

Department of Computing Science and Mathematics

University of Stirling

Policies for H.323 Internet Telephony

Tingxue (Sean) Huang

Technical Report CSM-165

ISSN 1460-9673

May 04

Department of Computing Science and Mathematics

University of Stirling

Policies for H.323 Internet Telephony

Tingxue (Sean) Huang

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland
Telephone +44-1786-467421, Facsimile +44-1786-464-551

Email th@cs.stir.ac.uk

Technical Report CSM-165

ISSN 1460-9673

May 04

 i

Abstract

Firstly, this report examines in which mode an H.323 gatekeeper should work for enforcing policies. Then, it
explores how the gatekeeper can cooperate with a policy server. The report discusses how to complement a
gatekeeper with policies, using GNU Gk as the basis. The approach takes into account issues of robustness,
simplicity and scalability. Finally, the report investigates how to design H.323 policies, and how to combine
these with SIP policies on a policy server.

Keywords : Feature, Gatekeeper, GNU Gk, H.323, Internet Telephony, Policy

 ii

Table of Contents

Abstract... i
Table of Contents... ii
List of Figures .. iii
List of Tables ... iv
1 Introduction .. 1

1.1 Motivation ... 1
1.2 Scope and Objectives.. 1
1.3 Overview of Report.. 1
1.4 H.323 Terminology .. 2

2 H.323 Call Flow for Policies .. 4
2.1 H.323 Network Structure.. 4
2.2 RAS message flow ... 4
2.3 H.225 Call Signalling Flow (Q.931) .. 5
2.4 H.245 Control Signalling Flow.. 6

3 Cooperation between Gatekeeper and Policy Server... 7
3.1 Registration Policy ... 7
3.2 Admission Policy ... 8
3.3 Forward-Always Policy .. 8
3.4 Forward-on-Busy Policy and Waiting-on-Busy Policy .. 10
3.5 Forward-no-Answer Policy ... 11
3.6 Holding Policy ... 12
3.7 Forking Policy ... 13
3.8 Call Intrusion Policy... 14
3.9 Name Identification Policy.. 15
3.10 Bandwidth Policy ... 15

3.10.1 ARQ Message with Bandwidth Value ... 16
3.10.2 BRQ Message with Bandwidth Change .. 16

3.11 Summary of Supplementary Services... 19
4 Invocation of Policies on GNU Gk.. 26

4.1 Adapting GNU Gk ... 26
4.1.1 Class Inheritance... 26
4.1.2 ER Diagram ... 28
4.1.3 Call Procedure.. 29

4.2 Enforcing A Policy... 30
5 Designing H.323 Policies for The SIP Policy Server .. 34

5.1 Interface between The Gatekeeper and The Policy Server ... 34
5.1.1 From The Gatekeeper to The Policy Server.. 34
5.1.2 From The Policy Server to The Gatekeeper .. 34

5.2 H.323 Protocol and Policy Terminology Mapping .. 35
5.3 H.323 Policies.. 35

5.3.1 Forward-No-Answer policy... 36
5.3.2 Bandwidth Policy ... 38

5.4 H.323 Policy Parts of Policy Server... 39
5.4.1 The Handler of An H.323 Message: H323MsgHandler.. 39
5.4.2 An Example: Forward-Always Policy .. 40

Abbreviations .. 43
References... 44
Appendix: H.323–SIP Interworking .. 45

 iii

List of Figures

Figure 1. An H.323 Zone .. 4
Figure 2. H.225 RAS Message Exchange ... 5
Figure 3. Both Gatekeepers Routing Call Signalling ... 5
Figure 4. H.245 Control Stage, Communication Stage and Release Complete Stage...................... 7
Figure 5. H.323 Policy Architecture... 7
Figure 6. Registration Policy ... 7
Figure 7. Admission Policy ... 8
Figure 8. Forward-Always Policy .. 9
Figure 9. Forward-on-Busy Policy... 10
Figure 10. Waiting-on-Busy policy .. 11
Figure 11. Forward-no-Answer Policy ... 11
Figure 12. Holding Policy ... 12
Figure 13. Forking Policy.. 13
Figure 14. Intrusion Policy .. 14
Figure 15. Bandwidth Policy: Media Transmitter changes The Bandwidth................................ 17
Figure 16. Bandwidth Policy: Media Receiver changes The Bandwidth.................................... 18
Figure 17. Bandwidth Policy: Gatekeeper requests A Bandwidth Change 18
Figure 18. Thread Class Tree... 26
Figure 19. Socket Class Inheritance Tree.. 27
Figure 20. ER diagram of RAS Section .. 28
Figure 21. ER Diagram of Proxy Section.. 29
Figure 22. H323RasSrv Run-Time Diagram... 30
Figure 23. Proxy Section Runtime Diagram.. 30
Figure 24. Modules of H323RasSrv ... 31
Figure 25. CallSignalSocket Class ... 32
Figure 26. PolicyCallSignalSocket Class.. 32
Figure 27. PolicyH323RasSrv Class... 32
Figure 28. Enforcing The Forward-no-Answer Policy in GNU Gk ... 33
Figure 29. Formatting an H.323 Message ... 34
Figure 30. Components of The Policy Server.. 36
Figure 31. H.323 Policy Server.. 39
Figure 32. Policy Architecture for A SIP-Attached H.323 Network.. 46
Figure 33. An Independent H.323 Network.. 46
Figure 34. Policy architecture for A SIP-Attached H.323 Network... 46

 iv

List of Tables

Table 1. Working Modes of The Gatekeeper... 4
Table 2. Fields of The PRQ Message for Forward-Always ... 9
Table 3. Fields of The PRS Message for Forward-Always.. 9
Table 4. Fields of The PRS Message for Waiting-on-Busy ... 10
Table 5. Fields of The PRS Message for Call-Holding ... 13
Table 6. Fields of The PRS Message for Forking ... 13
Table 7. Fields of The PRQ Message for Call Intrusion.. 15
Table 8. Fields of The PRS Message for Call Intrusion .. 15
Table 9. Fields of The PRS Message for Name Identification ... 15
Table 10. Fields of The PRQ Message for A Bandwidth Policy (1) ... 16
Table 11. Fields of The PRQ Message of Bandwidth Policy... 19
Table 12. H.323 Terminology Mapping .. 35

 1

1 Introduction

This report talks about developing policy support for H.323 communications. At the moment, the separate
project named ACCENT (Advanced Call Control Enhancing Network Technologies) is developing policy-based
control of Internet Telephony. It is creating protocol-independent support of communication policies, and an
instantiation in a SIP environment. This report exploits the same policy infrastructure but for an H.323 network.

1.1 Motivation

As communication technologies and computer science develop, the Internet is affecting people’s lives in many
fields. IP telephony is one of the most important applications. It goes against traditional telecomms on the
grounds of convenience and cheapness. An IP telephony system provides many kinds of features such as verbal
conversation, video calls, voice email, fax and ad hoc conferencing. It is very convenient because users can
choose any communication device to receive any form of messages. So, some people refer to IP telephony as a
UMS (Unified Messaging System) , and refer to its services as three ‘A’s of communications: any place, any
device and any time.

However, IP telephony also causes a problem. Because it is almost too convenient, it often intrudes upon
users . When any call or message arrives, the user is informed. As a result, the user becomes the slave of the IP
telephony system. Therefore, it is necessary that users be able to control their availability. In the traditional
telecomms system, users have few abilities to control this: users are passive when it comes to communication. In
the IP telephony network, users can control their availability on the basis of where they are, who the caller is,
the type of the call, the time of day, and so on.

So, the goal of this work has been to introduce policies into IP telephony. Some papers [3, 4] have discussed
policies applied to a SIP (Session Initiation Protocol) system. A special language has been defined for
describing policies [10]. In the IP telephony field, H.323 is another popular multimedia communications
protocol. Many IP telephony networks operate using this . So, it makes sense to explore policies for H.323
networks as well.

1.2 Scope and Objectives

H.323 is not a single protocol but a protocol group. It defines all kinds of communications modes for many
situations. In order to implement H.323 policies, an H.323 network must work in the appropriate mode. A
gatekeeper is the management device of an H.323 zone, and so is the best candidate for enforcing H.323
policies. The gatekeeper is required to obtain most of the call information for H.323 policies. So, the mode in
which the gatekeeper should work is very relevant to enforcing H.323 policies.

A policy exists at a higher level than a feature. The H.450 recommendation specifies more than ten
supplementary services, that is to say, features. Our telecommunications system implements these features
through policies. The H.323 supplementary services are therefore reformulated as policies. To support H.323
policies, the cooperation between an H.323 gatekeeper and a policy server must be explored. The gatekeeper
must abide by the H.323 protocol when enforcing H.323 policies. A policy module has been developed for the
GNU Gk gatekeeper. The development of this addressed issues of robustness, simplicity and scalability.

The research has had two aspects: enhancement of the gatekeeper, and enhancement of the policy server. An
H.323 network shares a common policy server with a SIP network. In order to get greater efficiency, the policy
server is stand-alone and independent of the underlying communications network. Regarding the policy server,
the ACCENT project has defined an architecture that deals with storing policies, retrieving policies, filtering
policies, and solving policy interactions. ACCENT is still developing the interface with SIP network. For H.323
policies, the policy server must have a special interface to an H.323 network and H.323-oriented policies.

