
Department of Computing Science and Mathematics

University of Stirling

An Online Environmental Approach to Service

Interaction Management in Home Automation

Michael E. J. Wilson

Technical Report CSM-171

ISSN 1460-9673

November 2006

Department of Computing Science and Mathematics
University of Stirling

An Online Environmental Approach to Service

Interaction Management in Home Automation

Michael E. J. Wilson

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email mew@cs.stir.ac.uk

Technical Report CSM-171

ISSN 1460-9673

November 2006

Abstract

Home automation is maturing with the increased deployment of networks and intelligent devices in the
home. Along with new protocols and devices, new software services will emerge and work together re-
leasing the full potential of networked consumer devices. Services may include home security, climate
control or entertainment. With such extensive interworking the phenomenon known as service inter-
action, or feature interaction, appears. The problem occurs when services interfere with one another
causing unexpected or undesirable outcomes.

The main goal of this work is to detect undesired interactions between devices and services while
allowing positive interactions between services and devices. If the interaction is negative, the approach
should be able to handle it in an appropriate way.

Being able to carry out interaction detection in the home poses certain challenges. Firstly, the devices
and services are provided by a number of vendors and will be using a variety of protocols. Secondly,
the configuration will not be fixed, the network will change as devices join and leave. Services may also
change and adapt to user needs and to devices available at runtime. The developed approach is able to
work with such challenges.

Since the goal of the automated home is to make life simpler for the occupant, the approach should
require minimal user intervention.

With the above goals, an approach was developed which tackles the problem. Whereas previous
approaches solving service interaction have focused on the service, the technique presented here concen-
trates on the devices and their surrounds, as some interactions occur through conflicting effects on the
environment. The approach introduces the concept of environmental variables. A variable may be room
temperature, movement or perhaps light. Drawing inspiration from the Operating Systems domain, locks
are used to control access to the devices and environmental variables. Using this technique, undesirable
interactions are avoided. The inclusion of the environment is a key element of this approach as many
interactions can happen indirectly, through the environment.

Since the configuration of a home’s devices and services is continually changing, developing an off-line
solution is not practical. Therefore, an on-line approach in the form of an interaction manager has been
developed. It is the manager’s role to detect interactions.

The approach was shown to work successfuly. The manager was able to successfully detect interactions
and prevent negative interactions from occurring. Interactions were detected at both device and service
level. The approach is flexible: it is protocol independent, services are unaware of the manager, and
the manager can cope with new devices and services joining the network. Further, there is little user
intervention required for the approach to operate.

Acknowledgements

There have been so many friends and colleagues through the course of this work who have helped me.
Without their suggestions, encouragement and support, it is unlikely I would have successfully completed
the thesis. There are, however a few special people who I have to express special thanks to.

Firstly, Professor Evan Magill for introducing me to the field of feature interaction. His help, patience
and and encouragement have made my time at Stirling both interesting and thoroughly enjoyable. I also
want to thank Dr. Mario Kolberg for his valuable discussions and time spent watching while I drew
boxes and arrows on Canadian beer mats!

A big thank you to Alison Martin and John Willison who were there to proof read and provide
editorial comments.

I know there are many other people who I have met along the way, given me support, ideas, and who
have listened to me looking interested and nodding at suitable moments. There are far too many to even
start to list, but you know who you are. To everyone, thank you so much.

Abbreviations

AC Automatic Callback
AR Automatic Recall
ARP Address Resolution Protocol
BCNB Blocking Calling Number Delivery
CF Call Forwarding
CFB Call Forwarding on Busy
CFU Call Forwarding Unconditional
CNB Calling Number Blocking
CND Calling Number Delivery
CNDB Calling Number Delivery Blocking
CSS Communications Support Service
CUSY CUstomer SYstem
CW Call Waiting
DER Device and Environmental Representation
DHCP Dynamic Host Configuration Protocol
DIS Device Information Service
DLI Device Location Information
FIM Feature Interaction Manager
GENA General Event Notification Architecture
HAVi Home Video and Audio Interoperability
HES Home Entertainment Service
HTTP Hyper Text Transfer Protocol
HVAC Heating, Ventilation and Air Conditioning
HSS Home Security Service
IP Internet Protocol
JES Java Embedded Server
JPEG Joint Picture Expert Group
LDAP Lightweight Directory Access Protocol
LI Looping Interaction
LTT Linear Temporal Logic
MAI Multiple Action Interaction
MUMC Multiple User, Multiple Component
MUSC Multiple User, Single Component
MMS Multimedia Messaging Service
MTI Missed Trigger Interaction
NA Networked Appliance
OCS Originating Call Screening
OSGi Open Services Gateway Initiative
PCS Power Control Service
SAI Shared Action Interaction
SCP Service Control Point
SIHP Service Interaction Handling Process
SIM Service Interaction Manager
SINPC Service Interaction Network Protocol Converter
SIP Session Initiation Protocol
SOAP Simple Object Access Protocol
SMF Service Management Framework

iii

SMS Short Messaging Service
SSDP Simple Service Description Protocol
STI Shared Trigger Interaction
SUMC Single User, Multiple Component
SUSC Single User, Single Component
TCP Transmission Control Protocol
TLA Temporal Logic of Actions
UDP User Datagram Protocol
UPnP Universal Plug and Play
X.10 A simple powerline protocol for home automation

iv

Contents

Abstract i

Acknowledgements ii

Abbreviations iii

1 Introduction 1
1.1 The Problem . 2
1.2 Aims of this work . 3
1.3 Contributions of this work . 3
1.4 Achievements and limitations of this work . 3
1.5 Structure of the thesis . 4

2 The Networked Home 6
2.1 Protocols used in the home network . 7

2.1.1 X.10 . 7
2.1.2 Universal Plug and Play (UPnP) . 9
2.1.3 Summary of UPnP . 14
2.1.4 Other protocols used for home networking . 15

2.2 A middleware solution from the OSGi Alliance . 16
2.2.1 The OSGi framework . 16
2.2.2 The Service Registry in OSGi . 19
2.2.3 Standard services . 20
2.2.4 Services working together . 20

2.3 Summary . 21

3 The Feature Interaction Problem 22
3.1 Taxonomies for feature interaction . 22

3.1.1 Cameron’s taxonomy . 23
3.1.2 Marples’ taxonomy . 24
3.1.3 Discussion: Cameron and Marples . 25
3.1.4 A taxonomy for networked appliances . 26
3.1.5 Discussion: taxonomy for networked appliances . 27

3.2 Approaches to the problem in telephony . 28
3.2.1 Off-line approaches . 28
3.2.2 On-line approaches . 29

3.3 General limitations of previous approaches . 31
3.4 Feature interaction in home networks . 31

3.4.1 Current approaches for feature interaction in the home 32

4 Services Enabling Home Automation 33
4.1 User Services . 33

4.1.1 Home Ventilation and Air Conditioning (HVAC) 33
4.1.2 Home Security Service (HSS) . 34
4.1.3 Power Control Service (PCS) . 34

v

4.1.4 Home Entertainment Service (HES) . 34
4.1.5 Communications Support Service (CSS) . 34

4.2 Conflicts between services (Interactions) . 35
4.2.1 Inter-service interaction . 35
4.2.2 Intra-service interaction . 35

4.3 Interaction examples . 35
4.3.1 Security vs. Power Control Service . 35
4.3.2 Security vs. Entertainment . 36
4.3.3 Security vs. Climate Control . 36
4.3.4 Climate control vs. Security . 36
4.3.5 Power Control Service vs. Climate Control . 36
4.3.6 Within climate control . 36
4.3.7 Within Security . 37

4.4 Summary of the problem . 37
4.5 A new approach to the problem in home networks . 38
4.6 Summary . 39

5 An Environmental Approach 40
5.1 Introduction . 40
5.2 The approach . 41

5.2.1 The 3-layered model . 42
5.2.2 Controlling access to components . 43
5.2.3 Locality . 44
5.2.4 Service priorities . 44
5.2.5 The remote device database . 45

5.3 The service interaction manager . 46
5.3.1 Keeping the manager up to date and consistent . 47

5.4 Operation of the approach . 48
5.4.1 Model . 48
5.4.2 A worked example:

Interaction between climate control and security 50
5.5 Summary . 54

6 Architecture of the Test-bed 56
6.1 Introduction . 56
6.2 Design of the basic test-bed . 56

6.2.1 Devices . 56
6.2.2 The service management platform . 59
6.2.3 Services . 61

6.3 Configuration of the basic test-bed . 64
6.3.1 Setting up the X.10 devices . 64
6.3.2 Setting up the UPnP devices . 65
6.3.3 Configuration of the services . 65

6.4 Testing of the basic test-bed . 66
6.4.1 Testing the devices . 66
6.4.2 Testing the services . 66

6.5 Design of the approach . 67
6.5.1 Service Interaction Manager (SIM) . 69
6.5.2 Service Interaction Network Protocol Converters

(SINPC) . 69
6.5.3 Device Information . 71
6.5.4 Device Location Information and the Device &

Environment Representation component . 72
6.5.5 Priority service . 74
6.5.6 Summary of the flow data . 75

6.6 Testing of the approach . 77

vi

6.7 Summary . 77

7 Experimentation and Results 79
7.1 The test cases . 79

7.1.1 Scenario 1: HSS:AFH vs PCS . 80
7.1.2 Scenario 2: HSS:Alarm vs HES . 80
7.1.3 Scenario 3: HSS:AFH vs HVAC . 81
7.1.4 Scenario 4: HVAC vs HSS:Alarm . 81
7.1.5 Scenario 5: Within HVAC – Issue 1 . 82
7.1.6 Scenario 6: Within HVAC – Issue 2 . 82
7.1.7 Scenario 7: within HSS . 83
7.1.8 Scenario 8: within HVAC . 83
7.1.9 Scenario 9: HES and HVAC . 84
7.1.10 Scenario 10: CMSS vs HSS . 85
7.1.11 Scenario 11: HCS and HVAC . 86

7.2 Summary of results . 87
7.3 Support for multiple rooms . 88
7.4 Summary . 88

8 Conclusions and Further Work 90
8.1 Achievements of the approach . 90
8.2 Strengths of the approach . 90
8.3 Limitations of the approach . 91
8.4 Further work . 92
8.5 How this approach compares to others for the home domain 95
8.6 Summary . 96

vii

List of Figures

2.1 The Home Network (from [1]) . 6
2.2 Example X.10 Home Network . 8
2.3 Example X.10 Adapters (from [2]) . 9
2.4 Example UPnP configurations . 10
2.5 Example SSDP alive message . 11
2.6 Example SSDP discover message . 11
2.7 Example reply message from UPnP router from search . 11
2.8 Example SSDP byebye message . 12
2.9 Example SOAP message to get device state . 13
2.10 Example SOAP reply message . 13
2.11 Example GENA subscribe message . 14
2.12 Example Device accepts subscribe message . 14
2.13 Example GENA unsubscribe . 14
2.14 OSGi home network (from [3]) . 16
2.15 OSGi protocol stack (from [4]) . 17
2.16 OSGi bundle states (from [5]) . 18
2.17 Example bundle manifest file . 18
2.18 OSGi service registration (from [6]) . 19
2.19 Example service registry properties for UPnP lamp device 20
2.20 An example alarm service using many services . 21

3.1 Looping interactions within CFU . 25
3.2 Multiple Action Interaction (adapted from [1]) . 26
3.3 Shared Trigger Interaction (adapted from [1]) . 27
3.4 Sequential Action Interaction (adapted from [1]) . 27
3.5 Missed Trigger Interaction (adapted from [1]) . 28

5.1 Service issues request to device . 41
5.2 Three Layered Model . 42
5.3 Example lamp description . 46
5.4 Internal representation . 47
5.5 Service to device via SIM . 48
5.6 Device to SIM . 49
5.7 3-layered model populated . 49
5.8 Static model of security and climate control service setup 51
5.9 Security service armed . 52
5.10 Avoiding Interaction between Climate and Security service 53
5.11 Avoiding interaction when climate control is active first 54
5.12 Security service and climate control service both active . 55

6.1 The test bed used for experimentation . 57
6.2 Service details for UPnP bundle, including service registry entry. 61
6.3 X.10 setup servlet . 62
6.4 HVAC setup servlet . 63
6.5 Home alarm setup servlet . 64

viii

6.6 Television recording setup of Entertainment Service . 65
6.7 Example service entry for an X.10 lamp . 66
6.8 Intel UPnP device validator tool . 67
6.9 Bundles for the approach . 68
6.10 Service interaction manager log . 70
6.11 Extract from OSGi service registry for UPnP protocol converter 70
6.12 Relationship diagram of device information database . 71
6.13 Example return value from the device information service (output) 72
6.14 Example return value from the device information service (input) 72
6.15 Set location of device . 73
6.16 DER servlet to show internal view . 74
6.17 Service priority configuration servlet . 75
6.18 Flow of information sent from service to device . 76
6.19 Flow of information sent by device update . 77
6.20 Locked room temperature variable . 78

7.1 The representation created by the DER at runtime . 80
7.2 Interaction avoided between HSS:AFH and PCS . 81
7.3 Interaction between HSS:Alarm and HES . 82
7.4 Interaction avoided between AFH and HVAC . 83
7.5 Interaction within HVAC . 84
7.6 Interaction within HSS . 85
7.7 Interaction within HVAC . 86
7.8 Interaction between HES and HVAC . 87
7.9 Interaction between CMSS and HSS . 88
7.10 Interaction between HCS and HVAC . 89

8.1 Heater’s relationship with the environment when active 92
8.2 Interaction between climate control service and humidity service 93
8.3 Interaction between climate control and security using SE 94

ix

List of Tables

2.1 Networking protocols used in home networking . 15

4.1 Interactions identified from examples . 38

5.1 Locking – allowed pairs . 44

7.1 Summary of results . 87
7.2 Interaction types handled by the approach . 87

x

Chapter 1

Introduction

People have been intrigued by the home of the future for generations. Such fascinations have been
fuelled by science fiction movies and futuristic television programmes. As far back as the early 1960’s
the popular children’s television series, the Jetsons, depicted a futuristic family living in an automated
home. This home included regular household appliances: television, washing machine, cooker, etc. along
with Rosie (a robot maid), who carried out general household chores. More than three decades later,
the vision of an intelligent, self maintaining home is becoming a reality.

Currently, the general consensus of a smart home is relatively conservative. The smart home can
be defined as a collection of networked appliances connected to a home LAN and controlled by one
or a number of software services. By networked appliances we mean traditional household appliances
with additional internal software and a network interface. These devices may include displays, heaters,
air-conditioners, fridges or even music stereos. The added value of networking these appliances is that
they can be controlled by one or a number of software services remotely. These software services can
be purchased by the user from either one or many service providers. These services may include enter-
tainment, security or even climate control services – all of which run from a central point in the home,
a residential gateway. It is envisaged that new devices joining the network will automatically configure
themselves and become integrated into the home system. This allows the software services to use the
most appropriate device available at the time.

Although this is the current view of the smart home, it will change. Already, ubiquitous computing
(the invisible computer) is attracting considerable attention. Computers are becoming so small and
cheap that they will be embedded into clothing and buttons. This offers the possibilities that items
of clothing can communicate with the washing machine, the washing machine can then determine the
optimum wash cycle for the load. However, there are many other possibilities which this technology can
bring.

A number of trial homes have been created to show how effective home networking can be. These
projects include: e2-Home in Stockholm [7]; the Internet Home Alliances OnStar homes in Detroit [8],
and the TAHI smart home in Loughborough [9].

These trial homes use devices which are generally not available off the shelf; however, some home
networking technologies are available to buy. X.10 [10] is one such technology. X.10 devices have proved
popular with home automation enthusiasts as they are relatively cheap, both in terms of cost of equipment
and of setting up the X.10 network. Software for controlling devices is also available off the shelf. IBM
Home Director [11] is one such product.

Home automation for all is still in its infancy. Trial homes, despite being sophisticated, are not
truly dynamic. Software controlling devices in such a house has been carefully engineered for the part.
Products such as X.10 and Home Director are relatively simple, and what the user can achieve is limited.
The road to fully achieving the automated home for general use is still some way off.

Issues remain to be overcome; however, the area is enjoying considerable growth in both industry
and academia. As a result of technological advances and the drop in price of consumer electronics, the
automated home for all is beginning to come within reach.

With many software services each controlling a number of devices, it is inevitable that two services
may need to control the same device. This leads to serious problems with compatibility. The problem
may not even be due to two services trying to control a single device, but perhaps a service controlling

1

a device which clashes with what a separate device (or service) is trying to achieve.
An example of this type of incompatibility is between a heater and air conditioner. Since one device

heats and the other cools, clearly they are not compatible with one another. However, there is no direct
link between a heater device and an air conditioner device. There is another factor involved – the room
temperature. The temperature is part of the room environment, in the same way that movement can be
seen as an attribute of the room’s environment. This example shows that the room environment is an
important factor in the home as compatibility issues arise through it.

Not only can the devices be incompatible with one another, but services can be incompatible too. For
example, one service may want to open windows for ventilation, whereas another service wants to keep
windows closed to keep the home secure. There is an incompatibility here, as the opening of windows
makes the home insecure. However, like the example between the heater and air conditioner, there is no
direct link. The link is indirect and is through the environment. It must be noted that this problem is
only a problem when security is an issue. If there was no security, opening the window would probably
not cause a problem.

As the examples above show, incompatibilities in the home are a problem. Although incompatibilities
in the home may be a new area of research, the general topic has been the focus of academic and
industrial research for over a decade. The problem is generally known as the Service Interaction or
Feature Interaction problem.

1.1 The Problem

The service interaction problem is where the action of one service has a negative impact on another [12].
The fact that services conflict with one another is not due to badly written services, but simply services
with broken assumptions and conflicting goals [13]. Broken assumptions are where the designers of
a particular service make assumptions which are then broken by another (unexpected) service. For
example, if a security service was developed then the assumption may be that there should be no
movement when no one is home. Therefore any movement detected is interpreted as an intruder. The
ventilation service may turn on a fan. This causes movement, which is interpreted as an intruder by the
security service. The security service made the assumption that there should be no movement, but the
ventilation service broke this assumption by turning on the fan and causing movement. No movement in
the home is not a bad assumption to make by the security service designers; it is the ventilation service
which breaks this assumption.

Although some interworking is positive, i.e. allowing devices to work together to reach a common
goal, negative interactions are not. These types of interactions must be avoided if the networked home
is to succeed [14].

The topic of feature interaction has received much research over the past decade with work widely
published on the subject, and indeed a series of workshops held [15–21]. Much of this research has been
concentrated in the telephony domain. However, the issue in electronic mail, elevators or web-services,
among others, has been studied. Despite good progress, an agreed universal solution to the problem has
proved elusive. To date, the home automation domain has received little attention.

There are many causes of interactions in the home. Like all other domains, the primary issue is that
some services have conflicting goals and broken assumptions. Solving the problem in the home is not
straightforward.

Since most households will have a different make-up of services (and configurations) and devices, it
means it is not always clear which device a service may use. For example, a service may have the goal of
cooling a room the quickest way possible. If an air conditioner is available, using it would be appropriate.
If an air conditioner was not available and it happened to be cooler outside, an alternative would be
to open a window. However, by opening a window, the cooling service could interact with a security
service. If the owner did not have a security service, no interaction would occur. This highlights the
problem of detecting interactions within the home domain.

As previously stated, interactions occur due to broken assumptions and conflicting goals. The first
time services meet will be in the network at runtime. If all services were developed by the same vendor,
all services and service permutations could be tested against one another. This allows interactions to be
fixed before the service is deployed. In the home networking environment this is not possible as there

2

will be many vendors where competition is fierce. Furthermore, vendors are unlikely to exhibit their new
service to each other.

Services are one variable in the problem; however, the problem is worsened by the ad hoc nature of
devices in the home. New home networking protocols are developed to specifically support leaving and
joining networks.

Therefore, it becomes impossible to predict the combination of devices and services (including how
they are configured) until runtime.

Although the flexibility with devices and services offers a customised home automation solution for a
user, it makes automatically detecting and resolving service interactions difficult. It is worth noting that
once an interaction has been found, it is relatively straightforward to fix [13]. However, if a customer is
paying for services they will not tolerate these surprises, regardless of how easy they are to resolve.

1.2 Aims of this work

As discussed in the previous section, the service interaction problem is an issue in the home. Therefore,
the aim of this work will be to develop an approach which will:

1. Avoid negative interactions from occurring in the home network between different devices and
services.

2. Consider the environment as many interactions occur though it.

3. Handle new devices and services joining the home network, as well as existing devices and services
leaving the network.

4. Handle services from multiple service providers as there will be many companies selling services
for the home, each specialising in a particular area.

5. Have limited user intervention as the networked home is supposed to make life easier for the
occupant. Therefore, they are not likely be interested in incompatibility issues.

1.3 Contributions of this work

The approach presented in this thesis is a novel approach for service interaction avoidance in the home
domain. It is an automatic, runtime approach which is able to avoid negative interactions.

There are few published papers which tackle the feature interaction problem in the home. Nakamura
et al. [22] present an approach which uses the environment; however this is an off-line approach. Metzger
and Webel [23] present an approach for service interaction in building control (which has many similarities
to the home domain) which uses the environment; however, their approach is also off-line. In contrast,
the approach presented here is a runtime approach.

The work here is novel as it is the first online approach specifically for the home. The approach is
not service specific, and therefore can support a multi-vendor environment. Indeed, the approach here is
the first device centric approach. This means a device and the device’s environment is the focus, rather
than traditional approaches in feature interaction which focus on the service.

The approach presented here makes use of the concept of environment to detect and avoid interactions.
Within the feature interaction community, there are few avoidance approaches.

As well as being a runtime approach, it does not require a warm-up period. That is, it can be
deployed straight into a network. It would also work immediately with newly added devices, regardless
of their underlying network protocol. This makes it an extremely flexible approach.

However, most importantly the approach fulfils the aims stated above.

1.4 Achievements and limitations of this work

The main achievements of this work include:

3

• Negative interactions are avoided while positive interactions are allowed. This allows services to
work together to achieve a common goal.

• Able to detect and resolve interactions at the device and service level.

• Manager operates at runtime with negligible overhead running cost (less than one second).

• Device protocol independent.

• Services do not need to be aware of the feature interaction manager. Therefore the approach works
with services from any vendor.

• Requires no warm-up time. As soon as the manager is deployed onto the network, it is able to
start avoiding negative interactions.

• Able to handle devices and services joining and leaving the network.

Although the results from the approach are mainly positive, the approach does have some limitations
(these limitations will be discussed in length in Chapter 8). These limitations include:

• The approach is unable to detect interactions caused by the same service (intra-service interactions).

• Devices and services must all be registered and controlled centrally for the approach to work.

• Unable to avoid looping interactions. This is because when a service is finished with a device the
session has finished and devices and variables are free for others to use them.

• Some a priori information is required regarding devices and the environmental variables that the
device will affect.

• Rooms in the home are considered to be independent of one another.

• Side effects of devices are not included.

There are some slight limitations of this approach, however these derive from the fact that this is a
straightforward and simple technique. The approach presented here is simple and is able to avoid the
majority of interactions in the home. In the worst case, a user can always override the manager.

1.5 Structure of the thesis

The thesis is laid out in the following way. Chapter two will discuss the networked home. This will include
explaining the types of devices (including protocols) in the home and how devices can be brought together
by using a service management platform.

Chapter three will discuss the feature interaction problem, highlighting previous work carried out.
This chapter will then outline the requirements for a new approach for the home while explaining why
existing approaches are not suitable for this domain.

Chapter four will cover the kinds of services which will be available in the home. The service inter-
action problem in the home is highlighted in this section, and interaction scenarios are outlined. These
scenarios are used in the experimentation section to show the effectiveness of the approach.

Chapter five reveals a new and novel approach for service interaction management in the home.
Previous approaches for feature interaction have been service centric – requiring detailed information
about the service. Due to services constantly adapting to their surroundings, a service may behave
differently each time it is executed. Therefore, the approach presented here focuses on the device and its
surrounding environment, as the behaviour of a device does not change. For example, a device may be
a heater where the surrounding environment it affects is room temperature. Thus, by controlling access
to the device and the device environment, negative interactions can be avoided. For controlling access
to the device and environment, inspiration has been drawn from the operating systems domain.

Following the description of the approach, chapter six discusses the architecture of the test-bed. It is
important to show that the approach works in practice, as well as theory, therefore a test-bed is required

4

to achieve this. This chapter will detail the devices and services used in the test-bed. Further, the design
of the approach will be included here.

Chapter seven presents the results from experimentation. The effectiveness of the approach is shown
by using each of the scenarios depicted in Chapter four.

Finally, chapter eight contains the conclusions and further work. The strengths of the approach as
well as its limitations are presented here. The section on further work will explain how the approach can
be improved and moved forward into other domains.

5

Chapter 2

The Networked Home

The motivation for automating the home has often been questioned. However, by connecting devices,
and allowing them to work together, some exciting possibilities for the home can be delivered [24]. Due
to this connectivity, users will have access to their data (e.g. audio or video collections or state of home),
regardless of their location, provided they have a network connection.

Figure 2.1 depicts an example home network where a multitude of networked devices1 are connected
using a variety of networking protocols. New possibilities arise when this new technology is used. Three
areas which can benefit are health care, entertainment and convenience.

X10 Lamp
X10 Lamp

UPnP Air-conditioner

UPnP Heater

Washing Machine

UPnP
Thermometer

HAVi T.V.

X10 Motion
Sensor

HAVi VCR

Power line

IEEE 1394 Network

HAVi
DVD Player

IP Network

DHCP Server
& SIP Proxy

Internet

SIP
UA

Residential
Gateway

Figure 2.1: The Home Network (from [1])

A key area where the automated home is expected to benefit is health care [24, 25]. It is estimated
that, currently, cognitive decline and cardiovascular problems currently cost the US economy $600 bil-
lion [25]. If these problems are detected earlier, considerable sums of money and lives can be saved. For
example, many people do not realise they are ill until the later stages of a disease, by which time it can
be more expensive and harder to treat.

Michael J Fox, who starred in the US sitcom ‘Spincity’, was diagnosed with Parkinson’s in 1991.
When episodes were analysed, it could be seen that his actions changed over a period of time [25]. It
was only by analysing the data which had been collected over a period of time that gradual changes were
noticed.

To detect subtle changes in a person, clearly they do not want to be wired to machines, or have to
place patches on themselves each day. Tamura et. al [26] suggest techniques which are not intrusive.

1A networked device is a normal device with a network adapter. In this thesis, a networked device is considered the
same as a networked appliance.

6

These include ways to measure a person’s heart-rate while they are in the bath, their weight through
the toilet, and body temperature while the person is in bed. This data is recorded and can then be sent
via the home to their GP for analysis [25].

This technology has the potential to save lives, improve people’s quality of life, and to save local
authorities large sums of money, as pilots in the UK found [27].

Various companies provide smart home solutions for this market [28–30]. One example of the smart
home is the Hogar.es Project [31] led by the Spanish telecommunications company Telefonica. These
homes allow those who would be placed into a nursing home to stay in their own homes for longer. The
same applies for patients recuperating in hospital – they can return home sooner, and be monitored
remotely.

These homes can monitor users for falls [27], and notify a carer. Other devices could be used to
monitor a patient’s heart pattern; again, if the heart pattern goes into a danger zone, someone can be
alerted [32]. Also, the home can make sure that the occupant has not left an unlit gas cooker ring
on, or left a bath running – both of which are common with people who suffer from dementia. It is
the confidence which these technologies bring to the users (elderly or infirm) which allow them to be
independent for longer. It leaves them, and their families, safe in the knowledge that if anything were
to go wrong, someone would be alerted promptly [27].

As well as health care, these homes can be convenient for a busy family, where any assistance to
household tasks is welcome [24]. One such use may be that devices will have the ability to monitor
themselves, sending diagnostic data to the manufacturer. If a component in the device is about to fail,
an engineer can visit with a replacement part before the appliance fails [33]. Currently, if an engineer
has to call to service an appliance within the home, someone has to stay at home. In the connected
home, it will be possible that when the engineer calls and rings the door bell, the owner can check it is
the engineer, unlock the door, let them in and watch them while they service the appliance. When the
engineer leaves, the front door can be locked. All this can be carried out remotely [34].

Climate control services may keep the home at a comfortable temperature, automatically adjusting
windows, heaters or air conditioners accordingly. A central locking feature for the home can secure the
home and turn devices off (such as an iron) after the front door is locked.

A home described above consists of devices and user services. The devices and the protocols they
use are described in the next section, and user services are discussed in Chapter 4.

2.1 Protocols used in the home network

Networked devices are similar to their traditional counterparts but differ in that they have a network
interface. These devices are actuators, sensors or displays. This interface allows them to be networked
and controlled remotely by services.

In the home there is no single home networking protocol ; instead, there are a plethora of protocols.
Currently there are over 50 protocols developed for the home [35]. The reason for so many is due to
the number of consortia and authorised standardisation bodies who are creating their own protocols.
Generally, these protocols do not interoperate [36], however with appropriate middleware solutions, they
can be made to do so.

Figure 2.1 shows a simple example of a wired home network. The figure shows four different protocols:
X.10 [10], UPnP [37], SIP for Appliances [33] and HAVi [38]. These are high level protocols and in the
the OSI ISO reference model, these are in the application layer. The underlying protocols, such as IEEE
802.3 (Ethernet) or IEEE 802.11 (Wifi) are in the data link layer.

Of the protocols shown here, two contrasting protocol; X.10 and UPnP. X.10 is a powerline protocol,
where no intelligence lies within the device: the X.10 protocol simply controls the voltage to the device
through an adapter at the power socket. In contrast, in UPnP devices the intelligence is located on the
device itself, potentially giving far more control over the device.

2.1.1 X.10

The X.10 protocol is a simple powerline protocol. X.10 adapters plug into the electrical wall socket,
and traditional devices (e.g., lamp or fan) plug into the adapter. The X.10 adapter simply controls
the voltage to the normal device, thus there is no X.10 intelligence in the device. For this reason, the

7

protocol is limited in what it can do, and indeed in the devices it can be used with. Figure 2.2 shows an
example X.10 network within a home.

