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Abstract 

Software developers have varying abilities and develop software with differing reliability requirements. 
Sometimes reliability is critical and the developers have the mathematical capabilities to perform 
interactive theorem proving but this is not usually the case. We believe that most software developers 
need easy to use tools such as run-time assertion checkers and extended static checkers that can help 
them produce more reliable application-specific code cheaply. However, these lightweight approaches 
are not sufficient to allow the safe reuse of software components. To safely reuse software components 
we need comprehensive descriptions and assurances of correctness. These requirements can be provided 
for by full formal verification with the additional costs justified by the economies of scale. Our 
Omnibus verification tool provides integrated support for all these different types of verification. This 
paper illustrates these concepts through a sorting implementation. 
 
Keywords: Assertion-based verification, Run-time assertion checking, Extended Static Checking, 
Formal verification, Software Component Reuse, Tool integration 



1 Introduction 
The Omnibus system [1,2,3] consists of a superficially Java-like language and IDE tool incorporating a 
bytecode generator, static verifier and interface documentation generator. The tool supports the 
integrated use of a range of different assertion-based verification approaches: run-time assertion 
checking (RAC), extended static checking (ESC) and full formal verification (FFV). Run-time 
assertion checking takes assertion annotations and converts them into run-time checks. The application 
should then be tested to uncover assertion failures with the assertion checks helping to detect failures 
close to source. Extended static checking uses fully-automated theorem proving to statically check the 
absence of run-time errors and compliance with lightweight assertion annotations. Full formal 
verification uses a combination of automated and interactive theorem proving to verify the correctness 
of an application relative to a heavyweight specification. 

Our integrated support for these approaches allows developers with different mathematical 
capabilities, developing code for different purposes, to use verification at a level of rigour that most 
suits their needs. We make a strong distinction between (i) typical software developers producing a 
piece of application-specific code and (ii) a component vendor producing a reusable component. We 
propose push-button techniques that software developers producing non-critical application-specific 
code can use relatively cheaply. Our extended static checker and run-time assertion checker together 
with the unit testing framework provide this. Our system also supports full formal verification which 
developers may choose to use if the reliability of their code is critical and they have the required skills, 
but this is purely optional. In contrast, component vendors are encouraged to use full formal 
verification to ensure that future users have a clear description of what the component should do and a 
strong assurance that it does it. The economies of scale help justify the additional costs. We strongly 
believe that a developer cannot safely reuse a component from an unknown third-party component 
vendor without such provisions. 

This paper demonstrates the advantages of using the approaches together in an integrated fashion 
for a concrete example. We start by considering the role of a typical software developer producing an 
implementation of a sorting algorithm. First we use our run-time assertion checker and unit testing 
framework to perform comprehensive testing of our implementation. This approach offers an easy-to-
use enhancement of conventional testing. The assertion checks allow us to detect deviations from 
expected behaviour close to the point of failure. The IDE incorporates push-button facilities to 
automatically invoke the unit tests and monitor assertion failures. 

Next, we look at how the extended static checker can provide more general assurances of 
correctness without the need for test cases. It works by executing implementations with symbolic input 
values, recording the relationships between these values and using this information to check assertions 
where they arise. The tool checks that the pre-conditions of all the methods that are called in the 
implementation are met and that any assertion annotations are respected. We shall see that there are 
limits to what we can verify using an automated verification tool such as this. We can verify some 
simple properties of our sorting algorithm such as the ordering of the result and that the sizes of the 
lists are the same but we cannot verify that the implementation meets the full sorting specification. We 
must remain conscious of the limits of automated verification when using ESC and use specifications 
that remain within the bounds of what the tool can check. We refer to this problem of remaining within 
the capabilities of ESC tools as ESC-compatibility [2]. 

In the second half of the paper we turn to the role of a component vendor, who is producing a 
reusable sorting component. We start by considering the use of run-time assertion checking and 
extended static checking approaches to verify reusable components. Unfortunately we have to make 
concessions in the expressiveness of the lightweight specifications in order to make them amenable to 
efficient run-time checking and decidable automated verification. This can lead to specifications that 
are insufficient to verify uses of that component [2]. The gaps in the error coverage of the approaches 
can also reduce the dependability of the hidden implementations. If the components are being used by 
the same people that developed them then the problems that are met can be addressed incrementally, 
but when the producers and users of the component are different, this form of direct feedback is not 
practically possible. 