1.3 Overview of Report

This report focuses on several aspects of H.323 policies. Some related documents discusses the protocol-
independent policy server [3, 4] and the definition of the policy language [12]. The reader should consider these
as supporting documentation. In addition, ACCENT -related information is available from
www.cs.stir.ac.uk/compass/. The report discusses four aspects of H.323 policies.

Section 2 explores in which mode the gatekeeper should work for enforcing H.323 policies. This section
lists the four working mode of gatekeeper. In order to implement H.323 policies, the gatekeeper needs to
monitor most of the call information. Therefore, we require the gatekeeper to operate in proxy mode. The whole
H.323 call is set up in three stages: call admission (RAS), call signalling (Q.931) and call control (H.245). All
the call messages pass through the gatekeeper. In addition, the RTP media channels and T.120 data channels
also go through the gatekeeper. Not only does the gatekeeper request and receive policy actions, but also it can
enforce some special policies through operating the media channels and data channels.

 2

Section 3 discusses ten policy trigger events such as registration, no answer, bandwidth request and so on.
Then, based on these trigger events, more than ten H.323 policies are explored including a registration policy, a
forward-always policy, a bandwidth policy and so on. The report explores what information extracted from the
call message for each kind of policy, which possible result policy responses and the message flow of each kind
of policy.

Section 4 uses an open source gatekeeper called Gnu Gk to implement H.323 policies. Firstly, we dissect
GNU Gk through exploring its class inheritance, ER diagram and operations. Then two classes,
PolicyCallSignalSocket and PolicyH323RasSrv, are defined to inherit from CallSignalSocket and H323RasSrv
respectively. They capture policy trigger events, extract call information, pass this to a policy server, receive and
implement the policy response.

Section 5 discusses the H.323 module for the policy server. Firstly, the interface between the policy server
and the gatekeeper is explored. The differences from the SIP policy module are explored. Then, the terminology
mapping table is discussed that maps between the H.323 protocol and policy concepts . In addition, it is
explained how to define H.323 polic ies. Finally, the H.323 processing flow is presented.

1.4 H.323 Terminology

H.323 terms are explained briefly below.

RAS (Registration, Admission and Status)

RAS refers to H.225.0, including lots of messages such as RRQ/RCF/RRJ and BRQ/BCF/BRJ. These are
transmitted through the RAS signalling channel during the call. They are used to perform registration,
admission, bandwidth change, status, and disengage procedures between endpoints and gatekeepers.

Gatekeeper Request (GRQ), Gatekeeper Confirm (GCF), Gatekeeper Reject (GRJ)

These messages are used to discover the gatekeeper automatically. An endpoint (including a terminal, an
Multipoint Control Unit and a gateway) looks for its own gatekeeper by sending a GRQ message. The
gatekeeper responds to the endpoint with a GCF message (confirm) or a GRJ message (reject).

A GRQ message contains some important element fields such as the type of the endpoint, the transport
address for the endpoint, and the identifier of the gatekeeper. The GCF message includes the identifier of the
gatekeeper, the transport address for the gatekeeper, a sequence of prioritised alternatives for the gatekeeper, etc.
A GRJ message has two necessary items: the identifier of the gatekeeper and a reject reason.

Registration Request (RRQ), Registration Confirm (RCF) , Registration Reject (RRJ)

These messages are used for registration by a terminal or a gateway.

An RRQ message is a request from a terminal to a gatekeeper to register. It contains some important items
such as the call signalling transport address for the endpoint, the registration and status transport address for the
endpoint, the type of the endpoint, a list of alias addresses for the endpoint, the identifier of the gatekeeper, the
endpoint, and the endpoint’s maximum and current call capacity.

If the gatekeeper responds with an RCF, the terminal will use the corresponding gatekeeper for future calls.
It contains the following fields: an array of transport addresses for H.225 call signalling messages, a list of alias
addresses for this terminal, the gatekeeper’s identifier, the endpoint’s identifier, and a list of prefixes by which
other endpoints may identify this endpoint.

If the gatekeeper responds with an RRJ, the terminal must seek another gatekeeper to register with. The RRJ
includes two important items: the reason for the rejection of registration, and the gatekeeper’s identifier.

Admission Request (ARQ), Admission Confirm (ACF), Admission Reject (ARJ)

These messages are used to request access to the packet-based network. An ARQ message requests access. The
gatekeeper grants the request with an ACF or denies it with an ARJ.

An ARQ message includes the following important fields: the endpoint’s identifier, a sequence of alias
addresses for the destination, the transport address used at the destination for call signalling, the external address
for multiple calls, a sequence of alias addresses for the source endpoint, the transport address used at the source
for call signalling, the bidirectional bandwidth requested for the call, and a globally unique call identifier set by
the originating endpoint.

An ACF message contains the allowed maximum bandwidth for the call, the transport address to which to
send Q.931 call signalling, the address for the initial channel, and possible additional channel calls.

An ARJ message includes one necessary item: the reason the admission request is denied.

 3

Bandwidth Request (BRQ), Bandwidth Confirm (BCF) , Bandwidth Reject (BRJ)

These messages are used to change the packet-based network bandwidth. Both the endpoint and the gatekeeper
can ask to raise or lower the bandwidth with a BRQ message. The BCF message is used to grant the request, or
the BRJ message is used to deny the request.

A BRQ message contains the endpoint’s identifier, the new bidirectional bandwidth requested for the call, a
globally unique call identifier, and the gatekeeper’s identifier. A BCF message includes one important item
named bandWidth that specifies the maximum allowed at this time. A BRJ message contains one necessary
element, rejectReason, specifying the reason the change was rejected.

Location Request (LRQ), Location Confirm (LCF), Location Rejection (LRJ)

These messages are used to ask a gatekeeper to provide address translation. An endpoint can send an LRQ to a
gatekeeper, and a gatekeeper can also send this to another gatekeeper. The requested gatekeeper responds with
an LCF containing the transport address of the destination, or rejects the request with LRJ.

Disengage Request (DRQ), Disengage Confirm (DCF) , Disengage Rejection (DRJ)

These messages are used to request termination of a call. The DRQ message could be sent by a gatekeeper or an
endpoint. A DRQ is different from a ReleaseComplete message because its purpose is to inform the gatekeeper
of the termination of a call. If it is not terminating the call signalling channel, the gatekeeper may not receive the
ReleaseComplete.

 4

2 H.323 Call Flow for Policies

2.1 H.323 Network Structure

An H.323 communications network is built from many basic units named H.323 zones. An H.323 zone, as
Figure 1 (based on [1]), is the collection of all terminals (Tx), Gateways (GW), and Multipoint Control Units
(MCUs) managed by a single Gatekeeper (GK). An H.323 zone has one and only one Gatekeeper. An H.323
zone is independent of the network topology, and may comprise multiple network segments that are connected
using routers (R) or other devices.

Figure 1. An H.323 Zone

A full H.323 call contains three stages: call admission (RAS), call signalling (Q.931), and call control
(H.245). These occur in the given order. Endpoints apart from the gatekeeper, but including terminals, gateways
and MCUs, need to send some H.225 RAS messages (e.g. RRQ, ARQ, DRQ) to gatekeepers before or after
making a call. Endpoints can also send some RAS messages (e.g. IRQ/IRR and BRQ/BCF) during a call.
Gatekeepers can work in four ways, as shown in Table 1. In mode 1, only RAS messages go through the
gatekeeper. In mode 2, both RAS messages and H.225 call signalling messages pass through the gatekeeper. In
mode 3, exc ept for the RTP media stream and T.120 data, all other messages go through the gatekeeper; this
includes RAS messages, H.225 call signalling messages and H.245 call control messages. In order to cooperate
with a policy server, the gatekeeper must extract most of the information about a call.

Mode H.225 RAS GK-Routed H.245-Routed RTP/RTCP,T.120
1 ü × × ×
2 ü ü × ×
3 ü ü ü ×
Proxy ü ü ü ü

Table 1. Working Modes of The Gatekeeper

If the gatekeeper just implements the functions that the H.323 protocol defines, it has the first three working
modes discussed above. But if the gatekeeper is required to implement some special supplementary services,
such as a call intrusion (‘barge-in’) service, it should have the capability of controlling the media and data
stream. In other words, media and data channels also pass through the gatekeeper. The gatekeeper must
therefore act as a proxy because it deals with all the H.323 call control messages, media and data channels. In
this work it is assumed that the gatekeeper works in proxy mode in order to investigate policy issues thoroughly.
In practice, the gatekeeper can be configured according to the specific requirements.

2.2 RAS message flow

Firstly, an endpoint needs to know its gatekeeper. An endpoint can designate its own gatekeeper manually.
Alternately, endpoints can use a GRQ message to locate a gatekeeper automatically in its own H.323 zone. In
the automatic case, the gatekeeper will reply using a GCF/GRJ message as shown in Figure 2.