MainBedroom

B

Kitchen

A Hall

E

LivingRoom

C

Bathroom

D

Power line

A1

A2

C1

C2
C2

E1

E2

B3

B7

D1

X.10 Adapters

RGW

A3

X.10 Gateway

Figure 2.2: Example X.10 Home Network

Its functionality is limited to switching a device either on or off or, in the case of a lamp, dimming
and brightening. There are also other features which the protocol supports. These include turning all
appliances in one room on or off, all lamps in the home on or off. However, it does no more than control
the power a device receives.

The X.10 network works by placing an X.10 gateway (Figure 2.3(a)) into a wall socket. This is the
gateway which bridges the powerline network to the personal computer or residential gateway, shown as
the triangle in Figure 2.2. The X.10 adapters (Figure 2.3(b)) simply plug into the wall socket and listen
for messages sent onto the powerline by the gateway, shown as rectangles in Figure 2.2.

Addressing of devices

Devices and addressing are set up manually. The X.10 protocol supports 256 unique addresses. There
are two parts to an X.10 address: the room and the device number. The protocol defines that the room
letter runs from A to P (inclusive). Device numbers run from 1 to 16 (inclusive). Figure 2.2 shows an
example home with five rooms (A–E).

Figure 2.3(b) shows a X.10 lamp adapter with two dials, the first being the room letter and the
second being the device number. An on command to A1 would turn device 1 on in room A.

The protocol allows many devices to share one address, which can be seen in Figure 2.2. In this
example, two adapters have the address C2 in the living room (room C). This means when a command
is sent with address C2, both adapters will act upon the request.

It is up to the user to keep addressing consistent and ensure correct room letters are assigned to
the appropriate devices. Otherwise commands to turn all devices in room B to an off state may turn
devices off in other rooms.

The protocol has been popular with home automation enthusiasts. This is partly due to its cost as
the adapters are relatively cheap. Also, existing household devices, e.g. lamps or fans, can be used. The
purchase of new devices is not required. Software is also freely available for controlling the home using
X.10, such as IBM Home Director [11], PowerHome [39] or open source Java APIs [40].

One of the main problems with using X.10 is limited addressing. If a neighbour also has an X.10
network, both neighbours can affect each other’s appliances. If neighbours can control each other’s
appliances, this raises another issue: security. X.10 does not support any form of security.

8

(a) Gateway adapter (b) Lamp adapter

Figure 2.3: Example X.10 Adapters (from [2])

Despite these limitations, X.10 is popular, with a number of web-sites selling equipment in the UK [2].
X.10 functionality is limited due to how it works (controlling the power supply to a device). In contrast,
other protocols have been developed which are embedded in the device. These protocols, since they are
inside the device, have the potential to be much more powerful, controlling the device in specific ways.
UPnP is an example of one such protocol.

2.1.2 Universal Plug and Play (UPnP)

The UPnP Forum [37] was set up in 1999 and is led by Microsoft and Intel. The forum now has over
700 members from a diversity of backgrounds.

As the name suggests, UPnP is plug and play – that is, when a new UPnP device is connected to
the network, it advertises itself and makes itself available to other network users automatically. Zero
configuration is the key to UPnP [35].

Plug and play is not a new concept. The idea has been successfully used in desktop computing for
a number of years. Most new keyboards or memory sticks, for example, can be plugged into a desktop
computer and the computer has the ability to recognise the device and start using it. No drivers and no
fuss to start using them. This is restricted to the desktop computer; broadening it out to be used in the
home is where UPnP can be used.

Using a protocol which supports zero configuration for the home is important if home automation is
to move from the early adopters to mainstream users. Users will want to buy a new device, take it home,
plug it in and for the device to work with existing devices and services. They are unlikely to tolerate the
downloading of new drivers and re-configuring existing devices and services to work with the new item.
UPnP enabled devices have the potential to be placed into the home and to start working.

UPnP uses a number of established protocols, including: IP, TCP, UDP, XML [41], SSDP [42] and
SOAP [43]. As UPnP operates on an IP network it is independent of any specific underlying transport
protocol [44], this allows UPnP devices to be wired or wireless.

In a UPnP network there are two components: the device and the control point. A device offers
services: a thermometer may offer a temperature service or a lamp may offer a lighting service. The
control point is the component which is able to search and make use of these services. A device cannot
control another device unless it has a control point. Figure 2.4 shows a small UPnP network with a
UPnP enabled printer which offers two services, and a UPnP enabled camera offering one service. Since

9

UPnP Control
Point Stack

UPnP Enabled Printer

UPnP Device Stack

Service 1 Service 2

UPnP Device Stack

Service

UPnP Enabled Camera

Figure 2.4: Example UPnP configurations

the camera has a control point, it can control the printer. As the printer device does not have a control
point, it is not able to control the camera.

Using the example in Figure 2.4, assume the camera has not yet been added to the network. Further,
assume the home has a wireless LAN and the UPnP network only has a UPnP enabled printer device,
which is active. The home user brings a wireless UPnP enabled digital camera into the home and wishes
to print pictures from the camera to the printer.

A number of steps are automatically carried out before the camera is able to use the printer. There
are six important stages in the UPnP specification [44, 45]: Addressing, Discovery, Description, Control,
Eventing, Presentation.

Addressing

When the new device is introduced to the network (the digital camera shown in Figure 2.4, for example)
it must obtain an IP address. If there is a DHCP server on the network, it is able to allocate the new
device an IP address.

If a DHCP server is not available the device must create its own address using auto-IP. If this is
the case, the device will randomly choose an address in the 169.254.0.0/16 range. This range has been
ear-marked by the IETF as the IP range to use for end node auto-configuration when a DHCP server
is not found [46]. The device then uses ARP [47, 48] to find out whether another device on the network
is using this address, if no reply is returned, the device uses this address. If another device uses this IP
address, the selection process is repeated.

At this point, the newly joined camera has an IP address. Next, it must inform the network of its
existence.

Discovery

After the device has an IP address it can advertise itself. If it is a control point, it can search for devices
of interest on the network.

To broadcast its presence, a UPnP device uses SSDP. An ssdp:alive message is broadcast (Fig-
ure 2.5) across the network to a well known port (typically port 1900) using a reserved IP broadcast
address, 239.255.255.250, for example. Any control point established on the network will listen on this
port for new UPnP devices. When the new device is detected, it is added to a list of devices within the
control point. The SSDP alive message also gives a path of where the device description can be found:
this is shown in line 4 of Figure 2.5, the location.

10

1. NOTIFY * HTTP/1.1
2. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
3. CACHE-CONTROL: max-age=1800
4. LOCATION: http://139.153.254.43:4004/description.xml
5. NTS: ssdp:alive
6. NT: upnp:rootdevice
7. USN: uuid:mewCamera::upnp:rootdevice
8. HOST: 239.255.255.250:1900

Figure 2.5: Example SSDP alive message

1. M-SEARCH * HTTP/1.1
2. HOST: 239.255.255.250:1900
3. MAN: "ssdp:discover"
4. MX: 3
5. ST: upnp:rootdevice

Figure 2.6: Example SSDP discover message

A device advertises itself to all control points when it joins the network, but when a new control
point joins the network, it must find all UPnP devices on the network. To do this, it also broadcasts an
SSDP message. The message is slightly different in that it is an ssdp:discover message (Figure 2.6).
Devices listening (on port 1900) for this message will reply with an HTTP 200/OK message, Figure 2.7.
Line 3 of Figure 2.7 shows the IP address of the device.

1. HTTP/1.1 200 OK ST:upnp:rootdevice
2. USN:uuid:0012172d-7225-0012-172d-72250032011c::upnp:rootdevice
3. Location: http://192.168.1.1:5431/dyndev/uuid:0012172d

-7225-0012-172d-72250032011c
4. Server: Custom/1.0 UPnP/1.0 Proc/Ver EXT:
5. Cache-Control:max-age=1800
6. DATE: Tue, 04 Jan 2005 12:46:15 GMT

Figure 2.7: Example reply message from UPnP router from search

The message shown in Figure 2.6 will get responses from all UPnP devices that want to be found
(it is possible for a UPnP device to be on a network, but be ‘hidden’). Rather than getting all devices,
it is possible to refine the search and find specific devices or services. This is achieved by changing
the ST (Search Target) parameter, line 5 of Figure 2.6. For example, ST: urn:schemas-upnp-org:-
service:SwitchPower:1 which would search for a particular service (SwitchPower), regardless of device.

As well as broadcasting itself when joining the network, a UPnP device should also notify the network
when it leaves. Again, an SSDP message is broadcast, ssdp:byebye (Figure 2.8).

Any control point with this device on its list will remove the device immediately, and it will only be
added when the device rejoins the network. If, however, a control point leaves the network, it unsubscribes
from any services it is registered to and leaves. Devices are unaware of control points unless the control
point has subscribed to a service which a device offers (this is explained further in section 2.1.2).

Continuing the example of the new camera being added to the UPnP network: currently, the new
UPnP camera has joined and has obtained an IP address. By using SSDP, it has advertised itself to
other control points. Since the camera has a control point, the camera has found all other UPnP devices,
here the UPnP enabled printer. The device component of the camera is now ready to be interrogated
and used by other control points on the network.

11

1. NOTIFY * HTTP/1.1
2. NTS: ssdp:byebye
3. NT: upnp:rootdevice
4. USN: uuid:mewCamera::upnp:rootdevice
5. HOST: 239.255.255.250:1900

Figure 2.8: Example SSDP byebye message

Description

After a device has broadcast its existence to the network, the control point will use an HTTP GET
message to get the device description. This address is ascertained when the device replies to a control
point’s search message (line 3, Figure 2.7). An XML file is returned which the control point analyses to
determine details such as device type, manufacturer, serial number, along with services which it offers.
Types of devices are defined by the UPnP Forum, and the services certain devices must offer are also
defined.

The device description is an XML schema defined by the UPnP Forum. This XML file contains basic
device details, including: manufacturer, model number, a serial number and a unique ID for the device.
It also gives the type of service and path where the service description files for the device can be found.

The service description files are also XML schemas, defined by the UPnP Forum. These files specify
the actions a user can invoke. The file contains Actions and State Variables.

State variables describe the run-time state of the service. For example, a state variable within the
lamp holds current state – on or off. Actions, on the other hand, list the method calls a control point
can invoke. The result of an action can either return the actual value of a state variable, or may change
the state.

In section 2.1.2, the control point within the camera would have found the UPnP printer device when
it searched for all devices on the network. However, it is only after retrieving and parsing the XML
device description and service description files that a control point knows exactly the type of device this
is and what services it offers. Only then, can the control point control the device; in this case the camera
wants to control the printer.

Control

As previously discussed, it is only after a control point discovers the details of the device and service
that it can control a device. This is done by invoking actions listed in the XML service description file.

It is worth reiterating that only a control point may control a device. A device on its own can not
control another device. If a device, such as the camera in Figure 2.4, wants to control a device, it must
be done by a control point.

Control is achieved by sending SOAP messages (Figure 2.9) to a device. The SOAP message will
invoke an action, defined in the service description XML file. Figure 2.9 shows a SOAP message which
requests the state of a device. In this instance the camera requests the device state by invoking the
GetDeviceState action (Figure 2.9, line 12). No parameters are required for this call, therefore the tag
is closed.

Since SOAP messages are sent over HTTP, HTTP responses are sent back depending on the outcome
of the request.

The reply to the message sent in Figure 2.9 is shown in Figure 2.10. Line 1 of Figure 2.10 is the
200/OK, acknowledging the message was received and processed successfully. Line 11 is the response; the
next line shows the device’s current state, ready.

Since the camera knows the printer is ready, it can then send images to the printer for printing.
The UPnP Forum specifies a UPnP printer that prints JPEG format image files [50]. Sending images is
achieved through sending another SOAP message which invokes an action with the image as a parameter.
Provided the camera sends JPEG format, the printer is able to print the images. Manufacturers may
support other image formats, but this is not compulsory.

Since joining the network, the UPnP enabled camera has obtained an IP address, advertised itself
(camera service) and has used its control point to find other UPnP enabled devices on the network (the

12

1. POST /service/printer/control HTTP/1.1
2. HOST: 139.153.254.43:4004
3. CONTENT-LENGTH: 344
4. CONTENT-TYPE: text/xml; charset="utf-8"
5. SOAPACTION:"urn:schemas-upnp-org:service:Printing:1

#GetDeviceState"
6.
7. <?xml version="1.0"?>
8. <s:Envelope
9. xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
10. s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
11. <s:Body>
12. <u:GetDeviceState xmlns:u="urn:schemas-upnp-org:

service:Printing:1"/>
13. </s:Body>
14. </s:Envelope>

Figure 2.9: Example SOAP message to get device state

1. HTTP/1.1 200 OK
2. CONTENT-TYPE: text/xml; charset="utf-8"
3. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
4. EXT: CONTENT-LENGTH: 326
5. DATE: Wed, 15 Sep 2004 12:26:41 GMT
6.
7. <s:Envelope
8. xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
9. s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
10. <s:Body>
11. <u:GetDeviceStateResponse xmlns:u="urn:schemas-upnp-org:

service:Printing:1">
12. <CurrentDeviceState>ready</CurrentDeviceState>
13. </u:GetDeviceStateResponse>
14. </s:Body>
15. </s:Envelope>

Figure 2.10: Example SOAP reply message

printer). After finding the printing service, it requests the printer state and sends JPEG images to the
printer for processing. The user is quite oblivious to what has happened, they have simply selected the
image and chosen the print option from the camera.

The two remaining components of the UPnP specification are eventing and presentation, both of
which are extremely valuable.

Eventing

After a control point has discovered a device and its services, it may subscribe to a service. This means
the control point will be notified of any change in the service state. This is particularly useful as it
means services do not have to periodically poll a device to obtain its state. In the example of the UPnP
enabled printer, if the printer were to run out of paper, a monitoring service may be alerted, or if the
digital camera were subscribed, it could be alerted and in turn notify the user.

Subscription and event notification is carried out using the General Event Notification Architecture
(GENA), an IETF draft. When a control point wishes to subscribe to a service it will send a subscribe
message to the device (Figure 2.11). The device will then send an acknowledgement back to the subscrib-

13

1. SUBSCRIBE /service/heating/eventSub HTTP/1.1
2. HOST: 139.153.254.43:4004
3. CALLBACK: <http://139.153.254.69:81/eventDelivery>
4. NT: upnp:event
5. TIMEOUT: Second-1800

Figure 2.11: Example GENA subscribe message

1. HTTP/1.1 200 OK
2. CONTENT-TYPE: text/html; charset="utf-8"
3. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
4. SID: uuid:36b6-a0ff-2ec5-e0a0
5. TIMEOUT: Second-1800
6. DATE: Thu, 16 Sep 2004 10:04:24 GMT

Figure 2.12: Example Device accepts subscribe message

ing control point notifying it whether the subscription has been successful (Figure 2.12) or unsuccessful.
This message also contains a unique ID for the duration of the subscription, SID.

After receiving a subscription request and accepting it, the device will add the control point to a list
of control points. These subscribers will be notified of any updates of the service. When the service state
changes, the control point will be notified; it is up to the control point what it does with the information
received.

Figure 2.11 (line 5) shows the subscription period is set to 1800 seconds. After this time has elapsed,
if the control point is still interested in receiving updates from the service, it can re-subscribe. Similarly,
if a control point no longer requires state updates, it is able to unsubscribe from a service (Figure 2.13).
When the control point unsubscribes, the SID must be included in the header (Figure 2.13, line 3).

1. UNSUBSCRIBE /service/heating/eventSub HTTP/1.1
2. HOST: 139.153.254.43:4004
3. SID: uuid:36b6-a0ff-2ec5-e0a0

Figure 2.13: Example GENA unsubscribe

Presentation

It is becoming more common for small devices (e.g. routers and print servers) with little or no interface
on the device to be configured via a web interface. UPnP devices may support a presentation page, or
set of pages. This can be a web server on the device which allows the user to control the device via a
web interface. The presentation URL is found in the device description XML file.

In the case of the printer, it may be possible to check the current state of the printer, change settings
or perhaps check toner and paper levels. A presentation facility may be extremely useful in the case of
the digital camera, allowing users to view their photographs through a web browser, television, PDA or
home PC.

2.1.3 Summary of UPnP

The UPnP protocol was developed with the specific aim of being plug and play. It has achieved this
goal by using a series of existing, open protocols and standards [44]. Sections 2.1.2 – 2.1.2 have shown
how a UPnP enabled camera device has been added to the network, automatically configured, and has
advertised itself to control points on the network. The camera, upon finding a UPnP enabled printer,
has been able to send its images for printing. Throughout the process, the user has been unaware of this

14

process and simply sees the end product – their printed photographs. This is much easier than today
where the user has to install drivers and set up devices manually.

The UPnP Forum continues to grow and publish more device and service specifications. The number
of UPnP devices available off the shelf is slowly growing. Routers and residential gateways were among
the first UPnP devices, the Linksys WRT54G [51] for example. However, the Nokia N80 comes with a
UPnP stack that allows music to be found and played on handsets. Philips produced the Philips SLM5500
which is a UPnP Hi-Fi which is able to work with a UPnP NAS device (e.g. Iomega’s Storcenter) and
stream music from it. Also, Microsoft Windows XP uses UPnP technology for Internet Connection
Sharing (ICS).

There is a host of home networking protocols available. X.10 and UPnP are examples of two con-
trasting protocols. Figure 2.1 shows a home with X.10 and UPnP. However, it also shows a number of
other protocols that will be briefly described in the next section.

2.1.4 Other protocols used for home networking

The previous two sections have described, in detail, the workings of two home networking protocols. As
mentioned, there is a plethora of networking protocols developed specifically for the home. Table 2.1
outlines a variety of wired and wireless protocols which may be used in home networking.

Many of the networking technologies listed in Table 2.1 are used by other home networking protocols
to transmit data. Other higher level protocols used in home networking are as follows:

SIP for appliances [33] uses any IP based network. SIP for appliances is based on the SIP [52]
protocol. Extensions (DO and NOTIFY messages) [34] have been proposed for device control. SIP
is useful for controlling devices over a series of networks as the protocol supports encryption and
authentication, which UPnP does not support.

Jini [53] is an IP based protocol similar to UPnP led by Sun Microsystems. It also has the notion of
devices and service registries (which bear a strong resemblance to control points).

LonWorks [54] is a proprietary protocol developed by Echelon. The protocol uses powerline and
twisted pair as the physical medium. It is used for controlling devices such as sensors and switches.

HAVi [38] uses IEEE 1394 as the physical medium. It is primarily used for networking audio and video
devices, as the medium offers high data rates.

Name Wired or Wireless Maximum raw data
rate

Application

Powerline [55] Wired 10Mbps Makes use of existing power cabling in the home. Used
for electronic device control, low data rate transmission.

HomePNA [56] Wired 10Mbps Uses existing telephone lines in the home. Used for elec-
tronic device control, phone and low data rate transmis-
sion.

IEEE 802.3 (Ethernet) [57] Wired 100Mbps New cabling required. Used for PCs, device control, IP
data control.

IEEE 802.11 family
(802.11a, 802.11b, 802.11g,
802.11n) [58]

Wireless 802.11 (1Mbps),
802.11b (11Mbps),
802.11a &
802.11g (54Mbps),
802.11n(100Mbps)

A range of protocols with varying speed which are used
for IP data transmission in various devices, for example,
routers, PCs, WiFi enabled mobile phones.

IEEE 802.15.4 (Zigbee) [59] Wireless 250Kbps Wireless protocol for Personal Area Networks (PANs).
Used in devices with small batteries, typically sensors.

IEEE 1394 (FireWire) [60] Wired 400Mbps Audio visual devices, for example, camcorder, music
player, television, DVD/VCR player. A newer version of
the protocol (IEEE 1394b) offers speeds of up to 3.2Gbps.

Wireless 1394 [61] Wireless 70Mbps Typically, home audio/visual devices.
HomeRF [61] Wireless 1.6Mbps Small devices, PC peripherals.
Bluetooth [62] Wireless 720Kbps Mobile phone accessories, PC peripherals (Printer,

Mouse, Keyboard).

Table 2.1: Networking protocols used in home networking

As discussed, there is a variety of protocols used in the home. Each is suited to a different application.
For example, Zigbee (IEEE 802.15.4) is ideal to send sensor data from small sensor devices as it uses
very little battery power. At the other extreme, IEEE 1394 is used to send high quality digital audio and
video to television displays. Since these protocols are suited to particular applications, they generally
do not inter-operate. Therefore, since it is unlikely one protocol will emerge as the standard protocol for
home networking, a middleware solution is required. This solution should allow devices and services to
cooperate and work together. The OSGi Alliance has proposed one such solution.

15

2.2 A middleware solution from the OSGi Alliance

The OSGi Alliance is a non-profit making organisation which was set up in 1999. The companies who
formed the alliance are from a range of backgrounds including utility companies (such as Electricit de
France, Deutsche Telekom), automobile manufacturers (BMW), OEMs (Panasonic, Philips, Siemens)
and software houses (IBM, Gatespace), to name a few. The main aim of the Alliance is (from [3]):

“. . . to define and foster rapid adoption of open specifications for the delivery of managed
broadband services to networks in homes, cars and other environments.”

To achieve this objective, the alliance had to consider all parties involved in the service chain. This
ranges from the service providers (those who deliver home services), through to the end devices in the
home [6]. This fact is reflected in the range of companies who have been involved in developing the
specifications.

Computer ScannerPrinter Laptop

Energy Management
& Metering Service

Security
Service

Music & Video
On Demand Service

Appliance Monitoring
& Service Repair

Lighting HVAC Security Utility Meters

DVD Television A/V

Figure 2.14: OSGi home network (from [3])

As the scenarios in Figure 2.1 and Figure 2.14 show, a home is likely to include a variety of devices
using a range of protocols. A user in the home will want their devices to work with new services, and
vice versa. They will not care whether a device uses UPnP or X.10 or Jini, or who has developed specific
services – they will just want it to work. For the automated home to be a success, services must be
able to make use of any suitable devices in the home. In a market where competition between hardware
manufacturers and service developers is fierce, it is unlikely a home would be fitted and equipped with
devices from one manufacturer and services from one service provider, using a single protocol. The key
advantage is lost where a new networked device can be added and controlled by any service.

Therefore, a middleware solution is crucial, which has the ability to join devices and services from
different backgrounds (whether it be different manufacturers or different protocol standards), as shown in
Figure 2.14. Being able to glue different devices and services together is fundamental for the networked
home to succeed [44]. The solution offered by the OSGi alliance offers this.

2.2.1 The OSGi framework

The solution developed became the OSGi Service Platform specification. The specification is currently
on its fourth release [3] and is used commercially. The 5 Series of cars from BMW have an OSGi gateway
installed [64]. The Hogar.es and TAHI [9] Connected Home both run services from an OSGi gateway.

The service specification consists of two parts: the OSGi framework and a set of standard service
definitions.

16

The framework

The framework is core to the OSGi specification. The framework provides a safe and managed execution
environment for services. Since the framework is Java based, it runs within a Java virtual machine.
Applications are distributed in the form of bundles. These are uploaded onto the framework and can be
managed. Since the framework is Java based, bundles can access standard Java libraries, as well as the
OS for bundles containing native code (Figure 2.15).

Hardware

Driver DriverDriverDriver

Operating System

Virtual Machine

Framework

Application Application Application

Figure 2.15: OSGi protocol stack (from [4])

The bundle

A bundle is a Java ARchive (JAR) file containing the code (Java classes) and resources the service may
require (images and perhaps configuration or data files). A bundle can support two tasks. A bundle may
be a simple collection of Java classes in a package. This package can be exported to the framework for
other bundles to use. Although exporting these packages makes them available to other bundles, they
are not advertised in the service registry (section 2.2.2). An example of this may be a proprietary XML
parsing class which is used by several bundles from one vendor. The XML parsing class can then be
used as normal in Java code within other bundles, similar to standard Java libraries.

The second, more common use of a bundle is to offer services. These services are registered within a
service registry (section 2.2.2). Other services can query the registry for a service it requires. This allows
services to work together, allowing what starts as a small bundle to become quite large and complex.
After the bundles have been downloaded to the framework they can be managed.

The bundle life-cycle

The bundle life-cycle is shown in Figure 2.16. When a bundle is installed onto the framework the bundle
moves to the ‘installed’ state. The framework will then try to resolve the bundle, meaning any required
(imported) Java packages defined in the bundles header file (manifest file) should be available in the
framework. Figure 2.17 shows an example Manifest file. There are three packages required for this to
function. Unless another bundle exports these packages, this bundle will be unable to start and will
remain in the installed state.

When a bundle has moved into the resolved state it can either be removed from the framework
(uninstalled) or can be started. It can also be updated, which uninstalls the current version of the

17

install

Uninstalled

uninstall
update

uninstall

start stop

resolve

Installed

Resolved

Stopping

Active

Starting

Explicit transition

Automatic transition

Figure 2.16: OSGi bundle states (from [5])

1. Manifest-Version: 1.0
2. Bundle-ContactAddress: mew@cs.stir.ac.uk
3. Bundle-Description: UPnP Driver
4. Bundle-Name: UPnPBaseDriver
5. Bundle-Vendor: Michael Wilson
6. Bundle-Activator: uk.ac.stir.cs.osgi.

upnpBaseDriver.Activator
7. Export-Package: org.osgi.service.upnp
8. Import-Package: org.osgi.framework,

org.osgi.service.device, org.cybergarage.xml

Figure 2.17: Example bundle manifest file

bundle and retrieves a new copy of the bundle from the original source. Therefore, if a vendor updates
their bundle at the source, when the update is executed, the new version would be retrieved and installed.

When a bundle is started, the bundle moves into the active state. The bundle will remain active until
it is stopped, updated, uninstalled or the framework is shut down. In the main class of each bundle there
is a start and stop method. When a bundle is started, the start method is called by the framework.
Similarly, when updating or uninstalling, the stop method is called to allow the bundle to close gracefully.
If a bundle is stopped, it will remain in the resolved state until it is started or removed.

The manifest file (Figure 2.17) is an important part of every bundle. This file holds specific details
of the bundle. The format and fields of this file are defined in the OSGi specifications, see [63] section
4.3 for full details. Figure 2.17 shows an example manifest from the UPnP driver bundle.

Sun specifies that all Java manifest files start with the manifest version, Line 1 of Figure 2.17. Lines
2–5 are optional in this example. Line 6 shows the path of the bundle activator (the main class of a
bundle), this is the class which contains the start and stop methods, used for starting and stopping the
bundles.

Lastly, line 8–9, lists the packages this bundle requires to import before it can move into the resolved
state. Line 7 declares any packages this bundle is to offer the framework.

18

2.2.2 The Service Registry in OSGi

The service registry is an important component within the OSGi framework. This is the component
which allows services to advertise their services to other bundles.

In the bundle life-cycle (Figure 2.16), when the bundle is in its active state, it can start to offer
services by registering them in the Service Registry. It is worth noting that a bundle may offer zero or
many services.

Bundle B

Service Registry

Register

Register

Get

Get

Bundle C

OSGi Service Framework

Java virtual machine

Platform (OS and hardware)
Internet

Install,
start, stop,
update,
uninstall

Bundle A

Figure 2.18: OSGi service registration (from [6])

The role of the service registry is shown by an example in Figure 2.18. The figure shows three bundles
(Bundle A, Bundle B and Bundle C), where Bundle A and Bundle C have each registered their service
in the Service Registry. It can be observed in the figure that Bundle B and Bundle C make use of the
service which Bundle A offers. Bundle C, as well as offering a service, makes use of the service which
Bundle A offers.

When registering a service in the service registry, a bundle will add properties to the service entry.
These properties, can include service version, generic description or other details. Figure 2.19 shows
an example of the properties from a UPnP lamp device which has been added to the service registry.
In this example, it would be a UPnP driver bundle that would listen for the new UPnP devices and
automatically add them to the service registry.

The OSGi service specification does specify some properties which must be registered with a service,
however this is only the case if OSGi has defined the service. For example, in Release 3 [63] of the
specification, the OSGi alliance included service specifications for Jini and UPnP. Thus, when a UPnP
device is added as a UPnP Device service to the gateway, there are certain properties which must be
included when added to the service registry.

These properties are included with registered services in the service registry, and can be queried by
other bundles to find the desired service.

Searching is achieved by looking for the service name (e.g., org.osgi.device
.x10.appliance) and/or an optional LDAP query selection filter [65] (e.g.
(ROOM="kitchen",DEVICE="fan")). Upon finding the service, the service registry passes a reference
back to the calling bundle. If a matching service is not found, the service registry will return a null
reference.

19

1. ID=uuid:siemensTestDevice,
2. UPC=123456789012,
3. MODEL_NUMBER=1.0,
4. UDN=uuid:siemensTestDevice,
5. SERIAL_NUMBER=1234567890,
6. MODEL_NAME=Vanilla, DEVICE_CATEGORY=UPnP,
7. MODEL_DESCRIPTION=A Test Device for the UPnP Stack

Implementation,
8. PRESENTATION_URL=http://192.168.1.13:81/siemensTestDevice

/presentation.html,
9. MODEL_URL=/model.html,
10. DEVICE_IP_ADDRESS=192.168.1.13:81/siemensTestDevice,
11. TYPE=urn:schemas-upnp-org:device:binarylight:1,
12. FRIENDLY_NAME=Siemens Test Device,
13. MANUFACTURER=Siemens ZT SE 2

Figure 2.19: Example service registry properties for UPnP lamp device

2.2.3 Standard services

As well as defining the framework specification, the OSGi Alliance has also defined several standard
services. A number of services have been defined in Release 4 of the specification which include; logging,
security, user administration, XML parser and service tracking. An HTTP server specification has also
been defined. This allows servlets to be used as a method of accessing bundles externally. Protocols
such as Jini and UPnP specifications have also been added to the specification.

