies(old_this) = Lib_copies(this))) AND
 (Lib_cards(old_this) = Lib_cards(this))) AND
 (Lib_members(this) =
 omni_lang_Collection_add(Lib_members(old_this),
 Member_newMember(Lib_getNewMemberNo(old_this),
 name, ad1, ad2, pCode, telNo,
 isAdult, isStaff)))))
)
AUTO_REWRITE+ Lib_registerMember_pub_post_ax

Lib_invariant_3 is declared and then specified as follows:

Lib_invariant_3(this:Lib):bool

E An interactive PVS proof

 189

Lib_invariant_3_ax: AXIOM
 (FORALL (this:Lib):
 (Lib_invariant_3(this) =
 (FORALL (m:v_Member):
 (omni_lang_Iterable_contains(Lib_members(this), m)
 IMPLIES (FORALL (m2:v_Member):
 (omni_lang_Iterable_contains(Lib_members(this), m2)
 IMPLIES
 ((Member_memberNo(m) /= Member_memberNo(m2))
 OR (m = m2)))
))
))
)
AUTO_REWRITE+ Lib_invariant_3_ax

E.3 Details of the proof process
To start the proof process, we start PVS, open the Lib obligations file, move to VC 67 and select
‘prove’. The initial proof status is shown below:

The proof then proceeds by skolemising and flattening to give us the following VC in terms of the

introduced skolem constants.

Next we get the predicate for the validity of old_this!1 using typepred. This gives us the

knowledge that Lib_invariant_3 holds over old_this!1. We then re-write the two instances
of Lib_invariant_3 (over this!1 and old_this!1) using Lib_invariant_3_ax and do
the same thing for Lib_registerMember_pub_post using
Lib_registerMember_pub_post_ax. This gives us the following:

E An interactive PVS proof

 190

We can then flatten [-2] and use the ‘Lib_members(this!1) = ...’ part to rewrite

Lib_members(this!1) in [1] in terms of Lib_members(old_this!1). This gives us:

E An interactive PVS proof

 191

We can then use Lib_getNewMemberNo_pub_ax to give us the knowledge that there is no

existing Member in members with this memberNo. The negation is removed and the assertion is
placed as the antecedent numbered {1} shown below.

Next we skolemize and flatten the nested quantifiers in [2] which gives us arbitrary skolem

symbols m!1 and m2!1 which we know are both contained in ‘this.members()’ and we must
prove are either equal or have different memberNos.

E An interactive PVS proof

 192

Now we can use omni_lang_Collection_add_pub_ax to give us the specification for the

add method which we can then use to determine whether the new members collection contains
elements from whether the old members collection did. The two additional pieces of knowledge this
gives us are as follows:

E An interactive PVS proof

 193

[-2] tells us that the new members collection contains the newly constructed Member. [-1]

tells us that for all members other than the newly constructed Member, the new members collection
contains the Member if the old collection contained the Member.

We have two Members, m!1 and m2!1, which we know are contained in the new members
collection, and we have two rules, [-1] and [-2] for evaluating these. Each of m!1 and m2!1 can
be rewritten using either of these rules. Thus we have three different cases:

1. Both are equal to the new Member
2. One of m!1 and m2!1 is equal to the new Member
3. Neither is equal to the new Member

E.3.1.1. Both are equal to the new Member

The easiest case is where both m!1 and m2!1 are equal to the new Member. In this case, we have the
additional knowledge that:

Recall that we are trying to prove that either m!1 and m2!1 are equal or that they have different

memberNos. Well, this additional knowledge is sufficient to trivially prove that m!1 and m2!1 are
equal.

E An interactive PVS proof

 194

E.3.1.2. One of m!1 and m2!1 is equal to the new Member

There are two symmetric subcases for this case. Either (a) m!1 is equal to the new Member and m2!1
is not or (b) m2!1 is equal to the new Member and m!1 is not. Here we will only discuss the proof of
case (a) but the same general technique can be used to prove case (b).

The case analysis gives us two pieces of knowledge. The sequent that m!1 is equal to the new
Member:

And the antecedent that m2!1 is not.

We can start by instantiating the quantifier describing that Members other than the new Member

are contained in members, with m2!1. This gives us the knowledge that m2!1 is in the new
members if it was in the old members.

Then we can use Member_newMember_pub_ax to deduce that the memberNo of the new

Member is getNewMemberNo(old_this!1). The sequent this gives is:

The specification of the getNewMemberNo function earlier gave us the following proof goal:

We can now instantiate this with m2!1. To prove the resulting assertion we must prove both parts

of the conjunction. We can prove that the old members collection contained m2!1, which we can do
from the facts that we know the new collection contains m2!1 and that we know the old collection
contains m2!1 iff the new one does. We can also prove that MemberNo(m2!1) is equal to
Lib_getNewMemberNo(old_this!1) from the fact that we know Member_memberNo(m!1)
= Member_memberNo(m2!1), m!1 equals the new Member, and the memberNo of the new
Member is Lib_getNewMemberNo(old_this!1). The relevant parts of the conjecture are
shown below:

E An interactive PVS proof

 195

E.3.1.3. Neither is equal to the new Member

The final case is that neither m!1 or m2!1 are equal to the new Member. This knowledge is
represented by the following antecedents:

We can instantiate the quantifier which describes that Members other than the new Member are

contained in members with both m!1 and m2!1, in turn. This gives us the knowledge that both m!1
and m2!1 are in the new members if they were in the old members. The corresponding sequents are:

We already have the knowledge that m!1 and m2!1 are in the new members collection, and from

[-1] and [-2] we now know that they were in the old members collection. Thus, we can use the
truth of the invariant over old_this, already loaded in [-4], to deduce that m!1 and m2!1 are
either equal or have different memberNos.

E An interactive PVS proof

 196

This completes the proof of the VC.

The entire proof consists of 104 steps and also involves a number of side-conditions.