After the endpoint finds its gatekeeper and has registered with the gatekeeper using RRQ/RCF messages, the
endpoint can make a call. Through the registration procedure, the gatekeeper acquires some information about
the endpoint. The information includes some necessary fields such as the address for call signalling, the address
for RAS and aliases, and many optional fields such as non-standard data.

T1

GK

T2

T3

R1

R2

MCU

T4

T5

GW

 5

Figure 2. H.225 RAS Message Exchange

After registration an endpoint can make a call through its own gatekeeper.

2.3 H.225 Call Signalling Flow (Q.931)

In order to discuss H.323 policies in Section 3, for the moment we explore the most appropriate gatekeeper
mode shown in 0. In fact, the H.323 protocol considers all kinds of cases. For example the caller and the callee
might register with the same gatekeeper. The source gatekeeper and the destination gatekeeper might follow any
mode listed in Table 1.

Figure 3. Both Gatekeepers Routing Call Signalling

Firstly, the caller initiates an ARQ/ACF exchange with the source gatekeeper. If the gatekeeper cannot
resolve the callee’s address, it will multicast an LRQ to locate the callee. The destination gatekeeper will return
an LCF with its call signalling transport address. After the caller receives the ACF with the source gatekeeper’s
call signalling transport address, it sends a Setup message to the source gatekeeper. Then the source gatekeeper
will send a Setup message to the destination gatekeeper to be passed on to the callee. The callee initiates an
ARQ/ACF exchange with the destination gatekeeper. The callee responds to the destination gatekeeper with the
Connect message that contains its H.245 control transport address for use in H.245 signalling. The destination
gatekeeper sends a Connect message to the source gatekeeper that contains the destination gatekeeper’s H.245

Proxy

RCF

RRQ

GCF

GRQ

RAS
Gatekeeper

Endpoint

ARQ

Connect

Connect

Connect Alerting

Alerting

Alerting

ACF

ARQ

Call Proceeding
Call Proceeding

LCF

LRQ

Call Proceeding

Setup

ACF

Caller

Source
Gatekeeper
RAS Proxy

Destination
Gatekeeper
RAS Proxy Callee

Setup

Setup

 6

control transport address. The source gatekeeper sends a Connect message to the caller that contains its H.245
control transport address.

 After this stage, the caller, gatekeepers and the callee know the peer’s H.245 address. Then, through the
H.245 call control channel, the caller and the callee can exchange their capability set.

2.4 H.245 Control Signalling Flow

After dealing with H.225 call signalling messages, an H.323 call enters the H.245 control stage. The latest
H.323 protocol considers the H.245 control stage as an alternative option. Because it takes a long time to initiate
an H.323 call, in order to reduce the time for call setup the H.323 protocol provides a Fast Connect to replace
the H.245 control stage. If a caller tries to use the Fast Connect, its Setup message will contain the information
about the Fast Connect and the capability set. The callee can transmit audio and video streams when sending the
Connect message. Of course, because the Fast Connect is a new addition some old H.323 endpoints will not
support it. In general, new endpoints will support this capability. To discuss all aspects, H.245 control signalling
flow is shown in 0. Because gatekeepers work in the proxy mode listed in Table 1, all H.245 control signalling
goes through all gatekeepers.

During the procedures of H.245, the caller and the callee exchange system capabilities by transmitting H.245
Terminal Capability Set messages. Then, the endpoints make a master-slave determination. Finally, the
endpoints open media channels for audio and/or video using Open Logical Channel messages. After this stage,
the caller and the callee have RTP/RTCP media channels for transmitting audio and/or video streams.

0 displays the procedure for media transmission and release of an H.323 call. After opening a logical
channel, the caller and the callee can transmit the audio and/or video streams using the RTP/RTCP channels.
These channels are established through the gatekeeper. The gatekeeper can dispose of the media channels as it
deals with the call signalling and control messages. During the call, the T.120 channel for transmitting data can
be established. Because the gatekeeper is in proxy mode, the data channel is also through the gatekeeper.

The release procedure is finished by sending H.225 RAS call signalling messages. So, the release signalling
messages also go through the gatekeeper. The H.323 protocol specifies that the H.225 call signalling channel
can be torn down during the procedure of media transmission or can be kept established. Normally, endpoints
will keep the H.225 call signalling channel alive. The caller or the callee will send a Release Complete message
if it wants to end the call. Finally, both the caller and the callee exchange DRQ/DCF messages with their own
gatekeeper.

 7

Figure 4. H.245 Control Stage, Communication Stage and Release Complete Stage

RAS Proxy RAS Proxy

Source
Gatekeeper

Destination
Gatekeeper

Capability Set

Capability Set Ack

Capability Set

Capability Set Ack
Capability Set

Capability Set Ack

Capability Set

Capability Set

Capability Set

Capability Set Ack

Capability Set Ack

Capability Set Ack

Master-Slave
Determination Master-Slave

Determination Master-Slave
Determination

Open Logical Channel

Open Logical Channel Ack

Open Logical Channel
Open Logical Channel

Open Logical Channel Ack

Open Logical Channel Ack

Callee Caller

Exchange
Capability Set

Determine
Master-Slave

Build RTP/RTCP
Logical Channel

H.245

Master-Slave
Ack Master-Slave

Ack Master-Slave
Ack

RTP Stream Transport (audio, video)
T120 Data

RTCP Media
Stream Control

Communication

 7

3 Cooperation between Gatekeeper and Policy Server

Section 2 described the signalling flow of a basic call. In addition, the H.450 recommendation specifies more
than ten supplementary services. These services are mainly invoked in endpoints or gatekeepers using the Setup
message or the Facility message. We can refer to these supplementary services as features. Our communications
system implements these features through policies. Some research papers have discussed the important
difference between policies and features very clearly [3][4]. Features are described as specific, prescriptive and
imperative; they have little scope for individualisation. However, policies are more flexible and generic. They
provide a mechanism to express the preferences of subscribers.

 Policy servers store and filter policies. A gatekeeper extracts call information and passes it to a policy
server. This will look for the corresponding policy in the policy repository, filtering the policies and checking
for policy interaction. 0 shows the H.323 policy architecture, and can be compared to the one for SIP [3].

Figure 5. H.323 Policy Architecture

Following the structure of the H.323 call procedures, a variety of policies is presented in the following

sections.

3.1 Registration Policy

A registration policy is not truly useful for end users. But some organisations, such as enterprises and
universities, require different groups to register different information. For example, university students might
have to provide just one alias and signalling transport address for greater efficiency because there are many
students. Lecturers, according to their preference, could register with extra information such as more than one
alias and CryptoTokens for encryption.

Figure 6. Registration Policy

As shown in Figure 6, after extracting the necessary information from an RRQ message, the gatekeeper will

pass the information to the policy server in a PRQ message. A PRQ message contains pairs of the form
(variable, value). From the RRQ message, the information extracted by the gatekeeper includes the type of

Gatekeeper
Gatekeeper

Policy Server Policy Server

Terminal

MCU

Terminal
WAN

ZONE1
ZONE2

PSTN

Gateway

Terminal RAS Proxy Policy Server

Gatekeeper

PRQ

RCF/RRJ

RRQ

PRS

 8

endpoint, the transport address for RAS, the transport address for call signalling, and one or more aliases. Some
optional items include the capability of multiple calls, encryption tokens, and so on. The policy server will reply
with a PRS message. This indicates whether the gatekeeper should confirm the registration or should reject it for
a specified reason.

3.2 Admission Policy

When the caller plans to make a call, it is firstly necessary to send an ARQ message to the gatekeeper. When the
callee receives the Setup message, an ARQ message must be sent to the local gatekeeper. Although these
messages have the same data structure, they have different functions. The former requests outgoing admission
(outgoing-ARQ message) and the latter requests incoming admission (incoming-ARQ message). In order to
simplify the presentation shown in Figure 7, we presume that both the caller and the callee register with the
same gatekeeper

The gatekeeper extracts some necessary information from an ARQ message, including the type of call, the
information about destination and source, bandwidth, and the reference value of the call. If some optional items
such as alternative destination and source exist, they are also passed to the policy server. The policy server
returns a Continuing or Rejecting action. If it is a Continuing action, the gatekeeper will send an ACF message
to the terminal. If it is a Rejecting action, the gatekeeper will send an ARJ message with the reason given by the
policy server. In fact, different policies may apply to the outgoing-ARQ message and the incoming-ARQ
message. So, the gatekeeper needs to include the user in a PRQ message. If the user is the caller, the policy
server will return policies for an outgoing-ARQ message, and conversely for the callee and an incoming-ARQ
message. Alternatively, the PRQ message can contain a variable named Trigger that gives the type of ARQ
message definitively.

Figure 7. Admission Policy

3.3 Forward-Always Policy

 The forward-always service is one of the basic supplementary services that the H.450 protocol defines.
In H.450.3, forward-always permits incoming calls for a served user’s number to be redirected to another
number. Here, the callee is the served user’s number. In H.450.3, the forward-always service can be enforced on
the terminal, gatekeeper or proxy server. But in the H.323 policy architecture, we combine the gatekeeper and
policy server. The H.323 policy confers two advantages. One advantage is that the forwarded-to terminal can be
found once, unlike H.450.3 that must look for the forwarded-to terminal more than once. It is possible for the
first or later forwarded-to terminal to select the forwarding service (forward-always or forward-on-busy). The
other advantage is that our H.323 policy system can detect policy interactions, i.e. traditional feature interactions
in call forwarding can be found.