Creating specifications for UPnP and Jini means UPnP and Jini enabled devices can be accessed by
services within the gateway. Specific Jini or UPnP drivers could be created which would add Jini or
UPnP devices to the service registry for use by other services.

2.2.4 Services working together

The OSGi platform specification allows devices to be added and controlled by services. Since some
bundles (normally drivers) add devices to the framework as they become available on the network, other
services are able to select which devices they use at runtime. Therefore, the behaviour of a service can
vary depending what devices, or services, it has available to it.

Devices and their protocols have been discussed. Being able to connect devices is useful, however the
full power is not realised until new services which manipulate these devices are introduced. The notion
that OSGi is the glue is emphasised here and can be clearly shown in the security service (alarm service)
in Figure 2.20.

In this scenario, an alarm has been triggered. By using the service registry, the alarm service has
been able to find an SMS service to send the owner a message that an intruder has been detected. The
service also finds a USB web camera and UPnP VCR, and streams the data from the camera to the
VCR. The service also finds a UPnP alarm bell which it rings. Finally, by using SIP instant messaging,
the owner is sent a message to notify them. This example shows how one service is able to make use of a
multitude of device protocols. It also shows how the alarm service uses other services (e.g. SMS service)
to enhance the basic service.

The framework also has the ability to export devices to different networks by using bridging bun-
dles [66]. For example, an X.10 lamp which is registered as an X.10 Lamp Device service in the service
registry could be exported (using a bridging bundle) to a UPnP network. This means the device which
was X.10 would appear in UPnP control points as a UPnP device. OSGi becomes the glue which allows
services to use different devices regardless of the underlying device protocol [66].

20

OSGi Gateway

SIP Proxy
(guilder.myhome.net)

UPnP VCR

SIP IM UA
(sip:mike@myhome.net)

Machine address:
eagle.mywork.com

USB Web-Cam

UPnP Alarm Bell

Home Security

SIP IM UA

(sip:mike@myhome.net)

Internet

UPnP
VCR

USB
Camera

UPnP Bell
SMS

Service

Figure 2.20: An example alarm service using many services

2.3 Summary

This chapter has discussed the motivation behind automating the home. There is an array of protocols
used for automating the home. Two contrasting protocols have been reviewed in depth. Also, the
chapter has discussed a selection of other home networking protocols. A middleware solution which
brings together the devices which facilitate intelligent, smart, services has been outlined. Using the
OSGi platform, user services are deployed which carry out tasks for the home user. These services are
deployed on an OSGi gateway and make use of the devices available. The actual services which enable
home automation are discussed in Chapter 4.

21

Chapter 3

The Feature Interaction Problem

A feature can be described as a component which is added to a software system to provide additional
functionality. For example, in telephony, the basic service is being able to make a call. A feature can be
introduced to enhance this basic functionality, perhaps to forward a call while the user is taking another
call. As features are added to a system the phenomenon known as the feature interaction problem can
occur.

The feature interaction problem was first highlighted by Bowen et al. in [67] at the Seventh In-
ternational Conference on Software Engineering for Telecommunication Switching Systems. Since this
publication, like minded academics and industrialists have held a series of Feature Interaction Workshops
(FIW) [15–21, 68], with the first being held in Florida in 1992. The aim of these workshops has been to
discuss the feature interaction problem and possible solutions.

Many interactions occur because features are developed and tested in isolation. When features
operate on their own, they execute normally with no interference. However, problems can occur when
certain features interact with one another, causing undesirable and unexpected outcomes [12]. Zave
in [69] emphasises the point that interactions are an inevitable by-product of feature modularity. Zave
also makes the point that not all interactions are bad, indeed some interactions are welcome.

Although the majority of the research has been within the telephony domain, some limited work has
been carried out in other domains, for example: elevators [70], e-mail [71], web-services [72] and home
networks [22].

One of the most influential papers to help understand the feature interaction problem was by Cameron
et al. [12], which was later extended in [73]. These two papers were the first to present a taxonomy
to help understand the feature interaction problem. These early papers provide a good taxonomy to
show the nature and causes of interactions. However, there are two other taxonomies which are useful.
Marples [74, 75] presents a taxonomy which is useful to classify features and interactions. Kolberg et
al. [1, 76] then uses Marples taxonomy as a basis for a taxonomy for feature interactions (or service
interactions) in networked appliances. In telephony there is only one service and many features, whereas
in the home networking domain (which is the focus of this document) there are many services which
may have some features.

Each of the three taxonomies will be discussed in the next section. Following this discussion, the
chapter will then discuss previous approaches to the feature interaction problem. General limitations
of these approaches will then be highlighted. The chapter will finish by examining current feature
interaction work for the home domain.

3.1 Taxonomies for feature interaction

Section 3.1.1 and section 3.1.2 will discuss the taxonomies presented by Cameron and Marples, respec-
tively. A discussion will follow in section 3.1.3 which gives a critical analysis of both taxonomies. Since
the focus of this thesis is the service interaction problem in home networks, the taxonomy presented by
Kolberg et al. will be presented in section 3.1.4.

22

3.1.1 Cameron’s taxonomy

Cameron et al. highlight the problem of feature interactions in telecommunication networks and discus
the importance of developing approaches to tackle the problem. The authors present ways of categorising
the problem: the nature of the interaction and the cause of the interaction.

Nature of the interaction

Three dimensions of the nature of interactions were identified:

1. Kind of features – customer features vs. system features. Customer features are features the
customer can use; these include call waiting (CW) or call forwarding (CF). System features are
concerned with the administration of the system and include operations, billing and other system
administration features.

2. Number of users – single user vs. multiple users. Single user interactions occur when different
features are simultaneously triggered by a single user. Multiple user interactions occur when one
user’s feature interferes with another user’s features.

3. Number of network components – single component vs. multiple component. Single component
interactions only occur when there is one network component (switch, network node). Multiple
component interactions occur when there is more than one network component.

Using these three dimensions, five categories of interaction were defined. These were:

SUSC (Single User, Single Component) are interactions between customer features when incompatible
features are subscribed to on the same network node, or service control point (SCP). The interaction
occurs because two (or more features) are designed to deal with the same trigger, but in different
ways. An example of this type of interaction is between Call Waiting (CW) and Call Forwarding
on Busy (CFB), where both try to handle the call, but in conflicting ways.

SUMC (Single User, Multiple Component) are interactions which occur when features available to one
customer are deployed on two or more network nodes. An interaction arises here when one of the
features on one node is not aware of a feature on the other node, and therefore some features are
missed. Operator Services and Originating Call Screening (OCS) is an example of this type of
interaction: as the operator makes the call, the subscriber’s OCS feature is bypassed. It is worth
noting that this kind of interaction is not common.

MUSC (Multiple User, Single Component) are interactions that occur when multiple users share the
one physical phone line, hence they will be forced to share features. Some of these problems are
caused when different households (e.g. those living in remote, rural areas) have to share a phone
line. However, due to advances in technology, this is no longer such a problem. A problem can
still exist between users within households. For example, parents may have OCS set to block calls
to a premium rate number. A teenager may use CFB (on the same line as OCS) to forward all
calls to a premium rate number. Therefore, when teenagers call their own number, the call will be
forwarded to the premium rate number.

MUMC (Multiple User, Multiple Component) are interactions that can occur when two or more users
access features on multiple network components. An example of this type of interaction is between
one user’s OCS and another user’s CF. User A subscribes to CF and forwards calls to number X.
User B subscribes to OCS and has number X on their OCS list. Therefore, if user B calls user A,
their call will be forwarded to number X by A’s CF.

CUSY (CUstomer SYstem) are interactions between a customer feature and a system, operations or
administrative feature. The main focus with these types of interactions is billing.

23

Causes of interactions

Cameron et al. identified three main causes of interactions. These are:

Violation of feature assumptions: When features are developed, certain assumptions are made. These
assumptions include: naming, data availability and signalling. When one of these assumptions is
broken, an interaction can occur. For example, an interaction can occur between Calling Number
Delivery (CND) and Calling Number Delivery Blocking (CNDB). CND delivers the directory num-
ber of the calling party, whereas CNDB makes the number private. Therefore, if CNDB is used,
CND is unable to work as it does not have the available data.

Limited network support: The set of signals that can be sent from most telephones is limited to *,
#, flashhook, disconnect and the ten digits (0–9). This is caused partly by the user interface on
the telephone device and also by the signalling within the telephony network. Ambiguities can
arise when two features use the same keypress. For example, an interaction can occur between a
credit card call and a voice mail service. The credit card call allows users to make a call, paying
with a credit card. When they want to make a new call, they press the # key. The voice mail
service allows users to call a number to check voice mail by entering their PIN followed by the #
key. If users check their voice mail with the pay by credit card feature, when they press the # key,
do they mean a new call or to signal they have typed their PIN?

Intrinsic problems in distributed systems: This group of interactions relates to the general issues
when large, complex, real-time systems are used. These problems include race conditions, resource
contention and distributed support of features. An example of a race condition is between Auto-
matic Call Back (AC) and Automatic Recall (AR). If user X dials user Y, and Y is busy, X’s AC
feature will automatically dial Y when they are idle. However, Y’s AR feature will automatically
call back the last person to call them when they were busy, in this case X. Therefore, when Y be-
comes idle, X’s AC will try calling Y and Y’s AR will try calling X. Thus, there is a race between
the features.

The taxonomy presented by Cameron et al. shows there is more than one cause of an interaction,
whether it is limited network support, or basic problems with distributed systems. However, the main
point is that there is no simple solution to the problem.

3.1.2 Marples’ taxonomy

Marples [74, 75] presents a different taxonomy for feature interaction in telephony. His classification is
based on using a stimulus to trigger features and observing the response in a telephony environment.
Through the results from experimentation, Marples devised a new taxonomy to classify interaction types.

Four categories were identified by Marples in this work:

Shared Trigger Interactions (STI) occur when more than one feature tries to respond to an event.
For example, if a person subscribes to both CW and CFB, when a call is received, both features
will react to the stimulus.

Sequential Action Interactions (SAI) occur when the action of one feature triggers a second fea-
ture. For example, this may happen between CFU and CW. Suppose person B forwards calls to
person C. Person C has call waiting, therefore, when person A calls person B, the call will be
forwarded to person C and get call waiting, which is not what person A expects.

Looping Interactions (LI) are a special case of SAI. Interactions can occur when a feature triggers
another feature, which then triggers another feature, which triggers another, until a loop begins.
An example of this may be between CFU and CFU, shown in Figure 3.1. User A tries calling user
X. However, X’s CFU forwards the call to Y, Y’s CFU forwards the call to Z and Z’s CFU forwards
the call to X, and the loop starts again.

Missed Trigger Interactions (MTI) are types of interaction that occur when the presence of one
feature prevents another feature from being triggered.

24

User X

User Z

User Y

User X User Y

User A

User A

calls

forwards

forwards

forwards

Figure 3.1: Looping interactions within CFU

3.1.3 Discussion: Cameron and Marples

The taxonomies presented by Cameron et al. and Marples show that interactions are complex with no
single cause. Both taxonomies are valuable in helping to understand the feature interaction problem, but
do not offer a solution. The list of causes of interactions Cameron presents is not complete. Since the
work by Marples is at a more technical level (the signalling level) in call control, the taxonomy presented
for his model in a particular environment is complete.

Although the single user and multiple user categories identified by Cameron are useful, the use of
the single component and multiple component categories is doubtful. The reason is that features do
not communicate directly with one other. Therefore, it makes no difference if the features are on one
node, or placed on many [77]. Magill also states that the proximity of features is rarely exploited. If the
proximity of features was explicitly used, SC and MC would be valuable.

Marples’ taxonomy gives a better sense of interaction types than Cameron. If single component and
multiple component (SC and MC) interaction types are removed from their taxonomy, it only leaves
single user and multiple user (SU and MU) interactions.

The deregulation of the telecommunications market has exacerbated the problem. Nowadays, many
vendors have the opportunity to deploy their features onto the network. Detecting interactions here
is made harder. Reiff-Marganiec [78] discusses intra portfolio and inter portfolio interactions. Intra
portfolio interactions are interactions which occur between features from the same vendor. Inter portfolio
interactions are interactions between different vendor’s features. Therefore, intra portfolio interactions
(whether SU or MU) should be detected at design time. It is harder to detect SU or MU interactions if
the features are from different vendors.

The two classifications, SU and MU, do not give a sense of what has caused the interaction. The
taxonomy by Marples gives a better description of the cause of the interaction, for example it was caused
due to a missed trigger. Since these interaction types are more focused, it allows the success of an
approach to be measured. It also allows specific approaches to be developed for the type of interaction.
For example, the approach presented by Marples is able to detect and resolve SAI, LL, STI interactions,
but is not able to detect MTI. This then leaves MTI to be investigated further.

Both of these taxonomies help understand the problem in the telephony domain. Since this document
focuses on the service interaction problem in the home networking domain, some themes can be used
from the telephony work. However, there are many differences between the two domains.

In the telephony world the number of services and users involved in an interaction is small (typically
no more than two or three users). However, in the networked appliance domain the number of services

25

and appliances involved can be much larger. For example, a service could try to turn all devices off.
Like the telephony market, the home networking market will be competitive. Different vendors will

sell their solution, which will be more complex and clever in a bid to stand out from the crowd. This
complexity and interworking will exacerbate the service interaction problem in the home.

One of the main differences between the home and the telephony problem is how the interaction
occurs. The home has the possibility of many more interactions occurring indirectly. For example, a
service starts a device which causes movement in a room. The movement is then detected by another
service which monitors movement. It is possible that the movement in a room causes no harm; however,
if it were a burglar alarm, unnecessary movement is clearly not welcome.

To develop a taxonomy for interaction types in the home, there are subtle differences between the
two domains which have to be considered. In the home domain, assume there are multiple services
controlling multiple devices. Here, who is the user? Is the user the occupant of the home, or is the user
the service which control the devices? Also, what is the component? Is it the service, or is it the device?
This would depend on who the user was.

If Cameron’s taxonomy were used for the home, the taxonomy would need to be extended to include
more relationships. A relationship for occupant and service would have to be created, and also another
relationship for service and device. However, would there then be a need for a relationship between
occupant and device?

Neither Marples or Cameron discuss indirect interactions. This may be fair as few interactions have
been identified that occur indirectly in telephony. However, they are important in the home domain.

Clearly, modifying Cameron’s taxonomy for the home is unworkable. Since their taxonomy was
developed explicitly for telephony, it is hard to adopt it for the home domain.

However, the taxonomy presented by Marples moves away from the concept of users and looks at the
interaction types from a different angle. Work has been carried out to adapt this taxonomy for use with
networked appliances.

3.1.4 A taxonomy for networked appliances

One taxonomy for feature interaction in networked appliances currently exists. It was first presented
by Kolberg et al. in [76]. The taxonomy was later updated in [1] to explicitly include the working
environment of devices. The environment here refers to factors such as room temperature, lighting
levels, etc.

Multiple Action Interaction (MAI)

These types of interaction occur when two services try to control the same device, shown in Figure 3.2.
It could be argued that these interactions are not necessarily bad as two services may, simultaneously,
try to turn the same device on. The problem arises when one service requires one setting and the other
service requires another setting. Or, when one service has finished with the device and wants to turn it
off but the other service still requires it. In general, however, having different services control the same
device is not desirable as it can lead to negative interactions and ambiguity.Multiple Action Interaction (MAI)

S1 D1
1 - action

S2

2 - action

S1D1
1- trigger

S2

1 - trigger

D3

D4

2 - action

2 - action

Shared Trigger Interaction (STI)

Figure 3.2: Multiple Action Interaction (adapted from [1])

26

Shared Trigger Interaction (STI)

The second type of interaction is when a device (typically a sensor) informs two services of a change,
and these services carry out conflicting actions. This is shown in Figure 3.3. Although Kolberg et al.
argue that all these types of interactions are bad, this may not be the case. If a sensor does alert two
services, the services may not necessarily carry out conflicting actions. If they did, clearly there would
be a negative interaction.

Multiple Action Interaction (MAI)

S1 D1
1 - action

S2

2 - action

S1D1
1- trigger

S2

1 - trigger

D3

D4

2 - action

2 - action

Shared Trigger Interaction (STI)

Figure 3.3: Shared Trigger Interaction (adapted from [1])

Sequential Action Interaction (SAI)

This type of interaction occurs when a service (or indeed another device) sends a command to a device,
and the device in turn notifies another service, shown in Figure 3.4(a). However, these types of interaction
can also occur through the environment (Figure 3.4(b)). This can happen when a service sends a
command to a device which, in turn, affects a sensor. The sensor can then notify another service.

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

Sequential Action Interaction (SAI)

D1

(a) Direct trigger

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

Sequential Action Interaction (SAI)

D1

(b) Trigger via environment

Figure 3.4: Sequential Action Interaction (adapted from [1])

The work by Marples identified looping as a separate type of interaction. However, for the work in
appliances, looping is considered to be a special case of SAI.

SAIs can be either positive or negative types of interactions, except looping which is never positive.

Missed Trigger Interaction (MTI)

The last category of interaction identified was Missed Trigger Interaction (MTI). These interactions can
occur when one service prevents the other from operating, shown in Figure 3.5(a). This occurs when
a service sends an action to a device which stops it sending triggers to another service, illustrated by
the dashed line in Figure 3.5(a). Again, like SAIs, these types of interactions can also occur via the
environment, Figure 3.5(b).

3.1.5 Discussion: taxonomy for networked appliances

This taxonomy, is valuable as it allows us to understand the feature interaction problem in networked
appliances (NA). It shows that the interactions can occur either directly between devices and services

27

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

D1

Missed Trigger Interactions (MTI)

(a) Direct trigger

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

D1

Missed Trigger Interactions (MTI)

(b) Trigger via environment

Figure 3.5: Missed Trigger Interaction (adapted from [1])

or indirectly, through the environment. This taxonomy highlights the importance of the environment in
networked appliances. The taxonomy is also useful for measuring the effectiveness of future approaches
for feature interaction in the home.

3.2 Approaches to the problem in telephony

Three taxonomies have been presented to help understand the feature interaction problem; however,
none offer a solution. Over the past decade considerable progress has been made to easing the feature
interaction problem, yet an agreed solution has still to be found.

Current approaches to the problem can fall into two categories: off-line approaches and runtime
approaches (often referred to as on-line approaches). Each type of approach will be discussed in the
following subsections.

3.2.1 Off-line approaches

There are two main areas within off-line approaches: software engineering approaches and formal meth-
ods. Software engineering approaches are carried out during the service creation process (design time).
Formal methods can be used to analyse existing features, or to analyse features at design time to detect
feature interactions.

Software engineering approaches

This approach uses general software engineering techniques to help the feature interaction problem,
normally at the requirements or specification stage of the software process.

These techniques can aid the feature interaction problem indirectly or directly. Indirect techniques
are where good software engineering techniques are applied. It is through the introduction of these
approaches, and the rigour they bring, that interactions are eliminated. Direct techniques are achieved
through explicitly testing and developing methods to detect and resolve feature interactions.

Finding feature interactions at design time means the problem can be fixed relatively early. Generally,
the feature interactions are solved by hard coding the solution [75].

Within software engineering there are two main approaches:

Focused techniques are where a particular technique which is used in software engineering has been
introduced into the service creation process, with the aim of eliminating feature interactions. Ex-
amples of this type of work include Use Case Maps (or models) [79–81]. This category also includes
filtering [82], which involves removing unlikely combinations of features and applying a more com-
plex approach to likely feature combinations. This is useful when there are a large number of
features in a system.

Process models are where existing software engineering techniques are taken and adapted for the
service creation domain. Their aim is to eliminate feature interactions. The emphasis with this
approach is detecting feature interactions at an early stage in the life cycle. An approach was

28

developed, SIHP (Service Interaction Handling Process), as part of the EURESCOM (European
Institute for Research and Strategic Studies in telecom) Project P509, discussed by Kimbler [83].
The approach which came from this project was to develop a phase in the software development
process explicitly for feature interaction detection.

The main advantage of software engineering approaches is that they provide a strong, industrial scale
approach to the feature interaction problem. One of the problems with process models is that they do
not offer a solution to the feature interaction problem. They only offer a framework for another feature
interaction approach to be placed in.

Formal methods

Formal methods are techniques which involve the system being modelled and features being analysed
using formal reasoning techniques. There are a number of reasons for using formal methods for feature
interaction detection. Using a formal description (or model) forces assumptions to be made explicit.
Also, automated analysis and reasoning tools are available to detect interactions.

There are three types of formal methods approaches (defined in [13]):

Properties is where theorem proving or model checking is used to identify inconsistencies of properties
once features are combined. Property languages include TLA (temporal logic of actions) [84] and
LTL (linear temporal logic) [85].

Behaviour is where the behavioural description of features and the basic service is defined. These
specifications can use specially developed tools, or use standard languages such as LOTOS or CSP.
In this approach, if the results of analysis show deadlock, unreachability or abnormal termination
for example, then an interaction has occurred. Examples of these approaches include Plath and
Ryan [86] who use CSP to detect deadlocks.

Properties and behaviour model is where the feature and basic service is defined by properties and
behaviour. In this approach, interactions occur when features plus their basic service satisfy their
respective properties individually, but when they are combined, the conjoined properties are not
satisfied. Examples of this work include [87] where TLT is the property language and Promela is
the behavioural language.

Although considerable research has been carried out using formal methods in feature interaction,
they do have some problems. When creating the models, they have to be complete. If they are under
specified, the frame problem is introduced (what is not changed by the feature) and over-implementation
generates false positives. Getting the balance correct is not straightforward.

Despite their problems, formal methods do have advantages. Using formal methods forces assump-
tions to be made explicit. These assumptions cause ambiguities, which can cause interactions.

3.2.2 On-line approaches

On-line approaches are approaches which are carried out at runtime. These approaches have many
advantages over off-line approaches which include:

• They can be applied in an operational system.

• They support a quick time-to-market for new features as the feature does not have to be tested
against all other features in the network.

• On-line techniques are future proof, since they are running in a live network. As new features are
added, the techniques can deal with them. However, the fact that they do run on a live system
can be seen as a slight processing overhead. An approach which is future proof is important in
the multi-vendor market since new features are introduced frequently, and therefore will not know
about one another.

• In larger, legacy systems, on-line approaches have the advantage that there is no need to change
the existing code.

29

• On-line techniques do not require a specification of the system and its features.

Although on-line approaches can be very powerful to help avoid or detect and resolve interactions,
there are very few approaches available. The main reason for this is that they are hard to develop.
Firstly, an on-line approach may have little or no knowledge of a service. Without the knowledge, how
does the approach know what service it is looking at, therefore how does it prioritise them?

Within on-line approaches there are two classes of approach regarding the location of control:

Feature manager based approaches are where a manager on the network observes the call control
process (in telephony). The managers will observe features and either avoid the interaction, or
detect the interaction and apply a resolution technique. One of the drawbacks of using managers
is that they generally have a central point of control. If managers are distributed, they can
communicate with one another, however the communication is an unwelcome overhead.

Negotiation based approaches are where each feature has an agent which has the ability to commu-
nicate with one another and negotiate a resolution. Within negotiation there are three different
approaches:

1. Direct negotiation where agents talk to one another.

2. Indirect negotiation where an entity carries out the negotiation between the agents and routes
the messages. The negotiator will also ensure the process is carried out correctly and that
there are no deadlocks. If the agents can not resolve their problem, the negotiator can decide
the outcome. The outcome could be based on information it has gathered during runtime.

3. Arbitrated negotiation which takes the scripts from each agent and finds a resolution for the
interaction.

Whether the on-line approach is in the form of a manager, or a negotiation approach, they will require
some information. The information these approaches require to run can be gathered in one of three ways.

A priori information is information which is gathered at design time. The information can then be
presented as per-service information or as a per-service pair matrix. The disadvantage with a
per-service pair matrix is that it starts to get extremely large as the number of services grows.

Captive environment is where information for detection and resolution is gathered at runtime in a
closed system. The information gathered from the closed system is then used in a live system.
Using a closed system means testing can be kept simple without the complexities of a live system
with live calls.

During runtime is where no special information is required. These approaches gather the information
they need at runtime in a live system.

Griffeth and Velthuijsen [88] developed a negotiation approach which employed a negotiator. They
did not use an arbitrator as this requires all information from the agents, and they deemed this overhead
to be too much. The issue of privacy also becomes an issue here. However, one of the main drawbacks
of their approach, and negotiation approaches in general, is that the solution must be known before
negotiation starts. The example given by Griffeth and Velthuijsen in [88] highlights this issue. They give
the example of an interaction where Blocking Call Number Delivery (BCND) prevents Calling Number
Delivery (CND) from working. Therefore, when a user with BCND calls a user with CND, the user is
unable to see the number, as delivery of the number has been blocked by BCND. Using the approach
presented, the result of negotiation is to allow the person’s name to be delivered, rather than their
number. Therefore, to arrive at this solution, both the interaction and answer must be known.

An example of one on-line approach which included a feature interaction manager using a priori
information was by Cain [89]. The approach here used a matrix to find interactions between features.
Although this approach did work, when a new feature was added, the new feature had to be checked
against all other features in the matrix off-line. Clearly, this is not scalable as testing one feature against
all others is very time consuming.

Marples and Magill [74] developed a feature interaction manager which required no information.
This approach assumes that an interaction occurs when two or more features respond to a stimuli. The

30

approach uses a roll-back and commit algorithm to find a suitable resolution. This work was extended
by Reiff-Marganiec [78] to include a more sophisticated resolution technique.

For most on-line techniques, after the interaction has been detected, essentially priorities are used to
resolve the conflict.

On-line approaches offer the best way forward in a changing network where new services are being
added. However, both off-line and on-line approaches do have their limitations.

3.3 General limitations of previous approaches

Although off-line approaches do have advantages, their main problem is that all features in a system
have to be known. This is not such a problem in single vendor environments. However nowadays,
telecommunications networks are large, multi-vendor environments, which hampers the use of off-line
approaches. The first time features meet are when they are deployed onto a live network. This is the
only point where interactions between different features from vendors can be detected.

Another problem with formal methods is that all features have to be modelled and analysed. These
models are abstractions so there is a danger they are not a true representation of the system. Further,
the problem of creating accurate models means all features and their attributes are required. In legacy
systems where features have changed, and documentation is often poor, acquiring this information is
difficult. Further, since there are many vendors developing software for telecommunication networks,
vendors are unlikely to share detailed information with their competitors. This makes formal methods
more suitable for detecting intra-portfolio interactions.

Scalability becomes an issue when there are hundreds of features. Modelling all features, and the
system, introduces state space explosion [78].

On-line approaches have their limitations too. These problems include processing overhead, the
decision must be made at runtime. Also, scalability becomes an issue. In telephony, networks are
extremely large and complex. Developing a manager which can handle this scale is challenging. Since
the processing is being handled by a manager, this can cause a bottleneck.

Negotiation approaches have their own problems. As previously discussed, the solution needs to be
known before resolution can start. Drawbacks of using an arbitrator include a higher communication
overhead. Privacy is also an issue here as the agents have to send their scripts to the arbitrator for it to
analyse.

Manager based approaches have limitations, mainly due to the information they require. Also the
fact they are centralised becomes an issue. However, from all the approaches, a manager which gathers
its information at runtime is the most powerful and flexible.

In the home networking and networked appliances domain, some feature interaction work has been
carried out. The next section discusses these approaches.

3.4 Feature interaction in home networks

Feature interaction in home networks is a relatively new area, with the first paper being published four
years ago [76]. This paper highlighted the problem of feature interactions with networked appliances, but
did not offer any solution. Since then only two different approaches have been presented which explicitly
tackle the home: one off-line [22] and one on-line [1, 90]. An approach developed for service creation
for SIP in internet telephony has also been presented by Wu and Schulzrinne [14], which they also use
for feature interaction detection and resolution only within multimedia systems in the home. Although
their approach is not a general solution for the feature interaction problem in the home, it is worthwhile
including.

An off-line approach which discusses feature interactions in office buildings by Metzger [23] has been
included in this section, as many of the issues for feature interaction in the office are similar to those in
the home.

These approaches will be discussed in more detail in the next section.

31

3.4.1 Current approaches for feature interaction in the home

Nakamura et al. [22] present an off-line approach for the feature interaction problem in home networks.
They developed a tool which was able to take the specifications of the home network, including devices
and services, and model them. Each device was regarded as an object with properties and methods. The
methods used in their model relate to actual methods within the device. For their approach to work,
the authors assume the APIs to devices would be published and be the same for all device types. This
assumption is valid as protocols, such as UPnP, publish interfaces and method calls for each device type.

The authors of this paper also recognise the environment as being important to detect interactions.
Therefore, the environment is modelled as a global object within their model.

Using their detection tool, the authors claim to detect 43 appliance interactions, with 24 of these
interactions being at the environment level.

Although the approach developed does detect interactions within the home, it has the major drawback
of being rigid. The way in which services were defined suggests that services in the home do not change,
and exhibit the same behaviour every time they are executed. This may not be the case as home services
should be designed in such a way as to make use of service platform technologies which allow them to find
other devices if their first choice is not possible. Also, there are likely to be many companies developing
services for the home. Using the OSGi gateway as an example, this has an open specification that allows
other companies to quickly and easily develop services for the home.

As well as services being tightly defined, the devices used are also defined. All new home networking
protocols (including the service deployment platforms) support devices joining and leaving the network.
It is possible that the home network changes on a daily basis. Coupled with the fact that users can
configure services differently makes an off-line approach unworkable as a general solution for the home.

Wu and Schulzrinne [14] present an approach which is specifically aimed at service creation. They
developed a markup language called LESS (Language for End System Services) [91]. Although the
language was developed for call control in SIP, its use was extended for multimedia devices in the
home. Their approach only detects interactions at the device level. It does not take into account the
environment. This is one of the main drawbacks of their approach.

Although the approach by Nakamura et al. is the only paper for feature interactions in home networks,
work by Metzger et al. [23] looks at the problem within the office domain. The reason for including
this paper is that these authors discuss the importance of the environment for detecting interactions.
However, since this is another off-line approach, its general applicability is limited within the home
networking domain. Interestingly, their approach was extended in [92] for feature interaction detection
within automobiles. Since the network and services in the car are less likely to change, using an off-line
approach in this domain is valuable; however, this is outside the scope of this work.