Finally, we will look at how full formal verification provides the facilities to produce 
comprehensive heavyweight specifications and rigorously verify that they are consistent, and met by 
the implementation. The process requires interactive theorem proving that is relatively difficult and 
time consuming but we believe it is the responsibility of a component vendor to provide a clear 



description of what their components should do and justification that it does it. This is needed to certify 
that the components can be safely reused. 

Combining easy-to-use but powerful verification tools with libraries of clearly specified dependable 
components provides a practical development method that should be amenable and attractive to 
practising software developers. Furthermore, our framework should allow reusable components from 
unknown third-party component vendors to be safely used. 

Section 2 considers the role of a typical software developer producing an implementation of a 
sorting algorithm. Section 3 considers the role of a component vendor producing a reusable sorting 
component. Section 4 gives conclusions and future work. 

2 Role A: application developer 
First, let us adopt the role of a typical software developer who has been asked to implement a sorting 
algorithm. We use the term “application developer” in the situation where we are not concerned with 
the reuse of our code by other developers. Suppose, as an illustrative example, we are required to 
produce a static function which accepts a List of integers and returns the corresponding List in 
ascending order. Our first attempt to implement the insertion sort algorithm is shown below. We 
assume that we are provided with a List class with methods with an obvious interpretation. 
 1: public class Sorter {
2: public static function insertSort(inList:List):List {
3: var a:List := inList;
4: var j:integer := 1;
5: while (j <= a.size()) {
6: var key:integer := a.elementAt(j);
7: var i:integer := j-1;
8: while (i >= 0 && i < a.size()
9: && a.elementAt(i) >= key) {
10: a.set(i+1,a.elementAt(i));
11: i := i-1;
12: }
13: a.set(i-1,key);
14: j := j+1;
15: }
16: return a;
17: }
18: }

2.1 Run-time assertion checking and unit testing 
Of course, we must ensure that the implementation is correct. Let us first look at how the run-time 
assertion checker can be used. We can start by giving a specification for the sorting method to be 
verified against. We can use an ensures clause to provide a post-condition that should hold at the end 
of the method. A suitable ensures clause is shown below and could be substituted in place of line 2 of 
the original code. It consists of two assertions, describing that the returned list should be sorted in 
ascending numerical order and the result should be a permutation of the input i.e. the number of 
occurrences of all elements in the two lists should be equal. The method isPermutationOf is 
provided by the List class. 
public static function insertSort(inList:List):List

ensures "The returned List is sorted":
forall (m:integer:= 1 to result.size()-1):

result.elementAt(m)
>= result.elementAt(m-1),

"Returned value is a permutation of the input":
result.isPermutationOf(inList) {

When the file is compiled to bytecode, run-time checks will be generated for these assertions and 
those in the other classes in the project. We can now test the application in the conventional manner 
and assertion failure messages will be generated whenever these assertions are violated. Alternatively, 
Omnibus provides the facilities to define unit tests within the body of the class to be tested. These can 
then be automatically invoked by the tool and assertion failures automatically detected. 

In Omnibus, unit tests are blocks of code that should create instances of the containing class, 
manipulate them and then check that they have the expected values. We can write the following simple 
test cases to check that our sorting implementation can handle the empty List and a list containing the 
elements 5, 4, 7 and 1.



test canSortEmpty {
var l1:List := List.empty();
var l2:List := Sorter.insertSort(l1);
assert l2.size() = 0;

}

test canSort5471 {
var l1:List := List.empty().add(5).add(4).add(7).add(1);
var l2:List := Sorter.insertSort(l1);
assert l2.size() = 4;
assert l2.elementAt(0) = 1;
assert l2.elementAt(1) = 4;
assert l2.elementAt(2) = 5;
assert l2.elementAt(3) = 7;

}

We can now invoke the run-time assertion checker. This compiles the classes in the application to 
bytecode containing run-time checks of the assertion annotations, executes the test cases and monitors 
assertion failures. 