ACF

PRS

PRQ

ARQ

Setup

Setup

ACF
PRS

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee

ARQ

 9

Figure 8. Forward-Always Policy
As Figure 8 shows, when the gatekeeper receives the Setup message from the caller, it creates a PRQ

message from the call information in the Setup message. The information includes some necessary items and
some optional items as shown in Table 2.

Information element Status Description
H323 Mandatory Used to ask the policy server for H.323 policies
SERVER_NAME Mandatory Alias name of the gatekeeper
CallIdentifier Mandatory Globally unique call identifier; makes sure the policy will be applied

to the corresponding call
Caller Mandatory Alias address of the source
Callee Mandatory Alias address of the destination
Trigger Mandatory The setup trigger; for “forward-always” this is the callee
User Mandatory Set as Callee
Other Optional If an element may be usable in a policy, it is passed to the policy

server

Table 2. Fields of The PRQ Message for Forward-Always

After receiving the PRQ message, the policy server looks for related policies from the policy repository, and

checks for policy conflict. Finally, the policy server responds to the gatekeeper’s request with a series of actions.
These could be Continuing or Forwarding . If the action is Continuing, the gatekeeper forwards the Setup
message to the callee according to the normal call procedure. If the action is Forwarding, the PRS message
contains more information such as a diversion number, diversion reason, and whether the callee is notified as
listed in Table 3. In the Forwarding case, the gatekeeper sends the Setup message to the forwarded-to terminal.
If CalleeNotification is true, the gatekeeper will send a Diverting Leg Information 4 message to the callee using
call-independent procedures to notify the callee that it has a call to be forwarded to the forwarded-to terminal.

Information Element Status Description
CallIdentifier Mandatory Not got from the policy repository but taken from the

PRQ message; in a multi-threaded environment, it makes
sure the policy is applied to the corresponding call

DiversionNumber Mandatory Number of the forwarded-to terminal
DiversionReason Mandatory Reason for forwarding
CalleeNotification Optional Indicates whether the gatekeeper needs to notify the

callee

Table 3. Fields of The PRS Message for Forward-Always

If the caller, the callee and the forwarded-to terminal register with different gatekeepers, the other calling
procedures, except communication with the policy server, are the same as for the description of the H.450
protocol; the details are not given here.

Diverting Leg Information 4

Call Proceeding

Forwarded-to Terminal

Setup

PRS

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee

Setup

 10

3.4 Forward-on-Busy Policy and Waiting-on-Busy Policy

An H.323 telephony system should provide service on busy. The H.450.3 specification describes the forward-
on-busy service. This enables a callee to have calls addressed to a busy number to be redirected to another
endpoint. The H.450.6 specification states that the waiting-on-busy service permits a busy callee to be informed
of an incoming call while engaged with one or more other calls. Because both services are related a busy
condition, we discuss them together.

Figure 9. Forward-on-Busy Policy

After sending the Setup message to the callee, the gatekeeper receives a Release Complete message
including the busy status from the callee. The busy event will trigger the corresponding policy. The gatekeeper
extracts some information from the Setup message to create the PRQ message. The information fields are
identical to the ones listed in Table 2 except for the Trigger item. The trigger should be “busy”; different events
trigger different policies. The message flow is shown in 0.

The policy server will respond to the PRQ message with a PRS message including some actions. There are
three types of actions. Firstly, the action may be Continuing. This means that the gatekeeper will send a Release
Complete message to the caller according to normal calling procedures. Secondly, the action may be
Forwarding . In this case, the fields of the PRQ message are identical to the ones listed in Table 3, except that
the diversion reason is forward-on-busy. Thirdly, the action may be Waiting. In this case, the fields of the PRQ
message are as shown in Table 4. In fact, this case is the waiting service. The call flow diagram is shown in 0.
The gatekeeper will send an Alerting message including the information about waiting in order to let the caller
keep ringing. At the same time, the gatekeeper will initiate a wait timer. On every WaitingTimeInterval, the
gatekeeper will send a Setup message to the callee. If the gatekeeper has tried TryTimes times, the gatekeeper
will send a Release Complete message to the caller to finish the call.

Information element Status Description
CallIdentifier Mandatory Same as Table 3
WaitingTimeInterval Mandatory Time interval to send the setup message to callee
TryTimes Mandatory Maximum times to try to establish a call

Table 4. Fields of The PRS Message for Waiting -on-Busy

Setup

PRS

Diverting Leg Information 4

Setup

Release Complete
 (Busy)

Call Proceeding

Forwarded-to Terminal

Setup

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee

Alerting

 11

Figure 10. Waiting-on-Busy policy

3.5 Forward-no-Answer Policy

Figure 11. Forward-no-Answer Policy

For the forward-no-answer service, H.450.3 describes calls that are addressed to the callee’s number but for
which the connection is not established within a defined period of time. These are redirected to the forwarded-to
terminal. Therefore, the trigger event for the policy is that the call cannot be established within a defined period
of time; the trigger field is “no-answer”. When the gatekeeper receives an Alerting message from the callee, it

PRS

Setup

Release Complete
 (Busy)

PRQ

Connect

Connect

Alerting

Waiting

Setup

Alerting (Waiting)

Call Proceeding

Setup

Policy Server
Gatekeeper
RAS Proxy Caller Callee

Caller RAS Proxy
Policy Server

Gatekeeper

PRQ

PRS

Callee Forwarded-To Terminal

Setup

Call Proceeding

Alerting

Waiting

Diverting Leg Information 4

Setup

Alerting

Setup

 12

sets one timer for this call. If the call is established soon, the gatekeeper will cancel the timer. Otherwise, the
gatekeeper will extract some information from the Setup message to create a PRQ message. The information
elements are the same as ones listed in Table 2 except that the trigger is forward-no-answer. The message flow
is shown in 0.

The policy server will respond to the PRQ with two sorts of PRS message: Continuing or Forwarding . In the
former case, the gatekeeper sends a Release Complete message to both the callee and the caller according to
normal procedures. In the latter case, the gatekeeper firstly sends a Diverting Leg Information 4 message to the
called terminal. This message may either be sent within a Facility message on the existing call reference, or may
be sent to the called terminal using call-independent procedures. Then the gatekeeper sends the Setup message
to the forwarded-to terminal which is included in the PRS message.

3.6 Holding Policy

H.450.3 describes a call-holding service that allows a served user, the originally calling user (the caller) or the
called user (the callee), to interrupt communications on an existing call. Subsequently, if desired, it re-
establishes communication with the held user. There are several cases in the call-holding service. With regard to
the holding location, either the source gatekeeper (the near end) or the destination gatekeeper (the remote end)
can hold the call. As for the information to be provided to the held user by the gatekeeper during the call holding
period, there are four choices:

• music/announcement in the audio logical channel
• video in the video logical channel
• video plus audio in the video and audio channels
• freeze-frame (still image) in the video channel, plus music/announcement in the audio channel.

How does H.323 actually work in practice? Without a policy, the served endpoint will firstly set the holding
location manually. Then a Facility (Holding) message will be sent to the gatekeeper with the holding location
element. The gatekeeper forwards the Facility message. Finally, the gatekeeper sends the media to the held
endpoint according to the configuration defined in advance. In fact the served user cannot chose a preference for
holding.

Figure 12. Holding Policy

We therefore introduce a policy to handle the call-holding service. During communication, when the
gatekeeper receives a Facility (Holding) message, it creates a PRQ message from the Facility message. The
PRQ message includes some necessary information elements listed in Table 3, but the trigger is “call-holding”.
The message flow is shown in 0.

The policy server responds to this situation. The PRS message may be either Rejecting or Holding. If it is
Rejecting, the PRS message will give the reason. If it is Holding , the PRS message will include the call holding
location and the media type for the held endpoint, as shown in Table 5.

Media

 Facility
(PickUp)

 Facility
(Holding)

RTP Channel

Holding

 Facility
(Holding)

PRS

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee

 13

Information Element Status Description
CallIdentifier Mandatory Same as Table 3
CallLocation Mandatory Either near-end or far-end call hold
MediaType Mandatory The media to provide to the held endpoint during holding

Table 5. Fields of The PRS Message for Call-Holding

3.7 Forking Policy

Figure 13. Forking Policy

A forking service is popular in traditional telecommunications systems , though H.323 does not support this
explicitly. In general if a user would like to fork a call, the user must ask the administrator to set up a forking
service in the gatekeeper manually; this is not a flexible solution. The message flow is shown in Figure 13.

If we introduce policies into the H.323 system, a forking service can be more flexible and can be set on the
basis of the user’s preference (e.g. forking to a different group of addresses at different times). When the
gatekeeper receives a Setup message, it extracts some information elements listed in Table 3 to form a PRQ
message. If the callee has set a policy for a forking service, the corresponding PRS message will contain the
forked group and the enabled property, as shown in Table 6. The message flow is show in Figure 13.