32

Chapter 4

Services Enabling Home Automation

In Chapter 2, devices and protocols were discussed as well as a framework for executing and managing
services for the home (OSGi framework). This chapter will discuss the kind of services (home security,
entertainment or safety) which are anticipated to be on a home gateway.

Simply connecting smart devices in a network adds little value to the home. In fact, it does not
offer much more value than the conventional stand-alone devices of today. The real benefit of connected
devices is when user services interact with, and control, a series of devices. For example, when the
burglar alarm is triggered, rather than the home security service simply sounding an alarm bell, if a
camera and VCR were available, the service may use the VCR to record video from the camera. Further,
if an SMS messaging service were available, the owner could be informed via SMS that an intruder was
detected in their home. The user may have another service which allows them to connect to the home
via their mobile telephone and remotely view the home through various cameras placed around the it.

A middleware solution (such as that defined by the OSGi Alliance), allows services to use a range
of devices without having to worry about the underlying protocol. This gives services the ability to
dynamically select which devices they use, depending on what is available. Therefore, a service may
behave slightly differently over time as the home network can change with devices joining and leaving.
However, the consequence of a service automatically selecting devices, and subtle changes in the service’s
configuration, can lead to incompatibilities between services in the home.

To show these incompatibilities, examples will be used. The next section of this chapter will describe
some of the services which may be found in the networked home. Using these services as examples,
the chapter will then discuss negative interactions which can occur under certain circumstances between
these services.

4.1 User Services

As this section will illustrate, services for the home cover a wide spectrum in terms of functionality.
Here, emphasis is given to the aspects concerned with services which control devices.

The services used in this section have been inspired from the literature [6, 22, 66, 93–95]. The examples
used cover a broad range of areas – from security, through climate control and entertainment, to energy
conservation. While these services are likely to be found in the home, more importantly for this thesis,
they also have potential to interact with one another. The interactions can be both positive and negative.
The five services clearly show the advantages and potential problems of the networked home as described
below.

4.1.1 Home Ventilation and Air Conditioning (HVAC)

HVAC is the climate control service which integrates the control of the heating and air-conditioning. A
thermometer is polled by the service for current temperature or, in the case of a UPnP thermometer,
listening parties are notified of a change in temperature.

If the temperature in the house rises to a certain level, the service will start the air-conditioning. If
the temperature drops below a certain level the service starts the heating. The service also offers the

33

option of energy efficient climate control. Here, the service includes the control of windows (open or
close), an air fan, and also window blinds. The service is aware of the outside temperature, therefore it
can determine how the inside temperature will be affected if a window is opened.

4.1.2 Home Security Service (HSS)

This service integrates various security and safety aspects. The service has two features: the basic alarm
feature and an away from home feature.

The alarm feature works together with movement sensors in the home. If any of the sensors detect
any movement, the service is notified and the alarm is triggered. Upon being triggered, the service
records the picture from a security camera onto the VCR and then calls the police.

The security service also has an away from home feature. The aim of this feature is to give the
impression that the home is occupied during the absence of its owners. The feature achieves this by
turning on lights, drawing curtains, as well as turning the television and stereo on. These actions are
carried out in certain sequences. For example, the feature can turn the living room lamps on and close
the curtains at dusk. Perhaps another sequence is room lights being turned on and off to simulate the
user passing through rooms.

4.1.3 Power Control Service (PCS)

The power control service can enable the home owner to obtain cheaper electricity by giving up some
control to the power service through using a separate on-switch. With this separate power switch, the
user specifies that the appliance is ready to run. However, it is the power service which actually switches
the appliance on. The times for determining when appliances are to be turned on can be created by
the service. The power control service may work in conjunction with a service provided by the energy
supplier, which sends energy costs. Based on these costs and user preferences, the service can determine
when to turn devices on. This allows the power service to determine the exact time the appliance is
used, and hence to manage power consumption during peak demand. For example, the user may turn
the washing machine on at 8am before going to work, but (after checking with the electricity supplier)
the power service knows electricity is cheaper after 2pm. Therefore, although the owner has turned on
the washing machine at 8am, it will not actually start until 2pm when electricity is cheaper. However,
this does assume the energy supplier differentiates between peak and off-peak usage.

The service also offers an option of running the house efficiently. When the home is vacant, energy
can be saved by switching off unnecessary appliances, such as lamps and televisions.

The energy provider Electricité de France (EDF) are one company to have piloted such a project.
Since it costs energy companies substantial sums of money to put extra power into the electricity grid
during peak hours, they would like to reduce this peak.

The scheme EDF propose involves giving users energy quotas during peak hours. If users stay below
their quota, they receive cheap electricity. If they go over their quota they are penalised and charged
more for their electricity. Although this is a pricing mechanism by the energy supplier, the PCS can be
used to control when energy is consumed to ensure quotas are used efficiently. This could be used to
start the washing machine mid-morning, rather than peak times. Therefore, the service is able to help
reduce costs.

4.1.4 Home Entertainment Service (HES)

This service controls entertainment devices in the home, such as the television, stereo system, and
VCR/DVD players. A key feature of this service is its ability to monitor the owner’s viewing habits.
These viewing trends and patterns can then be used to automatically record certain popular television
shows. The service can also check the owner’s diary and, if they are out, will automatically record their
programmes.

4.1.5 Communications Support Service (CSS)

This service supports the use of email and the telephone. The user can be notified by a message displayed
on the television when a phone call or email arrives. The message will contain the caller for a phone, call

34

and the sender and subject line for an email. Optionally, users may subscribe to a feature which turns
down the volume of the television and the stereo when a phone call arrives.

4.2 Conflicts between services (Interactions)

The five services and their capabilities have been discussed. Each service is able to use a number of
devices to achieve its goal. However, since services are automatically controlling several devices, each
carrying out their own role, it is inevitable some conflicts will occur. This section highlights the issue of
negative interactions.

Feature interactions can occur for a number of reasons. The most common are conflicting goals and
broken assumptions [73]. Services pursue specific goals, e.g. to switch off unnecessary appliances to save
energy. However, an extra feature of the security service is to switch on lights to pretend the home is
occupied. Clearly, the goals of the features conflict.

Similarly, services need to make certain assumptions about their environment. For instance, the
security service assumes that when activated, nobody is at home, therefore appliances will not be used
and there should be no movement. However, the climate control service may control the blinds to prevent
the sun from unnecessarily heating up the home. Here the assumption of the first service (security) that
no appliances will be used, is violated by the second (climate control).

The two interactions described above are examples where the interaction occurs between two inde-
pendent services. However, interactions can occur within the same service. Assume the home security
service has two features: monitor the home for intruders by detecting motion, and the away from home
feature. The owner is away from home and the alarm is set, but they have also set the away from
home feature to close curtains and turn lights on in the evening. When the curtains close, the alarm is
unnecessarily triggered. Thus, two types of interactions have been identified: interactions between two
different services, and interactions within the one service, inter-service and intra-service interactions [1],
respectively.

4.2.1 Inter-service interaction

These are interactions between two different services. Since services are developed in isolation by different
vendors, it is impractical to test all services against each other. Even if all services are tested against one
another, it is impossible to know the devices a user utilises and how they configure each service. Therefore
(as discussed in Chapter 3), a runtime approach is the only viable solution to detect interactions between
services in the home.

4.2.2 Intra-service interaction

In contrast, intra-service interactions are interactions which occur within a service. These types of
interactions should be discovered at design time. However, like inter-service interactions, it is difficult
to know the devices a service will use and how the user configures the service. Therefore, finding all
interactions at design time may be difficult. As these are valid interactions, the approach developed
should be designed to handle these types of interaction.

4.3 Interaction examples

From the services described in section 4.1, a number of potential interactions have been identified.

4.3.1 Security vs. Power Control Service

Imagine the situation where the owner of the house is absent, and the away from home (AFH) feature of
the security service is active. Also, the efficient energy usage option of the power control service is active.
The power control service will switch off lamps and televisions. However the away from home feature
will switch lamps and the stereo on to give the impression that somebody is at home. The problem
is caused by two overlapping requests from the two services trying to control appliances in conflicting
ways (one service turns devices on, while the other turns them off). Since the interaction is caused by

35

two different services, this is an inter-service interaction. The type of interaction is a Multiple Action
Interaction (MAI) (section 3.1.4), as two services are trying to access the same devices.

4.3.2 Security vs. Entertainment

The security and the entertainment services both try to control the VCR. Once triggered, the security
service records the picture from a camera to the VCR. However, the two services overlap when the
entertainment service tries to record a television show at the same time – disabling part of the security
service functionality. Unlike the former example where the first action (switching off lamps) was finished
before the second occurred, the problem here occurs because the first action has not yet completed
(recording the camera picture) when the second is triggered. Again, as this interaction is caused by two
independent services, this is an inter-service interaction. The type of interaction is also an MAI, as two
services try to control a single device.

4.3.3 Security vs. Climate Control

The away from home feature of the security service turns devices on and draws curtains (or blinds)
following a pre-defined sequence to make it look as if the owner is at home. Since the owner is away the
climate control service has been set to keep the home at a comfortable temperature, but by doing so as
cheaply as possible. The climate control makes use of blinds and opening windows as these are cheap
alternatives to heaters and air conditioners.

Suppose the away from home feature is active, and turns lights on and closes the blinds to make it
look as if the owner is at home. To heat the home, the climate control service needs to raise the blinds
to let some sunlight (heat) in. There is a conflict here as one service wants the blinds open, whereas the
other wants them closed. This is an inter-service interaction and is of type MAI.

4.3.4 Climate control vs. Security

An interaction can occur through a number of different events between climate control and the security
service. If movement in the house is detected, the security service is notified. It interprets movement as
an intruder, triggering the alarm. The climate control service may lower the blinds, start the ventilation
fan or even open windows. All of these actions create movement, which the motion sensor detects
and notifies to listening parties. This consequently triggers the security alarm. This is an inter-service
interaction. They are all of type Sequential Action Interaction (SAI) (section 3.1.4), as the action of
service one triggers another (service) causing a negative interaction.

4.3.5 Power Control Service vs. Climate Control

During cold spells the climate control service keeps the home at a stable and warm temperature. If
the owner is not at home the power control service will turn off all appliances to save energy. In doing
this, it interacts with the climate control service by disabling devices (including the thermometer). This
means the climate control service is not notified of the dropping temperature in the home. As the
home gets colder, the water pipes may freeze. This is an example of a missed trigger interaction (MTI)
(section 3.1.4), because the power control service turns off the thermometer, which means the climate
control service is not aware of the low room temperature.

4.3.6 Within climate control

It is possible that there may be interactions within the climate control (intra-service interactions). The
following scenarios should be discovered at design time as they are interactions within a single service.
As discussed, inter-service interactions are virtually impossible to detect until runtime as a vendor will
not know what other services a user will have in their home. Further, the problem is worsened by how
these services are configured. The examples are included in this section for completeness and to show
that any solution developed should be able to handle both types.

36

Action conflicts: energy waste

An interaction may occur within the climate control service. A thermometer notifies interested services
of any change in temperature. If the temperature rises above a certain level and if the user has activated
the energy efficient climate control option, the service may start the air conditioning (for normal cooling)
and open the windows (for energy efficiency). Clearly, these two actions are not compatible as the open
windows compromise the correct and efficient functioning of the air conditioner. This interaction is
caused by the energy efficient component of this service, which will in fact waste energy if not correctly
integrated. Clearly, this is an intra-service interaction. This is a Shared Trigger Interaction (STI)
(section 3.1.4) as the change in temperature triggers the service to use two devices which, although they
both aim to cool the room, may conflict in doing so.

Action conflicts: energy waste through looping

An infinite loop can be caused within the climate control service. Assuming the service consists of a
heating component controlling the heating and a cooling component controlling the air-conditioning,
the following interaction may occur. Reaching a certain temperature will trigger the climate control
service, resulting in the air conditioning being activated. However, this may cause the temperature
to drop below the pre-set temperature for the heating to be activated. The heating will increase the
temperature. However, this again may result in the temperature being too high and the air conditioning
being started again! This is an intra-service interaction, but is a special case of type SAI as the action
of the heater (to heat the room) causes the air-conditioner to come on.

4.3.7 Within Security

An interaction can occur between the away from home feature and the alarm feature. The alarm is armed
and monitoring the home for movement. At dusk, the away from home feature will follow a sequence
where it turns lights on and closes some curtains (or blinds). If not configured properly, it is possible
that when the away from home feature tries to draw curtains (or blinds) this causes movement, which
in turn triggers the alarm. This is an intra-service interaction and is of type SAI.

4.4 Summary of the problem

Table 4.1 shows a summary of the interactions manually identified in the previous section. As these have
been identified manually, testing may show interactions which have been missed.

The table shows the interaction (as a ‘•’), the type of interaction and the section where the interaction
was described. The lightly shaded areas show intra-service interactions, with the white background being
inter-service interactions. The abbreviations for services in the table are as follows:

• HSS:Alarm – Home Security Service – basic alarm feature

• HSS:AFH – Home Security Service – away from home feature

• PCS – Power Control Service

• HES – Home Entertainment Service

• HVAC – Heating, Ventilation, Air-Conditioning (Climate Control Service)

Generally, on their own these services operate in a coherent and consistent manner however, there
are occasions where services clash. The clash, or interaction, may be caused by two different services
(inter-service) or a problem within the service (intra-service). Many intra-service interactions should be
discovered at design time. However, the harder interactions to solve are those between two different
services.

37

HSS:Alarm HSS:AFH PCS HES HVAC

HSS:Alarm • • •

HSS:AFH • •

PCS •

HES

HVAC
•
•

MTI (4.3.5)

MAI (4.3.3)

SAI (4.3.4)MAI (4.3.2)

MAI (4.3.1)

SAI (4.3.6)

STI (4.3.6.1)

SAI (4.3.6.2)

Table 4.1: Interactions identified from examples

4.5 A new approach to the problem in home networks

This chapter has discussed several scenarios where interactions can occur in the home. Although the
service interaction problem in the home is similar to the feature interaction problem in telephony, there
are some differences.

The main difference is that many more interactions happen indirectly. They happen through an
additional level – the environment. Here, the environment can be room temperature or movement in the
room, for example.

Previous approaches in telephony (such as those discussed in Chapter 3) do not use the environment
to detect interactions. A-priori and captive environment approaches are not suitable because in the
home a service can behave differently depending on the devices available and how a service is configured.
Further, the configuration of services and devices in the home can easily change as home networking
protocols have been designed to specifically support ad hoc networking (UPnP for example).

Another issue in the home is that all homes are likely to be different: no two homes is likely to have
the same service and device configuration. The services and devices a user will purchase are unlikely
to be from the the same supplier. Cost is the likely reason for this as replacing all electrical appliances
at once will be costly. Further, since the home electronics market is competitive, there will be many
manufacturers and service vendors. However, even if all homes were to have the same service and device
configuration, owners will generally want to personalise and configure services to suit their lifestyle. This
may cause the behaviour of the service to change and, in turn, the devices it may use.

Therefore, the aims for a new approach for the home should:

• Include the environment as interactions do happen here as well as at the device level.

• Avoid negative interactions while allowing devices and services to cooperate to achieve a common
goal.

• Accommodate devices joining and leaving the network.

• Accommodate home service change, including updates to existing services, or services being added
or removed.

• Be flexible to change, regarding new networking protocols and new types of device.

• Be independent of service, as it is impossible to know all services a user will have and how they
are configured.

• Need little user configuration and intervention; a home owner will not be interested in feature
interactions, so the automated home will be expected to work.

38

• Must make a decision quickly on whether a negative interaction will occur.

• Be scalable to handle all devices and services a person may have in their home.

4.6 Summary

This chapter has outlined services which are expected to be in an intelligent home. Interaction scenarios
have also shown that service interaction in the home is a real problem.

The chapter also introduced the concept of the environment and has demonstrated why it is crucial
in the home. By using the environment, it is possible to see how services can interact with one another.

The chapter finished by describing the problem and outlining the aims for a new approach. Using
these aims, a new approach has been developed for service interaction avoidance in home networks. This
is discussed in detail in the next chapter.

39

Chapter 5

An Environmental Approach

5.1 Introduction

Chapter 4 outlined several aims an approach for the home should meet. This chapter presents a new
approach, which achieves these aims, for the service interaction problem in the networks.

Traditional approaches to feature interaction have been service centric, concentrating completely on
this aspect. Further, these approaches are typically off-line. Some work by [22, 23] does concentrate
on the device and environment, rather than just the service. However, this approach is off-line. As
previously discussed, although off-line approaches are useful for detecting some interactions, they only
work in a system where all services and devices are known. In the home this is unlikely. A home is likely
to have different services from many vendors. Even if all services are known, the configuration of the
devices in use will be unclear as devices will join and leave the network. This is shown in the networking
protocols for the home where automatic configuration and setup is crucial – UPnP or Jini, for example.

Also, the services which control devices may behave differently depending on the devices available at
runtime. This makes an off-line approach unworkable for general use within the home.

Therefore, since a new approach has to be flexible to cope with change, both in terms of devices and
services, the new approach has to be an on-line approach.

There are two approaches within on-line work: negotiation and feature interaction managers. As
discussed in Chapter 3, negotiation approaches have the drawback that the solution to the interaction
has to be known before negotiation can begin. Although feature manager approaches have disadvantages
such as being centralised and can have scalability issues, these are not such a problem in the home. The
residential gateway is centralised where all devices and services register on the same platform. Also,
scalability is not such an issue in the home as the number of devices and services a user can have will
be relatively small (in comparison to a telecommunications network).

Since the automated home is to make life easier for occupants, users will not be interested in managing
interactions in the home. Therefore, this approach has to be invisible to users. By using an on-line
manager, this is achievable, as it makes decisions in the background whether a negative interaction will
occur or not. If a negative interaction occurs, it should be avoided. However, if the interaction is positive,
it should be allowed, as this is desirable.

These are some of the important goals which this new approach has to achieve. The remainder of
this chapter will discuss the role of the environment and how it can be used to manage interactions. To
understand how the environment is affected, the devices which affect it are included in the model. Since
services affect devices, they are included too. These three components form the three layered model.

The chapter then discusses how to control access to these components. It is through controlling
access that undesirable interactions can be avoided. The technique the approach uses to control access
will also be explained, as well as how services can be ranked, so safety services can take priority over
and override less critical services.

The chapter will also present a Feature Interaction Manager (simply ‘manager’) and explain how it
builds a picture of all services and devices in the home. The manager also keeps its view of the home
consistent by listening for devices joining and leaving the network. Further, it will keep track of the
device’s current state and which service is using the device.

40

Finally, the chapter will finish with a complete worked example of how the manager works, controlling
access to the environment layer to avoid interactions.

5.2 The approach

Using the examples from Chapter 4, some interactions can be detected at the device level – two services
try to use one device. However, some interactions occur which seem unconnected. Take the example
between the security service and the climate control service (section 4.3.3). Assume the security service
is armed and monitoring the home for movement. Also, the climate control service wants to circulate
air in the home by turning on the fan. When the fan is turned on, it creates movement which triggers
the alarm. The conflict does not happen at the device level, it happens elsewhere – in the environment.
The alarm service is monitoring room movement and the fan is switched on, which affects movement.
For this reason, the environment layer is included and is central to this approach.

Since some interactions occur in the environment layer, access to this layer must be controlled. For
this reason, the approach makes use of concepts from the operating systems domain where controlling
access to resources (e.g. files) is achieved through locking. Drawing inspiration from this domain and
adapting the locking technique to control access to devices and the environment, an online approach has
been developed.

D1

S1

(a) Direct to device

S1

D1

Service

Interaction

Manager

(b) Via SIM – success

S1

D1

Service

Interaction

Manager

(c) Via SIM – reject

Figure 5.1: Service issues request to device

It is assumed that there will be a residential gateway in the home where services are managed and
executed [96] (discussed in section 2.2). The services which run on the gateway will send commands
directly to the device (Figure 5.1(a)). Since these messages are sent at runtime, a live manager is
required. This manager must intercept messages which are sent from the service to the device and
determine whether a particular command will cause an interaction. The manager must decide what will
happen if the device executes an instruction. There are three possible outcomes: no interaction, positive
interaction or a negative interaction.

It is important for the manager to be able to distinguish between positive and negative interactions.
Positive interactions are where two or more services or devices can work together to achieve a common

41

goal. In contrast, a negative interaction is where the outcome is undesirable or unexpected. The approach
presented here is able to distinguish between the two types.

After analysing an instruction sent to the device, if the manager decides the action will cause either
no interaction or a positive interaction, the message will be forwarded to the device (Figure 5.1(b)).
However, if the manager detects a negative interaction, the message will not be allowed to proceed to
the device (Figure 5.1(c)). Instead, the manager adds an entry to its log and discards the message.

As mentioned, the environment is central to this approach; however, the services and devices must
be included. The flow of information means a service will affect a device, and through the action of the
device, the device will affect the environment. A 3-layered model shows this flow.

5.2.1 The 3-layered model

The approach developed requires three layers, as there are three main parts to the approach: the home
services, the devices and the environment (Figure 5.2). The top layer is the service layer which contains
the services that automates the home. These will include climate control, entertainment or home security
services (as discussed in chapter 4). These services may use one or a combination of home appliances
(devices) which are located in the second layer. Devices may include a heater, a television or perhaps a
thermometer. The protocols which these devices use will vary as no one protocol will be used for home
networking. The approach developed has been designed in such a way that the underlying protocol is
not relevant. This makes the approach extremely flexible as it does not have to change as new protocols
are developed.

Service Layer (security, climate control, etc.)

Device Layer (heaters, lamps, etc.)

Environment Layer (room temperature, movement, etc.)

Figure 5.2: Three Layered Model

In the device layer, two types of device have been identified: input devices and output devices. An
input device will only monitor an aspect of the environment (e.g. room temperature). An output device,
on the other hand, will alter the environment in some way. For example, a heater is an output device
as it wants to control the room temperature by increasing it. In this example, the heater is explicitly
increasing the temperature. A thermometer only reads the temperature and as it is an input device, can
only return what it reads. A device may be both an input device and output device, for example a lamp
may be a light, but also have a light sensor attached. In this instance, it would be seen as two devices:
a lamp and a light sensor. UPnP splits devices in this way, physically they are one, but logically seen as
two.

Finally, the bottom layer is the environmental layer containing environmental variables. These vari-
ables are a representation of a room’s environment. Examples of environment variables include: room
movement, room temperature, room lighting levels, humidity, smoke, carbon-monoxide levels and pollen
levels. An example could be an active air fan, which affects the room movement variable. Similarly, a
lamp would affect the room light variable. The relationship between variables is interesting. However,

42

for the purpose of this work, the variables are adequate on their own 1.
As previously stated, the reason for including the environment in this model is to show conflicts

between devices which only occur through the environment. For example, it is not obvious that blinds
and a home alarm service may be linked – but as blinds open, or close, they cause movement. The alarm
service monitors room movement. Thus, both are linked through room movement.

Similarly, a heater device would affect room temperature, so if a heater is active room temperature
would increase. An air conditioner, when active, would decrease room temperature, therefore it would
be undesirable to have it and a heater active at the same time as they have conflicting goals. By using
the environmental variables, links between devices become clear. Moreover, by controlling access to the
variables it becomes possible to avoid negative interactions.

5.2.2 Controlling access to components

Within the device and environment layer, controlling access to devices and environmental variables is
achieved through locking. Controlling access is central to how this approach works. The use of locks has
been inspired from the operating systems domain. Access to environmental variables and devices can be
likened to files. When an operating system process opens a file, it can generally be opened with one of
three properties: append, read-only and write [97]. The idea of reading and writing can be used when a
device requires access to an environmental variable or a service wishes to access a device.

When the issue of locking is introduced, deadlock becomes a concern. For deadlock to occur, there
are four necessary conditions [98]:

• Mutual exclusion – one resource held locked, not shared.

• Hold and wait – where one process is holding at least one resource, while waiting for an answer.

• No preemption – a resource can only be released, voluntarily, by the process holding it.

• Circular wait – there must exist a set, e.g. {Process A, Process B, Process C} where Process A
waits for Process B, Process B waits for Process C, and Process C waits for Process A.

The technique here violates two of these necessary conditions – point 2 and point 4. A service cannot
wait. Also the manager (SIM) can unlock a device, if required.

Simply locking a variable is too crude for this approach. It is not adequate as it does not allow two
devices with the same goal to work together. For example, when a heater is active the room temperature
variable would be locked. Since the variable is locked, another heater would not be able to heat the
room. Although there is an interaction here, it is a positive interaction and should be allowed. However,
it would not be correct to share the temperature variable between a heater and an air-conditioner as the
two devices have conflicting goals.

Concepts were used from the Biased Protocol [98], where locks may be either Shared Locks or Exclusive
Locks. This locking protocol is useful for this work as it allows two devices to work together to achieve
a common goal. Using these two locking types, a refined locking technique for this approach has been
developed.

Since input devices do not affect their environment in any way, they do not need to be locked. On
the other hand, because output devices do have an impact on their environment, controlling access is
necessary.

After consideration, a new locking technique was developed.
If a service wishes to lock a device, or a device wants to lock a variable, they must be locked with

one of four options:

• NS : Not Shared. The variable or device is locked and may not be altered by any other device or
service. This lock is similar to the exclusive locks in the biased protocols.

• S+ : Shared, but increase only. The variable is shared on the condition that anyone wishing to
use the variable must increase it. Therefore, two devices may lock a variable with S+ if they both
increase value. This allows two heaters to operate.

1This issue will be discussed further in Chapter 8.

43

• S– : Shared, but decrease only. Like the previous setting, the variable is shared on the condition
that anyone wishing to alter the variable must decrease it.

• S± : Shared. The variable or device is shared and it is unknown whether the variable will be
decreased or increased in value. This can also be used for binary values, e.g. whether there is
movement or not. This lock is not compatible with S– or S+ because S± could go either way
(increase or decrease). Therefore, S+ and S± could allow one device to increase while the other
decreased. Also, S+ and S± could result in both increasing. However, this can not be guaranteed,
therefore S± is not compatible with S+ or S–. This lock type can be likened to the shared lock
type from the biased protocol.

By using these four locks, devices are able to cooperate and work to a common goal, whereas devices
with conflicting goals would be avoided. Table 5.1 summarises the list of locks above and shows the
combination of locks which are allowed (•).

NS S+ S– S±
NS
S+ •
S– •
S± •

Table 5.1: Locking – allowed pairs

Many services or devices may lock a device or variable with matching S+, S– or S±. However, only
one service or one device has access when a device or variable is set with NS. Once a lock has been set, it
is sometimes not clear when the task is complete and the lock can be lifted. In other domains, telephony,
for example, this is clearer.

In telephony a session is clear, the session starts when the receiver is lifted off-hook, and finished
when the handset is placed on-hook. In the home domain, the notion of a session is less clear [99]. This
approach assumes that a session begins when a service starts using a device, e.g. opening a window or
turning a heater on, and finishes when the service closes or switches the device off. Therefore, when a
lock is placed on a device, the lock is valid until the service turns the device off. Although this seems
a rather simplistic approach to the problem, this is how operating systems lock files. When a file is in
use it is locked, when it is not, it is generally unlocked. The problem is that there is no simple way of
determining when a session starts and ends in the home.

5.2.3 Locality

As well as knowing the duration of a session, it is also important to include the locality of the actions of a
device. This is to include devices which, by operating, may affect the whole home, or just one room. For
example, a heater may only affect the temperature in one room, whereas a security alarm may monitor
one room or the whole home. The approach must also be able to handle this, which it successfully does
by creating a hierarchy of rooms within the house. It is important to note that each room is treated
independent of others, in other words, one room cannot affect another in this model.

When a device is active, locks are placed on the appropriate variables in whichever room is required
(Figure 5.4 later).

5.2.4 Service priorities

As an example, suppose the home is being burgled and the VCR is in use by the entertainment service
to record the owner’s favourite show. Since the VCR is in use, the home security service is unable to
access the device to record the intruder. As presented so far, access to devices and variables operate on
a first come first served basis which, as will be shown, is not adequate.

44

The entertainment service sets the VCR device with an NS lock, which does not allow any other
service access to the device. A mechanism of overriding this is required. A mechanism which allows im-
portant services to override convenience services is required. Thus, service priorities have been introduced
to the approach. This allows safety services to override convenience services.

Priorities are widely used for feature interaction resolution (Chapter 3). Priorities have been used
here by giving each service in the gateway a priority number. A priority value may change as new services
are added to the home, or a user’s preferences change.

The priorities of services will range from 1 to n, where n is the total number of services in the gateway.
Priority 1 is the lowest and n is the highest.

There are three other service priorities: -1 (meaning no priority) for services that have not been
assigned a priority, 0 which is used by the service interaction bundles only as the highest priority. It can
be used by the manager when a device’s state changes (e.g. a lamp being switched on). Having 0 as the
highest priority means that these updates will definitely be included in the manager’s view of the home.
It is only right that these updates are made as they reflect the actual state of a device.

5.2.5 The remote device database

If a heater is turned on, it will produce heat, which in turn affects its environment and increases the
room temperature. For this approach to work, the manager needs to understand these details and know
what devices do, and how the device actions affect the surrounding environment.

Therefore some sort of database which holds device details is required. The database of devices is
likely to be constantly growing as new devices come onto the market. Where this database is stored does
pose a problem. If the database were to be stored in the home, not only would it be very large (since it
has details of all devices), but managing it and keeping it up to date may cause problems. In contrast,
if the device were to be hosted remotely, all homes would be able to share the same data. However, the
disadvantage of this is that the home would need a constant connection to the internet, which is a fair
assumption. If newer smart devices were able to store information about themselves on the device, this
would be the better solution. However it cannot be assumed that devices would come with this data
and, politically, adding such data to all new devices may not be straightforward.

