

Department of Computing Science and Mathematics
University of Stirling

Ontology Stack for A Policy Wizard

Gavin A. Campbell

Technical Report CSM-169

ISSN 1460-9673

June 2006

Department of Computing Science and Mathematics
University of Stirling

Ontology Stack for A Policy Wizard

Gavin A. Campbell

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland
Telephone +44-1786-467421, Facsimile +44-1786-464-551

Email gca@cs.stir.ac.uk

Technical Report CSM-169

ISSN 1460-9673

June 2006

 i

Abstract
An ontology provides a common vocabulary through which to share information in a particular area of
knowledge, including the key terms, their semantic interconnections and certain rules of inference. The
ACCENT policy-based management system uses a policy description language called APPEL and
supports policy document formation through the use of a comprehensive user interface wizard. Through
the use of OWL (the Web Ontology Language), the core aspects of APPEL have been captured and
defined in an ontology. Assigned the acronym genpol, this ontology describes the policy language
independent of any user interface or domain-specific policy information. A further ontology has been
developed to define common interface features implemented by the policy wizard [17]. This ontology,
referred to as wizpol, directly extends genpol. It provides additional information to the language
itself, whilst retaining freedom from any domain-specific policy details. Combined, both genpol and
wizpol act as a base for defining further domain-specific ontologies which may describe policy
options tailored for a particular application.

This report presents a technical overview of both the generic policy language ontology (genpol) and
the wizard policy ontology (wizpol), expressed in the form of graphical depictions of OWL classes
and properties.

Keywords: ACCENT, Policy, Ontology, OWL.

 ii

Table of Contents

Abstract .. i
Table of Contents ... ii
Table of Figures... iii
Conventions ... iv

1 Overview... 1

1.1 APPEL Policy Description Language ... 1
1.2 Motivation for Ontology Usage... 1
1.3 OWL/Protégé Overview.. 2
1.4 The OWL Ontology Stack... 3

2 The Generic Policy Language Ontology: genpol.owl.. 5

2.1 Overview of genpol ... 5
2.2 Policy Document ... 5
2.3 Policy... 6
2.4 Policy Rule, Trigger, Condition and Action.. 6
2.5 Arguments ... 7
2.6 Policy Attribute ... 7
2.7 Policy Variable Attribute... 9
2.8 Operators ... 9

2.8.1 Condition Operators .. 9
2.8.2 Combination Operators ... 10

3 Wizard policy language ontology: wizpol.owl... 12

3.1 Trigger, Condition and Action Class Wizard Extension 12
3.2 Class Categorisation .. 13

3.2.1 User-Level Categorisation... 14
3.2.2 Internal Use Categorisation ... 14
3.2.3 Trigger, Condition Parameter and Action Categorisation 15

3.3 Operator Extension (User-Level Provision) .. 15
3.3.1 Admin Level Operators ... 15
3.3.2 Expert Level Operators.. 17
3.3.3 Intermediate Level Operators .. 19
3.3.4 Novice Level Operators... 21

3.4 Status Variables ... 23
3.5 Data Typing... 24
3.6 Unit Typing ... 24

4 Conclusion.. 25

4.1 Evaluation of OWL/Protégé .. 25
4.2 Future Application... 25

Appendix A: Genpol Properties .. 27
Appendix B: Wizpol Properties .. 29
References ... 30

 iii

Table of Figures

Figure 1.1 OWL Ontology Stack... 3

Figure 2.1 Top-Level genpol Structural Overview.. 5
Figure 2.2 Policy Document Property Structure ... 5
Figure 2.3 Policy Structure.. 6
Figure 2.4 Policy Rule... 6
Figure 2.5 TriggerEvent Relationship with TriggerArgument .. 6
Figure 2.6 Condition Relationship with Related Classes .. 7
Figure 2.7 Action Relationship with ActionArgument ... 7
Figure 2.8 Argument Hierarchy .. 7
Figure 2.9 Policy Attribute Top-Level Hierarchy ... 7
Figure 2.10 Policy Attribute Required Attributes ... 8
Figure 2.11 Policy Attribute Optional Attributes .. 8
Figure 2.12 Policy Attribute: Policy Preference Optional Attribute 8
Figure 2.13 Possible Policy Variable Attributes ... 9
Figure 2.14 Condition Operator Hierarchy.. 9
Figure 2.15 Action Combination Operator Hierarchy... 10
Figure 2.16 Trigger Combination Operator Hierarchy.. 10
Figure 2.17 Condition Combination Operator Hierarchy.. 10
Figure 2.18 Policy Rule Combination Operator Hierarchy ... 11

Figure 3.1 Wizpol Subclass Extension to genpol:TriggerEvent 12
Figure 3.2 Wizpol SubclassExtension to genpol:ConditionParameter 13
Figure 3.3 Wizpol Subclass Extension to genpol:Action ... 13
Figure 3.4 Class Categorisation Top-Level wizpol Hierarchy... 14
Figure 3.5 Defined User-Level Categories.. 14
Figure 3.6 Operator Extension for User-Level Association .. 15
Figure 3.7 Admin Level Condition Operators... 16
Figure 3.8 Admin Level Condition Combination Operators ... 16
Figure 3.9 Admin Level PolicyRule Combination Operators ... 16
Figure 3.10 Admin Level Trigger Combination Operators ... 17
Figure 3.11 Admin Level Action Combination Operators .. 17
Figure 3.12 Expert Level Condition Operators ... 18
Figure 3.13 Expert Level Trigger Combination Operators ... 18
Figure 3.14 Expert Level Action Combination Operators .. 18
Figure 3.15 Expert Level PolicyRule Combination Operators 19
Figure 3.16 Expert Level Condition Combination Operators ... 19
Figure 3.17 Intermediate Level Condition Operators.. 20
Figure 3.18 Intermediate Level Condition Combination Operators 20
Figure 3.19 Intermediate Level Trigger Combination Operators.. 21
Figure 3.20 Intermediate Level PolicyRule Combination Operators 21
Figure 3.21 Novice Level Condition Operators .. 22
Figure 3.22 Novice Level Trigger Combination Operators .. 22
Figure 3.23 Novice Level Condition Combination Operators... 23
Figure 3.24 Novice Level PolicyRule Combination Operators....................................... 23
Figure 3.25 Status Variable Class Structure.. 23
Figure 3.26 Top-Level DataType Hierarchical Structure.. 24
Figure 3.27 String and Boolean DataType Options .. 24
Figure 3.28 UnitType Top-Level Definition ... 24