Information Element Status Description
CallIdentifier Mandatory Same as Table 3
ForkingGroup Mandatory Group to which the call will be forked
Enabled Mandatory Indicates whether the forking service is enabled at the moment

Table 6. Fields of The PRS Message for Forking

The forking service interacts with the forward-always service. Likewise, there is a policy interaction between
the forking policy and the forward-always policy. It is the responsibility of the policy server to resolve such
policy interactions. The H.323 communication system does not therefore need to do anything about the
interactions; the gatekeeper will receive a definitive resolution from the policy server. This is one advantage of
using the policy server to resolve policy conflicts.

Setup
Call Proceeding

Terminal 2

Setup

PRS

PRQ

Policy Server Gatekeeper
RAS Proxy

Caller Terminal 1

Setup

 14

3.8 Call Intrusion Policy

Figure 14. Intrusion Policy
The H.450.11 specification describes call intrusion as a service that, on request from the served user (A),
enables the served user (A) to establish communication with a busy called user (B) by breaking into an
established call between user B and a third user (C). As far as implementing the call intrusion service is
concerned, there are several options:

• Conference type of connection: the served user (A), B and C are merged into a conference type of
connection, that is they have an ad hoc conference.

• Held type of connection: the unwanted user C is split from B by B automatically invoking the call hold
service.

• Silent monitoring type of connection: the served user (A) can just listen to (i.e. monitor) the established
call.

• Forced release: the served user (A) requests forced release of the established call between B and C, so
that A can then communicate with B.

• Wait on busy: the served user (A) may be able to request a transition from the intrusion state to a wait-
on-busy state.

Because there are so many options to implement, it is difficult for an H.323 system to enforce call intrusion.

The H.323 system should implement different options depending on the actual situation. So far, there is no
H.323 system on the market to enforce the intrusion service with all options.

As 0 shows, this problem can be solved easily through use of policies. The user is able to set policies about
call intrusion according to individual preferences. For example, the user can allow the boss to monitor calls. If
there is very urgent call, call intrusion can select the option of forced release. If call intrusion is not vital, the
gatekeeper can direct the served user (A) to a wait-on-busy state. The policy server should be responsible for
filtering the most appropriate policy. In summary, the policy server provides definitive and accurate guidance to
the gatekeeper through combining the current call intrusion information and the user’s preferences.

When the gatekeeper receives a Setup message with CallIntrusionRequest, it will extract some information
to create the PRQ message. Because the call intrusion service is more complicated than the forward-always
service, more information elements are required as listed in Table 7. Notice here that the user is set as User B.
This means the policy server will look up policies for User B.

User A RAS Proxy Policy Server

Gatekeeper

PRS

PRQ

Call B Call C

Call Proceeding

Alerting

Connect

RTP Channel

RTP Channel

Setup

 (Call Intrusion Request)

RTP Channel

 15

Information Element Status Description
H323 Mandatory Used to ask the policy server for H.323 policies
SERVER_NAME Mandatory Alias name of the gatekeeper.
CallIdentifie r Mandatory Globally unique call identifier that makes sure the policy will be applied

to the corresponding call
UserA Mandatory Alias address of the served user
UserB Mandatory Alias address of one terminal in the established call
UserC Mandatory Alias address of another terminal (the unwanted user) in the established

call
Trigger Mandatory Set as “call-intrusion”
EmergencyCall Mandatory True or false
User Mandatory Set as User B
Other Optional If an element may be usable to the policy, it can be passed to the policy

server

Table 7. Fields of The PRQ Message for Call Intrusion

The policy server will return the corresponding PRS message containing the information elements listed in

Table 8. The element NotifyOption indicates whether the gatekeeper should notify the parties of the established
call before call intrusion is implemented.

Information Element Status Description
CallIdentifier Mandatory Same as Table 3
EnforceOption Mandatory Type of the implementation
NotifyOption Mandatory True or false; it marks whether User B and User C are notified

Table 8. Fields of The PRS Message for Call Intrusion

3.9 Name Identification Policy

The H.450.8 specification describes a name identification service: the calling part name presentation/restriction
is to provide/restrict the name of the calling party to the called party. In addition, the connected party name
presentation/restriction is to provide/restrict the name of the connected party to the calling party. This definition
is comprehensive. The name identification service can be enforced between two communicating parties,
including gateways. Here we just consider the caller and the callee. In a traditional H.323 system, once the name
identification configuration is set, the feature implementation is the same regardless of differing situations. On
introduction of policies, this service becomes more flexible.

When will the gatekeeper connect to the policy server in order to look for policies concerning name
identification? The trigger event is the gatekeeper receiving an ARQ message. When the source gatekeeper
receives the ARQ, it asks for policies about the calling part name presentation/restriction. Likewise, when the
destination gatekeeper receives an ARQ, it asks for policies about the called party name presentation/restriction.
The call flow is that shown for admission in Figure 7.

The PRQ message contains the information elements listed in Table 2. The trigger ins this case is “Ingress-
Setup” or “Egress-Setup”. The PRS message is relatively simple, as listed in Table 9.

Information Element Status Description
CallIdentifier Mandatory Same as Table 3
Calling/called party name Mandatory Presentation/restriction

Table 9. Fields of The PRS Message for Name Identification

The source gatekeeper sends the calling party name information within an H4501 Supplementary Service
message contained within the H.225.0 Setup message. The destination gatekeeper sends the called party name
information within an H4501 Supplementary Service message contained within the H.225.0 Connect message.

3.10 Bandwidth Policy

Bandwidth management is an important function of a gatekeeper. If the gatekeeper is expected to implement
precise bandwidth management, it needs to understand the network topology. The network has the responsibility

 16

for QoS, such as RSVP and DiffServ, that is the network underlying routers can provide the bandwidth
information to the gatekeeper. But currently many networks do not have QoS support so the gatekeeper must
adopt a simple solution: the gatekeeper administrator sets a total amount of bandwidth, and the gatekeeper
subtracts a certain amount for each call. For the Internet in general, this method works only roughly. However,
for one PSTN gateway it is precise enough.

Throughout the call period, an endpoint, including the caller and the callee, can request a bandwidth change
from its own gatekeeper (either increasing or reducing the bandwidth). The gatekeeper must also able to
initialise a BRQ message according to the requirements. We discuss the different cases in the subsections below.

3.10.1 ARQ Message with Bandwidth Value

If an ARQ message requests bandwidth (if not, the bandwidth field is zero), the message flow for the bandwidth
policy is as shown for registration in Figure 6. The caller and the callee request the bandwidth independently:
through the use of H.245, they exchange their own capability sets. They transmit the media (audio and/or video)
in a common format on the basis of this capability set.

Different policies can be set for bandwidth. A user may request different call quality according to the
situation, including economic factors. An organisation may distribute the different amount of bandwidth on the
basis of the user’s status.

When the gatekeeper receives an ARQ message, it extracts the bandwidth request information to create a
PRQ message. The bandwidth information is listed in Table 10.

Information Element Status Description
H323 Mandatory Used to ask the policy server for H.323 policies
SERVER_NAME Mandatory Alias name of the gatekeeper
CallIdentifier Mandatory Globally unique call identifier that makes sure the policy will be

applied to the corresponding call
Caller Mandatory Alias address of the source
Callee Mandatory Alias address of the destination
Trigger Mandatory Set as “Egress-Setup” (caller) or “Ingress-Setup” (callee); the

permitted bandwidth for outbound and inbound directions may differ
Bandwidth Mandatory Requested bandwidth amount
ImportanceLevel Mandatory Importance level of this call
User Mandatory Set as Caller or Callee
Other Optional If an element may be usable to the policy, it can be passed to the policy

server

Table 10. Fields of The PRQ Message for A Bandwidth Policy (1)

The policy server responds with two types of PRS messages. One type is Bandwidth Rejecting where the
PRS message contains the reject reason field and the minimum bandwidth permitted. The other type is
Bandwidth Allowing where the PRS message just confirms the request.

3.10.2 BRQ Message with Bandwidth Change

During the call, the caller or the callee might decide to use different media and need to change the bandwidth. A
BRQ message will then be used. In addition, the gatekeeper may try to change the bandwidth with a BRQ
message according to the busy/free situation. Firstly, we examine the different call flows concerning bandwidth
policies: see Figure 16 and 0.

 17

Figure 15. Bandwidth Policy: Media Transmitter changes The Bandwidth

The message flows for changing the bandwidth are different between the media transmitter and the media
receiver. Here, we presume that the caller is the media transmitter and the callee is the media receiver. 0 shows
how the media transmitter changes the bandwidth. If the caller wishes to increase its transmitted bit rate on a
logical channel, it first determines if the call bandwidth will be exceeded. If it will, the caller must request a
bandwidth change from its gatekeeper. The gatekeeper will communicate with the policy server. According to
the reply of the policy server, the gatekeeper will send a BCF message to the caller. The caller sends a Close
Logical Channel message to close the logical channel. It then reopens the logical channel using Open Logical
Channel specifying the new bit rate. If the callee wishes to accept the channel with the new bit rate, it must first
ensure that the call bandwidth is not exceeded by the change. If it is, the callee must request a call bandwidth
change with its gatekeeper. When the call bandwidth is sufficient to support the channel, the endpoint replies
with an Open Logical Channel Ack ; otherwise the callee responds with an Open Logical Channel Reject,
indicating an unacceptable bit rate.