For the purpose of the thesis, a remote database is used. The modular way in which the manager has
been developed means that it is not important where this data comes from. As long as the information
can be made available to the service interaction manager.

After receiving the device description from the remote service, a local copy could be cached, however,
this is purely a performance issue.

Describing devices

If the manager is to operate successfully, it requires some basic information about a device and how
its actions affect the environment. The approach needs this information; using a remote database with
device details is a convenient way to achieve this. It also has potential to be used by other services, if
they require information about devices. This system could potentially help facilitate adaptive services.

Although this may be seen as a constraint on the system, it is a reliable, and scalable solution to the
problem. A self learning system may be implemented where the manager sends commands to devices and
records how the environment has been affected by the device’s action. However, this would require that
the manager knew all APIs for the device. Further, the manager would require a training period where
it conducts tests under strict conditions. This is to ensure the manager understands all the variables a
device affects. If the tests are not done carefully, other factors (external to the device) may affect the
environment, which causes the manager to record incorrect data.

There is a danger that if these tests are not conducted properly that the manager would hold false
information about the device. Having incorrect information on each device would have a serious impact
on the effectiveness of this approach. Therefore, since these devices will be deployed in homes, the
simplest and most reliable solution is to use a remote database. This means there is no warm-up time
for the approach and a user does not have to worry about training the manager for new devices.

The device type is essential. This describes the type of device, such as heater, air-fan or television.
When querying the remote site, the manager should supply a device type. The type supplied by the
caller is matched with the description within the database. The remote device database does nothing

45

more than return device specifications in an XML format, given a device type. Example XML details are
shown in Figure 5.3. The example XML shows the Lamp is an output device, also the default usage for a
service is NS. The XML also shows the environmental variables this device uses, RoomLight. The default
value for this variable is S+ as room light will be increased, and the locality is set as 0 (Figure 5.3),
which means it will only affect the current room.

1. <Device>
2. <DeviceType>Lamp</DeviceType>
3. <DeviceIO>Output</DeviceIO>
4. <DefaultDeviceUsage>NS</DefaultDeviceUsage>
5. <Action>
6. <Name arg="on">deviceOn</Name>
7. <SuggestedDeviceUsage use="NS" />
8. <EnvironmentalVariable name="RoomLight"
9. defaultValue="S+" duration="3" locality="0" />
10. </Action>
11. <Action>
12. <Name arg="off">deviceOff</Name>
13. <SuggestedDeviceUsage use="" />
14. <EnvironmentalVariable name="RoomLight"
15. defaultValue="" duration="0" locality="0" />
16. </Action>
17. </Device>

Figure 5.3: Example lamp description

Various other attributes are included in the device description, such as the default lock values for the
device. This makes it possible for this approach to work without having any input from the service –
fully operational on its own.

As well as knowing what type the device is, it is important to understand the actions of a device and
how each action affects the environment. The alarm control panel device is a good example as it may
have different functions. An alarm control panel device can be used with a security service running on
the gateway. The alarm control panel may have two functions. One function is fully armed where any
movement in the home is interpreted as an intruder. The second function may be used as a notifier.
When the front door is opened, a ‘beep’ is sounded to make the owner aware the front door has been
opened. These two functions will want to control the environment in different ways. One will detect
movement, whereas the other detects but allows movement. Thus, depending on the way which a device
is used, different locks for the variables will be required.

The fully armed function would lock the movement variable with NS as it does not want to share it.
The notify function would share movement with S± as it does not need to have the variable fully locked.
However, it does not want another service fully locking the variable.

A device’s environmental variables and locking information are crucial for the manager to operate.
Another important piece of information is locality.

Consider the alarm control panel device as an example. Depending on the action, the alarm panel
may be set to monitor the whole home or only one room. Again, depending on the action, the variables
a device affects (and how the variables are affected), will be different.

5.3 The service interaction manager

The service interaction manager (SIM) is central in this approach as it implements the issues covered in
section 5.2. As discussed previously, the manager would be a service within the service gateway within
the home. This is because all devices will be registered within the gateway, and all services will be
managed and executed from the same gateway.

If the SIM is not in use, when a service issues a command to a device, the message is sent directly
to the device (Figure 5.1(a)). When the manager is active, messages are intercepted and authorised.

46

There are two possible outcomes: either forward the message to the device (Figure 5.1(b)) or reject the
message (Figure 5.1(c)).

As stated in earlier sections, to avoid interactions the manager restricts access to devices and en-
vironmental variables. To make the decision the manager analyses the state of required devices and
associated environmental variables. For this to work, the manager must keep an internal image of the
state of all devices (Figure 5.4).

The manager generates the view of the home, which is of a hierarchical form. This view is logical
rather than physical as a device may be in one room but may control a device in another – for example
a Hi-Fi with speakers in two rooms. The manager generates the view by searching the gateway for
all device objects registered. Once it has a list of all devices, it consults the remote device database
(section 5.2.5) and obtains all associated environmental variables required for this device (this process is
explained fully in section 5.3.1).

If a device joins or leaves the network this change will be registered in the home gateway, in turn
notifying the manager. If a device changes room, unless this change is captured by the gateway, the
manager’s view will not change. This is not unreasonable, as services in the framework may search the
framework’s registry for a device in a specific room.

Figure 5.4 shows the hierarchy with the home at the top. Within the home there are rooms and
within rooms there are devices and the environment (variables).

Room A Room B Room C Room D

Heater Room Temp

Movement

Fan

Air. Con.

Home

Devices Variables

Figure 5.4: Internal representation

5.3.1 Keeping the manager up to date and consistent

Keeping the manager’s view of the home correct is not straightforward. In a home network, devices will
join and leave the network in an ad hoc fashion. The joining and leaving of devices from the network
must be monitored, and these changes must be reflected in the manager’s internal view (Figure 5.4).
The manager also needs to record the devices a service is using. The manager’s internal view is kept
up-to-date and consistent in three ways:

• Monitor the gateway for devices joining and leaving the network.

• Note service commands which are authorised by the manager.

• Observe direct device control by the user.

47

These three ways are discussed further in sections 5.3.1 to section 5.3.1.

Monitor the gateway for devices joining and leaving the network

When a device is added to the gateway, the manager determines the type of device which has been added.
It then consults the remote database that returns, among other properties, the variables which a device
will affect (Section 5.2.5). After obtaining these properties, the manager tries to determine which room
the device is located in. This information about the device is then added to the manager’s internal view
(Figure 5.4). If the manager can not determine the type of device or location, the user must supply this
information. Informing the system of the location of a device is the most a user would be expected to
undertake.2 However, some protocols, such as X.10, provide room location in the address, assuming the
setup is correct.

As well as listening for new devices being added to the framework, the manager must also remove
devices which have been unregistered, or removed from the framework. Protocols such as UPnP advertise
when they leave the network, whereas X.10 devices do not. It would be up to the user to remove the
devices from the framework. This is simply a limitation of the X.10 protocol. When devices are removed,
any locks a device has on an environmental variable are removed.

Service commands which are authorised by the manager

When the service issues a command to the device, it is intercepted by the SIM. If authorised by the SIM,
the command is forwarded on to the device (Figure 5.5). After the command has been authorised by
the SIM, the manager must record the new device state. It does this by updating to its internal view of
the home, thus keeping itself up to date and consistent.

S1 D1

Service

Interaction

Manager

Figure 5.5: Service to device via SIM

Direct device control by the user

If a device is controlled directly by the user, perhaps the user has pressed play or stop buttons on the
VCR, for example, this new state must be recorded in the model. Depending on the protocol, some may
broadcast a change in state. UPnP, for example, does this. If the device state is changed, a message is
sent to all subscribed parties. If a device changes to a state which causes an interaction, the state still
has to be recorded as this is the current state of the device, Figure 5.6. If this change is not recorded,
the manager’s view is not a true reflection of what is happening in the home.

5.4 Operation of the approach

5.4.1 Model

A new model has been developed to show how interactions are avoided using this approach. The model
is based on the three-layered model (section 5.2.1), which shows the home services as well as devices and
their relationship with the environmental variables. With this in mind, a model has been developed and
is shown in Figure 5.7. All services, devices and environmental variables, from all rooms in the home,

2Location Aware Computing is beyond the scope of this thesis, however it is an active area of research and more
information can be found in [100, 101]

48

S1 D1
SIM

Service

Interaction

Manager

Figure 5.6: Device to SIM

would normally be shown here. However, for clarity, only one service, two devices (an input device and
output device) and one environmental variable has been included.

Environmental Variable Z

−

Service X
1

Device
Y

−

−

Se
rv

ic
e

L
ay

er
D

ev
ic

e
La

ye
r

En
v.

 L
ay

er

(c)

(e)

(h)

(a)

Sensor
T

(b)

(d)

(i)

(f)
(g)

Figure 5.7: 3-layered model populated

The first layer in the three-layered model is the service layer, and one service is shown in Figure 5.7.
The service name is shown (Figure 5.7(b)), along with the priority of the service (Figure 5.7(a)). In this
instance, the service has a priority of ‘1’.

The middle layer of the three-layered model is the device layer. All devices registered in the framework
are represented here. Figure 5.7 shows two devices. ‘Sensor T’ is surrounded by a double rectangle
whereas ‘Device Y’ has a single rectangle. The double rectangle represents an input device. An input
device does not affect its environment, it only monitors it. In contrast, the single rectangle represents an
output device. Output devices will affect their environment. Only the primary effect on the environment
variable is captured here. If a device has a side effect, this may impact other variables. To keep the
model simple, side effects have not been captured here.3

The fact this is an output device is shown by the direction of the arrows Figure 5.7(f) and (g).
Figure 5.7(f) shows that it is the environment (variable) that will have an effect on the sensor device.
On the other hand, the arrow in Figure 5.7(g) shows that the device (output device) will affect the
environment (variable).

3Implications of not including side effects are discussed in depth in Chapter 8.

49

Central to this approach is the concept of controlling access to devices and the environment to avoid
interactions. Therefore, the model has to show the access control mechanisms – the locks.

Figure 5.7(c) shows the lock for controlling access to the device itself. This lock is set by the service.
Generally, a service will use NS, as it is unlikely to want another service using the device while it is in
use. If a service does not understand how to set the lock for the device, a default lock from the device
description database (section 5.2.5), which is normally NS, is used.

It is only output devices which can be locked by services; input devices can not be locked, they simply
report details back to services.

Once access to the device has been gained, the manager must ensure the device is able to gain access
to all required environmental variables. It is only the variables which the device will affect by carrying
out this particular action that are consulted. The variable a device affects when it carries out specific
actions are obtained from the remote device database. Figure 5.7(e) shows the proposed lock for the
environmental variable. The arrow, Figure 5.7(g), points to the variable where the lock is to be set.

Figure 5.7(h) shows the current lock of the environmental variable. The reason for showing locks on
both the bottom of a device and on the environmental variable is that the environmental variable may
already be locked by another device. Figure 5.7(i) is the name of the environmental variable.

Using this approach, the interaction discussed in section 4.3.4, is used to show how the approach
operates.

5.4.2 A worked example:
Interaction between climate control and security

Under certain circumstances a negative interaction can occur between the home security service and the
climate control service (section 4.3.3).

As previously discussed, if the alarm is armed, it would not be appropriate for the climate control to
open windows in the home. Not only would opening the windows cause movement, triggering the alarm,
but the two services have conflicting goals here. The goal of the security service is to keep the home
secure, while the goal of the climate control is to cool the home by opening the window which makes the
home insecure. These goals conflict which causes a negative interaction.

The approach described in this chapter can be used to avoid this interaction.

Setting the scene

To model this interaction, two services are required – security service and climate control service. For
the services to operate they require a number of devices. For the sake of clarity and simplicity, a home
with only one room and minimal devices is assumed.

The climate control service requires a temperature sensor (input device) to get the room tempera-
ture. In this home, there is also an external thermometer, so the outside temperature can be obtained
(for clarity, the external thermometer has not been included in any of the Figures, Figure 5.8 – Fig-
ure 5.12). To control the temperature the service has three output devices available for use: a heater,
an air-conditioner and a window. Each of the output devices changes its environment in some way. The
heater will heat the room, and therefore increase room temperature. The air-conditioner will cool the
room, reducing room temperature. The window, when open, will change room temperature either up or
down, depending on the outside temperature. When opening and closing, the window will create move-
ment within the room. Therefore, among the three devices, two environmental variables are required:
temperature and movement.

The security service requires an input device, a motion sensor to detect movement within the room.
The service also requires two output devices: an alarm control panel, which is used to set or disable the
alarm, and alarm bell. On the surface, the alarm control panel may seem to be an input device as a user
uses it to arm the alarm. However, although there is no direct output to the environment, this device
does control a variable in the environment, movement. Only output devices can lock variables; input
devices cannot control the environment, they simply monitor (read) the variable. Therefore, the alarm
control panel appears as an output device.

The alarm panel wants to control movement within the room, it does not want any movement
created when the alarm is active. When the alarm is triggered, the bell device is used to draw attention

50

by making a noise. These two devices each require an environmental variable: the alarm control panel
requires movement and the bell requires the sound variable.

The static setup

The static relationships between devices and the environment are defined in the device description
database (Figure 5.3, line 8 & 9).

Assuming these were the only services and devices in the home, the manager would generate an
internal image shown in Figure 5.8. This representation is stored in memory, so if the gateway is
restarted, the internal image would simply be rebuilt.

Se
rv

ic
e

L
ay

er

Motion
Sensor

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

−

−

Bell

−

−

Sound

−

Temperature

−

Movement

−

Window

−

−−

Climate Control
(HVAC)

1
Security

2

(a)

(b)

Figure 5.8: Static model of security and climate control service setup

In this scenario there are two services, both of which are in the service layer. Assume the service
priorities have been set by the user (or a service provider on their behalf). The climate control has been
set with the lowest priority, ‘1’, and the security service with ‘2’, which is the highest in this scenario.
Therefore, the security has overall control, if it needs to gain access to any device which the climate
control is using.

The device layer contains the seven devices (two input and five output) and the environment layer
contains three environmental variables. The black arrows between the devices and variables show the
static links between a device and its environment. The direction of the arrows also show the flow of
information. Figure 5.8(a) shows the temperature variable will affect the thermometer, and Figure 5.8(b)
shows that the heater will affect room temperature.

This static model is generated automatically by the manager at runtime. When each of the seven
devices is added to the gateway, the manager would automatically register each in its own internal view.
The manager would then consult the remote device database (section 5.2.5) to obtain device details such
as default values and associated environmental variables.

Arming the security service

Assume the climate control service is active but only monitoring the room temperature (not controlling
any devices) and the security service is off.

If the owner leaves the home, they use their mobile phone to communicate with the security service
which turns the alarm control panel to active.

51

The security service first needs to get access to the alarm device. Since this device is not in use, it is
able to gain access and lock it with NS as it does not want anyone else using the device (Figure 5.9(a)).
Next, using the default values from the device description database, the manager knows that for the
‘arm’ command, the movement variable should be locked using NS. Figure 5.9(b) shows the lock the
device wants to place on the environmental variable, NS. Since the environmental variable is not locked,
this value is set in the variable (Figure 5.9(c)).

Se
rv

ic
e

L
ay

er

Motion
Sensor

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

−

Movement

NS

Climate Control
(HVAC)

1
Security

2

Window

−

−−

(a)

(b)

(c)

Figure 5.9: Security service armed

The security service is now fully armed and monitoring the home. The climate control service is also
active, but it does not require any devices, other than the thermometer notifying the service of a change
in room temperature.

Avoiding the interaction

The security service in the home is armed. Assume that the temperature within the home starts to rise
and the climate control service (knowing that it is cooler outside) needs to open a window to allow the
cool air in. If the service interaction manager were not in place, the climate control service would open
the window making the home insecure and also triggering the alarm.

If the manager were active and the climate control were to issue a command to open a window, the
command would have to be authorised by the manager. Assume the climate control service issues a
command to open the window. First, the climate control service must be able to access the window.
Since the window is unused, the service is granted access and sets the device lock with NS, Figure 5.10(b).
The dashed lines (Figure 5.10(a) and (e)) are to show temporary links. Until authorisation has been
granted for both device and all related variables, they remain dashed.

Access to the window device has been granted. The manager can now try and set the device’s
proposed locks for the environmental variables. Since opening the window will impact two environmental
variables, two proposed lock boxes are shown (Figure 5.10(c) and (d)). Since it has been determined
that the temperature outside is colder than inside, the device would like to lock the temperature variable
with S– (Figure 5.10(c)). Also, since opening the window will cause movement, the device would like
to set movement to S± (Figure 5.10(d)). When the manager tries to place a lock for the device on the
environmental variables, the manager can set the temperature variable with S– (Figure 5.10(g)) as this
is free. It can not set S± to the movement variable. This is because movement is already set with NS

52

Se
rv

ic
e

L
ay

er

Motion
Sensor

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

S−

Movement

NS

Window

NS

S±S−

Climate Control
(HVAC)

1
Security

2

(a)

(b)

(c)
(d)

(e)

(g) (f)

Figure 5.10: Avoiding Interaction between Climate and Security service

(Figure 5.10(f)), and NS and S± are not compatible (Table 5.1). The lock on the movement variable
can not be overwritten as it has been set by a service with a higher priority.

Since the lock can not be placed on the movement variable, the window device is unable to open and
the interaction has been successfully avoided.

If the climate control service truly were a smart service, it would search for an alternative way of
cooling the room. It should realise an air-conditioner is available. Since the air-conditioner is available
and the temperature variable is also available, the climate control service would be able to gain access
and control the air-conditioner device and turn the device on, Figure 5.12. Both services are now active
and work in harmony.

Avoiding the interaction under different circumstances

The example described above assumes the home security service is set first. Assume the home security
service is inactive and the climate control service is currently active and has the window open. Further,
assume that the security service has extra functionality that makes it check that all the windows are
closed.

This is one example of an instance where priorities must be used. Before arming itself, the security
service checks that all windows within the home are closed. Whilst checking, it notices that one window
is open, and has been opened by the climate control service (Figure 5.11).

Figure 5.11 shows the two services. Climate control is active and has opened the window. To make
the home secure, the security service is trying to gain access to the window device to close it. However,
when the security service tries to gain access to the window device it finds it is locked with NS. Normally
access would be denied, but the security service checks the priorities and finds that the window has been
locked by the climate control service which has a priority of 1. The security has a priority of 2, which is
higher than the climate control priority, so the security can gain access and control the window.

Therefore, the security service is able to override the lock and gain access. The security service can
close the window. When the window is closed (or turned off), the locks it has on the temperature and
movement variables are released. When the security service tries to arm the alarm it succeeds and the
alarm is armed. Thus, the internal image would look like Figure 5.9.

If the climate control service does try and open the window again, since the environmental variables
are locked, the request will be denied as security has a higher priority, just like Figure 5.10. There is

53

Se
rv

ic
e

L
ay

er

Motion
Sensor

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

−

−

Bell

−

−

Sound

−

Temperature

S−

Movement

S±

Window

NS

S±S−

Climate Control
(HVAC)

1
Security

2

Figure 5.11: Avoiding interaction when climate control is active first

an issue that the service and device may become out of sync. If a protocol, such as UPnP is used, once
a command is issued to a device, a service would normally expect a 200/OK message to be returned. If
it does not receive this, the message will be resent. Since the manager is blocking the messages, the
resent message will be blocked, like the first. Devices like X.10 offer no acknowledgement of commands.
Therefore there is a possibility a service thinks it has turned a device on when it has not. An argument
could be made that the manager notifies the calling service with the reason why the window is unable
to open. Currently, the approach does not support this as it would require services having knowledge
of the service interaction manager, this is an unwise assumption, though technically it is relatively
straightforward to add.

This is not necessarily a problem. Services where it is vital a command is carried out by a device
should expect a response from the device. In a home security alarm, for example, an alarm will not
set properly if some doors or windows are left open. Services where it is important that a command is
received and processed by a device, should require an acknowledgement from the device. Therefore, if
the manager blocks all commands to a device, the service should not assume it was successful, unless it
receives a response. However, this is an implementation issue for the service vendor.

5.5 Summary

This chapter has described how this technique is able to avoid interactions with little, or no, user
intervention. An online service interaction manager has been presented. The manager runs on the
services gateway where home services and devices reside.

When messages (commands) are sent from a service to devices, the manager will intercept the message,
analyse it, and decide whether a negative interaction will occur. The technique draws inspiration from
other domains, such as Operating Systems, for locking. By refining locking algorithms, services and
devices with a common goal can work together, whereas services and devices with conflicting goals are
not allowed.

The manager has an internal view of the home network. The internal view is automatically generated
by searching for all devices on the framework. Since the manager consults an external database to get
device descriptions, as long as the database is kept up to date, the manager can handle new types of
devices.

54

Se
rv

ic
e

L
ay

er

Motion
Sensor

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air Con

S−

NS

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

S−

Movement

NS

Window

−

−−

Climate Control
(HVAC)

1
Security

2

Figure 5.12: Security service and climate control service both active

The internal model is then kept up to date by listening for devices, and services, joining and leaving
the residential gateway.

An interaction example between the security service and climate control has been presented. The
example shows how the technique is successfully able to avoid negative interactions. Importantly, it
shows how negative interactions can be avoided using the environment.

This approach is independent of the service, as the approach described focuses on devices and the
environment. However, to avoid some interactions, it is necessary to know the priority of a service. This
priority does not come from the service itself, but instead comes from another service which is part of
the manager. The example presented earlier shows how priorities were used to avoid the interaction.

An example of how the interaction outlined in section 4.3.4 has been successfully avoided has been
presented.

The next chapter will describe, in detail, the test-bed used to test this approach. The subsequent
chapter will discuss the experimental results.

55

Chapter 6

Architecture of the Test-bed

6.1 Introduction

To show service interactions do happen in the home network, and that the approach detailed in the
previous chapter does work, an experimental home network (test-bed) was created.

The test-bed has to reflect what a real home network may look like. This includes user services and
the kind of devices one would expect to find in such a home. Following a review of the literature [9, 102],
a test bed was developed.

There were two phases in the development of the test-bed. The first phase was to develop and
test a test-bed which contained devices and home services. It is important that the test-bed is stable
and working correctly before including the approach, as this ensures results from the service interaction
manager are reliable. This is explained in the next section. The second phase was the design and
implementation of the approach. A discussion will follow regarding the testing of the approach.

6.2 Design of the basic test-bed

Here, by the term ‘basic test-bed ’, we mean a test-bed which includes a selection of devices (UPnP and
X.10), the service management framework (OSGi) and the home services (Security, Climate Control,
etc.). These three parts form the basic test-bed. Once this is stable and reliable, the approach can
be added. This section, however, concentrates on three components: devices, the service management
platform and user services.

6.2.1 Devices

As there is a plethora of protocols used in the home, and no single protocol is likely to emerge as the de
facto standard. It would be impractical and unnecessary to include devices which use each protocol in
the test-bed. Therefore, two protocols have been selected, X.10 and UPnP.

X.10 devices

X.10 was chosen as a protocol because it is currently used in homes. The protocol is popular with
home automation enthusiasts because of the availability [2] and cost of the components. Also, typical
household devices (e.g. lamps, fans, heaters) can be used. Moreover no additional wiring is involved as it
uses the power lines as the transport medium. This makes it a quick, cheap and easy way of automating
the home.

For experimentation, the following X.10 modules were used:

• CM11 X.10 gateway module.

• An X.10 lamp module.

• An X.10 appliance module.

56

• An X.10 motion sensor with receiver.

The X.10 gateway was connected to the computer which was to host the service platform. This can
be seen in Figure 6.1. The figure shows the complete test bed, with the X.10 portion shown.

The following general appliances were connected to X.10 modules:

• A lamp was connected to the lamp module.

• A fan was connected to the appliance module.

Since the number of X.10 modules available was limited for the project, a virtual X.10 device was
used to enhance the network. The only virtual device used was the home window. The window device
was a virtual X.10 device that would open and close. Thus, when an on command was sent, it would
open. When an off command was sent, it would close.

*X.10 Lamp
*X.10 Fan

• UPnP
Air-conditioner

• UPnP Heater

• UPnP
Thermometer

• UPnP
T.V.

*X.10 Motion
Sensor & Receiver

Power line

IP Network

*Residential
Gateway

• UPnP
VCR

• UPnP
Heater 2*USB Webcam

Room: Living Room

X.10 Addressing
Room address: A & F

Lamp : A1
Fan : A2

Window : A3
Motion sensor : F1

Key:
* Real Device
• Virtual Device

Wireless Connection
Wired Connection

USB
Cable

* DHCP Server

* SIP Server
guilder.cs.stir.ac.uk

• X.10 Window

• UPnP
Alarm panel

* X.10
Gateway

• UPnP
Blinds

Figure 6.1: The test bed used for experimentation

The X.10 motion sensors are used to detect movement. Upon detecting movement, they send an on
command to a pre-set X.10 address. Since they send commands to other addresses, it means they do
not have an address themselves.

This is not an issue if the home only uses X.10 as the networking protocol. However, it is unlikely a
home will only use X.10 because of the limited capabilities of the protocol and the requirements of users.
Therefore, some way of notifying other parties that movement has been detected is required. Although
crude, the only solution was to change how addressing is interpreted; this is caused by the limitations of
the X.10 protocol.

The solution was to reorganise the addressing, in that output devices should have one room address
(A in Figure 6.1) and a second room address should be used for input devices (sensors) (F in Figure 6.1).

57

This means that when the motion sensor is triggered it sends an on command to address F1 (assuming
the sensor was given the address F1 to trigger). Although this would not actually turn any device on,
any listening party who knew that room F was set for sensor information in the living room, would know
this was to be interpreted as movement in that room.

As the X.10 gateway can listen to X.10 messages on the X.10 network, an interface between the X.10
gateway and the service management framework was created. This allowed the framework, and services
on the framework, to be notified of any X.10 messages.

UPnP devices

UPnP is a new home networking protocol and is growing with more OEM companies becoming members.
The increased membership and increased attention has meant many new UPnP standards have been
defined by the UPnP Forum. At present, only UPnP routers and internet gateways are available to buy
off the shelf. Devices required for this test-bed, such as heaters or air conditioners are not available
yet. Therefore, virtual devices were used. Using virtual devices offers flexibility for both creating and
controlling the device. To create a virtual UPnP device, a UPnP SDK, including UPnP stack, was used.

There is a selection of UPnP SDKs available to third party developers [103]. Many of these however
are commercial and the source code for the stack is not available. For this reason, an open source stack
was used – CyberLink [104]. There are two implementations of the stack available: Java and C++. As
the Java stack was more mature, it was chosen over the C++ implementation which was an early beta
version. As well as forming the base for the UPnP devices, it was also used to create the UPnP driver
for the service management framework.

Each UPnP device developed had a simple GUI for user input (e.g. set device on or off, or set channel,
etc.). These are the kind of controls one would expect on simpler devices. The XML device description
and service definitions followed those published by the UPnP Forum. Where definitions for devices were
not available, the basic device specification was used [105].

The CyberLink SDK was used to create the following UPnP devices (each with a different GUI, XML
service and XML device description):

• Thermometer – a device which reads room temperature. When queried it returns the room tem-
perature. Also when the temperature changes, subscribed parties are notified. As this is not a real
device, a slider-bar is used to manually change the temperature.

• Heater – a simple heater device with two options: on or off. Since this is a virtual device and to
mirror what would happen in reality, the heater finds all thermometers in the room and increases
their temperature. In reality this is not required as the heater would increase room temperature
which the thermometer would detect. This addition did not change the functioning of the device.
For experimental purposes, the device service was extended to include location. This is a text field
which allows a user to enter the location of the device. This allows other services to query the
device to determine location. Again, this extra functionality does not change the operation of the
device. This does get around the issue of automatically detecting the location of devices, which is
a separate area of research [100].

• Air-conditioner – like the heater, this is a simple device which has two options: on or off. Similar
to the heater, to simulate reality the device finds thermometers and decreases the temperature.

• Television – a device which tunes into a channel and displays the picture sent by a TV station.
The TV has a number of functions: on and off, change the channel, and volume up and down. For
experimental purposes, a TV station had to be created. This is a Java server which devices can
connect to. Images are then sent by the server at regular intervals (1 per second). This was enough
to simulate the role of a TV station.

• VCR – like the TV device, the VCR records to file any images it was sent. The user can then tune
the TV into the VCR and play back the recorded images. The options available in this device are:
on and off, play, record and set channel to record. The setting of channel also allows the VCR to
record from another source, e.g. a web-camera.

• Window blinds – This device simulates a small motor which can open and close the blinds accord-
ingly.

58

Although the majority of devices in the test bed were either X.10 or UPnP, there were some other
important auxiliary devices.

Auxiliary devices

Three support devices were used in the test-bed. These were: a web camera, a SIP Server and a DHCP
server.

The DHCP server is used by most IP devices in a network for the allocation of IP addresses. In a
home, many home gateways offer a DHCP service (Linksys WRT54G [51] is an example device). In the
home, it should not make a difference how IP addresses are allocated; this has simply been included in
Figure 6.1 for completeness. If a DHCP server was not on the network, IP based devices could allocate
their own IP address using auto-IP.

The SIP protocol is mainly used for VoIP. However, another use of the protocol is instant messaging
and presence. For this reason, a SIP server was required for use. The server used was SER [106]. This
is a stable server available for use in the Computing Science Department within the University. The
SIP server and setup is out of the scope of this project as it is unlikely many home owners would go
to the trouble of installing and setting up their own. This is due to the complexity and time required.
A more likely situation is that a home owner would be offered a SIP service by their service provider.
For example, Microsoft Windows Messenger is based on SIP [107]. This is an instant messaging service
that allows users to log in and send messages to buddies. The SIP server, shown in Figure 6.1, has been
included in the diagram for completeness.

The web camera device is a USB device and is connected directly to the computer which runs the
service platform. More sophisticated web cameras will soon be available which are wireless and even
UPnP based. This means they can be anywhere in the home and do not have to be directly connected to
the computer which controls it. However, the web camera used here was adequate for experimentation,
and shows how a service management platform can support devices of different protocols. 1

The devices form only part of the test bed. A service platform which is able to gather devices and
make them available to user services is required. The discussion in Chapter 2 highlights the importance
of this, as the full potential of networked devices is not released until middleware, a glue, is available to
join services and devices.