The initial results of the assertion checker are shown in Figure 1(a). The assertion checker 
encountered an error when executing the unit tests. The details of the error can be accessed via the 
Tester pane of the Omnibus tool. The contents of the Tester pane are shown in Figure 1(b). 

The assertion failure message tells us that the pre-condition of the set operation call made at line 
13 in the original code is not being met during the execution of the canSort5471 test. On closer 
examination we see that we should be adding one to i rather than subtracting one. 
13a: a.set(i+1,key);

Figure 1. From the top, respectively: (a) the run-time assertion checker reporting an 
error, (b) details of the first error, (c) details of the second error and (d) no errors 



Re-running the run-time assertion checker we now get a different error the details of which are 
shown in Figure 1(c). This time the pre-condition of the first call of elementAt within the outer loop 
is not being met. This is due to a faulty exit condition for the loop which should be changed to: 
 5a: while (j < a.size()) {

No more errors are reported when we re-run the run-time assertion checker as shown in Figure 1(d). 
It is important to be clear about what this tells us. It tells us that for those particular test cases, the 

explicit tests in the assert statements and automatically generated run-time assertion checks are met. 
This means that the implementations are consistent with their specifications, for these test values, and 
so if the specifications correctly characterize our requirements then, for these values, the 
implementations are correct. However, it does not tell us about the correctness of the algorithm for 
other values. 

For example, does the algorithm work for lists that are already sorted, for lists of size one, for lists 
with repeated values? We could write separate tests for those cases but, of course, nothing short of 
exhaustive testing can tell us about the general correctness of the implementation. To do that we need 
to use a static approach such as extended static checking. 

2.2 Extended Static Checking 
Instead of testing the algorithm with assertion checks we can use the extended static checker to verify 
general properties of the implementation. This process works by executing the algorithm with symbolic 
input values, recording the relationships between these symbolic values and then converting assertion 
checks to formulae over these symbols, which are then passed to a fully automated theorem prover. If 
any of these formulae cannot be proved then a corresponding error message is reported. 

We can take the original unasserted implementation of our sorting algorithm and run it through the 
extended static checker. We do not need to add assertion annotations or define unit tests like we did 
when using run-time assertion checking. The extended static checker will simply check that any 
assertion annotations that we provide, or that are in other classes that we use, are not violated. For 
example, it will automatically check that the pre-conditions of all the methods we call are met. 

Running the extended static checker on the original code yields 2 errors, which are shown in Figure 
2(a). The errors that are reported match those we found using the run-time assertion checker. We can 
get further information on the errors to help us work out the causes of the failures. We can ask for the 
variable values, assertions that are known to be true, the assertion to be checked and execution path 
information to be displayed. The full details of the first error are shown in Figure 2(b). We can see 
from this that during the execution of the method we are trying to retrieve the 
inList_0.elementAt(1) when inList_0.size() may equal 1. The full details of the second 
error are shown in Figure 2(c). This time it is clear that the index we are passing to the set operation is 
-1 when we enter the body of the outer while loop and don’t execute the inner loop at all. This 
reasonably leads us to make the same corrections as we made after the run-time assertion checking. 

The tool has checked that there are no crashes, i.e. no assertion failures or conventional run-time 
errors (e.g. divisions by zero), in all possible executions of the implementation. The key advantage is 
that the checker does not assume anything about the input List: it could contain repeated elements, it 
could already be ordered, or it could be empty. We have not verified that the implementation actually 
sorts the List, we have simply verified that it does not crash. To verify that the method sorts the List
we should add a suitable specification and then re-run the checker. Unlike the run-time checker, we do 
not need to define any test cases to use the extended static checker. 

Unfortunately, we cannot use the full sorting specification from the run-time checking example. 
This is because the method isPermutationOf, which it uses, is specified via a recursive method, and 
our extended static checker cannot effectively reason about recursive specifications. We can, however, 
check that the returned List is sorted, as we did in the first of the assertions in the specification used 
by the run-time assertion checker, and that the sizes of the input and output Lists are equal. A suitable 
ensures clause is shown below and, again, could be substituted in place of line 2 of the original code. 
public static function insertSort(inList:List):List

ensures "The returned List is sorted":
forall (m:integer := 1 to result.size()-1):

result.elementAt(m)
>= result.elementAt(m-1),

"The size of the sorted List is the same as the size of the
input List":

result.size() = inList.size() {



This adjustment of the specification we use is a practical illustration of the theoretical limitations of 
automated verification. We had to adjust our specification according to the capabilities of the ESC tool. 
In section 3 we will see how such adjustments can cause problems for reusable components. 