Open Logical Channel Ack

Open Logical Channel Ack

OpenLogicalChannel
OpenLogicalChannel

BCF

PRS

PRQ

BRQ

CloseLogicalChannel
CloseLogicalChannel

BCF

PRS

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee

BRQ

 18

Figure 16. Bandwidth Policy: Media Receiver changes The Bandwidth

Figure 17. Bandwidth Policy: Gatekeeper requests A Bandwidth Change

Figure 16 shows how the media receiver changes the bandwidth. The difference from 0 arises after the caller
gets permission from its own gatekeeper. A Flow Control Command instead is sent to the callee to indicate the
new upper limit on the bit rate for the channel. Then the callee also requests a call bandwidth change with its

Gatekeeper
RAS Proxy

FlowControlCommand
FlowControlCommand

Open Logical Channel Ack

Open Logical Channel Ack

Open Logical Channel Open Logical Channel

BCF
PRS
PRQ

BRQ

Close Logical Channel Close Logical Channel

BCF

PRS

PRQ

Policy Server
Gatekeeper
RAS Proxy Caller Callee BRQ

H.245 Signalling
H.245 Signalling

Open Logical Channel Ack

Open Logical Channel Ack

Open Logical Channel Open Logical Channel

BCF
PRS

PRQ

BRQ

Close Logical Channel
Close Logical Channel

BCF

PRS

PRQ

Policy Server Caller Callee

BRQ

 19

gatekeeper. After getting permission, the callee will initiate a Close Logical Channel message to close the
logical channel, and then reopen it using Open Logical Channel.

Before sending the BRQ message to the caller, the gatekeeper will ask the policy server to look up the
corresponding policy. On the basis of the policy server’s response, the gatekeeper sends a BRQ message to the
caller. If the caller can comply by changing the aggregate bit rate, it returns a BCF to the gatekeeper. It also
sends the appropriate H.245 signalling message to inform the callee that bit rates have changed. The callee will
request the change with its own gatekeeper. Likewise, the gatekeeper will communicate with the policy server.
Finally, the bandwidth change has been effected.

Now we discuss which information fields the PRQ and PRS messages should contain. The gatekeeper will
add the new bandwidth amount into the PRQ message. At the same time, it should still report the current
bandwidth amount. The information fields of the PRQ message are listed in Table 11.

Information Element Status Description
H323 Mandatory Used to ask the policy server for H.323 policies
SERVER_NAME Mandatory Alias name of the gatekeeper
CallIdentifier Mandatory Globally unique call identifier that makes sure the policy will

be applied to the corresponding call
Caller Mandatory Alias address of the source
Callee Mandatory Alias address of the destination
Trigger Mandatory “Bandwidth Change”
NewBandwidth Mandatory Requested bandwidth amount
CurrentBandwidth Mandatory Current bandwidth amount
ImportanceLevel Mandatory Importance level of this call
User Mandatory Set as Callee or Caller
Other Optional If an element may be usable to the policy, it can be passed to

the policy server

Table 11. Fields of The PRQ Message of Bandwidth Policy

Concerning PRS messages, there are two cases: Rejecting and Permitting . If the policy is to reject the
bandwidth change, the PRS message will give the reject reason.

3.11 Summary of Supplementary Services

In this section, we have explored eleven policies related to H.323 supplementary services. From the foregoing,
we have seen that there can be conflicts among some policies, such as between forward-always and waiting,
since the services themselves may interact. In further work, we shall examine H.323 policy interactions and try
to look for methods to resolve these.

 26

4 Invocation of Policies on GNU Gk

Three open-source gatekeeper projects are known to the author:

• OpenGatekeeper: developed by Egoboo and available freely under MPL, this is a fully featured

gatekeeper. Unfortunately, this project is inactive now; the author used to work on it previously.

• OpenGK : developed by Equivalence and available freely, OpenGK is rather simplistic.

• OpenH323 Gatekeeper [5]: developed by Citron Network, this project becomes increasingly more

active, with more and more people involve in it. Its functionality is gradually increasing.

We chose the OpenH323 Gatekeeper. Because the names of these gatekeepers often confuse people, the

original developers gave it another name, GNU Gk, which is used in this report .

4.1 Adapting GNU Gk

GNU Gk was developed with the basis of two underlying libraries. One is PWLib for I/O, multi-threading and
so on. The other is the OpenH323Lib for implementing the H.323 protocol.

PWLib is the Portable Windows Library. It provides a method to produce applications that run on both
Microsoft windows and Unix X-windows. It contains classes for I/O portability, multi-threading portability, aid
in producing Unix daemons and NT services portably, and all sorts of Internet protocols.

OpenH323Lib is an open-source class library for the development of applications that use the H.323
protocol for multi-media communications over packet-based networks. It encapsulates a lot of H.323 entities
including all kinds of H.323 signalling messages, the H.323 endpoint, the H.323 listener, the H.323 capability
set, and so on.

GNU Gk consists of two main parts. One is the RAS Server/Client dealing with H.225 RAS messages. The
other is the Proxy Server dealing with H.225 call signalling and H.245 control signalling. The two parts are
separated, but are kept consistent through use of the same data such as the registration table, routing table and
call table. The RAS server works on a fixed port: 1719. In general, the proxy server uses the default port 1720.
If the proxy server needs to change the port, it can inform the endpoint by using H.225 RAS messages. Here, we
explore this gatekeeper from the points of view of class inheritance, ER diagram, and operational procedures.

4.1.1 Class Inheritance

4.1.1.1 Thread Class Tree

Figure 18 displays the thread class tree of GNU Gk.

Figure 18. Thread Class Tree

• ProxyConnectTread: establishes a relationship between the local socket (caller–gatekeeper)

and the remote socket (gatekeeper–callee).

• ProxyListener: listens to the H.225 call signalling interface.

 Proxy Section

 PWLib
Pthread

MyPThread

ProxyConnectThread ProxyHandleThread ProxyListener H323RasSrv

 27

• ProxyHandleThread: manages all the active sockets including CallSignalSocket, H245Socket

and UDPProxySocket.

4.1.1.2 Socket Class Tree

Figure 19 lists the socket classes of GNU Gk that create network connections. In this figure, the classes enclosed
by the dashed frame are provided by PWLib. PWLib provides different levels of classes operating I/O and
sockets. GNU Gk inherits its special socket classes.

 PWLib

Figure 19. Socket Class Inheritance Tree

• ProxySocket: encapsulates the methods for receiving and transmitting data. Most methods are declared
as virtual functions. It provides the socket interface for its descendant classes.

• TCPProxySocket: overrides the methods of the ProxySocket for receiving and transmitting data, and
the methods of the PTCPSocket for listening to the network interface and connecting the socket.

• CallSignalSocket: a very important class that deals with H.225 call signalling messages such as Setup
and Connect.

• H245Socket: handles an H.245 address, and exchanges the capability set.

• T120ProxySocket: overrides the connectTo method of TCPProxySocket and forwards the data.

• UDPProxySocket: establishes the UDP socket, the RTP and the RTCP channels.

Pobject Iostream

Pchannel

Psocket

PIPSocket

PIPDatagramSocket

ProxySocket PTCPSocket PUDPSocket ProxySocket

TCPProxySocket UDPProxySocket

CallSignalSocket H245Socket

T120ProxySocket

 28

4.1.2 ER Diagram

Besides the functions of a gatekeeper, GNU Gk can collect the call data for accounting and authorising the
endpoint and the neighbour gatekeeper. Here, because a policy just changes the call routine, we mainly explore
the RAS server/client (dealing with RAS messages), H.225 call signalling, and the H.245 call control section.
Figure 20 and Figure 21 present the relevant ER diagrams.

Figure 20. ER diagram of RAS Section

The RAS section handles all sorts of H.225 RAS messages. Dealing with RAS messages is a necessary
aspect of a gatekeeper. The main class is H323RasSrv. This inherits from Pthread and makes its listener listen to
the H.225 RAS network interface. Once an RAS message arrives, the listener will receive and dispatch it to the
corresponding method. H323RasSrv deals with a RegisterTable. When H323RasSrv disposes of LRQ/LCF,
RRQ/RCF/RRJ and ARQ, it will store or look up the endpoint information in the RegisterTable . H323RasSrv
also maintains a CallTable to manage H.323 calls. When an ARQ or BRQ message arrives, H323RasSrv will
work on the CallTable. Because GNU Gk supports cascaded gatekeepers and distributed gatekeepers,
H323RasSrv maintains a NeighbourList for other gatekeepers. When H323RasSrv can not resolve an endpoint’s
address, it will ask for help from the gatekeepers listed by Neighbourlist. In addition, H323RasSrv starts the
functions of GK_Routed and H.245_Routed though HandlerList. HandlerList is also used in a NAT (Network
Address Translation) environment.