6.2.2 The service management platform

A service management platform is a platform which can manage and execute services. In the home
environment, these kinds of services would include entertainment, security or climate control.

When selecting a service management platform for the test bed, some requirements had to be met.
These requirements included:

• The platform is stable and reliable – since the gateway is running in the home, it has to run for
long periods between restarts, typically months or even years.

• Robust – if one service fails, the rest of the platform should function as normal and not crash.

• Portable – be easy for third party developers to deploy their services.

• The ability to suppose a range of networking protocols and have the ability to accommodate new
protocols.

• Give all services the opportunity to find and use devices.

• Dynamic – as services and devices change, the platform should be able to accommodate these
changes without having to redeploy a new platform.

Currently, the OSGi framework is the only suitable candidate which meets these requirements.
At the time of development there were only three OSGi frameworks publicly available: the Sun Java

Embedded Server [108], the IBM Service Management Framework [109] and an open source implemen-
tation, Oscar [110].

1Provided they have drivers for the service platform.

59

The offering from Sun, the Java Embedded Server (JES), was an implementation of version 2 of the
OSGi specification. However, the implementation was not OSGi compliant. Further, version 2 has been
superseded by version 4, therefore it would be advantageous to use the newer specification. Version 3
of the OSGi specifications include UPnP, which was not included in version 2 of the OSGi specification.
Since many of the devices used in the test bed were UPnP based, the Sun implementation was unsuitable.

The open source implementation, Oscar, was an implementation of version 1 of the OSGi specification.
Further, this implementation was not reliable, or mature for full scale use. Therefore, it was decided not
to use this framework.

The IBM implementation, the Service Management Framework (SMF) version 3.5 was an implemen-
tation of version 3 of the specification. It was also an OSGi compliant platform. This platform was
mature and reliable, but lacked a UPnP driver.

Since this platform was the most reliable and mature, it was chosen as the service platform used
for experimentation. The framework was run on a desktop PC. The specification of this computer was
modest – Intel Pentium III 500MHz processor with 128Mb of RAM and a 10Gb hard drive. The machine
was running Microsoft Windows XP SP1, with the Sun Java runtime environment, version 1.4.2. As a
UPnP driver was not distributed with the IBM OSGi framework, one had to be created.

The UPnP OSGi driver

Although the UPnP driver had not been implemented by IBM, the specifications were included in [63].
Following these specifications, a driver was developed.

Effectively, the behaviour of the UPnP driver was similar to that of a UPnP control point. The role
of the UPnP driver was to listen for new UPnP devices leaving and joining the network. When a device
joins the network, it had to be registered in the framework’s service registry as a UPnP Device service.
When the device left the network, the device service entry had to be removed from the registry.

The driver itself was created by modifying the UPnP control point component of the CyberLink SDK.
This is because the OSGi UPnP driver is simply a modified UPnP control point. As UPnP devices are
self configuring, no user interface was required for the driver itself. It simply adds devices when they are
connected to the network and removes them when they leave.

When a new device does join the network, the driver has to read the device XML description to get the
device details. These details are added to the service description in the service registry. Figure 6.2 shows
the UPnP driver service along with the service registry entry for a device it has added. In this example,
the device registered was a UPnP thermometer. The properties from the thermometer device description
XML have been parsed and used for the device description. Services can search these properties (line
5–21) in the service registry, as described in section 2.2.2.

Registering the UPnP devices in the framework allows other bundles to use the devices. However, the
driver also has to allow other bundles to be notified of changes to a device state. For example, it would
be useful for a climate control service to be notified of a change in temperature. To facilitate this, the
OSGi specifications stated that the UPnP base driver would subscribe to all new devices. This allows
other bundles within the gateway to register with the driver to be notified of changes in the device.

Although Release 3 of the OSGi specification includes UPnP it does not include specifications for
X.10. Drawing inspiration from how the UPnP driver was constructed, and using themes from [5] to
create device drivers, a similar driver was created for X.10.

The X.10 OSGi driver

The role of the X.10 driver is allow X.10 devices to be added and removed from the service registry in the
framework. Since X.10 is not self configurable, details of new X.10 devices have to be manually entered.

The X.10 driver was developed used an existing open source Java X.10 API [40]. This code was
taken and adapted for use within an OSGi environment. Communications port drivers from Sun were
also required since the X.10. controller was connected to the serial port of the gateway. The Java
Communications API [111] was used to access the communications (comm) port.

Like the UPnP driver, the X.10 driver had to support the addition and removal of devices from the
gateway. Also, it had to offer a mechanism for listening to X.10 messages on the network. Adding devices
was carried out manually via a web page, shown in Figure 6.3(a).

60

1. file:/h:/www/bundle/upnp-basedriver.jar [28]

2. id=28, Status=ACTIVE Data Root=H:\smf\jarbundles\28\data

3. Registered services:

4. {org.osgi.service.upnp.UPnPDevice, org.osgi.service.device.Device}=

5. {service.id=27,

6. UPnP.device.UDN=uuid:mewUPnPThermometerLaptop,

7. UPnP.device.UPC=1234567890,

8. UPnP.device.modelNumber=1.0,

9. UPnP.device.parentUDN=uuid:mewUPnPThermometerLaptop,

10. UPnP.device.serialNumber=000001,

11. UPnP.device.modelName=Thermometer,

12. DEVICE_CATEGORY=UPnP,

13. UPnP.device.modelDescription=UPnP Temperature Sensor v1.0,

14. UPnP.presentationURL=http://www.cs.stir.ac.uk/,

15. UPnP.device.modelURL=http://www.cs.stir.ac.uk,

16. DEVICE_IP_ADDRESS=192.168.1.14:4004,

17. UPnP.device.manufacturerURL=,

18. UPnP.export=,

19. UPnP.device.type=urn:schemas-upnp-org:device:TemperatureSensor:1,

20. UPnP.device.friendlyName=UPnP Temperature Sensor,

21. UPnP.device.manufacturer=mew

22. }

23. No services in use.

24. Exported packages

25. org.osgi.service.upnp[exported]

26. Imported packages

27. uk.ac.stir.cs.fi.manager.service<file:/h:/www/bundle/fi/manager.jar[30]>

26. org.osgi.service.device; specification-version="1.1"<file:

bundlefiles/osgi-services.jar [1]>

27. org.osgi.service.upnp<file:/h:/www/bundle/upnp-basedriver.jar[28]>

28. org.cybergarage.xml<file:/h:/www/bundle/xmlNode.jar[29]>

Figure 6.2: Service details for UPnP bundle, including service registry entry.

Removing an X.10 device from the gateway is shown in Figure 6.3(b). The list of X.10 devices is
compiled by the servlet, searching the service registry for X.10 device services. This is then displayed on
the page so the user can select the device they wish to remove. When the remove command is executed
the device is removed from the service registry in the gateway.

In addition to adding and removing a device, the driver offers services an option to listen to X.10
messages on the network. The X.10 gateway can listen for X.10 commands on the power line. The
X.10 gateway sends these messages to the serial port of the gateway, which the X.10 driver receives and
distributes to interested parties.

The final stage of development of the test bed is the user services. These are the services which make
use of the devices. The services were made into OSGi bundles which were deployed onto the framework.

6.2.3 Services

The services implemented for use in the test bed are those discussed in Chapter 4. To recapitulate, there
were five services:

• Heating, Ventilation and Ai-conditioning (HVAC) – The climate control service monitors the room
temperature throughout the home and keeps it at a comfortable temperature, defined by the user.
The service was developed, and a web interface was created for a user to control the service. This
allows values to be entered for testing. The main screen of the service is shown in Figure 6.4.

• Home Security Service (HSS) – This service is used in conjunction with an alarm device. The
service can be set, and configured, through the alarm device. The service can also be configured
through a servlet, shown in Figure 6.5. The role of this service is to monitor the home for intruders
and alert the owner of such an event. This service also has the away from home feature which
makes the home look occupied when the home is empty.

• Power Control Service (PCS) – The aim of this service is to reduce the amount of power a home
consumes. It does this by turning off devices when no one is home. The service can be set to

61

(a)

(b)

Figure 6.3: X.10 setup servlet

turn on devices which consume a lot of energy when electricity is cheaper – a washing machine, for
example.

• Home Entertainment Service (HES) – This service controls entertainment devices in the home, such
as the television, stereo, and VCR/DVD devices. One of the main features of this service is that
it can in principle monitor viewing habits and automatically record certain television shows. The
service does allow an option to manually set the time and date to record a television programme,
shown in Figure 6.6.

• Communications Support Service (CSS) – This service supports the use of email and telephone.
The user can be notified of email arriving through their television. Also, any incoming telephone
calls can be displayed on the screen; the user can decide whether to accept the call or not.

Each of the above services was implemented as an OSGi bundle.
Each service had a specific goal, e.g. the HVAC service was to keep room temperature at a comfortable

level, the security service was to keep the home secure. To achieve these goals, services have to use devices.
All services were developed to query the service registry for the required devices.

The HVAC service will be used as an example here. This service had to keep the home at a comfortable
temperature. The temperature levels are set manually, but until then default values are used. For this
service to function effectively, a minimum of three devices is required: a thermometer, a heater and an
air conditioner.

When the HVAC service starts, it searches the service registry for a thermometer device to ascertain
the room temperature. If one is found, the service registers with the thermometer service as the HVAC
service needs to be notified of changes in temperature. If no thermometer is found, the service would
remain in an idle state until a thermometer is introduced into the network. The service could be designed

62

Figure 6.4: HVAC setup servlet

with default times when it starts. However, this is a service design issue and is therefore not relevant
here.

When the temperature in the room drops below the minimum temperature, the HVAC service will
search the service registry on the gateway for a heater. The registry returns an array of devices which
match the search criteria. The service will then turn all on. This means that if two heaters were returned,
both would be turned on. The advantage of searching for devices only when the service needs them is
that a newly introduced device can be used without having to restart the service.

As the heater heats the room and the room temperature increases, the HVAC service is notified of
the increase in temperature by the thermometer. When the temperature reaches the desired level, the
service will turn the heating devices off.

As stated previously, each of the services has been implemented as a series of OSGi bundles. Each
is designed to search the service registry in the gateway for the type of device they require. If a service
cannot find a device, it remains idle until a suitable device is added to the network. A service which
requires more than one device, the alarm service for example, will use the devices available. This means
that if one of the devices is unavailable, perhaps the alarm bell for example, other functions would be
carried out as normal, e.g. sending a SMS.

In addition to the services detailed in Chapter 4, three other services were implemented: an SMS
service, a SIP Instant Messaging (IM) User Agent (UA) service, and a web camera service.

The OSGi SMS bundle service works in conjunction with the Lycos SMS service [112]. This service
requires a Lycos username and password along with the mobile phone number and message to be sent.
A connection was then made to the Lycos service and the SMS message sent. This is particularly useful
if a home service requires the owner to be notified urgently, e.g. a suspected burglary.

The SIP IM UA bundle was developed using the SIP stack from NIST [113]. This is an open source
Java based SIP IM stack which was adapted for use in an OSGi gateway. The service was set to register
with the SIP proxy. When registered, the service could then be called by other services to send instant
messages, given an email address and message.

A web camera service had to be created to allow a connection from the gateway to the USB web
camera which is on a USB port. An OSGi service bundle was developed which made a connection to the
USB camera, using the Java Media Framework API (JMF) [114]. When the connection is active between
the gateway and the device, images are streamed from the camera to the service on the gateway. Other
services can then use this service to get images from the web camera.

63

Figure 6.5: Home alarm setup servlet

The basic test-bed was then complete. The home network has a selection of devices: real X.10
devices, some virtual UPnP and X.10 devices, and a real USB webcam. The user services automate
the home in a number of ways, from automatically controlling the living temperatures, to recording the
owner’s favourite show. The component which makes this connectivity possible is the service management
platform, the OSGi gateway.

At this point the devices can be started and services installed. However, before they can be used,
both devices and services have to be configured.

6.3 Configuration of the basic test-bed

6.3.1 Setting up the X.10 devices

Since the X.10 protocol does not support automatic configuration, the new X.10 devices have to be
added to the framework manually. A servlet was created to facilitate this (shown in Figure 6.3(a)).
Adding a service is straightforward. The type of device is selected, e.g. fan, lamp, window, then the
address is entered. A user then selects Add X10 Device. The virtual radio buttons were only used for
testing. This did not affect the way in which the gateway dealt with the device. When devices are added,
changes to the X.10 devices are saved to the file system. This means when the gateway restarts, the
X.10 configuration data is loaded and the user does not have to re-enter the data.

When the ‘add’ button is selected, a new X.10 device service is created in the framework. The details
entered into the service registry are similar to those used for UPnP. Figure 6.7 shows an entry for an X.10
lamp in the service registry. This shows the basic details of the device: the type (Lamp) and address
(A1).

64

Figure 6.6: Television recording setup of Entertainment Service

6.3.2 Setting up the UPnP devices

UPnP devices, by their nature, require little work to set up. A room value was set in the service
description of each device. The default value used was living room. This could be changed via a control
point if a device was to be put elsewhere. However, since the majority of testing was concentrated in
one room, this was kept as the default.

When each UPnP device was started, it was automatically registered with the OSGi gateway. When
the UPnP devices were registered in the service registry, they were ready to be used by other services.

6.3.3 Configuration of the services

The five services listed above each had to be configured for the home. Using the servlets, the services
were configured in the following way:

Heating, Ventilation and Air-conditioning (HVAC): The climate control service was set with two
types of values: those that conflicted and those which did not. The conflicting values dealt with
where the maximum heating value overlaps with the triggering value for cooling.

Home Security Service (HSS): In the event of an intruder being detected, this service was set to
send an SMS message, send an instant message using the SIP IM client, record the intruder from
the web camera to the VCR, and then ring the alarm bell.

Power Control Service (PCS): This was set to turn all devices off once the owner left the home.
There were no exceptions in the devices that could stay on.

Home Entertainment Service (HES): This service was set to automatically record a television chan-
nel at a certain time and date. Monitoring an owner’s viewing habits was not included.

Communications Support Service (CSS): This service was set to display email only; the telephone
option was not included for testing. An email account was configured for the email aspect. Since
push email is not supported with the email server used, the service has to poll at regular intervals
to check for new mail.

65

1. file:/h:/www/bundle/x10driver.jar [24]

2. id=24, Status=ACTIVE Data Root=H:\smf\jarbundles\24\data

3. Registered services:

4. {uk.ac.stir.cs.service.x10.X10LampModule, org.osgi.service.device.Device}=

5. {service.id=34,

6. DEVICE_CATEGORY=X10Module,

7. DEVICE_TYPE=Lamp,

8. DEVICE_ROOM=A,

9. DEVICE_ROOM_FRIENDLY=LivingRoom,

10. DEVICE_NUMBER=1

11. }

12. No services in use.

13. Exported packages

14. uk.ac.stir.cs.service.x10[exported]

15. Imported packages

16. uk.ac.stir.cs.fi.manager.service<file:/h:/www/bundle/fi/manager.jar[30]>

17. org.osgi.service.device; specification-version="1.1"<file:

bundlefiles/osgi-services.jar [1]>

Figure 6.7: Example service entry for an X.10 lamp

Now that services had been configured and devices set up, testing was required to show that the basic
test-bed worked.

6.4 Testing of the basic test-bed

To ensure the test-bed was stable and did what it was meant to do, some basic testing was carried out.
This included testing the devices and also the services which controlled the devices.

6.4.1 Testing the devices

Testing UPnP devices
As previously stated, the UPnP devices were created using CyberLink SDK (version 1.1). Although
the devices appeared to work and function correctly, they were tested using the Intel Device Validator
Tool [115] (Figure 6.8). This tool tests the discovery of the device, control of the device and eventing
(subscription). All devices passed the tests.

The devices could also be seen in control points from Siemens [116], Intel and CyberLink. All devices
appeared in these and functioned correctly, i.e. returned correct values and allowed users to control the
device. Therefore, this confirmed that these UPnP virtual devices were correctly implemented. If they
were not, they would not have appeared correctly in the control points, or have passed the Intel UPnP
device validator.

Testing of the X.10 devices
After the X.10 devices were connected to the network and manually entered into the framework, a test
servlet was used to control the devices. The X.10 servlet offered basic functions: turn a device on or
off. For lamp modules, dimming was supported. Since the X.10 devices used were real, the tests would
either work or not work. These tests were carried out successfully and devices worked as expected.

6.4.2 Testing the services

Each of the five services had to be tested to make sure they worked in the OSGi gateway, and that they
found the correct devices.

Heating, Ventilation and Air conditioning (HVAC): When the service started it found the ther-
mometer and received the current room temperature. Since the service had registered with the
thermometer, when the temperature changed, the service was notified. If the room temperature
dropped below the set minimum temperature the service found a heater and turned it on. This
meant the room temperature increased and the service kept the heater active until the room

66

Figure 6.8: Intel UPnP device validator tool

temperature reached the set upper value. Similarly, if the room exceeded the maximum room
temperature, the service would find an air conditioner and turn it on, thus cooling the room.

Home Security Service (HSS): When this service started, it registered with the motion sensor in
the framework. When movement was detected, the service was notified causing the service to send
an SMS, send an instant message, start ringing the alarm bell, and use the web-camera to record
the room on the VCR. If one or more of the devices were not available, the service would continue
to the next action.

Power Control Service (PCS): This behaved as expected. When the service reached a set time, it
turned all devices off.

Home Entertainment Service (HES): This service was used to set the VCR to record certain chan-
nels at certain times. Testing found that this service behaved as expected – it used the VCR to
record shows at specific times.

Communications Support Service (CSS): This service polled the configured email account every
five minutes for new mail. When new mail was received, the service would find the television
device and send an image to it. The television would then display the image, along with the
current picture.

Through basic tests it was found that the services, on their own, behaved as expected. They all found
the relevant devices and sent the correct commands to them. The devices executed these commands
successfully.

With a stable test-bed, the approach was implemented as a series of OSGi bundles. The next section
will discuss the design and testing of the approach.

6.5 Design of the approach

As stated, the approach described in Chapter 5 has been implemented as a series of bundles which run
on the gateway. The approach is able to avoid interactions by carefully controlling access to devices and

67

environmental variables. Control is achieved through a locking algorithm. To turn the approach from
theory into a working prototype, five key components were developed. These were:

• The Service Interaction Manager (SIM)2 – This is the main component of the approach. This
component has to intercept commands before they leave the framework to the device. The manager
has to analyse the commands and determine whether they would cause a negative interaction. To
do this, the manager uses a series of other services.

• Protocol converters – The approach has to handle a number of protocols, and even be expanded
to handle new, or proprietary protocols. Essentially, these converters translate a protocol specific
message to a format the manager can use.

• Device information – For this approach to work, it is important that information regarding how
the device works is required. This is used to work out whether an interaction may occur. The
manager needs to know what a device does and what variables it will affect when it carries out an
action.

• View of the network – It is important that the manager has an overall representation of the home
network. This view includes devices, their location, current state and variables they affect.

• Service priorities – As highlighted in Chapter 5, safety services need to be given priority over less
important services. This component is used for setting priorities and for other services to get a
priority of another service.

These five key points were the main development areas for the implementation of the approach.
They are shown in Figure 6.9. Since the requirements for each component are well defined, each was
implemented as a separate OSGi service bundle. The advantage of building the approach in a modular
fashion is that it becomes flexible and can easily be upgraded as protocols and devices change.

Each of these bundles will now be discussed in more detail.

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Service

Interaction

Manager

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

IBM OSGi gateway

(b) (a)

(g)

(e)

(f)

(d)(c)

Figure 6.9: Bundles for the approach

2The words SIM and manager are used interchangeably in the text

68

6.5.1 Service Interaction Manager (SIM)

The central bundle in this approach is the Service Interaction Manager (SIM), or manager, shown in
Figure 6.9(a).

The manager itself does little processing work. Instead, it has a list of tasks and uses services from
other bundles to get the answers.

When a new message is received by the manager, it has to work out whether the message will cause
a negative interaction if left to proceed to the device. To decide if there will be a problem with the
message, the manager has to convert it from a protocol specific message to one it can understand.

Since the manager is independent of networking protocols, it used the Service Interaction Network
Protocol Converters (SINPC) to translate the message. The SINPC services return the message in a
format which is understood by the manager. When the manager has the translated command, it sends
this to the Device and Environmental Representation (DER) component. It is this component which
decides whether there is a conflict. If there is a conflict, the manager uses the priority service to get the
priority of the service which sent the message. If the calling service has a lower priority than the service
currently holding the locks, the message is rejected and the interaction is avoided. On the other hand,
if the priority is higher for the calling service, the command will be sent to the device. If the priority is
the same, the manager works on a first come, first served basis. It must be noted that a user can change
priorities at any time, if their preferences change.

Services are not notified if they lose control of a device to a service with a higher priority. This
approach presented here has no direct communication with the services. This is because when the
manager starts communicating with services, for the manager to avoid interactions properly, all services
must be aware of the manager. This should be avoided as it cannot be guaranteed that service vendors
will develop their services to work with the manager.

As well as intercepting messages being sent from service to device, the manager also has to handle
notification messages being sent from the devices. These notification messages do not get sent directly
to the manager; instead, they are processed by the SINPC. The SINPC translates the messages into
a format the manager understands. These messages are then sent directly to the DER to ensure the
internal model of the network is maintained.

The manager provides a log which can be used to show whether interaction has been detected as
shown in Figure 6.10. In the figure, it can be seen that no interaction was detected in Figure 6.10(a)
and (b). However, in Figure 6.10(c) an interaction was successfully avoided.

6.5.2 Service Interaction Network Protocol Converters
(SINPC)

The manager relies on the SINPC (Figure 6.9(b)) to carry out message translation. The SINPC are a se-
ries of individual bundles which are different implementations of the uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser
service. This service was created as part of the project for parsing different protocols.

By implementing the protocol parser service as a series of bundles which implement the service,
it means that a wide selection of protocols can be translated. Figure 6.9(b) indicates two protocol
converters were implemented (UPnP and X.10) by surrounding them in dark lines. The dashed lines
shown in the Figure give an example of other protocols which could be implemented.

The manager makes use of these services by searching the framework service registry for services
of type uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser. From the search, the manager will
get an array of all services found. Figure 6.11 is an extract from the framework service registry for the
UPnP protocol parser service. Since the manager does not know what protocol the message uses, it sends
the message to each protocol parser service individually. The manager could be enhanced to improve
efficiency so it learns to recognise messages. The manager would then know what the message means so
as to avoid sending it to each of the converters.

If the protocol parser does not understand the message (e.g. an X.10 message is sent to the UPnP
component) a value of null is returned, otherwise a String is returned which contains the message in
a format the manager can understand.

The format of the returned message is in the following format:
Calling-service-id; device-type; device-id; command; parameters

69

(a)

(b)

(c)

Figure 6.10: Service interaction manager log

1. Registered services:

2. {uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser,

3. uk.ac.stir.cs.fi.upnp.service.FIUPNPService} =

4. { Description=Feature Interaction UPnP Component,

5. service.id=18 }

6. }

Figure 6.11: Extract from OSGi service registry for UPnP protocol converter

Therefore, an example returned value is:
47;AirConditioner;23;SetDeviceState;off
Where the calling service was 47 (the climate control service), and the device type was the air conditioner.
The unique identification number of the air conditioner device in the framework was 23. The service
wanted to turn the air conditioner off, by setting the device state to off. The numeric values of devices
and services are only used by the system, therefore they do not need to be human readable.

A secondary role of the SINPC is to inform the manager of any change in their devices. Each protocol
parser should register to be notified of updates for their device type. For example, the X.10 protocol
parser should subscribe to all X.10 devices.

Therefore, when a new state message is received, the message is parsed into the same format and
sent to the manager. New states can be triggered when a person in the home manually turns on or off
a heater, for example. Since these new states are not instigated by a service, the first parameter in the
manager’s message, calling-service-id, has to be set to ‘1’, which means manual change.

The advantage of translating protocol messages this way is that as new protocols are developed
and introduced, the approach can accommodate them with little hassle. An implementation of the
uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser service is all that is required. New protocol
parser bundles can then be installed onto the gateway. The manager will then find them the next time
it searches for the protocol parser services to process a message.

The other advantage of implementing this in a modular fashion is that since there are so many home
networking protocols, the home owner only needs protocol converter bundles for the protocols they have

70

in their home.

6.5.3 Device Information

The Device Information Service (DIS) is shown in Figure 6.9(c). Given a device type and command, this
service will return the environmental variables the device with this command will affect, and how. There
are two parts to this service. The first part is the OSGi service which runs on the gateway (Figure 6.9(c)).
The second part is the remote database which contains the information about the device (Figure 6.9(d))

Device information database

The device information database is a database which holds all device details including their commands
and the environment variables these commands affect. To implement this, a database server was required.
The database used was MySQL Server version 4.0.18-nt [117]. MySQL is a popular database which is
freely available. It is reliable, fast and scalable (with the largest table it can support being 64TB [117]).

For the purpose of experimentation, the database server was installed onto the same computer as the
gateway. In reality, this database would be hosted with a service provider. Having a database with all
possible devices in a person’s home would be impractical. Not only would this database be extremely
large, but keeping it up to date with new devices would be difficult. For these experiments it did not
make a difference where the SQL database resided.

The database designed consists of four tables. Figure 6.12 shows the relationship between the four
tables. The ‘Devices’ table holds details such as the device name, whether it is an input or output device
and what the default lock for the device is. The ‘Actions’ table holds the names of the actions, including
the name of the action argument. The ‘DeviceAction’ contains only the suggested device usage. This
value will override the device default value as the default device usage is dependent on the action. The
‘EnvironmentalVariable’ table has details of each environmental variable; this depends on the device and
what the action is. Details for the variable, such as the name of the environment variable, default usage,
duration and locality are all held here.

Figure 6.12: Relationship diagram of device information database

Once the database was set up, records were manually entered. The devices used for experimentation
were all included and all details were filled in accordingly. Keeping the database up to date is outside
the scope of this project, however getting data into databases through clients and web interfaces is well
understood.

The Device Information Service (DIS)

The DIS (Figure 6.9(c)) works closely with the database (described above) to get information about
devices. A service on the gateway will call the DIS with certain parameters, and will receive an XML
result.

71

The DIS has one method which takes three parameters: the device type, the command and the
argument. This is converted into an SQL query and sent to the database. If the database is unable to
find any matches, the DIS will return a null value to the calling service.

1. <Device>

2. <DeviceType>Window</DeviceType>

3. <DeviceIO>Output</DeviceIO>

4. <DefaultDeviceUsage>NS</DefaultDeviceUsage>

5. <Action>

6. <Name arg="on">deviceOn</Name>

7. <SuggestedDeviceUsage use="NS" />

8. <EnvironmentalVariable name="RoomTemperature" defaultValue="S"

9. duration="3" locality="0" />

10. <EnvironmentalVariable name="RoomMovement" defaultValue="S"

11. duration="1" locality="0" />

12. </Action>

13. </Device>

Figure 6.13: Example return value from the device information service (output)

However, if the device is found in the database, the DIS processes the results from the database and
puts them into an XML format, which is returned to the calling service. The XML schema used depends
on the type of the device: input device or output device.

Figure 6.13 shows sample XML data for the heater device, which is an output device. This XML
data shows all the variables this device can potentially affect.

1. <Device>

2. <DeviceType>MotionSensor</DeviceType>

3. <DeviceIO>Input</DeviceIO>

4. <DefaultDeviceUsage>S</DefaultDeviceUsage>

5. <SensorEnvironment variable="RoomMovement" />

6. </Device>

Figure 6.14: Example return value from the device information service (input)

Figure 6.14 shows sample XML data returned from the device information service for an input device.
This XML data only shows the data that this device can monitor.

This service is only an interface between the gateway and the device database. The DIS only searches
the database based on a device type with command. Processing and interpretation of the XML data is
handled by the device and environment bundle.

6.5.4 Device Location Information and the Device &
Environment Representation component

Figure 6.9(e) and (f) show the Device Location Information (DLI) and Device and Environmental Rep-
resentation (DER), respectively. Essentially, it is the DER component which authorises a message and
works out whether an interaction will occur. The feature interaction manager bases its decision on the
result from the DER component.

The component has two important roles. Firstly, the DER component must handle the addition
and removal of locks depending on the translated message sent by the manager. Secondly, the DER
component listens for new devices registering in the gateway’s service registry. When this occurs, the
component will try and discover which room the device is in. This is achieved by interrogating the device.
To do this, the DER must have some knowledge of the device protocol. For example, with X.10 the DER
can work out the room from the address of the device. In the experimental UPnP devices, an extra field
was included for this purpose. However, the DER must understand the protocol for this. If the DER
cannot determine the location of the device, this can be input via a web page, shown in Figure 6.15.

To determine the type of device, the DER will search the properties in the service registry. If the
device finds the device type, it will consult the DIS (Figure 6.9(c)). The device information service will
then return device details and all variables the device could affect. If the device information service is

72

Figure 6.15: Set location of device

unable to return a value for the device, or the DER was unable to determine the type of the device, the
DER offers a service to allow a user to input the details, device type, variables it affects, commands, etc.
This form can be obtained by selecting any devices in part Figure 6.16(a). In the Figure, there are no
unknown items – all are known Figure 6.16(b).

As this is a detailed form, which must be entered correctly, a user would not be expected to complete
it. It is envisioned that having the user enter details of device and environmental variables would be a
rare event as the remote device database will be comprehensive and contain most household devices.

At this stage, room, device type and variables are known and this information is placed in the internal
representation, shown in Figure. 5.4. Figure 6.16(c) shows the DER internal view with some devices
added: two heaters, an air conditioner and a thermometer. All devices are in the living room, and the
only environmental variable is room temperature. Although there are potentially many variables in a
room, to keep the table clear, only the variables used by devices are shown here. Therefore, although
room light is a valid variable, it would not be included until a device was registered which affected this
variable.