Again, we should be careful to query exactly what has been verified. Loops are a problem for 
extended static checkers. Their evaluation would generally involve the consideration of an unbounded 
number of cases: one for each of the number of times that the loop could have been executed. Our 
extended static checker simply considers a finite number of iterations of each loop. By default we 
consider the cases where each loop is executed 0 or 1 times in separate branches. So the tool has 
verified that in all possible executions of the implementation where each loop is executed either zero or 
one times that there are no crashes and the ensures clauses hold at the end of the method. 

2.3 Taking ESC further 
If we want to prove properties about the implementation where the loops are executed any number of 
times then we can supply a loop invariant for each loop which the tool can use as a basis for an 
inductive proof of correctness. However, these assertions are particularly difficult to devise and often 
the inductive proofs are too difficult for the automated prover we use. In this case a proof of the 
ordering of the result using loop invariants is beyond the capabilities of our ESC tool even if suitable 
loop invariants are provided. However, by adding selected loop invariants describing how the size of 
the lists change and how the values of the local variables relate to the sizes, we can verify the absence 
of run-time errors for executions with an unbounded number of iterations of each loop. Suitable loop 
invariants for the first and second loops, respectively, are shown below: 

Figure 2. From the top, respectively: (a) extended static checker reporting two 
errors, (b) details of the first error, (c) details of the second error 



alters a, j
maintains j >= 1, j <= a.size(), a.size() = inList.size()

alters a, i
maintains i >= -1, i < a.size()-1, a.size() = inList.size()

We must also surround the outer loop by an if statement checking that the size of the list a is
greater than zero since otherwise the invariant j <= a.size() will not hold initially. If we want to 
verify that the result of the method is sorted or that it is a permutation of the input then we would need 
to provide more comprehensive loop invariants but we cannot verify those using our ESC tool.  

2.4 RAC and ESC as complementary approaches 
Run-time checking and ESC are both push-button approaches to verification, and they have 
complementary strengths. ESC can guarantee correctness for a general class of value, but users are 
forced to compromise on the expressiveness of the specifications. Run-time checking allows the use 
more expressive specifications, but its downside is that correctness is only guaranteed for specific test 
values. The Omnibus tool allows easy integration of the two approaches. 

3 Role B: component vendor 
Let us now consider the role of a component vendor. We assume that the developers of components 
and the users of the component may be separate. Crucially, we must implement the component, verify 
it and then ship it. Once it is shipped, we cannot easily alter it to correct errors. So, as responsible 
component vendors, we would like to ensure that our component is not faulty before we distribute it. 

There has been much work on reusable software components. The work of Meyer has greatly 
influenced us. To allow software components to be reused safely Meyer states we require two things: 
(1) a clear, unambiguous description of what the each component should do [4] and (2) some form of 
assurance that it does it [5]. 

3.1 State-of-practice for reusable components 
Currently, in practice, software components are described using type signature interfaces supplemented 
by interface documentation (e.g. javadoc, docgen) and no quantifiable assurances of correctness are 
provided. As a result, developers have to use their intuition to fill in the gaps of the descriptions of 
what components should do and use informal information such as the reputation of the vendor that 
produced the component to decide whether they can trust it will work. When the producer of the 
component is an organisation such as Sun this works relatively well since they comprehensively 
document their interfaces and you can generally trust them to implement things correctly. However, the 
system is seriously flawed when applied to unknown third-party component vendors. There are no 
requirements on the level of documentation which is often patchy and it is not clear if we should trust 
an implementation of a component from one of these vendors to be correct. As a result, the reuse of 
software components using this framework often introduces problems, sometimes even catastrophic 
failure. To protect themselves against this, many developers develop “not invented here” syndrome and 
prefer re-implementation to reuse when the implementer of the component is not known to be 
dependable. This has acted to limit the spread of reusable software components. 