 iv

Conventions

1. Ontology conventions

The ontology documents described in this report use a specific naming convention with respect to class
and property objects. The format adopted reflects a widely acknowledged general convention for OWL
ontology design.

Ontology class naming convention
Ontology class names begin with a capital letter and do not contain spaces. Multiple words in a class
name string start with a capital letter, conforming to what is known as ‘CamelBack’ notation.

For example: PolicyVariableAttribute

Ontology property naming convention
Ontology properties follow a similar convention to class names but start with a lower case letter.
Property names begin with the word ‘has’ for clearer meaning in their application.

For example: hasPolicyRule

2. Diagram conventions

Diagrams depicted in this report were generated using the Jambalaya plug-in tool [6] and the OWLViz
graphical plug-in tool [11] for Protégé-OWL Beta 2.2 (Build 288). A key to the graphical notation used
in each tool is outlined below.

Jambalaya
An ontology class is depicted by a single circle with the class name positioned directly above. By
default, where applicable, Jambalaya displays the namespace prefix of a class (e.g. genpol or
wizpol) in addition to its name, separated by a ‘:’ symbol.

A property restriction is displayed as a straight line with a hollow triangle positioned at the mid-
point. The ‘point’ of the triangle faces the target class, thus indicating the direction of the relationship.
In the example below, the class Policy ‘has’ some relation with the class PolicyRule. Policy is
the source class and PolicyRule is the target class of the illustrated restriction. Although not shown,
a plausible restriction would be ‘hasPolicyRule’.

For example:

Sub-class (inheritance) is shown by a solid straight line without a triangle.

OWLViz
Each ontology class is represented by an oval shape with any subclass relationship shown by a curved
line with a hollow triangular arrow head located at the superclass. OWLViz is used to illustrate
ontology class inheritance only. Notation is not dissimilar from that of UML (Unified Modelling
Language), signifying class inheritance or an ‘is-a’ relationship. Class names are displayed inside the
oval class body, and imported class names are preceded by their namespace prefix (e.g. genpol,
wizpol) separated by a ‘:’ symbol.

 v

Shading indicates whether a class is imported, defined or undefined. Imported classes have the
lightest shading. Defined classes1 are the most darkly shaded. Undefined classes have a darker shading
than that of imported classes but not as dark as a defined class. Classes outlined with a darker border
represent inferred subclasses.

OWLViz has the ability to restrict levels of class hierarchy displayed in a single diagram for ease of

clarity. A class with additional parents (direct or inferred superclasses) not currently displayed is
marked with a small black dot to the left hand side – indicating the class has further parent classes, but
they are hidden in the current diagram. Similarly, a class may have additional children (direct or
inferred subclasses) which may be omitted from a diagram. This is indicated by a black dot to the right-
hand side of the class.

3. Report conventions

Throughout this report, ontology class, property and OWL file names are formatted using Courier
font. OWL ontology documents named genpol.owl and wizpol.owl are referred to as genpol
and wizpol respectively.

For example the name of an ontology class is LogEventAction, an ontology property is
hasPolicyRule and similarly an OWL file name is recognised as genpol.

1 A defined OWL ontology class is a class which has at least one property restriction deemed to be both necessary
and sufficient. For further information refer to [5]. Typically, defined ontology classes are those whose subclasses
are intended to be purely inferred.

Dark class border
Inferred subclasses

Left hand dot marking
Class has additional parents not
shown in this diagram.

Subclass inheritance: line with arrow
e.g. CallCostCondParam ‘is-a’
AmountCondParam

Right hand dot marking
Class has additional children not
shown in this diagram.

Dark class shading
Defined class (subclasses
are inferred)

Lightest class shading
Imported class

 1

1 Overview
Ontologies can be used to describe a particular area of knowledge, including the key terms, their
semantic interconnections and certain rules of inference. Once defined, an ontology has several major
benefits when utilised by software applications or agents in a variety of contexts. Using an ontology, a
common understanding of the structure of information within a domain may be shared between
applications. Another major benefit is the ability to separate domain-specific knowledge from common
operational knowledge in a system.

These advantages of ontology use have been employed in a move to generalise the ACCENT

policy-based management system [1]. Previous implementation of this system saw both core policy
language information and details specific to the original application domain (call control) embedded
within the system interface. The lack of domain-independence imposed by such hard-coding, rendered
the policy wizard incapable of easy adaptation to a new domain.

Section 1.1 provides an introduction to APPEL – the policy description language used by the

ACCENT system and modelled in the ontologies described in this report. Section 1.2 outlines the
motivation for using ontology, while Section 1.3 provides an overview of the language and tools
chosen for ontology development. Section 1.4 describes the various ontologies which were created and
explained in this report.