The DER representation adds devices to its internal view. Similarly, when a device is removed from
the gateway, the device is removed from the internal representation and any locks the device may hold
on environmental variables are released.

The internal representation held by the DER component is of a hierarchical structure (see Figure 5.4).
At the top level is the home. Within a home there are Rooms, and within rooms there are Devices and
Environmental Variables.

Part of the DER component is the Device Location Information (DLI). This information can po-
tentially play an important role for other services. For example, if an entertainment service required a
television in the kitchen, it could consult the DLI and a device object would be returned which may be
used. The DLI and the DER work closely, and most of the work for determining location is done through
the DER. This is why the DLI and the DER are included in the same service.

When the devices, real and virtual, were added to the framework, they were found by the DER. The
location of UPnP devices which did not implement the location field did have to be entered manually.
However, the remaining UPnP devices and all X.10 devices were added successfully. Adding and removing
of devices is one task of the DER. The other role is to help avoid interactions.

Managing devices and locks

Along with the location of devices, the DER maintains a list of locks on devices and variables. A user
can check the lock of a device or variable by selecting the item from the lists in Figure 6.16(c) (selecting a
link in (a) or (b) will allow the user to enter room or device details, if the DER has incorrectly identified
the device).

73

(a)

(b)

(c)

Figure 6.16: DER servlet to show internal view

To set a lock, the DER uses the rules and locks detailed in section 5.2.2. Therefore, when it receives
the message from the manager to try and set the lock, it tries. If it fails, it will return false to the
manager. The manager will then try using priorities. The message is resent to the DER and the DER will
try applying the locks with the new priority. If it succeeds, a value of true will be returned, otherwise
it will be false.

The same technique is applied when device state updates come through. However, when the manager
sends them, they are automatically sent with a priority high enough to ensure the placing of locks
is successful. As this is the state of the device, the manager has no choice. These updates from
devices generally happen because of users interacting directly with the device. These commands must
be accepted, even if it will cause an interaction.

6.5.5 Priority service

This bundle is shown in Figure 6.9(g). The task for this service is to maintain a list of priorities for
all services in the gateway. The priority service can be called by other services with a service ID as a
parameter. The priority service will then return the priority of the desired service.

When the service starts, all services in the gateway are gathered and assigned a priority of ‘-1’. This

74

means that no priority has been set; all are treated equally. However, the exception to this is the FIM
suite of bundles. They are all set to ‘0’ which is the highest, meaning they have the ability to override
any decision.

A web page is provided to allow a user to set priorities, shown in Figure 6.17.

(a)

(b)

Figure 6.17: Service priority configuration servlet

The servlet shows the current priority in Figure 6.17(a) and a selection of possible priorities in
Figure 6.17(b). The dropdown list is created at runtime. The list runs from two to the total number of
services plus two.

All five components were implemented as a series of OSGi bundles and installed onto the gateway.
The manager could be turned on and off during testing. The results from testing are included later in
this chapter. To summarise, the flow of information between the five bundles is displayed below.

6.5.6 Summary of the flow data

There are two scenarios when the FIM suite of modules is used: when a service sends a command to a
device, and when a device sends an update on its state.

Flow of data when service sends to device

Figure 6.18 shows the order in which the components are called after a service (S1) tries to send a
command to a device (D2). The numbers in brackets in the figure is the order of the flow of data.

First, the message is sent into the manager. The manager then routes the message to the protocol
parser. In this example, the message was of type UPnP, so the manager does not have to try other
parsers. The message is then sent to the DER where the DER tries to set the locks. Before the DER
can set the locks, it must get the variables from the DIS. In turn, the device information service has to
query the device database.

75

S1

D1 D2

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Service

Interaction

Manager

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(10)

(11)

(9)

(12)

(13)

(14)

IBM OSGi gateway

Figure 6.18: Flow of information sent from service to device

The results are then sent back, in XML form, from the DIS to the DER. The DER can then try to
set the locks. In this instance, the setting of the locks fails. The manager then gets the priority from the
priority service. Obtaining the priority, the message is then sent back into the DER. In this example,
the priority was able to get the lock set and a value of true is returned to the manager. The manager
then allows the message to be sent to the device, D2.

Although there seems a lot of work here to send one instruction, no optimisation techniques have
been employed in this implementation. To determine the performance of the manager, a test was carried
out to turn on an X.10 lamp with, and without the manager running. Without the manager, the lamp
took 1.5 seconds. If the manager was used, this figure increased to 2.7 seconds. This is the figure for the
manager to determine the message, call the SQL database (over the network) and process the results to
authorise the instruction.

Optimisation can be applied to the manager. Messages results from previous calls to the SQL
database could be cached. Calls to the various protocol converters could be avoided if the manager
learns to recognise messages. These are simple steps which could be applied to the manager. These will
be discussed further in Chapter 8.

As well as commands being sent from the service to the device, there may be times where the device’s
state has changed. If a device is able to notify listening parties of its change in state, the manager should
take advantage of this to keep its internal model up to date.

Flow of data when device sends update

Figure 6.19 shows the flow of data when a device sends a message for its change in state. Like the
previous figure, the numbers by the arrows represent the order in which the data flows. Instead of the
manager registering with the devices, it is the protocol converter that registers to receive updates from
its type of devices. For example, the UPnP protocol converter would receive event notifications from
all UPnP devices. Implementing it in this way is more efficient. If the manager did receive updates, it
would have to send them to the SINPC anyway. This is simply more efficient and further avoids the
manager being aware of specific protocols.

On receiving a message, the SINPC translates the message into the appropriate format for the
manager. After the SINPC sends the message to the manager, the manager simply forwards the message
to the DER.

Before the DER can update the internal model, it must call the DIS to determine the variables this
device and action will affect and how. The DIS returns the appropriate values, and the DER is then
able to update the internal model accordingly.

76

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

IBM OSGi gateway

OSGi

Service Registry D2

S1

Service

Interaction

Manager

(1) (4)

(5)

(6)

(7)

(2)

(3)

Figure 6.19: Flow of information sent by device update

At this stage the test-bed is complete. All devices are set up and running and all services have been
deployed. The FIM suite of bundles have been installed. Also, the SQL database is running and has been
populated with test data. However, it is important to show that this has been implemented correctly
and does work as expected. Some testing is required to show this works.

6.6 Testing of the approach

Rather than testing to demonstrate that the approach avoids interactions, the testing here is to show
that the locks are placed and released correctly.

To show this, the HVAC service with a heater and thermometer was used. When the manager was
started, the DER searched for all devices. It found both the thermometer and the heater. The DIS
service was used to obtain information about both devices. The information was successfully retrieved
from the database and the XML was returned to the DER.

The devices were now registered in the DER and both were unlocked. When the HVAC service was
triggered to start the heater, it sent an on command to the heater device. This message was intercepted
by the manager and processed. The message was parsed by the SINPC UPnP module and was passed
to the DER. The DER then checked which variables this action would affect – in this instance room
temperature.

Both the device and room temperature variable were unlocked, therefore no interaction would occur
and the message was allowed to be forwarded to the device. The DER placed the locks on the device
and variables. The locked variable is shown in Figure 6.20.

When the HVAC reaches the desired temperature, it turns off the device. The off command follows
the same path through the manager, this message is approved and the lock on the device and the variable
are released.

This test showed that the approach does work as expected.

6.7 Summary

This chapter has discussed the implementation of the approach detailed in Chapter 5. To implement the
approach, a test-bed was required. The test-bed included services, devices and an OSGi framework.

For the services to be usable, devices were made available. The array of devices included real X.10
devices, as well as virtual UPnP and X.10 devices.

77

Figure 6.20: Locked room temperature variable

Both services and devices were brought together using the IBM OSGi implementation. After the
basic test-bed had been tested, the suite of Service Interaction Manager bundles was installed.

The test-bed with the feature interaction manager was tested and was found to be reliable and stable.
Testing found that the manager behaved as expected.

The next chapter shows how effective the manager is in avoiding interactions.

78

Chapter 7

Experimentation and Results

To show the effectiveness of the approach, experimentation using the test-bed (described in Chapter 6)
was carried out. A total of eleven scenarios was tested in the test environment. Most of the scenarios
are taken from Chapter 4; however, these are only negative interactions. It is important to show that
while the approach avoids negative interactions, it does allow services and devices to work together. The
next section will list the eleven scenarios along with the results of testing. The results are summarised
at the end of this chapter.

7.1 The test cases

For testing, all the devices and services were used. The devices used were: four input devices (thermome-
ter, motion sensor, humidistat and carbon monoxide detector) and thirteen input devices (two heaters,
an air conditioner, window, blinds, fan, TV, VCR, camera, lamp, an alarm control panel, dehumidifier
and humidifier). For simplicity, all devices were placed in the same room, the living room.

The services used were as follows:

• HSS:Alarm – Home Security Service – basic alarm feature

• HSS:AFH – Home Security Service – away from home feature

• PCS – Power Control Service

• HES – Home Entertainment Service

• HVAC – Heating, Ventilation, Air-Conditioning (Climate Control Service)

• HCS – Humidity Control Service

• CMSS – Carbon Monoxide Safety Service

These services and devices, along with their environmental variables, were registered on the gateway.
The static model, similar to that used in Chapter 5, is shown in Figure 7.1. Essentially, this is the
internal representation the DER builds, however the DER does not include the services in its view.

The representation includes all the devices and all the services. It can be seen that the security
service and carbon monoxide safety service have priorities set. Through experimentation, it was found
that a ‘first come, first served’ approach was adequate for all but safety services. However, it must be
noted that this does depend on user preferences. Therefore, a user may wish to set all services to have
a priority.

For clarity, the diagrams used to explain each interaction will only include devices being used for the
particular scenario.

79

S
er

v
ic

e
 L

a
y

e
r

Motion

Sensor

Thermo-

meter

Communications

(CSS)

-1

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Air

Condit.
Heater

Alarm

Control

Panel

Camera VCR WindowLamp TV

MovementLight Sound

Blind

 Temperature

Heater 2Fan

Entertainment

(HES)

-1
Power Control

(PCS)

-1
Security

(HSS)

2
Climate Control

(HVAC)

-1
Humidity Control

(HCS)

-1

Humidi-

stat
Humidi-

fier

Dehumi

difier

 Humidity Carbon monoxide

Carbon

mono-

xide

sensor

Carbon Monoxide Safety

(CMSS)

3

Figure 7.1: The representation created by the DER at runtime

7.1.1 Scenario 1: HSS:AFH vs PCS

The negative interaction discussed in section 4.3.1 is between the security service and the power control
service.

The security service’s away from home feature turns appliances on to give the impression that someone
is at home. However, the power control service turns appliances off to save energy.

Assuming the security service is running first, it has locked the TV and lamp with NS, therefore no
other service can access them. Consequently, when the power control service tries to gain access to turn
the devices off, its request is denied (shown by the dashed lines in Figure 7.2). If, however, the power
control service accesses and locks the devices first, since the security service has a higher priority, the
power control service will be overridden by the security service. Therefore the security service will be
allowed access to both the lamp and the TV.

Without using the manager, the interaction did occur – the devices were turned on by the away
from home feature, and the power control service then turned them off. However, by using the service
interaction manager, the interaction was successfully avoided.

7.1.2 Scenario 2: HSS:Alarm vs HES

The second negative interaction is taken from section 4.3.2. The interaction occurs between the security
service alarm feature (HSS:Alarm) and the home entertainment services (HES).

The home entertainment service is recording a TV program on the VCR. However, the security
service is triggered and wants to record pictures from the security camera on the VCR. Although the
VCR device has already been locked (NS) by the home entertainment service (Figure 7.3(a)), due to the
higher priority of the security alarm service, the home entertainment service has to give up control of
the VCR. The VCR can then be reassigned to the security service. Thus, the picture of the burglar can
be recorded on tape.

Suppose the HSS:Alarm is active first and the HES tries to record a programme. Here, the HSS:Alarm
feature has acquired the VCR and locked it with NS. The home entertainment service tries to gain access,
but it is refused as it has a lower priority than the security service, this is shown in Figure 7.3(b). Thus
this scenario is successfully avoided.

Without using this approach, if the entertainment service was recording first, the security alarm
feature would be able to access the VCR device. However, if the security service was recording first and
the entertainment service then tried to record a show, it would be able to gain access to the device and
record its programme. Clearly, it would be advantageous to record the intruder rather than a television
programme.

80

Se
rv

ic
e

L
ay

er
D

ev
ic

e
L

ay
er

E
nv

ir
on

m
en

t L
ay

er

TV

S+

NS

S+

Lamp

S+

NS

Light

S+

Sound

S+

Scenario 1, from section 4.3.1

Security
(HSS:AFH feature)

2
Power Control

(PCS)

-1

Figure 7.2: Interaction avoided between HSS:AFH and PCS

The results from experimentation for this scenario were as expected. The approach was successfully
able to avoid this interaction.

7.1.3 Scenario 3: HSS:AFH vs HVAC

This negative interaction is from section 4.3.3. In this scenario, the away from home feature of the
security service has to follow a pattern to make it look as if the owners are home. This includes turning
on lights and closing the blinds. The away from home feature of the security service has turned a lamp
on and closed the blinds. However, the climate control service notes that the temperature is dropping
in the home and wants to increase the room temperature in the cheapest way possible. This can be
achieved by opening the blinds.

If the blinds are opened, this violates the goal of the away from home feature. However, the climate
control tries to open the blinds. But since they are locked (NS), it cannot get access. As the climate
control has a priority lower than the security service, it is unable to gain access. The blinds remain
closed.

Testing found that this interaction was successfully avoided. If the away from home service was not
active, the climate control service could gain access and open the blinds. If this was the case and the
away from home feature wanted to close the blinds, it was able to as it had a higher priority. Again,
through priorities the negative interaction was avoided.

7.1.4 Scenario 4: HVAC vs HSS:Alarm

This negative interaction is from section 4.3.4, and is between the climate control service and the security
service alarm feature. The issue here is that when active, the alarm feature interprets all movement as a
potential intruder. The climate control is set to cool the home. Realising it is cooler outside, the climate
control wants to open the window to allow cool air in. Clearly, this violates the alarm feature by making
the home insecure, further, the movement triggers the alarm. This interaction was discussed in detail in
section 5.4.2.

During testing, it was found that if the service interaction manager was not active, this did cause an
interaction. If the manager was active, the interaction was successfully avoided.

81

Scenario 2: from section 4.3.2

Se
rv

ic
e

L
ay

er

Motion
Sensor

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Camera VCRAlarm
Control
Panel

NS

NS

NS

−

NS

Security
(HSS: Alarm feature)

2
Entertainment

(HES)

-1

−

Se
rv

ic
e

L
ay

er

Motion
Sensor

D
ev

ic
e

L
ay

er

Camera VCR

Movement

NS

−

NS

2
Entertainment

(HES)

-1

−

Movement

E
nv

ir
on

m
en

t L
ay

er

Movement

NS NS

Alarm
Control
Panel

NS

NS

2
Security

(HSS: Alarm feature)

(a) HES using VCR first

Scenario 2: from section 4.3.2

Se
rv

ic
e

L
ay

er

Motion
Sensor

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Camera VCRAlarm
Control
Panel

NS

NS

NS

−

NS

Security
(HSS: Alarm feature)

2
Entertainment

(HES)

-1

−

Se
rv

ic
e

L
ay

er

Motion
Sensor

D
ev

ic
e

L
ay

er

Camera VCR

Movement

NS

−

NS

2
Entertainment

(HES)

-1

−

Movement

E
nv

ir
on

m
en

t L
ay

er

Movement

NS NS

Alarm
Control
Panel

NS

NS

2
Security

(HSS: Alarm feature)

(b) HSS:Alarm using VCR first

Figure 7.3: Interaction between HSS:Alarm and HES

7.1.5 Scenario 5: Within HVAC – Issue 1

This negative interaction is from section 4.3.6. The problem here is that the climate control service has
been configured incorrectly and can potentially allow both the air conditioner and heater on in the same
room simultaneously. Clearly, this is not efficient as while one device heats, the other cools.

Figure 7.5 shows that the climate control service has activated the heater first. Since the heater
increases room temperature, the variable is locked with S+. The climate control then tries to turn on
the air conditioner. Since the air conditioner device is not in use it gains access. However, before it can be
turned on, it must access the environmental variable. For the air conditioner this is room temperature.
Since this device wants to lower room temperature, it needs to lock temperature with S–. The room
temperature variable is already locked by the heater with S+. As S– and S+ are not compatible, the air
conditioner is unable to gain access and the interaction is avoided.

During testing it was found that this interaction was an issue. If both the heater and air conditioner
were active, the room temperature remained constant, because as one heated, the other cooled. This
meant both devices would be active indefinitely. When the service interaction manager was active, the
interaction was successfully detected and avoided.

7.1.6 Scenario 6: Within HVAC – Issue 2

This is a negative interaction from section 4.3.6. This interaction is similar to the interaction above,
where the air conditioner tries to turn on but cannot because the heater is in use. However, depending
on the settings, it is possible that when the heater stops, the variables are released. This allows the air
conditioner to start and lower the room temperature.

If the maximum and minimum temperature settings have been entered incorrectly, then it is possible
that the air conditioner lowers the room temperature to one below the minimum heating temperature.
When the air conditioner stops, the heater starts, and the loop starts again.

Unfortunately, this is one type of interaction which this approach cannot detect. This is because
after the heater, or air conditioner, has completed its task, it releases locks on all its variables. These
variables are then free to be locked by any other device. This is one limitation of the approach which
will be discussed further in Chapter 8.

82

Scenario 3: from section 4.3.3
Se

rv
ic

e
L

ay
er

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Movement

S+

Temperature

S-

Climate control
(HVAC)

-1

Therm-
ometer

Light

S+

Lamp

S+

NS

Blind

S-

NS

S+

Security
(HSS:AFH feature)

2

Figure 7.4: Interaction avoided between AFH and HVAC

7.1.7 Scenario 7: within HSS

This negative interaction is from section 4.3.7, and is an interaction within the home security service.
This occurs when the alarm feature is monitoring the home for intruders and the away from home feature
wants to lower the blinds. When the blinds are lowered this creates movement triggering the alarm.

However, this interaction can be avoided using the approach. In this example, the alarm is armed
and the movement variable is locked with NS, which means it cannot be changed. When the away from
home feature tries to lower the blinds, it is able to get access to the blind device. However, this device
requires two environmental variables: room temperature (as lowered blinds can cool the home) and the
movement (as the blinds lower this causes movement).

Figure 7.6 shows the device is able to get access to the room temperature variable and sets it with S–.
However, when the device tries to set the movement variable with S+, it is rejected as S+ and NS are
not compatible. Therefore, the blinds cannot be lowered and the interaction is avoided. Although the
security service has a high priority, it cannot override itself. If it had to lower the blinds, it would have
had to explicitly remove the lock from the movement variable (by turning the alarm off). The blinds
would then be free to be lowered.

During testing, the results were consistent with the theory. If the service interaction manager was
disabled, when the blinds were lowered this caused the alarm to be triggered. However, if the service
interaction manager was active, the interaction was avoided.

7.1.8 Scenario 8: within HVAC

The first seven scenarios have shown how the approach is able to avoid negative interactions. Just as
important, the approach must allow devices to cooperate and work together to achieve a common goal.

This example shows how two heaters can operate together to heat the room quickly. Assume the
HVAC service has to heat the home as quickly as possible.

When the service starts it finds all heating devices. The service finds two heaters. If the service wants
to control them, access must be granted. Since no other service is using the devices, access is granted.
As the heater heats a room, the heater has to lock the environment variable, temperature, with S+. The
first heater is able to lock with this value successfully. When the second heater tries to lock with S+, the

83

Se
rv

ic
e

L
ay

er

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Air-ConHeater

NS

S+

NS

Temperature

S−

S+

Climate control
(HVAC)

-1

Figure 7.5: Interaction within HVAC

variable is already in use. However, this is allowed because its value of S+ is compatible with the locked
value of S+. As no interactions were detected both devices are able to operate, shown in Figure 7.7.

This was tried within the test-bed and worked successfully. The result was the same when the feature
interaction manager was enabled and when it was disabled. This is one, simple example which shows
that devices can work together.

7.1.9 Scenario 9: HES and HVAC

A second interaction which shows the positive interworking of devices is between the home entertainment
service and the climate control service.

Assume the owner is at home watching a movie through the entertainment service. As it is a hot
day, the climate control is using the air conditioner to keep the home cool.

As the owner is watching the television, the glare on the screen is irritating, so the entertainment
service tries to close the blinds.

As Figure 7.8 shows, the climate control service is using the air conditioner. Since the air conditioner
is active, it is cooling the room and has locked the temperature variable with S–.

The entertainment service is using the television which affects light and sound. The entertainment
service wants to close the blind. Access is granted to the device as it is not in use. When the blind
closes, it causes movement, further it will help cool the room. As the movement variable is not in use,
it is able to lock it with S+. The temperature variable is in use. However, as the blinds cool, the S–
should be used. Since the temperature variable is already locked S–, this lock is allowed as S– and S–
are compatible.

Therefore, the blind is allowed to close. This means that the air conditioner is cooling the room, and
the blinds are helping keep the room cool as well as stopping the sunlight glare on the television screen.

This scenario was tested in the test-bed with the feature interaction manager, where it succeeded.
However, it is worth noting that it worked in the same way when the manager was disabled.

Although this scenario worked with and without the manager, it shows that the manager is able to
avoid negative interactions while allowing positive interactions to happen unhindered.

84

Se
rv

ic
e

L
ay

er

Temperature

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Motion
Sensor

Movement

Alarm
Control
Panel

NS

NS

NSS-

Blinds

NS

S+S-

Security
(HSS)

2

Figure 7.6: Interaction within HSS

7.1.10 Scenario 10: CMSS vs HSS

The Carbon Monoxide Safety Service (CMSS) monitors carbon monoxide levels in the home. If these
reach a dangerous level, the service will open windows to let fresh air in and alert the owner (perhaps by
sending a message or ringing a bell). An interaction could occur between this service and the security
service.

If the CMSS tries to open a window while the security service is armed, the security service may try
to close the window, since the aim of the security service is to keep the home secure. Carbon monoxide
fumes should not be kept in the home and the window should be allowed to stay open.

The approach presented here does avoid this interaction. The security service has been set with a
priority of 2 and the CMSS has been set with priority 3. Assume the security service is armed and the
CMSS is monitoring the home. Suppose levels of carbon monoxide exceed a safe limit, the CMSS must
alert the ower and open a window.

Since there are no services using the window, the CMSS is able to get access to it. However, to open
the window the CMSS has to get access to the movement variable, which has been locked by the security
service. However, since the CMSS has a higher priority than security service, CMSS is able to get access
to the variable, shown Figure 7.9.

The window can be opened, and will stay open until the CMSS closes it. The security service may
try to close the window, but since it has a lower priority, access will be denied.

An argument can be made that the window should stay closed if the alarm is armed. This is because
there may be no one in the home and the home should remain secure. However, what if the owner has
pets inside? If the owner did want the home to remain secure, they could adjust the priorities and ensure
security has a higher priority than CMSS. If this were the case the window would not be opened (keeping
the home secure), however other functions of the service would still work, like alerting the owner to the
problem.

A similar interaction may occur between the climate control service and CMSS. The climate control
service may be trying to heat the home (using heaters). By opening a window this would let cold air in.
The climate control service may then try to close the window, which would be undesirable. Whereas the
security service is likely to be active when the owners are away, there is a more likely chance that the
climate control service would be active when the owners are in the home.

The conflict is the same – the CMSS wants to open the window, whereas the other services (climate
control or security) want to close it.

85

Se
rv

ic
e

L
ay

er

Thermo-
meter

D
ev

ic
e

L
ay

er
E

nv
ir

on
m

en
t L

ay
er

Heater

S+

NS

Temperature

S+

Heater 2

S+

NS

Climate Control
(HVAC)

-1

Figure 7.7: Interaction within HVAC

7.1.11 Scenario 11: HCS and HVAC

The Humidity Control Service (HCS) aims to keep the humidity levels of a room (or indeed a home) at
a comfortable level. The service uses three devices: a humidistat to ascertain humidity in the room, a
dehumidifier and a humidifier.

In previous examples the heater device has only affected room temperature, however it could be
argued that the heater affects humidity too. In this particular scenario, let us assume that the heater’s
side effect on humidity should be captured in the model. Therefore, as well as affecting the room
temperature variable, the heater should be shown to affect the humidity variable.

In this case, an interaction would occur between the climate control service and the humidity control
service. If the climate control service is using a heater, it will heat a room as well as cause humidity to
decrease. If the humidity control service is also active it may be wanting to increase humidity. Clearly
there is potentially an issue between the heater and humidifier through the humidity variable.

Technically there is an interaction through the humidity variable. However, it is likely that a home
owner may want both the heater and humidifier on at the same time, in the middle of winter for example.

Figure 7.10 shows what would happen if the climate control service was active first and heating the
room. The climate control service would have access to the heater which would cause room temperature
to increase and the humidity in the room to decrease.

If the humidity in the room drops below a certain level, the HCS will try to increase it by turning
the humidifier on. The HCS will gain access to the humidifier device, but when it tries to get access to
the humidity variable and lock it with S+, access will be denied as the variable is already locked with
S-.

In this instance the humidifier would not be able to turn on. This would not be the expected outcome
for the user as they want both devices on at the same time. This example opens the discussion on how
side effects should be treated. If the heater’s side effect on humidity was ignored (as it currently is in this
approach), the interaction would not be detected. However, although this is the correct result, we are
getting it because the model is incomplete. However if it is included we get a false positive. Therefore,
side effects can not be treated in the same way as primary effects. This issue will be discussed further
in Chapter 8.

86

Se
rv

ic
e

L
ay

er
D

ev
ic

e
L

ay
er

E
nv

ir
on

m
en

t L
ay

er

Therm-
ometerBlind

S-

NS

S+

Air cond-
itoner

S-

NS

TV

S+

NS

S±

Temperature

S-

Movement

S+

Sound

S+

Light

S±

Climate control
(HVAC)

-1Entertainment
(HES)

-1

Figure 7.8: Interaction between HES and HVAC

7.2 Summary of results

The results from section 7.1 have been summarised in Table 7.1. As the table shows, the approach was
successful. However, the approach was not able to avoid the looping interaction.

Scenario -/+ Interaction Interaction description Avoided by
approach

Scenario 1 –ve Security (Away from home feature) with Power control service
√

Scenario 2 –ve Security (Alarm feature) with Entertainment service
√

Scenario 3 –ve Security (Away from home feature) with Climate control service
√

Scenario 4 –ve Climate control service with Security (Alarm feature)
√

Scenario 5 –ve Within HVAC (issue 1): wasting energy
√

Scenario 6 –ve Within HVAC (issue 2): Looping ×
Scenario 7 –ve Within Security (between away from home and alarm features)

√

Scenario 8 +ve Within HVAC
√

Scenario 9 +ve Entertainment service and Climate control
√

Scenario 10 –ve Carbon monoxide safety service and security
√

Scenario 11 –ve Humidity control and Climate control ×

Table 7.1: Summary of results

Table 7.2 shows the types of interactions which the approach avoids. Kolberg et al. identified four
types of interaction, so looping has been included here for completeness. The approach is not able to
handle the looping interaction type because the locked variables are released, and are then free to be
locked by another device. The approach does not check the new lock with the previous lock. Indeed, it
may be valid for a device which previously held the lock to hold the lock again.

Interaction type Handled by approach

Multiple action interaction (MAI)
√

Sequential action interaction (SAI)
√

Looping (Special case of SAI) ×
Shared trigger interaction (STI)

√

Missed trigger interaction (MTI)
√

Table 7.2: Interaction types handled by the approach

87

S
er

v
ic

e
L

a
y

er

Motion

Sensor

Carbon

Mono-

xide

sensor

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Alarm

Control

Panel

NS

NS

 Carbon Monoxide Movement

S±

Carbon Monoxide Safety

(CMSS)

3
Security

(HSS)

2

Temperature

S±

Window

NS

S±S

Figure 7.9: Interaction between CMSS and HSS

7.3 Support for multiple rooms

Although all testing was carried out in one room in the home, some testing was done by placing different
devices throughout the home.

For these tests, it was assumed that rooms would not affect one another. It is difficult to ascertain
how rooms would affect one another because this will depend on the type of doors, window types and
the type of walls. This issue will be discussed further in the next chapter.

However, to show that the approach did work for different rooms, a heater and an air conditioner
were placed in separate rooms. When the command was issued, they both started. The heater was able
to lock the room temperature variable in its room, and similarly the air conditioner was able to lock
the temperature variable in its room. Since rooms do not have an impact on one another, there was no
problem in setting the locks.

Additional tests were carried out using the alarm service and setting it to protect all rooms in the
home. When the alarm was armed, no device which created movement could be turned on as the
movement variables in each room was locked. These tests were extended to alarm certain rooms. In a
room which was not alarmed, devices which created movement were allowed to operate.

7.4 Summary

This chapter has shown how the approach was used to avoid negative interactions as depicted in Chap-
ter 4. Experimentation also showed how positive interactions were allowed by the approach.

If the service interaction manager were not activated, negative interactions could happen. However,
when the manager was active, all but two of the interactions was detected successfully and avoided.
Scenario 11 was the only false positive to be generated by the manager. It suggests that we need to
differentiate between a primary effect and side (secondary) effect.

Overall, the implementation and testing of this approach was a success, the results in Table 7.1 show
this. Furthermore, the four types of interaction defined by Kolberg et al. are avoided by the approach.
However, the approach was not able to detect looping interactions.

There are some limitations of the approach and some further work which could be carried out. These
issues will be discussed in the next chapter.