3.2 Developing reusable components with run-time assertion checking and extended 
static checking 

Run-time assertion checking and extended static checking help the situation somewhat. The assertion 
annotations on which they are based provide a structured framework which can be used to provide 
unambiguous documentation. The associated verification methodologies also give some basis on which 
to found trust of the hidden implementation. If ESC has been used to verify that the given assertion 
annotations constituting the interface of the component are met by the implementation then the user of 
the component can have some reasonable confidence in its correctness. Similarly if RAC is used in 
conjunction with a specified test harness (which should also be included in the interface of the 
component) then we can have some confidence that the hidden implementation meets the specification 
of the component. 

Unfortunately ESC and RAC provide only limited solutions. We have to make compromises in the 
expressiveness of the assertion annotations we use in conjunction with these approaches. 

Using ESC we could not verify the correctness of the implementation relative to the full 
specification for sorting and so we had to use a relatively incomplete specification. At this point the 



assertion annotation and our conception of the correctness of the algorithm diverge. We can document 
the additional requirements in interface documentation but they are not included within the assertion 
annotations because they cannot be verified by the approach. This limits the extent to which we can 
provide a clear and comprehensive description of what the component should do. We also saw that 
concessions are made in the soundness of the verification approach (e.g. considering loops by 
unravelling them a finite number of times) in order to make it possible to use an automated theorem 
prover. 

Using RAC we saw that it was possible to check the assertion annotations of the full sorting 
specification from Section 2. The main problem with the run-time checking of the assertions is that the 
more expressive the assertion annotations are, the more time it will take to execute the run-time checks. 
This problem can be extreme. If full specifications are used then the evaluation of the run-time 
assertion checks will often take at least as long as the execution of the implementation itself (because 
for full specifications both the things that are changed and the things that are not changed must be 
checked, whereas implementations only describe what changes are made). This may be acceptable 
during the testing process performed by the implementer of the component but retaining the full run-
time checks after the component is distributed will often compromise the efficiency of the component 
too much. 

To combat this we can either: 
1. disable the checks of the supplier obligations (e.g. the post-conditions) before distribution or 
2. adjust the assertions to make them cheaper to check and then retain the run-time checks. 

Disabling the checks of the supplier obligations is fine if the test harnesses that were used to check 
the implementation were sufficient to uncover all possible implementation errors but a dangerous 
situation arises if they are not. In such a case the user of the component may make a call of the 
component, satisfying their obligations but exposing a scenario not covered by the test harness, where 
the component’s implementation is not correct and violates its assertion annotations. Crucially, if the 
assertion checks in the component’s implementation are disabled then an assertion failure will not be 
automatically triggered and the component will simply, silently return a value violating its own 
assertion annotations. Such problems could be hard to track down since the user will, rightly, initially 
assume that the implementations of the components meet their specifications. In order to uncover the 
error they will have to consider the possibility that each of the components fails to meet its obligations. 
This is highly undesirable and seriously compromises the basis for trusting the hidden implementation. 

If we take the alternative approach and adjust the assertion annotations to make them cheaper to 
check (e.g. limiting the use of quantifiers) then we will compromise our ability to provide 
comprehensive descriptions of what the component should do, just as is the case with ESC. In this case 
concessions are made in the completeness of the verification in order to make it practical to check the 
assertion annotations at run-time. 

3.3 Developing reusable components with full formal verification 
For a comprehensive guarantee of correctness for software components, we must turn to full formal 
verification. The Omnibus tool supports this approach by translating from the Omnibus language into 
the language of the PVS theorem prover. A process of symbolic execution is used to generate 
verification conditions for implementations. Heavyweight specifications can be used to provide 
comprehensive, unambiguous descriptions of what the component should do and the formal 
verification mechanism can give a rigorous assurance that the implementation does this.   