1.1 APPEL Policy Description Language
A comprehensive policy description language called APPEL (the ACCENT Project Policy
Environment/Language [16]) was designed to facilitate the creation of policies. APPEL comprises a
core language schema which can be extended to support policy management for any given domain.
APPEL was previously described using XML-based grammar – its syntax defined by means of XML
Schema. Policies themselves are stored within the ACCENT system as XML documents.

The ACCENT system supports rule-based policies in event-condition-action (ECA) form. In

relation to the concept of ECA, a policy rule broadly consists of three main components:

• A trigger set (events which potentially cause a policy to be executed)
• A condition set (contextual variables used to determine whether the triggers justify policy

execution)
• An action set (output or resulting actions taken by the system upon policy execution).

The APPEL language describes the make-up of a policy. As a brief overview, this includes the

definition of a Policy Document which may contain zero or more Policy definitions which, in turn, may
contain zero or more Policy Rule definitions. A Policy Rule may contain zero or more Triggers,
Conditions and at least one Action. Further to these main components, the language outlines various
policy attributes and definitions of variables, together with a range of operators and rules governing
how they may be applied to combine various statement blocks. This report describes how these core
aspects of APPEL were encapsulated in an ontology.

1.2 Motivation for Ontology Usage
The use of ontology helps generalise the ACCENT policy wizard so it may facilitate user-friendly
policy creation for any customised domain. As the APPEL language contains a core structure which
may be reused across any domain-specific policy language, generic aspects of the language defined in
the genpol ontology can be extended to suit the area in question. The use of ontology brings many
benefits including the ability to define complex knowledge structures, reason with these using existing
inference tools, and import and extend ontology structures. These features are key to achieving an
extensible language framework, and are not possible using XML Schema alone.

In a wider context, once a domain-specific policy language ontology is produced it may be

integrated with the policy wizard. To achieve this, a special integration system known as POPPET
(Policy Ontology Parser Program Extensible Translation) was developed to access, parse and process
ontology data and offer an interface through which the policy wizard can query such data. Subsequent
to the creation of a suitable ontology to model the policy language, the original policy wizard was re-
engineered to remove hard-coded domain details and instead integrate it with the POPPET system. A

 2

technical description of the POPPET system and how it is used to integrate OWL ontologies with
ACCENT is presented in the technical report ‘An Overview of Ontology Application for Policy-based
Management using POPPET’ [2].

1.3 OWL/Protégé Overview
A variety of specialised languages exist to define ontologies. OWL (The Web Ontology Language [8])
was the language chosen for ontology development. The language is XML-based and was officially
standardised by the World Wide Web Consortium (W3C) in February 2004. OWL was chosen
primarily due to its recent standardisation, the benefits this brings in terms of available software tool
support, and compatibility with existing and future industrial and academic projects. In addition, OWL
provides a larger function range than any other ontology language to date.

Ontology documents expressed in OWL are intended for use in applications where ontological

content must be processed rather than simply extracted and presented to the human eye. OWL was
designed to combine and extend the customisable tagging of XML with the flexible data representation
ability of RDF (the Resource Description Framework [14]) with a view to formally describing the
semantics of terminology in a domain.

The OWL language is broken down into three sub-languages that provide mounting strengths of

expressiveness to meet the needs of different users and implementers. For a complete formal definition
of the differences between OWL dialects, refer to [10]. In descending order, the dialects are:

• OWL Full: The complete OWL language, OWL Full provides maximum expressiveness

in an ontology. It permits all the syntactic freedom of RDF but gives no computational
guarantee that statements will be logically inferable using existing Description Logic
reasoners.

• OWL DL (Description Logic): Designed to provide complete computational

compatibility with Description Logic reasoners, OWL DL contains the full range of OWL
language constructs, but places certain restrictions on how they are used. The result is an
extremely expressive sub-language that can be used in conjunction with existing reasoning
systems.

• OWL Lite: The weakest dialect, providing only a subset of OWL language constructs,

OWL Lite was designed for users requiring simple constraints and a class hierarchy.
Additionally, tool support for OWL Lite ontologies is easier to implement, and the
documents themselves are more compact. As OWL Lite is a condensed subset of OWL
DL, it also offers compatibility with existing reasoning tools.

To be compatible with existing formal reasoning tools, the ontologies outlined in this report were

designed to conform to the OWL DL sub-language. An ontology can be validated to ensure its structure
is compliant with the desired OWL sub-language. There are multiple online sources which provide a
free validation service, including the WonderWeb OWL Ontology Validator [19]. To check the
ontologies described in this report, point the validator to the relevant ontology URL as specified in [4]
or [18].

Using OWL, an ontology is created by defining various classes, properties and individuals. A class
represents a particular term or concept in the domain, while a property is a named relationship between
two classes. An individual is an instance or ‘member’ of a class, usually representing real data content
within an ontology. Properties are applied to classes in the form of ‘restrictions’. A property restriction
describes an ‘anonymous’ class, that is, a class of all individuals that satisfy the restriction. In OWL,
each property restriction places a constraint on the class in terms of either a value (class or data type),
or cardinality (number of values the property may be related to). The language also supports
inheritance within class and property structures. A property restriction placed upon a class is
automatically inherited by any of its subclasses. The Web Ontology Language Reference document [9]
provides a complete description of all language constructs.

OWL ontology documents are often very large and complex to edit manually – especially when

using OWL DL or OWL Full sub-languages as these utilise a broad range of constructs. Protégé [12] is
a widely used tool throughout industry and academia for the creation of ontologies. Under continual,
active development, it provides an effective user interface framework through which to define and edit

 3

ontology documents, and supports automated reasoning capability via any external Description Logic
compatible reasoning engine. An extendable framework, Protégé supports the creation of OWL
ontologies via a dedicated plug-in. Additional plug-in modules provide further specialised functions,
such as graphical visualisation of ontology structure and class hierarchy diagram generation. Both of
these were utilised for the figures within this report. The Protégé framework and all OWL modules are
available to freely download.