HandlerList maintains the entire proxy section. It includes one ProxyListener member listening to H.225 call
signalling message, and at least two ProxyHandlerThread members managing active sockets and RTP/RTCP
channels. GNU Gk can run on a multi-processor computer. The user can set the number of ProxyHandlerThread
threads according to the running platform. Once a Setup message arrives, ProxyListener will create one
CallSignalSocket object. This object is inserted into a queue maintained by ProxyHandlerThread to wait for
service. GNU Gk uses ProxyHandlerThread to manage all the active sockets including CallSignalSocket,
H245Handler, H245ProxyHandler and RTPLogicalChannel in order to make the software compact.
CallSignalSocket deals with all H.225 call signalling messages, and does not die until the H.323 call has ended.

If the H.323 call works in H.245 mode, when CallSignalSocket disposes of the Connect message it will
create one H245Socket object. This will exchange the capability set and create an RTPLogicalChannel object. If
the H.323 call works in fast-start mode, when the CallSignalSocket deals with the Setup message it will
exchange the capability set according to the Setup message and create an RTPLogicalChannel.

Pthread

Inheritance Relationship Inclusion Relationship

1:1

1:n

1:1
1:1 1:1

1:1

1:1
1:n 1:n

H323RasSrv

CallTable Neighbour
List

 GkClient
PUDPSocket

(listener)

HandlerList Neighbour EndpointRec CallRec

RegisterTable

 29

Figure 21. ER Diagram of Proxy Section

4.1.3 Call Procedure

 As shown in Figure 22, there are four operational cases in H.323RasSrv. The first (e.g. LRQ message) is to deal
with the RAS message locally without asking for help from other gatekeepers. The second (e.g. ARQ message)
is to pass the RAS message to the other gatekeeper through the GkClient because the gatekeeper cannot deal
with the message. The third is to forward the response message to the terminal; for example the gatekeeper may
receive an ACF message and send it to the corresponding terminal. The fourth is to handle a request message
from other gatekeepers, such as an ARQ message.

0 shows that the proxy section runs in four stages according to the H.323 protocol. The four stages are
described in Section 2, so the description is not given here again.

1:2

1:n

1:n

1:1

1:1
1:1

1:1

1:1

1:n 1:n
1:1

1:n
1:1

1:1

H323RasSrv

HandleList

ProxyListener ProxyHandlerThread

PTCPSocket

ProxySocket ProxyConnectThread

CallSignalSocket

H245Handler

H245ProxyHandler

LogicalChannel

RTPLogicalChannel

UDPProxySocket
 (rtp, rtcp)

Inheritance Relationship Inclusion Relationship

1:1

1:1

1:1

1:1

H245Socket

 30

Figure 22. H323RasSrv Run-Time Diagram

Figure 23. Proxy Section Runtime Diagram

4.2 Enforcing A Policy

Policy support has been developed, based on GNU Gk. In order to transplant policy functions to the new version
of GNU Gk, we used a pre-processor and inheritance techniques. On the one hand, the new classes related to
policies inherit from the present classes of GNU Gk. These inherited classes are put into independent files. For
example the PolicyCallSignalSocket class inherits from the CallSignalSocket class, and the PolicyH323RasSrv
class inherits from H323RasSrv. It is obvious that the characteristics of object-oriented programming are made
use of. In places where the functions related to policies are invoked, the macro POLICY is used. Through
defining this macro in the Makefile or not, we can decide whether policies are involved.

One aspect is the RAS Server/Client shown in 0. Because GNU Gk supports cascaded and distributed modes
of working, it has both an RAS server and an RAS client. That is to say that two GNU Gks communicate in
client-server mode.

LRQ

LCF

ARQ

ARQ

ACF

ACF
ARQ

ACF

 H323RasSrv
 Listener Processor

GKClient
Processor

RTP/RTCP

Capability

Connect

Setup

RTP/RTCP

Capability

Connect

Setup

ProxyListener ProxyHandleThread CallSignalSocket H245Socket RTPLogicalChannel

 31

Figure 24. Modules of H323RasSrv

H323RasSrv is the main class. It runs a listening UDP socket, currently in a single thread. It is said that a
forthcoming version will support multi-threading. According to the H.323 recommendation, RAS messages do
not have a defined sequence and are relatively independent. Each member method of H323RasSrv deals with
one RAS message. Some RAS messages are related to H.225 call signalling messages, such as the ARQ
message.

As Figure 21 shows, the proxy section has a listening TCP socket called ProxyListener. When a new call is
made, a new callSignalSocket object (TCP too) is created. It begins to listen to its own signalling interface.
When a signalling message arrives, CallSignalSocket receives and dispatches it , and invokes the corresponding
method. For example the OnSetup method is for the Setup message and the OnConnect method is for the
Connect message. These call signalling messages occur in a strict order: the Setup message is the first; with
Alerting, Connect and so on following. In fact, the proxy section has other components including H245Socket
and RTPLogicalChannel . At the moment, policy-related services are related to just the CallSignalSocket class.
So, here we give the details of only this class as shown in Figure 25.

Once policies are introduced, the general call flow has to be changed according to the actions required by the
policy server. At the moment, a class named PolicyCallSignalSocket inherits from the CallSignalSocket. It adds
a method to handle a policy, including extracting information from call messages, passing information to the
policy server, and receiving the actions from the policy server. In addition it sets a timer. This is used to wait for
the response of policy server. It is also used to trigger the corresponding policy, such as a forward-no-answer
one. In addition PolicyCallSignalSocket needs to override some related methods for policies. For example,
because many policies are related to a Setup message, it is necessary to override the Setup method. Moreover,
the Setup message must be stored because it might be re-sent. The class adds one member variable named
m_setup to record the Setup message. Likewise, PolicyH323RasSrv inherits from class H323RasSrv and
overrides some corresponding methods. At the moment, PolicyH323RasSrv just overrides the member methods
of OnRRQ and OnARQ to implement the registration policy and the admission policy discussed in Section 3.
PolicyCallSignalSocket and PolicyH323RasSrv are shown in 0 and Figure 27.

Figure 28 gives the algorithm flow for the forward-no-answer policy.

H323RasSrv

GRQ
/GCF
/GRJ

RRQ
/RCF
/RRJ

ARQ
/ACF
/ARJ

LRQ
/LCF
/LRJ

BRQ

URQ

DRQ

RAI

 32

Figure 25. CallSignalSocket Class

Figure 26. PolicyCallSignalSocket Class

Figure 27. PolicyH323RasSrv Class

ProxySocket

CallSignalSocket

Setup

CallProceeding

Alerting

Connect

Information

Release Complete

Facility

Progress

Empty

CallSignalSocket

PolicyCallSignalSocket

-- m_setup
-- m_timestamp
-- policyProcessor(H323Message)
-- OnSetup(Q931)

H323RasSrv

PolicyH323RasSrv

-- OnRRQ (RAS message)
-- OnARQ (RAS message)

 33

Figure 28. Enforcing The Forward-no-Answer Policy in GNU Gk

No

Yes

No

ProxyListener receives a
setup message

ProxyListener creates a
PolicyCallSignalSocket

object

PolicyCallSignalSocket
dispatches a Setup message and

invokes the OnSetup method

The OnSetup method stores the
setup message in m_setup, sets a

timer, and forwards the setup
message to the callee

Timeout for
connecting?

PolicyProcessor
extracts some information from
the setup message to form the
PRQ message and passes it to

the policy server

Timeout for
the response?

reject forward

The
OnReleaseComplete

method sends the
releasecomplete
message to the

caller

The OnForward
method sends the

setup message to the
forwarded-to

terminal

End Continue

 34

5 Designing H.323 Policies for The SIP Policy Server

5.1 Interface between The Gatekeeper and The Policy Server

The reference [9] has described the interface to the call control layer. To the H.323 telecommunications
system, the call control layer is the gatekeeper. The communication architecture and the algorithm are identical
with the description. Here, we shall discuss the specific points about H.323 policy interface.

5.1.1 From The Gatekeeper to The Policy Server

The gatekeeper monitors all H.323 calls. The policy module of the gatekeeper extracts information from
H.323 messages and forms one structured string. Then the string is passed to the policy server. The policy
module of gatekeeper suspends the call until a response comes from the policy server. For SIP policies, the
structured string contains the current entire SIP message. But for H.323 policies, the structured string does not
include any raw H.323 information. Before giving the reason, let us see how to pass an H.323 message into the
H.323 system as shown in 0.

Figure 29. Formatting an H.323 Message

H.323 messages are stored in ASN.1 format in the application layer. The message structure primarily

consists of an identifier and zero or more parameters. The identifier is used to identify the message, while the
parameter fields convey the actual parameters. Each parameter also contains an identifying id and a content
field. The content field supports a number of different data types, including raw, text, Unicode, bool, number8 ,
number16, number32, id, compound and nested. This structure can define H.323 messages very flexibly.
However, it is more difficult to understand the H.323 message compared to SIP messages, which are plain text.
Before the H.323 message is passed via the network, it must be encoded in a binary format using packed
encoding rules (PER). At the receiver, the H.323 message must be decoded into ASN.1 format. So an H.323
entity, such as a gatekeeper or a terminal, is required to include two parts. One is for analysing the H.323
message, the other is for encoding/decoding the H.323 message. At the mo ment, almost all the open H.323
projects are based on OpenH323Lib referred to in Section 3. OpenH323Lib is based on PWLib. In fact, both
OpenH323Lib and PWLib are used at the same time.