This approach can be used by a component vendor to produce a fully verified, reusable Sorter
component. To see how this process works, we shall look at a part of the verification of this class.  Let 
us attempt to verify that the result returned by the insertSort method is ordered, for any number of 
iterations of each loop. We must first define suitable loop invariants. The loop invariants used in 
Section 2 do not describe how the ordering of the list changes and so cannot be used for this purpose. 
Suitable loop invariants are shown below. The first, outer loop ensures that the first j elements of the 
list are in sorted order, where j increases by one with each iteration of the loop. The second, inner loop 
ensures that the elements below i are ordered and those from i+2 upwards are ordered and greater than 
key.
alters a, j
maintains j >= 1, j <= a.size(), a.size() = inList.size(),

forall (o:integer := 1 to j-1):
a.elementAt(o) >= a.elementAt(o-1)

alters a, i
maintains i >= -1, i < a.size()-1, a.size() = inList.size(),

forall (o:integer := 1 to i):



a.elementAt(o) >= a.elementAt(o-1),
forall (p:integer := i+2 to j):

a.elementAt(p) >= key,
forall (q:integer := i+3 to j):

a.elementAt(q) >= a.elementAt(q-1)

We can now use the interactive formal verifier. This translates the specifications of the classes in 
the project into the logic of the PVS prover and then generates a number of obligations over these 
specifications, which we must prove in order to demonstrate the correctness of our implementation. 
Default proof attempts are automatically generated by the tool, which allow many obligations to be 
automatically verified. 

A total of 44 proof obligations are generated for this class. Of these the default proof attempts are 
sufficient to prove 31. We must then assist the tool in the verification of the remaining obligations. 
Most of these were fairly straightforward but a few required a certain amount of mathematical 
ingenuity. In all, it took an experienced PVS user about 10 hours to discharge all the proof obligations. 

As is often the case, we found that one of the most difficult steps in this approach was devising 
suitable loop invariants. It took several attempts to get them right and we often found more errors in the 
loop invariants that in the code itself. It is discouraging when a product of the verification process is 
harder to debug than the original code itself. Uncovering errors using interactive verification is also 
particularly costly. It may not be clear whether an obligation should be provable or not. The user may 
believe that it should be but reach an unprovable sub-goal and be unsure whether they made a mistake 
in their proof attempt or if the original obligation was invalid. Even if they decide that the original 
obligation was faulty, a suitable correction may not be readily apparent. 

Full formal verification is therefore a costly approach; however, the payoff for carrying it out is that 
you gain great confidence in the implementation. To successfully perform the verification the user must 
mathematically justify the correctness of the implementation. The process forces you to think very 
deeply about your implementation and how it works, helping to ensure that it is precisely what is 
needed. This can make it useful where reliability is of critical importance. The interactive proof 
mechanism allows complicated properties to be verified, allowing programmers to use more 
sophisticated specifications, and the resulting proofs can be re-run by any user to independently check 
the proof. This provides a powerful basis to support the safe reuse of software components. In future 
work, we intend to develop this into a scheme for generating and checking correctness certificates for 
components. 

4 Related Work 

4.1 Integrating different verification approaches 
Our tool provides integrated support for RAC, ESC and FFV. We have previously discussed why such 
integrated support is desirable and how it can be managed [2]. JML [6] is another project that supports 
these different approaches. It is built around an assertion-annotation language for Java which is 
supported by a range of separate tools developed by separate teams and applied separately rather than 
together in an integrated fashion like they are within Omnibus. JML tools include a run-time assertion 
checker [7], the ESC/Java2 extended static checker [8] and a number of other static verification tools 
including LOOP [9], Jive [10], KeY [11] and Krakatoa [12]. The RAC and ESC/FFV tools are 
inconsistent in their handling of certain aspects of JML [13], whereas all the tools provided by 
Omnibus use a consistent interpretation of the semantics of assertions. 

Many other tools have combined the use of different verification approaches in some way. Spec# 
[14] combines the use of automated static checking and run-time assertion checking. Many other 
verification tools provide the facilities to automatically generate run-time assertion checks of their pre-
conditions to ensure that the assumptions on which the static verification is based are not violated. 

4.2 Making verification more accessible to software developers 
It is clear that automated verification tools are more desirable than interactive verification tools, as long 
as their performance is satisfactory. However, it does not appear to be possible to perform full formal 
verification of programs written in languages such as Java using automated tools. The question is then, 
how can we enable typical software developers, without specialized mathematical skills, to perform 
verification? 