Inference support during ontology development was achieved using the RacerPro reasoning engine

[13]. Diagrams were generated with the aid of the OWLViz [11] and Jambalaya [6] plug-in tools for
Protégé.

1.4 The OWL Ontology Stack
The aim of ontology development was to provide a solid knowledge base describing the generic aspects
of APPEL, which could be extended to create a larger ontology specific to particular domain
application. Two ontologies were developed using OWL. The first defines the core constructs of
APPEL, and the second extends this to specify common features employed to manipulate this for user-
interface display.

At the base level, the genpol (Generic Policy Language) ontology describes the core constructs of

the APPEL policy description language. This includes definition of key policy-related concepts such as
Policy Document, Policy Variable, Policy Rule, Trigger, Condition and Action. Relationships between
these concepts describe named associations, inheritance properties and cardinality restrictions. This
ontology specifies a skeleton structure of ontology classes and properties, which can be imported and
extended within a domain-specific ontology.

Rather than work directly with XML, the ACCENT system includes a policy wizard that provides a

graphical user interface through which users can create and edit policies. Thus, the wizard contains
explicit knowledge of both the generic aspects of the APPEL language and its domain specialisations.
The policy wizard incorporates a number of features that control and manipulate domain data prior to
its display. Such features are not part of the policy language itself, but are common and useful in any
domain-specific ontology that is geared towards use with the policy system. Examples include
categorisation of triggers, conditions, actions and operators, and the inclusion of ‘user-level’ grouping
categories to restrict the range of language functionality depending on a user’s skill or authorisation
level. This additional, wizard-related knowledge is defined in a second base ontology known as
wizpol (the Wizard Policy Language ontology). Wizpol directly extends the genpol ontology,
thus specialising the APPEL language for use with the policy wizard. The genpol ontology document
may be accessed at [4] and the wizpol ontology document accessed at [18].

OWL supports the sharing and reuse of ontologies by means of ontology importation. Using this
mechanism, all definitions of classes, properties and individuals within an imported ontology, may be
used by the importing ontology. Wizpol imports the genpol ontology and extends it to provide
additional user interface features not directly related to the APPEL policy language. Extending
ontologies in this way has resulted in an ontology ‘stack’ or layered model, on top of which any
domain-specific ontology may be built and easily integrated with the ACCENT policy system, as
shown in Figure 1.1.

domain-specific.owl

wizpol.owl

genpol.owl

Figure 1.1 OWL Ontology Stack

These ontologies define only the structure of policy-related knowledge and not actual policy data.

For this reason, genpol and wizpol contain no individuals or ‘instances’ of ontology classes. All
constraints have been applied strictly to ‘anonymous’ classes. That is, relationships between classes are
described in purely abstract terms.

 4

The ontologies of genpol and wizpol are intended to be entirely reusable. Due to the recursive

nature of the OWL import mechanism, a domain-specific ontology is required to import only wizpol
– importation of genpol is inherently automatic. Once included, an ontology may extend the class
hierarchy of the imported ontology structure to define additional sub-classes and properties together
with applicable constraints. In particular, this includes the definition of specific trigger events,
condition parameters and actions associated with the domain in question. The implemented domain-
specific ontology for call control is described within the technical report ‘Ontology for Call Control’
[3].

This report describes the structure of the base ontologies genpol and wizpol. Through a series

of graphical representations, ontology class and property hierarchies are explained together with a view
of how genpol was extended to create wizpol.

 5

2 The Generic Policy Language Ontology: genpol.owl

The generic policy language ontology, referred to hereafter by the acronym genpol, describes the key
components of the APPEL policy description language [16] implemented in the ACCENT policy
system [1]. Contained within this ontology is a definition of key language terms and how they relate to
one another. This includes the concept of a “policy document” and its various constituent parts –
including policy rules, trigger events, conditions, actions and additional attributes, variables and
operators. Relationships between such concepts are defined by way of a specified property or
traditional inheritance.

2.1 Overview of genpol
The top level structural overview of genpol in terms of defined named property restrictions is shown
in Figure 2.1. Classes shown are related via named specific properties and not by any notion of
inheritance or hierarchical structure.

Figure 2.1 Top-Level genpol Structural Overview

2.2 Policy Document
A PolicyDocument is the highest conceptual level component of the APPEL policy description
language. It is defined to have zero or more Policy instances and may have zero or more associations
with the PolicyVariable component as shown in Figure 2.2.

Figure 2.2 Policy Document Property Structure

 6

2.3 Policy
A Policy is defined to have at least one PolicyRule and must have RequiredAttribute
instances. It may also have any number of OptionalAttribute instances. Figure 2.3 demonstrates
these properties in genpol.

Figure 2.3 Policy Structure

2.4 Policy Rule, Trigger, Condition and Action.
A PolicyRule may have zero or more TriggerEvent or Condition associations, but must
have at least one Action as shown in Figure 2.4.

Figure 2.4 Policy Rule

A TriggerEvent may be linked with a TriggerArgument along the

hasTriggerArgument property restriction as shown in Figure 2.5. For the purposes of the
ontology no cardinality restriction has been placed on this relationship. There may be triggers which do
not have any arguments.

Figure 2.5 TriggerEvent Relationship with TriggerArgument

A Condition must be associated with a single ConditionParameter, ConditionOperator

and ConditionValue as depicted in Figure 2.6. This is defined using the properties
hasConditionParameter, hasConditionOperator and hasConditionValue
combined with a set of associated cardinality restrictions.