88

S
er

v
ic

e
L

a
y

er

 Humidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er
Humidifier

S+

Temperature

Humidity

Sensor

De-

humidifier

-

S–

Heater

S+

S+

NS - NS

S-

Climate Control

(HVAC)

-1
Humidity Control

(HCS)

-1

Figure 7.10: Interaction between HCS and HVAC

89

Chapter 8

Conclusions and Further Work

This thesis has presented a novel approach to the service interaction problem in home networks. In this
chapter the achievements of the presented approach will be discussed, followed by how well it met the
aims stated in Chapter 1. Afterwards, limitations of the approach will be discussed and how they can
be resolved by further work.

8.1 Achievements of the approach

This thesis presented a novel approach to the service interaction problem in the home. There are a small
number of approaches available for service interaction problem in the home domain. However all of
these are off-line. This means that they are unable to accommodate the rapid change in the home with
devices and services leaving and joining the network. They are also unable to cope with a multi-vendor
environment. Off-line approaches are not suitable for this kind of environment. Therefore, an on-line
approach is the only viable approach for the home domain.

In the telephony domain, where most feature interaction work has been carried out, on-line approaches
are relatively rare. This thesis has presented a new on-line approach for the home network.

The approach is device centric as it focuses on the device and its surrounding environment. This
differs from all previous feature interaction approaches which focus on the service.

The environment is a factor which has not been taken into consideration in feature interaction work
before. The main reason for this is that there is no obvious environment (like there is in a home) in the
telephony domain. However looking at the environment in a different way may prove useful in telephony.

The use of the environment is crucial in the home domain for detecting interactions as some occur
through it. Furthermore, interactions also occur at the device level too. This justified including both
device and environment in this approach.

By combining the flexibility of on-line approaches and the extra information which is obtained by
including the environment, a successful solution to the service interaction problem in home networks
was developed. The approach has been shown to avoid negative interactions while allowing positive
interactions at runtime.

The approach achieves this by using a service interaction manager. The manager keeps an internal
representation of the home with all devices and services. The internal representation is automatically
created at runtime by the manager making use of a remote device database. This means there is very
little user intervention is required.

One of the main problems with using an on-line approach is scalability. This may be an issue in
telephony where systems are extremely large, complex and distributed; in the home it is not such a
problem. In the home all devices and services are centralised by using the residential gateway. Also, the
number of services and devices in a home is limited.

8.2 Strengths of the approach

The key strength of this approach is that it is online and uses a manager which requires no warm-up
period. This means it is ready to be deployed directly into the home. The manager does not need to

90

know of the services in the home. Further, the manager is able to determine the location of many of
the devices in the home. For unrecognised devices, an straightforward web interface is available to input
details.

Other strengths of the approach are covered by the requirements (which were met) listed in section 1.2.
These are:

1. Avoid negative interactions in a home network.
The approach successfully avoided negative interactions in the home. This is achieved by controlling
access to devices and the environment. Through preliminary experimentation it was found that a
way of prioritising services was required. Therefore, priorities were introduced. This allowed safety
services to override less important services.

2. Consider the environment
The environment was successfully used to avoid interactions, by characterising it through vari-
ables. These variables included temperature, lighting and movement. Access to the variables was
controlled by using locks. It was found that using either locked or unlocked was not adequate as
this did not allow devices or services to work together. Therefore, a refined locking technique was
developed which allowed devices with the same goal to lock with the same lock.

3. Manage new devices and services joining the home network as well as existing devices
and services leaving
The approach presented is able to listen for devices joining and leaving. If a device joins the
network the approach is able to automatically determine the device type and then the variables it
affects using the remote device database. This worked as expected. However, there is the issue of
who hosts the device and keeps it up to date; this is discussed below.

4. Handle services from multiple service providers
Since the approach concentrates on the device, rather than the service, this aim has been achieved.
By using the device and its surrounding environment, this has meant there has been no need to
analyse services.

5. Limited user intervention
Since the approach presented operates automatically, then there is very little user intervention
required. If the manager cannot determine the type of device, a user may have to tell the manager
the type. However, if a device is added to the framework, it will need to give enough of a description
of itself so other services can search and find it.

As well as satisfying the aims set out in Chapter 1, the approach also avoids almost all the types of
interactions identified by Kolberg et al.

After experimentation, a second use was found for the manager. The manager can be used by services
to find a device to achieve a particular aim. For example, if a service has to cool a room, then the service
can query the manager to find devices which affect room temperature. This can also be used if a service
requires a device in a particular room. Although these possibilities were not explored fully in this work,
the worked detailed in [118] does use the manager to find the required devices.

8.3 Limitations of the approach

Although the approach presented here has many advantages and does go some way to solving the service
interaction in the home, it does have some limitations.

Device database
One of the main limitations of this approach is the device database. There is an issue of who keeps this
database up to date and who populates it. If this approach is to work it is vital that this database is
kept consistent. If devices are entered incorrectly into the database then the manager will not operate
correctly.

Devices must be in the framework
The approach assumes that all devices and services are registered within the residential gateway. Al-
though this will be the case for most devices, there is a possibility of device-to-device control and control

91

which bypasses the gateway. Although there are techniques available to solve this issue in IP based
networks (discussed in the further work section), there is no known workaround for X.10. This means
interactions can occur if devices (or services on devices) start directly controlling other devices.

Issue of looping interactions
Table 7.2 shows that the approach is able to avoid most types of interactions, except looping. Due to
the way in which this approach works, looping is one type which can not be detected. This is because
the locks are released on a device (or the environment). When these locks are released, the device is free
to be used by another service. For example, where there is a loop with climate control service: when
the heater turns off, then the air conditioner comes on, then when the air conditioner is turned off the
heater comes back on. This is an endless loop. However, since the room temperature variable is released
when either the heater or air conditioner is turned off, there is no restriction on who can lock it next. In
this case, since the interaction is within the climate control service, this interaction should be detected
when the service is designed.

8.4 Further work

The approach presented does help ease the service interaction problem in the home. However, there is
further work that could be carried out.

Side effects of devices
In the context of this work, a side effect from a device can be defined as any effect other than an intended
primary effect. Scenario 11 in section section 7.1.11 highlights the shortcomings of not including side
effects in this approach.

If side effects are to be included, it is not enough simply treating them in the same way as primary
effects. This can result in the approach producing false negatives. Therefore, further work is required
to investigate how to best capture side effects. Preliminary work has been carried out to determine how
they can be handled. One approach is to include a flag called SE (side effect) which is only used for side
effects. This flag is placed on an environment variable by a device and can have the value: SE+ (when
the side effect increases), SE– (when the side effect decreases or SE± (when there is change, but it is
unknown). Like the locks, SE must be placed on a variable before the device is allowed to run.

The SE flag would not lock an environment variable, rather it would be used for information. A
device can place the SE flag on any environment variable, provided the variable is not already locked
with NS. If a variable is locked with S+, S– or S±, SE can be added to the variable.

S
er

v
ic

e
L

a
y

er

 Humidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Temperature

Humidity

Sensor

 SE– / --

Heater

S+

S+

SE–

NS

SE-

Figure 8.1: Heater’s relationship with the environment when active

Using a heater as an example, when it is heating a room it will be increasing room temperature
(primary effect), however will also be reducing humidity (side effect). Therefore, when the heater is

92

switched on, it will lock room temperature with S+ (as it wants to increase temperature) and will place
SE– on the humidity variable, as a side effect of the heater running is reduction in humidity. This is
shown in Figure 8.1.

This is a more accurate and complete view of the device and how it affects its environment. In the
previous chapter, scenario 11 (section 7.1.11) resulted in a false positive. Using the SE flag, the approach
produces the desired outcome. Figure 8.2 shows the updated view.

S
er

v
ic

e
L

a
y

er

 Humidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Humidifier

S+

Temperature

Humidity

Sensor

De-

humidifier

-

 SE– / S+

Heater

S+

S+

SE–

NS - NS

SE-

Climate Control Service

-1
Humidity Control

-1

Figure 8.2: Interaction between climate control service and humidity service

In scenario 11, when the heater was active it locked both the temperature and humidity variables
(Figure 7.10). Therefore, the humidifier was unable to turn on because it could not get access to the
humidity environment variable. Now, with the introduction of SE, the heater locks the temperature
variable, but sets the SE flag on the humidity variable to show that the heater is affecting it. When the
humidifier is turned on, it is able to get access to the variable and lock it with S+.

Using the SE flag, if a previous scenario is taken, the approach still works. Consider the interaction
between climate control and the security service, where the climate control wants to open a window
while the alarm is armed.

This interaction is described in scenario 4 (section 7.1.4). Rather than having movement as a primary
effect of window, it could be considered to be a side effect. Figure 8.3 show the updated view – the window
having a primary effect of changing room temperature and a side effect which affects movement. Since
the movement variable is locked with NS, the window device is unable to get access to it and place the
SE flag on it, thus avoiding the interaction.

Initial investigations into using the SE flag look promising, however further work and implementation
would have to be carried out before its value can be properly seen. Also, deciding what the primary
effect of a device is and what the side effect is. Depending on the circumstance, a side effect of a device
may be considered by some users to be primary effect. This issue requires further work.

Advanced relationships
Another issue to be investigated is to determine whether there are relations between environment vari-
ables. Currently, this is not considered in this approach. However, rather than looking at the relationship
between variables, a more comprehensive study of how devices affect their environment and the inclusion
of side effects may be of more use.

Consider the humidity variable: when room temperature increases humidity may change. The change
in humidity will depend on how the room temperature is being increased. If room temperature is being
increased by a heater, humidity will decrease. If room temperature is being increased by the outside
air, humidity may increase. Therefore, it is not the temperature variable which is causing the change in

93

S
er

v
ic

e
L

a
y

er

 Movement

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Alarm

Control

Panel

NS

Temperature

Motion

Sensor

 NS

Window

S-

SE±

NS NS

SE±

Climate Control Service

-1
Security

2

S-

Figure 8.3: Interaction between climate control and security using SE

humidity, it is the device which is causing both room temperature and humidity to change.
Further work to investigate whether this is the case for all variables, or whether indeed there are

some relationships between variables would be valuable.
As well as investigating a further relationship between environmental variables, it may also be worth

investigating the relationship between rooms. This approach assumes there is no relationship between
rooms and each room is a separate entity. If a relationship was created between rooms it could potentially
be hard to define. Factors such as thickness of walls or whether the door was open or closed would have
to be included. Whether including this to build a complete relationship between rooms would add extra
value to the approach is unknown. This is also an issue which is worthy of further research.

Device database
Currently there is no formal documentation detailing how a device should appear in the device database.
A formal specification should be created to define a device and state how one decides how a device affects
the environment. For this work we have not found it necessary. However, if this approach were to be
deployed in reality then this would need to be carried out.

There is also the issue of who maintains the device database. It is not practical for all homes to
have their own database with all devices, as this would be too large. Therefore, a service provider may
consider hosting the database.

The database would also need to be kept up to date, so when a new device is released onto the market
then the new details are entered into the database. It could be the manufacturer of the device who does
this or another organisation could take responsibility. Keeping the device database is similar to web
services which provide users with music CD track listings.

Granularity of device
Another area in which this approach may benefit from extra research is granularity of device control.
The approach detailed here focuses on the action of the device, whether it is on or off. Nakamura et al.
argue that this is insufficient and more detail should be included. Therefore, rather than simply on or
off, it should be passed a parameter value. For example, a heater may be turned on, but temperature
set to twenty five degrees celsius. Through experimentation carried out in this project, it was found
that this level of detail was not important. However, it is worth further attention. If the approach
was to be improved it should be included as part of the locking. Rather than simply lock with S+,
perhaps lock with Shared and a value. More work would need to be carried out to determine whether
this would be useful. However, this may affect the adaptability of the approach as it becomes specific to
one environmental variable. For example, temperature, sound, etc., would each require their specialised

94

unit (degrees celsius, decibels, etc.). This makes it quite specific, rather than having a generic variable
object.

8.5 How this approach compares to others for the home domain

Although the approach presented in this thesis does have some limitations and weaknesses, in comparison
to other approaches for service interaction in home networks, it does help to provide a good and flexible
solution to the problem.

Wu and Schulzrinne [14] present a language called LESS which can be used to avoid interactions at the
service creation stage. Their studies only included multimedia services, not the general home services.
While this is useful for avoiding intra-service interactions, it can not be used to detect interactions
between independent services.

An approach presented by Metzger [23] is an off-line approach which can be used to detect interactions
in building control. This approach uses the environment to detect interactions, however it is an off-line
approach, so it does not lend itself to an environment which changes (like the home, for example). The
approach was later used for feature interaction detection in [92], an environment which may not change
once deployed.

Other than the approach presented in this thesis, the only other approach to be specifically aimed
at the service interaction problem in the home was by Nakamura [22]. Both the approach here and
Nakamura’s approach detect interactions at the service level and environment level. The approach in
this thesis focuses on the interactions at the device and environment level.

Although Nakamura’s approach can be used to detect interactions between different vendors, the
services have to be known beforehand. Further, detailed information about the service composition
must be known. The approach presented in this thesis does not require any special knowledge of services
to detect interactions. For Nakamura’s approach to work, not only do the services have to be known,
but also their configuration as this may affect the devices they use. Different homes will have different
devices, services and configurations. Testing all possible permutations on a home by home basis would
not be practical. Further, when any services change, or a new device is introduced, testing would have
to be carried out again.

In contrast, the approach presented in this thesis is able to gather the relevant information at runtime
about devices and services. A user does have to provide some input to begin with, however this is minimal.
With device information, the manager can automatically detect and avoid negative interactions. If a
service or device does change, the manager automatically handles the approach and is ready to avoid
interactions with these changes. Off-line approaches can not support this functionality.

Nakamura briefly discusses the possibility of converting their approach into an online approach.
However, their approach is service centric and requires detailed information of all services. If this
information is made available, it is possible their approach may work. However, it is unlikely service
vendors will disclose detailed descriptions of their services and methods within the services. However,
it is not enough detecting interactions, the interaction must be handled. This is not discussed in their
work.

The issue of looping interactions is not discussed by Nakarmura. Like the approach presented here,
Nakamura looks at messages from devices to services independently of one another. Since Nakamura’s
approach does not look at previous instructions from services to devices, they will not be able to detect
looping interactions.

Although Nakamura’s approach is able to detect interactions, the detection is carried out off-line.
This has the major drawback that testing needs to be carried out everytime a new service, or even device
is added to the network. Although homes may have similar devices and services, the configurations may
vary considerably. The approach presented in this thesis is an online manager. It used at runtime and is
independent of services meaning it will work with different service vendors. Services require no knowledge
of the manager for this approach to work. Also, the fact that the manager can change (by having new
protocol converters added) does mean it can extended as time progresses and protocols change.

95

8.6 Summary

This thesis has presented a new approach to the service interaction problem in home networking. The
approach is novel in that it uses the environment to avoid negative interactions. Inspiration has been
drawn from the operating systems domain to develop a locking technique. With the adapted locking
technique, access to devices and environmental variables is controlled. By carefully controlling access to
devices and the environment, negative interactions are avoided while positive interactions are allowed.

Using a testbed, the approach has been shown to work. The approach has successfully fulfilled
the aims laid out at the start of the thesis. Although the approach has worked well, there are some
improvements which could be made to make this new approach even stronger.

96

References

[1] M. Kolberg, E. Magill, and M. Wilson. Compatibility issues between services supporting networked
appliances. IEEE Communications Magazine, 41(11), 2003.

[2] LetsAutomate.co.uk. http://www.letsautomate.co.uk/, viewed: 18/05/2004.

[3] OSGi: The Open Services Gateway Initiative. http://www.osgi.org.

[4] Th. Zahariadis and K. Pramataris. Multimedia home networks: standards and interfaces. Computer
Standards & Interfaces, 24(5):425, 2002.

[5] K. Chen and L. Gong. Programming Open Service Gateways with Java Embedded Server(TM)
Technology. Aiddison-Wesley, 2002.

[6] D. Marples and P. Kriens. The open services gateway initiative: An introductory overview. IEEE
Communications Magazine, 39(12), December 2001.

[7] e2 Home. http://www.e2-home.com, viewed: 12/08/2004.

[8] OnStar at Home Pilot. http://www.internethomealliance.com-
/pilots projects/family/onstar at home/, viewed: 05/07/2004.

[9] TAHI Connected Home. http://www.theapplicationhome.com, viewed: 09/08/2004.

[10] X10 Technology and Resource Forum. http://www.x10.org.

[11] IBM Home Director. http://www.homedirector.com/, viewed: 12/08/2004.

[12] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, W. Shnure, and H. Velthuijsen. Towards a
Feature Interaction Benchmark for IN and Beyond. IEEE Communications Magazine, 31(3):64–69,
March 1993.

[13] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Computer Networks: The International Journal of Computer and
Telecommunications Networking, 41(1):115–141, 2003.

[14] X. Wu and H. Schulzrinne. Feature interactions in internet telephony end systems. Department of
Computer Science, University of Columbia Technical Report, January 2004.

[15] H. Velthuijsen, N. Griffeth, and Y.-J. Lin, editors. International Workshop on Feature Interactions
in Telecommunications Software Systems, December 1992.

[16] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunications Systems.
IOS Press (Amsterdam), May 1994.

[17] K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications Systems III. IOS
Press (Amsterdam), October 1995.

[18] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecommunication Networks
IV. IOS Press (Amsterdam), June 1997.

97

[19] K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecommunications and Software
Systems V. IOS Press (Amsterdam), September 1998.

[20] M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and Software Systems
VI. IOS Press (Amsterdam), May 2000.

[21] D. Amyot and L. Logrippo, editors. Feature Interactions in Telecommunications and Software
Systems VII. IOS Press (Amsterdam), June 2003.

[22] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated services of networked
home appliances. In [68], pages 236–251, June 2005.

[23] A. Metzger and C. Webel. Feature interaction detection in building control systems by means of
a formal product model. In [21], pages 105–122, June 2003.

[24] K. Wacks. Home systems standards: Achievements and challenges. IEEE Communications Mag-
azine, 40(4), 2002.

[25] P.E. Ross. Managing care through the air. IEEE Spectrum Magazine (INT), page 14, 2004.

[26] T. Tamura, T. Togawa, M. Ogawa, and M. Yoda. Fully automated health monitoring system in
the home. Medical Engineering and Physics, page 573, 1998.

[27] P. Dinsdale. Broad band. The Guardian, 7th, May 2003.

[28] Ark Housing. http://www.arkhousing.co.uk viewed: 04/01/05.

[29] Tunstall. http://www.tunstall.co.uk viewed: 04/01/05.

[30] Rehab Tool. http://www.rehabtool.com viewed: 04/01/05.

[31] Hogar.es. http://www.hogardigital.net.

[32] B. Sridharan, A.P. Mathur, and S.G. Ungar. Digital device manuals for the management of con-
nectedspaces. IEEE Communications Magazine, 40(8), 2002.

[33] S. Moyer, D. Marples, and S. Tsang. A protocol for wide area, secure networked appliances
communication. IEEE Communications Magazine, 38(10), October 2001.

[34] S. Moyer, D. Marples, S. Tsang, J. Katz, P. Gurung, T. Cheng, A. Dutta, H. Schulzrinne, and
A. Roychowdhury. Framework Draft for Networked Appliances using the Session Initiation Protocol.
IETF Internet Draft draft-moyer-sip-appliances-framework-02.txt, June 2001. work in progress.

[35] B. Rose. Home networks: A standards perspective. IEEE Communications Magazine, 39(12),
2001.

[36] T. B. Zahariadis. Home Networking Technologies and Standards. Artech House, 2003.

[37] UPnP: Universal Plug and Play Forum. http://www.upnp.org.

[38] HAVi: Home Audio Video Interoperability. http://www.havi.org.

[39] PowerHome Home Automation Software for X.10. http://www.myx10.com/, viewed: 31/08/2004.

[40] Jesse Peterson X.10 API. http://www.jpeterson.com/rnd/x10, viewed: 10/01/2002.

[41] W3C recommendation Extensible Markup Language. http://www.w3c.org/XML viewed: 10/9/04.

[42] SSDP: Simple Service Discovery Protocol. http://www.upnp.org/download-
/draft cai ssdp v1 03.txt.

[43] SOAP: Simple Object Access Protocol SOAP. http://www.w3.org/TR/soap.

[44] B.A. Miller, T. Nixon, C. Tai, and M.D. Wood. Home networking with universal plug and play.
IEEE Communications Magazine, 39(12), 2001.

98

[45] Microsoft Corporation. Universal plug and play device architecture. 2000.

[46] B. Manning. Documenting Special Use IPv4 Address Blocks that have been registered with IANA.
IETF Internet Draft draft-manning-dsua-06.txt, February 2001. work in progress.

[47] D.C. Plummer. An Ethernet Address Resolution Protocol, RFC 826. Internet Engineering Task
Force, 1982.

[48] E.A. Hall. Internet Core Protocols: The Definitive Guide. O’Reilly, 1st edition, 2000.

[49] D. Meyer. Administratively Scoped IP Multicast, RFC 2365. Internet Engineering Task Force,
1998.

[50] UPnP Imaging Working Committee Chair S. Albright. Imaging working committee,
http://www.upnp.org/newsletters/newsletter 09 2001/committee.asp viewed: 15/9/04.

[51] Linksys WRT54G. http://www.linksys.com/products/product.asp?prid=508&scid=35
viewed: 04/01/05.

[52] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session initiation protocol. Request for Comments (Standards Track) 3261, 2002.
Internet Engineering Task Force.

[53] JINI Network Technology. http://www.jini.org.

[54] Echelon Corporation LonWorks. http://www.echelon.com/products/lonworks/default.htm
viewed: 15/9/04.

[55] Home plug Powerline Alliance. http://homeplug.org viewed: 04/02/05.

[56] Home PNA Network Technology. http://www.homepna.org.

[57] IEEE 802.3 Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.3 viewed: 04/02/05.

[58] IEEE 802.11 Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.11a viewed: 04/02/05.

[59] Zigbee Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.15.4 viewed: 04/02/05.

[60] FireWire Wikipedia. http://en.wikipedia.org/wiki/IEEE 1394 viewed: 04/02/05.

[61] M. Nakagawa, H. Zhang, and H. Sato. Ubiquitous homelinks based on ieee 1394 and ultra wideband
solutions. IEEE Communications Magazine, page 74, 2003.

[62] Bluetooth. http://www.bluetooth.com viewed: 16/9/04.

[63] The Open Services Gateway Initiative. OSGi Service Platform, Release 3. IOS Press, 2003.

[64] The Open Services Gateway Initiative. About the OSGi Service Platform: Technical Whitepaper.
OSGi Alliance, 2003.

[65] R.S. Hall and H. Cervantes. Challenges in building service-oriented applications for osgi. IEEE
Communications Magazine, 5(42):144 – 149, 2004.

[66] P. Dobrev, D. Famolari, C. Kurzke, and B.A. Miller. Device and service discovery in home networks
with OSGi. IEEE Communications Magazine, 40(8), 2002.

[67] T.F. Bowen, F.S. Dworack, C.H. Chow, N.Griffeth, G.E. Herman, and Y.-J Lin. The feature inter-
action problem in telecommunications systems. In Seventh International Conference on Software
Engineering for Telecommunication Switching Systems, page 59, 1989.

[68] S. Reiff-Marganiec and M. Ryan, editors. Eigth International Conference on Feature Interactions
in Telecommunications and Software Systems. IOS Press, 2005.

[69] P. Zave. An experiment in feature engineering. pages 353–377, 2003.

99

[70] M. Plath and M. Ryan. Plug-and-play features. In [19], pages 150–164, September 1998.

[71] R. Hall. Feature interactions in electronic mail. In [20], pages 67–82, May 2000.

[72] M. Weiss. Feature interactions in web services. In [21], pages 149–156, June 2003.

[73] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A feature interaction
benchmark for IN and beyond. In [16], pages 1–23, May 1994.

[74] D. Marples and E. H. Magill. The use of rollback to prevent incorrect operation of features in
intelligent network based systems. In [19], pages 115–134, September 1998.

[75] D. Marples. Detection and Resolution in of Feature Interactions in Telecommunications Systems
at Runtime. PhD Thesis, Communications Division, Department of Electrical and Electronic
Engineering, University of Strathclyde, 2000.

[76] M. Kolberg, E. Magill, D. Marples, and S. Tsang. Feature interactions in services for networked
appliances. In IEEE International Conference on Communications (ICC-2002), New York, USA.,
April 2002.

[77] E. H. Magill, K. J. Turner, and D. J. Marples, editors. Service Provision: Technologies for Next
Generation Communications. John Wiley and Sons, 2004.

[78] S. Reiff-Marganiec. Runtime Resolution of Feature Interactions in Evolving Telecommunications
Systems. PhD Thesis, University of Glasgow, Glasgow (UK), 2002.

[79] D. Amyot, L. Charfi, N. Corse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien, and T. Ware.
Feature description and feature interaction analysis with use case maps and lotos. In [20], pages
274–289, May 2000.

[80] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo. Feature interaction filtering with use case
maps at requirements stage. In [20], pages 163–178, May 2000.

[81] K. Kimbler and D. Sobirk. Use case driven analysis of feature interactions. In [16], pages 167–177,
May 1994.

[82] K. Kimbler, E. Kuisch, and J. Muller. Feature interactions among pan-european services. In [16],
pages 73–85, May 1994.

[83] K. Kimbler. Addressing the interaction problem at the enterprise level. In [18], pages 13–22, June
1997.

[84] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular specification of telephone
services. In L. G. Bouma and H. Velthuijsen, editors, [16], pages 197–216, May 1994.

[85] A. Felty and K. Namjoshi. Feature specification and automatic conflict detection. In [20], pages
179–192, May 2000.

[86] M. Plath and M. Ryan. The feature construct for SMV: Semantics. In [20], pages 129–144, May
2000.

[87] M. Calder and A. Miller. Using SPIN for feature interaction analysis - a case study. Proceedings
Spin 2001. Lecture Notes in Computer Science, 2057:143–162, 2001.

[88] N. D. Griffeth and H. Velthuijsen. The negotiating agents approach to runtime feature interaction
resolution. In [16], pages 217–236, May 1994.

[89] M. Cain. Managing run-time interactions between call processing features. In IEEE Communica-
tions Magazine, pages 44–50, February 1992.

[90] M. Wilson and E.H. Magill. An environmental model for service interaction in home networks. In
Proceedings of Prep 2004, 2002.

100

[91] X. Wu and H. Schulzrinne. Programmable end system services using sip. In ICC 2003 - IEEE
International Conference on Communications, number 1, pages 789–793, December 1992.

[92] T. Metzger. Feature interactions in embedded control systems. Computer Networks, 45:625, 2004.

[93] W.K. Edwards and R.E. Grinter. At home with ubiquitous computing: Seven challenges. In
Proceedings of the 3rd international conference on Ubiquitous Computing, pages 256–272. Springer,
2001.

[94] P. Durman. Future isn’t all bright for orange’s high-tech home.

[95] D. Valtchev and I. Frankov. Service gateway architecture for a smart home. IEEE Communications
Magazine, page 126, 2002.

[96] F. T. H. den Hartog, M. Balm, C. M. de Jong, and J. J. B. Kwaaitaal. Convergence of residential
gateway technology. IEEE Communications Magazine, page 138, May 2004.

[97] P.D. Smith and G.M. Barnes. Files & Databases: an introduction. Addison Wesley, 1987.

[98] A. Silberschatz and P.B. Galvin. Operating System Concepts. 5th edition, 1998.

[99] M. Wilson, E.H. Magill, and M. Kolberg. An online approach for the service interaction problem in
home networks. In IEEE Consumer Communications and Networking Conference (CCNC-2005),
Las Vegas, USA., January 2005.

[100] Intel: Location Aware Computing website. http://www.intel.com/labs/wireless/lac/.

[101] I.A. Essa. Ubiquitous sensing for smart and aware environmentss. IEEE Personal Communications,
7(5):47, 2000.

[102] B. Horowitz, N. Magnusson, and N. Klack. Telia’s service delivery solution for the home. IEEE
Communications Magazine, 40(4), 2002.

[103] UPnP Software Developer Kits. http://www.upnp.org/resources/sdks.asp viewed: 22/06/05.

[104] CyberLink development package for UPnP devices. http://www.cybergarage.org/net-
/upnp/java/index.html viewed: 22/06/05.

[105] UPnP Basic Device Specification. http://www.upnp.org/standardizeddcps/basic.asp viewed:
14/08/05.

[106] SIP Express Router (SER). http://www.iptel.org/ser/ viewed: 22/06/05.

[107] Microsoft Windows Messenger. http://www.microsoft.com/windowsxp/using-
/windowsmessenger/default.mspx viewed: 09/08/05.

[108] Sun Microsystems Java Embedded Server. http://java.sun.com/products-
/consumer-embedded/ viewed: 22/06/05.

[109] IBM Service Management Framework (SMF) 3.5.1. http://www-306.ibm.com/software/wireless/smf.

[110] Open Service Container Architecture (OSCAR). http://oscar.objectweb.org viewed:
24/06/05.

[111] Java Communications API. http://java.sun.com/products/javacomm/index.jsp viewed:
09/08/05.

[112] Lycos SMS service. http://mobile.lycos.co.uk/ viewed: 10/08/05.

[113] National Institute of Standards and Technology (NIST): SIP Stack.
http://dns.antd.nist.gov/proj/iptel/ viewed: 10/08/05.

[114] Java Media Framework (JMF) API. http://java.sun.com/products/java-media-
/jmf/index.jsp viewed: 10/08/05.

101

[115] Intel UPnP Stack and Tools. http://intel.com/cd/ids/developer/asmo-na-
/eng/downloads/upnp/index.htm viewed: 22/06/05.

[116] Siemens UPnP Stack. http://www.plug-n-play-technologies.com/ viewed: 22/06/05.

[117] mySQL Database. http://www.mysql.org.

[118] M. Wilson, E.H. Magill, M. Kolberg, P. Burtwistle, and O. Ohlstenius. Conrolling appliances using
pen and paper. In IEEE Consumer Communications and Networking Conference (CCNC-2005),
Las Vegas, USA., January 2005.

[119] UPnP Forum: XML Files for Testing. http://www.upnp.org/standardizeddcps-
/documents/XMLFilesforTesting.zip viewed: 10/9/04.

102