In Section 2 we discussed how push-button techniques such as run-time assertion checking and 
extended static checking can support the automated verification of code with lightweight assertion 
annotations. The assertion annotations to be checked are adjusted so that the checks can be efficiently 



executed in the case of RAC and verified using an automated prover in the case of ESC. There is a vast 
array of RAC tools available including the JML run-time assertion checker [7], Eiffel [15] and Jass 
[16]. The JML run-time assertion checker contains a unit testing framework and supports the automatic 
generation of unit tests. ESC/Java2 [8] is the leading ESC tool. 

An alternative approach is to make interactive verification more accessible to developers. In 
Omnibus, interactive verification is performed using the PVS theorem prover [17]. To perform full 
formal verification the developers must be familiar with PVS and perform proofs by issuing low-level 
commands to the prover. Tools such as KeY [11] make interactive verification more accessible to 
typical software developers by presenting the verification conditions to be proved in the source 
language (instead of the language of a theorem prover) and providing point-and-click proof 
environments. Such facilities would also be of great use to component vendors in our system, making it 
easier for them to fulfil their obligation to perform full formal verification of reusable components. 

The need for loop invariants is another obstacle to the use of verification tools. The Spec# tool can 
automatically deduce loop invariants. PerfectDeveloper [18] avoids the need for many loop invariants 
by automatically generating implementations with loops from specifications. 

The complexities of reference semantics in languages like Java greatly increase theorem proving 
difficulty. By restricting the language we can make them more amenable to automated verification. 
Examples of languages containing such restrictions are Perfect [18] and our own Omnibus language, 
both of which are built on value semantics. The PerfectDeveloper tool exploits the restrictions of the 
Perfect language in order to perform full formal verification using their fully automated prover. We 
have found that even using a language based on value semantics, full formal verification often requires 
interactive theorem proving. The Perfect language is more mature than our Omnibus language and 
includes facilities for reference semantics and static data which Omnibus currently lacks. 
PerfectDeveloper, however, does not support the same range of verification approaches as our tool. 

There seems to be an increasing interest within the JML community in restricting the source 
language in order to make verification easier and hence automated verification more practicable. 
Examples include Muller’s Universe type system [19] and read-only references [20]. We note that Cok 
from the ESC/Java2 project has also highlighted this area [21]. 

5 Conclusions and future work 
Using our approach, software developers can write code, documenting design decisions in lightweight 
assertion annotations and check that their implementation satisfies these using push-button verification 
tools. They can use fully specified and verified reusable software components to help build their 
applications. Component vendors, on the other hand, write heavyweight specifications and use full 
formal verification to check that their implementations satisfy these specifications. This will often 
involve interactive theorem proving and so they will have to have suitably skilled developers. 
However, if reusable components from unknown third-party component vendors are to be trusted then 
something like this is essential. 

Our lightweight verification tools allow software developers to uncover more problems than 
conventional testing. The tools are powerful yet easy to use. The main problems are concerned with 
scalability particularly for the extended static checking. 

By providing a framework to specify and certify software components we can allow them to be 
reused safely. Our hope is that this will encourage developers to increase their reuse of existing 
software components. Increased reuse can potentially (1) save development and verification time (since 
the required functionality doesn’t have to be manually implemented and debugged) and (2) increase 
reliability (since the reusable components have been more rigorously verified than can be achieved 
with the push-button tools). 

There are a range of challenges to be overcome before these potential advantages can be fully 
realized. One of the major challenges with using different assertion-based verification approaches is 
how the approaches interact. For example, suppose we are verifying a class using ESC which uses a 
component that was verified using FFV. The ESC tool may not be able to effectively reason about the 
heavyweight specification of the component e.g. it may use a recursive specification which our ESC 
tool can’t handle. We have previously discussed this problem in [2] and proposed the use of redundant 
lightweight specifications as a partial solution. This is, however, a complicated problem and we are 
continuing our research on it. 

To support our framework for reusable components we are developing support for component 
repositories. These will allow components to be easily distributed together with assertion-based 
interface documentation and certification information. Facilities to search for and retrieve components 
from these repositories will be incorporated within the Omnibus IDE tool. 
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