 7

Figure 2.6 Condition Relationship with Related Classes

An Action may be linked with an ActionArgument along the hasActionArgument

property restriction as shown in Figure 2.7. No cardinality restriction has been placed on this
relationship within the ontology as there may be actions which do not have any arguments.

Figure 2.7 Action Relationship with ActionArgument

2.5 Arguments
An Argument may either be a TriggerArgument or an ActionArgument as shown in Figure
2.8. An Argument represents particular parameter values associated with a trigger or action in a
policy. Genpol defines this top level class structure which a domain-specific ontology may extend to
define its own named arguments.

Figure 2.8 Argument Hierarchy

2.6 Policy Attribute
A Policy has a number of attributes. A PolicyAttribute may be either required or optional as
shown in Figure 2.9. APPEL defines a number of required attributes as shown in Figure 2.10, all of
which exist within every Policy. Optional attributes can be seen in Figure 2.11. These attributes exist
for each policy but may not have values. In particular, Figure 2.12 lists the restricted set of preference
choices permitted for the PolicyPreference attribute.

Figure 2.9 Policy Attribute Top-Level Hierarchy

 8

Figure 2.10 Policy Attribute Required Attributes

Figure 2.11 Policy Attribute Optional Attributes

Figure 2.12 Policy Attribute: Policy Preference Optional Attribute

 9

2.7 Policy Variable Attribute
A PolicyVariable may have a number of attributes associated with it. The list of specific
PolicyVariableAttribute types is detailed in Figure 2.13.

Figure 2.13 Possible Policy Variable Attributes

2.8 Operators
There are two types of operators in a policy: a ConditionOperator used within a Condition
and a CombinationOperator used to integrate two policy rules.

2.8.1 Condition Operators

Named operators applicable within a Condition component of a PolicyRule are outlined in
Figure 2.14.

Figure 2.14 Condition Operator Hierarchy

 10

2.8.2 Combination Operators

Different combination operators apply to actions, conditions and trigger nodes as well as to policy rules
themselves. Each is outlined in Figure 2.15, Figure 2.16, Figure 2.7 and Figure 2.18.

Figure 2.15 Action Combination Operator Hierarchy

Figure 2.16 Trigger Combination Operator Hierarchy

Figure 2.17 Condition Combination Operator Hierarchy

 11

Figure 2.18 Policy Rule Combination Operator Hierarchy

 12

3 Wizard policy language ontology: wizpol.owl

The ACCENT Policy Wizard [17] provides a user-friendly means of creating and editing policies.
Many features of this interface are core to handling and displaying policy information. While distinct
from the policy description language aspects, they are required for any domain-specific implementation
of the policy system. The wizard policy language ontology (referred to by the acronym wizpol) was
developed as a means of extending the description of the policy description language (genpol) to
define common information structures specific to the policy system user interface.

In particular, wizpol expands the class hierarchy of genpol classes TriggerEvent,
ConditionParameter and Action. It also provides a range of wizard-specific properties
(restrictions) including user-levels, categorisation and internalisation, which are used to categorise
triggers, conditions and actions in a domain. The ontology also defines additional class structures used
to specify wizard-related information in the form of data typing and unit typing. A detailed explanation
of wizpol ontology structure is explained in the following subsections.

3.1 Trigger, Condition and Action Class Wizard Extension
The TriggerEvent, ConditionParameter and Action structure of genpol has been
extended to include a ‘Named’ class which represents the top level through which domain-specific
triggers, conditions or actions may be defined as subclasses. For example, actual domain-specific
trigger classes are defined as subclasses of NamedTriggerEvent.

In addition, wizpol defines five extra subclasses in the class hierarchies of

genpol:TriggerEvent, genpol:ConditionParameter and genpol:Action. Four of
the additional classes represent user level categorisations (“admin”, “expert”, “intermediate”, and
“novice”) and one signifies “internal use”. The subclasses of each are inferred by placing
hasUserLevel or hasInternalUse property restrictions on domain-specific triggers, conditions
and actions.

The extended class hierarchies of TriggerEvent, ConditionParameter and Action are

shown in Figure 3.1, Figure 3.2 and Figure 3.3 respectively. In addition, as a TriggerEvent is not a
compulsory element within a Policy (a policy may contain zero or more triggers), wizpol defines a
class EmptyTriggerEvent to represent such a scenario, shown in Figure 3.1.

Figure 3.1 Wizpol Subclass Extension to genpol:TriggerEvent

 13

Figure 3.2 Wizpol SubclassExtension to genpol:ConditionParameter

Figure 3.3 Wizpol Subclass Extension to genpol:Action

3.2 Class Categorisation
A crucial feature of the policy wizard is its ability to categorise or group related triggers, conditions,
actions and operators in a domain for processing and display purposes. Groupings, such as “user-level”
grouping or implying some action or trigger “has internal use” within the policy system, all require
some form of class categorisation.

There are three categorisation types defined in wizpol, as shown in Figure 3.4. The top class in

this structure is ClassCategorisation. Defined subclasses of this class represent the
UserLevelValue, InternalUse, and three top-level categories through which domain-specific
trigger, condition parameter and action categories can be specified. These are explained in turn within
the following subsections.

 14

Figure 3.4 Class Categorisation Top-Level wizpol Hierarchy

3.2.1 User-Level Categorisation

The policy system interface supports a four-level classification of its users, offering varying degrees of
functionality depending on the expertise of a user. In particular, each user level corresponds to a
specific subset of triggers, condition parameters and actions permitted for display and selection. The
top level is ‘Admin’ which permits the full range of options, while the remaining levels of “Expert”,
“Intermediate” and “Novice” may either retain or reduce this range respectively. For example, in the
call control domain [3], an Admin and Expert user have equivalent option ranges, with an Intermediate
user utilising a subset and a Novice user condensing this set further still. Additional details regarding
user-level categorisation can be found in the ACCENT wizard technical report [17].

Each user level is defined as a subclass of UserLevelValue as shown in Figure 3.5. Specific

trigger, action, condition and operator subclasses may be associated with one or more user levels using
the property restriction hasUserLevel.

Figure 3.5 Defined User-Level Categories

3.2.2 Internal Use Categorisation

Within a domain, a trigger, condition or action may be defined which accesses or modifies a variable
stored locally in the policy system. Such instances can be classified as having “Internal usage”.
Wizpol provides an InternalUse class and the property hasInternalUse. These can be used
together to restrict classes deemed as internal.

 15

3.2.3 Trigger, Condition Parameter and Action Categorisation

Rather than displaying each trigger, condition and action option set as large, continuous lists, the
wizard assembles related classes into categories, which are presented to the user as shorter sub-lists.
This categorisation is useful not only for display purposes, but also for grouping options with similar
properties, such as by number of parameter arguments or by related parameter data types. The wizpol
ontology defines top-level categories of ActionCategory, TriggerCategory and
ConditionParamCategory as shown in the diagram of Figure 3.5. In a domain-specific ontology,
named categories are defined as subclasses of these.

3.3 Operator Extension (User-Level Provision)
The policy system predefines associations between user levels and both condition parameter and policy
rule combination operators. The wizpol ontology uses the UserLevel categorisation to place
restrictions on the condition and combination operators defined in genpol as a means of associating
each operator with permitted user levels. The top-level operator extension is outlined in Figure 3.6.
Specific operator subsets associated with each user level category are described in the following
subsections.

Figure 3.6 Operator Extension for User-Level Association

3.3.1 Admin Level Operators

Admin level operators are shown in Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10 and Figure 3.11.

 16

Figure 3.7 Admin Level Condition Operators

Figure 3.8 Admin Level Condition Combination Operators

Figure 3.9 Admin Level PolicyRule Combination Operators

 17

Figure 3.10 Admin Level Trigger Combination Operators

Figure 3.11 Admin Level Action Combination Operators

3.3.2 Expert Level Operators

Expert level operators are listed in Figure 3.12, Figure 3.13, Figure 3.14, Figure 3.15 and Figure 3.16.

 18

Figure 3.12 Expert Level Condition Operators

Figure 3.13 Expert Level Trigger Combination Operators

Figure 3.14 Expert Level Action Combination Operators

 19

Figure 3.15 Expert Level PolicyRule Combination Operators

Figure 3.16 Expert Level Condition Combination Operators

3.3.3 Intermediate Level Operators

Intermediate level operators are defined in Figure 3.17, Figure 3.18, Figure 3.19 and Figure 3.20. Note
that at intermediate level there are no defined Action combinator operators. Intermediate (and in turn
Novice) users are not permitted to define more than one Action within a PolicyRule.

 20

Figure 3.17 Intermediate Level Condition Operators

Figure 3.18 Intermediate Level Condition Combination Operators

 21

Figure 3.19 Intermediate Level Trigger Combination Operators

Figure 3.20 Intermediate Level PolicyRule Combination Operators

3.3.4 Novice Level Operators

Novice level operators are shown in Figure 3.21, Figure 3.22, Figure 3.23 and Figure 3.24. Note that at
novice level there are no defined action combinator operators. Novice users are not permitted to define
more than one Action within a PolicyRule.

 22

Figure 3.21 Novice Level Condition Operators

Figure 3.22 Novice Level Trigger Combination Operators

 23

Figure 3.23 Novice Level Condition Combination Operators

Figure 3.24 Novice Level PolicyRule Combination Operators

3.4 Status Variables
In addition to general policy variables a user may define for sole personal use, the policy system holds
a more concrete set of variables that describe state information applicable to all system users. These
variables are interpreted by the policy wizard in a special way and are represented in wizpol under
the class StatusVariable as shown in Figure 3.25. Specific status variables may be defined as
subclasses of this structure in a domain-specific ontology. Note there is a compulsory status variable
representing the profile of a user.

Figure 3.25 Status Variable Class Structure

 24

3.5 Data Typing
Action and trigger arguments (parameters) associated with certain Action and TriggerEvent
subclasses may have a specific data type eligible for definition within the ontology. Unfortunately, the
current OWL specification is limited in its provision for built in data-type restrictions. Although OWL
supports the definition of a data-type property (for example, a property hasBandwidth) there is no
facility to place specific restrictions on its values (such as restricting hasBandwidth to a particular
numeric range). Therefore, in the absence of a general framework for customised data types, the
ontology simply defines a structure of classes to represent types of data. This solution works as a
method of describing extra data type knowledge within the ontology but is extremely general and gives
no real semantic control. Should the OWL specification be updated to support customised datatyping,
this method would be re-implemented.

The wizpol ontology defines the top-level hierarchical structure for the DataType option shown in
Figure 3.26, listing two initial types of Boolean and String.

Figure 3.26 Top-Level DataType Hierarchical Structure

The BooleanType class contains both true and false values. The StringType class is defined

to contain a default general string option used in the wizard, as shown below in Figure 3.27. Domain-
specific ontologies are encouraged to extend this list and to define other data types if necessary,
including their own StringType options.

Figure 3.27 String and Boolean DataType Options

3.6 Unit Typing
For display purposes, the policy wizard may output unit annotations to values entered as action or
trigger arguments or condition values. For example, in the call control domain, the trigger ‘call not
answered after’ requires an input argument representing a time in some unit of measurement. This can
be defined as a subclass of UnitType (i.e. SecondsUnitType) and linked to the corresponding
trigger class via the property restriction hasUnitType. The top-level hierarchical structure in
wizpol is shown below in Figure 3.28. Again, domain-specific ontologies are encouraged to extend
this list and define relevant unit type options.

Figure 3.28 UnitType Top-Level Definition

 25

4 Conclusion

This report used a series of graphical representations to describe the ontologies of genpol and
wizpol, created to define the generic constructs of the APPEL policy description language and
features common to the ACCENT policy wizard. Together, these ontologies form the basis of a
reusable policy language ontology stack, which may be extended to define a domain-specific policy
language. Genpol is the base level ontology which encapsulates the core, generic constructs of
APPEL, including the syntax used to describe a policy document, policy rules and additional policy
attributes, variables and operators. The genpol ontology is imported and extended within wizpol, to
define how constructs may be categorised and processed for display by the ACCENT policy wizard.

Using the concept of ontology, these documents go beyond a simple syntactic definition of the

policy language, as is presented through XML Schema, to express knowledge of the semantics
surrounding the constructs used. In an ontology, the structure of the policy language is also defined in
such a way that it may be reasoned about and extended through importation within additional
ontologies. Both ontologies were defined using OWL and developed under the Protégé ontology
environment. The following subsections evaluate this choice of ontology language and support tools,
describing how the developed policy language ontology framework may be applied.

4.1 Evaluation of OWL/Protégé
OWL was used as it sports a broader set of functions than any existing ontology language.
Compatibility with existing reasoners, such as RacerPro and Pellet, is offered through the OWL DL
sub-language. This is useful for the current ontology set and also for future extensions to these
ontologies. Alternative languages are either too formally expressive for the current ontologies, or lack
the portability and support provided by an XML-based syntax like OWL. Additionally, as OWL is a
recent standard, there is greater scope for standardised extension to its functionality.

The most noticeable flaw of the current OWL specification stems from a lack of support for

customised data typing, which prevents ontologies from placing restrictions on data-type values. While
OWL supports cardinality restrictions to specify the number of values associated with a property, it
does not give the ability to state further restrictions upon data type values, such as a specific numeric
range of Integer values or the minimum and maximum lengths of a String. There is a plan to extend
OWL to integrate and reuse the mechanisms of the XML Schema specification, which allows detailed
definition of user-defined data-types [7]. However, as XML Schema does not derive from an RDF-
based format, there are issues regarding its syntactical compatibility with OWL. With these issues
under debate, it is hoped a solution may be implemented in the near future which will allow OWL to
support data-type restrictions in a standard way.

OWL ontologies are intended for use by software applications. Due to the large number of

additional statements required in an ontology for compliance with OWL DL, the documents themselves
become extremely large and complex to work with directly. Therefore, adequate tool support is
essential. Without the use of Protégé, understanding and applying the range of OWL language
constructs would have been a much slower, less efficient and highly error prone process. In addition,
the graphical plug-in tools obtainable for the Protégé framework provided a useful means of analysing
and presenting an ontology – especially in the latter stages of development when documents became
much more complex.

The only notable drawback of using Protégé is the changeable state of software releases. As the tool

is under constant development and the OWL language is still relatively young, the interface contains a
number of bugs and inconsistencies. Also, as the framework was originally designed for general
ontology support, the interface contains several functions not applicable to OWL. For these reasons, the
tool is undergoing frequent revisions to improve its functionality and reliability. Currently, there is no
other freely available tool which provides the same level of support for OWL.

4.2 Future Application
The key structure of the APPEL policy language is contained within the genpol ontology. In policy
language terms, this ontology describes the core structure through which any domain-specific policy
language must be based. Although wizpol extends this structure to provide additional constraints
useful when interpreting the language within the policy wizard, it is not a compulsory extension to the

 26

language itself. Therefore, genpol may be extended in two different ways depending on the
application for which it is intended.

Specifically, the policy language defined in genpol was intended for specialisation and reuse

within the ACCENT policy system. To achieve this, the language could be specialised by extended the
structure of wizpol. This would tailor the language for use in a particular domain and allow for
successful integration with the current ACCENT policy wizard.

However, as the core policy language details and wizard extensions have been defined within

separate ontologies, the language could potentially be specialised through direct extension of genpol
alone. This would be useful if the language was intended for use in another application or with a
different user interface. For example, if the language was to be applied within another policy system,
genpol could be extended directly. Also, should the policy wizard be altered in any way, wizpol
could be adjusted accordingly or a new ontology created that imported genpol to describe the new
interface.

Certainly, there is sufficient scope for the reuse of both genpol and wizpol, either as extensions

of one another or independently. In a move to apply genpol and wizpol to the ACCENT policy
system, the developed ontology stack framework was taken and extended to produce a domain-specific
language ontology for (Internet) call control. The specialised policy ontology language is described in
the technical report ‘Ontology for Call Control’ [3].

 27

Appendix A: Genpol Properties

The table below lists the properties defined under the genpol.owl ontology document and a brief
description of their usage within the ontology. Inverse properties simply reverse a restriction
application – that is, they are placed upon the domain class instead of the range class.

Property Name Description of usage

hasAction A PolicyRule has at least one Action

hasActionArgument An Action may have an ActionArgument

hasCondition A PolicyRule has a Condition

hasConditionOperator A Condition has a ConditionOperator

hasConditionParameter A Condition has a ConditionParameter

hasConditionValue A Condition has a ConditionValue

hasPermissibleAction A TriggerEvent has some permissible
Action(s)

hasPermissibleParameter A TriggerEvent has some permissible
ConditionParameter(s)

hasPolicy A PolicyDocument has at least one Policy

hasPolicyAttribute A Policy has some PolicyAttribute

hasPolicyRule A Policy has at least one PolicyRule

hasPolicyVariable A Policy has some PolicyVariable

hasPolicyVariableAttribute A PolicyVariable may have some
PolicyVariableAttribute(s)

hasTriggerArgument A TriggerEvent may have a
TriggerArgument

hasTriggerEvent A PolicyRule has zero or more
TriggerEvent(s)

isActionOf Inverse property of hasAction

isActionArgumentOf Inverse property of hasActionArgument

isConditionOf Inverse property of hasCondition

isConditionOperatorOf Inverse property of hasConditionOperator

isConditionParameterOf Inverse property of hasConditionParameter

isConditionValueOf Inverse property of hasConditionValue

isPermissibleActionOf Inverse property of hasPermissibleAction

isPermissibleParameterOf Inverse property of
hasPermissibleParameter

isPolicyAttributeOf Inverse property of hasPolicyAttribute

 28

isPolicyOf Inverse property of hasPolicy

isPolicyRuleOf Inverse property of hasPolicyRule

isPolicyVariableAttributeOf Inverse property of
hasPolicyVariableAttribute

isPolicyVariableOf Inverse property of hasPolicyVariable

isTriggerArgumentOf Inverse property of hasTriggerArgument

isTriggerEventOf Inverse property of hasTriggerEvent

 29

Appendix B: Wizpol Properties

The table below lists the properties defined under the wizpol.owl ontology document and a brief
description of their usage within the ontology. Inverse properties simply reverse a restriction
application – that is, they are placed upon the domain class instead of the range class.

Property Name Description of usage

hasAbilityToQuery

Can be applied to any class in a domain-specific
ontology to indicate a form of relationship with an
internally classed variable. In the current
implementation, there is no inverse equivalent

hasCategory Used to categorise triggers, condition parameters,
actions and operators

hasDataType
Used to assign a particular defined subclass of
DataType to a TriggerArgument or
ActionArgument

hasInternalUse
Used to categorise a domain-specific trigger,
condition parameter or action as Internal in its use
in a domain

hasUnitType
Used to associate particular units for display
alongside a TriggerArgument or
ActionArgument or ConditionParameter

hasUserLevel
Used to categorise triggers, conditions, actions
and operators in groups according to user level
applicability

isCategoryOf Inverse property of hasCategory

isDataTypeOf Inverse property of hasDataType

isInternalUseOf Inverse property of hasInternalUse

isUnitTypeOf Inverse property of hasUnitType

isUserLevelOf Inverse property of hasUserLevel

matchValue

This is an annotation property which has special
function and is a form of meta-data. In OWL, this
type of property acts as a class attribute rather
than a restriction. It is applied in a similar way to
the rdfs:label, rdfs:comment or
owl:versionInfo predefined annotations
defined for each class.
The matchValue is used to define an alternative
action or trigger class in a policy depending on the
input value of an argument for a trigger or action.
It contains a literal string value that links it with
another ontology class. The string is interpreted
and processed by an application (POPPET)
reading the ontology.

 30

References
[1] ACCENT Policy-based system Project home page: http://www.cs.stir.ac.uk/accent, May 2006.

[2] Campbell, G.A. An Overview of Ontology Application for Policy-based Management using

POPPET. Technical Report CSM-168. June 2006.

[3] Campbell, G.A. Ontology for Call Control. Technical Report CSM-170. June 2006.

[4] Generic Policy Language Ontology document (genpol.owl). Located online at URL:

http://www.cs.stir.ac.uk/schemas/genpol.owl, May 2006.

[5] Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C. A Practical Guide To Building

OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools Edition 1.0. The
University of Manchester, August 2004.

[6] Jambalaya graphical plug-in tool for the Protégé ontology development environment. Home page:

http://www.thechiselgroup.org/~chisel/projects/jambalaya/jambalaya.html, May 2006.

[7] Knublaugh, H. User-defined Datatypes in Protégé-OWL. Located online:

http://protege.stanford.edu/plugins/owl/xsp.html, Last updated: August 2005. Last accessed: June
2006.

[8] OWL: The Web Ontology Language. http://www.w3.org/2004/OWL/, May 2006

[9] OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/, June 2006.

[10] OWL Web Ontology Language Semantics and Abstract Syntax. http://www.w3.org/TR/owl-

semantics/, June 2006.

[11] OWLViz graphical plug-in tool. Home page: http://www.co-ode.org/downloads/owlviz/, May

2006.

[12] Protégé home page: http://protege.stanford.edu/, May 2006.

[13] Racer Systems GmbH & Co. KG. Home Page and download links: http://www.racer-

systems.com/index.phtml. May 2006.

[14] RDF: The Resource Description Framework. http://www.w3.org/RDF/, May 2006.

[15] RDF Schema (RDFS): http://www.w3.org/TR/rdf-schema/, June 2006.

[16] Reiff-Marganiec, S., Turner, K.J. APPEL: The ACCENT Project Policy Environment/Language.

Technical Report CSM-161, June 2005.

[17] Turner, K.J. The ACCENT Policy Wizard. Technical Report CSM-166, May 2005.

[18] Wizard Policy Language Ontology document (wizpol.owl). Located online at URL:

http://www.cs.stir.ac.uk/schemas/wizpol.owl, May 2006.

[19] WonderWeb OWL Ontology Validator. University of Manchester, 2003. Service located online at

URL: http://phoebus.cs.man.ac.uk:9999/OWL/Validator, June 2006.