Now we answer the question of why the body of an H.323 is not provided to the policy server. If the
structured string passed from the gatekeeper to the policy server contains the raw H.323 message, the policy
server must have the capability of decoding and understanding the H.323 message. In other words, the policy
server is required to include the OpenH323Lib and the PWLib. There is no doubt this would considerably
complicate the policy server. So, we choose a solution wherein the policy module of the gatekeeper extracts the
information from the H.323 message and puts it into a structured string. The information about an H.323
message is provided in (variable, value) pairs. In this way, the policy server gets a message that is plain text , as
for support of SIP.

5.1.2 From The Policy Server to The Gatekeeper

Because H.323 messages have a different format from SIP, the interface from the policy server to the
gatekeeper is H.323-specific. [9] gives details of the policy server interface.

Application layer (ASN.1)

Encoder-PER

Network layer (PER)

Application layer (ASN.1)

Decoder-PER

Network layer (PER)

 35

For SIP policies, the interface passes serialised data including a number of actions. The actions have eight
types based on the characteristics of SIP messages. At the beginning of the SIP call, the proxy server and the
called party receive an INVITE message. During the call, other messages are constructed based on certain
parameters in the INVITE message. The message has a relatively fixed structure that consists of the message
header and the message body. In addition, a response message has a numeric response code. The interface is
fairly straightforward.

However, it is impossible to characterise H.323 policies with a limited number of messages as is possible for
SIP policies. From the discussion in Section 3, it can be seen that an H.323 message has dissimilar elements
and a structure that is not fixed. Not only have the different messages different elements, but also the same kind
of message created by different H.323 entities may have different elements. So the interface from the policy
server to the gatekeeper uses the structured string made of many variable-value pairs. The policy module of the
gatekeeper enforces a policy through combining the response from the policy server and the call context. This
solution makes the response string from the policy server very long. But the approach is usable.

5.2 H.323 Protocol and Policy Terminology Mapping

The policy server is generic, that is it serves for several sorts of telecommunications systems including H.323,
SIP and PBX. Different protocol terms must therefore be translated to matching policy terms. The policy server
sets up a mySQL database with two tables that provide information about the mappings between the policy
terminology and the respective meaning in protocol terms. [9] gives a detailed description of this approach.
Mappings for the H.323 protocol terminology are given in Table 12.

Id Protocol Protocol Term Policy Term IsAction
1 H323 incoming_setup incoming no
2 H323 outgoing_setup outgoing no
3 H323 setup all no
4 H323 release complete call termination no
5 H323 connect call connect no
6 H323 forward_to(arg1) forward_to(arg1) yes
7 H323 block_call block_call yes
8 H323 BRS:arg1 bandwidth(arg1) yes
9 H323 BRQ:arg1 request_bandwidth(arg1) no
10 H323 no_answer no-answer no

Table 12. H.323 Terminology Mapping

5.3 H.323 Policies

The policy server is made of three part shown in Figure 30: a database, tuple space server and policy engine.
The database provides information about the mapping between the policy terminologies, and their respective
meaning in protocol terminology. Because the policy server needs to communicate with several different
underlying communication layers such as SIP and H.323, it is necessary to translate protocol terms into the
common policy terms. The tuple space server stores all policies, providing an XML access interface. Policies
can be retrieved and stored in the special policy language. The policy engine is the most important part , being
both complex and powerful. Firstly, an interface is provided to communicate with the underlying
communication layers. Then, all policies related to the user are retrieved. After retrieval, the policy engine filters
the retrieved policies according to the call environment variables. After filtering, the policy engine detects and
resolves policy interactions. Finally, the policy engine responds to the underlying communications layer with
the final actions of the policies.

Most components of the policy server are common for all the underlying communications layers. For H.323
policies, two parts of the policy engine need special support. First, the communications interface with the H.323
gatekeeper is special. Because an H.323 call message is transmitted in ASN.1-encoded format, ASN.1 is
deliberately hidden from the policy server. The gatekeeper therefore extracts all call information and passes it in
a simple and long structured string. Likewise, the policy server responds with final actions in a structured string.
An example appears below (with \n denoting a newline):

H323\n
SERVER_NAME:gatekeeper1@stir.ac.uk\n
Trigger:IN-ARQ\n
Caller:2000\n
Callee:2002\n
MSG\n\n

 36

Figure 30. Components of The Policy Server

This is a structured-string passed from a gatekeeper to a policy server. The protocol identifier is at the

beginning of this message. The call information variables are listed, including SERVER_NAME, Trigger, Caller
and Callee. The call message may be provided at the end of these. As discussed above, the H.323 interface
string does not involve the H.323 call message. But in order to be compatible with other protocols, a blank
message body MSG is provided.

The protocol handler module also needs to be adapted for .323. The policy engine does not analyse H.323
call messages. The protocol handler module for H.323 finishes the translation of call environment variables
from H.323 terminology to policy terminology, and the translation of the final actions from policy terminology
to H.323 terminology.

In the mapping database, some items about H.323 terminology are added. If some H.323 terminology is
different from policy terminology, it is necessary to list this in the terminology mapping table. Table 12 lists
some examples. The Id field is the primary key of the table. The Protocol indicates H.323. The term “incoming”
(row 1) is policy terminology, corresponding to “incoming_setup” in H.323 The field of IsAction is used to
mark the translation direction. The value “no” means that this is call information not an action.

5.3.1 Forward-No-Answer policy

The forward-no-answer service is very popular. Likewise, the forward -no-answer policy is often used in the
H.323 telephony system. Here, we discuss how to describe it using the policy language.

Suppose a user’s number is “2000”. The user defines three policy rules for the forward-no-answer policy.
Their trigger event is “no-answer”. Based on the call information, the rules are checked in the specified order.
The policy engine first determines whether the first rule is applicable. If it is then the policy engine applies it,
otherwise, the second rule is checked.

The first rule says that when no-answer happens, if the caller is “2001” or “2002” then the telephone call is
forwarded to (a mobile) phone number “5000”.

The second rule says that when no-answer happens, if I am busy, the time is 09.00–10.00 or 14.00–15.00,
the call type is point-to-point, and the call topic is Java, the call is forwarded to a Java expert.

The third rule says that when no-answer happens, the telephone call is forwarded to my voice mailbox:
2000@cs.stir.ac.uk.

The policy is described in the simple policy language as follows. Note the XML has been simplified by
omission of the trailing tags.

 <policy owner="me@company.com" appliesTo="2000" id="no_answer" enabled="true">
 <policyrules> <!-- all policy rules -->
 <sequential/> <!-- try rules in sequence -->
 <polrules> <!-- policy rules group -->
 <policyrule> <!-- policy rule 1 -->
 <triggers> <!-- triggers group -->
 <trigger> <!-- trigger 1 -->
 <trigger_name>no_answer <!-- no answer? -->

Policy Server

H.323 Communication Network and Gatekeepers

Policy Engine

Mapping
Database

Tuple Space

Retrieval

Filtering

Interaction
Resolution

Interface

Internal Information Flow

External Information Exchange

 37

 <conditions> <!-- conditions group -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 1 -->
 <param>caller <!-- caller is 2001, 2002? -->
 < compop>in
 <value>[2001,2002]
 <actions> <!-- actions group -->
 <acts> <!-- actions -->
 <action arg1="5000"> <!-- forward to 5000 -->
 <action_name>forward_to(arg1)
 <polrules> <!-- policy rules group -->
 <policyrule> <!-- policy rule 2 -->
 <triggers> <!-- triggers group -->
 <trigger> <!-- trigger 2 -->
 <trigger_name>no_answer <!-- no answer? -->
 <conditions> <!-- conditions group -->
 <and/> <!-- both conditions hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 2 -->
 <param>busy
 <compop>is <!-- callee is busy? -->
 <value>true
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 3 or 4, 5, 6 hold? -->
 <conds > <!-- conditions -->
 <or/> <!-- condition 3 or 4 holds? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 3 -->
 <param>time
 <compop>in <!-- time is 09.00 to 10.00? -->
 <value>[0900,1000]
 <conds > <!-- conditions -->
 <condition> <!-- condition 4 -->
 <param>time>
 <compop>in <!-- time is 14.00 to 15.00? --
 <value>[1400,1500]
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 5, 6 hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 5 -->
 <param>call_type
 <compop>is <!-- call is point-to-point? -->
 <value>point_to_point
 <conds > <!-- conditions -->
 <condition> <!-- condition 6 -->
 <param>topic
 <compop>is <!-- topic is Java? -->
 <value>Java
 <actions> <!-- actions group -->
 <acts> <!-- actions -->
 <action arg1="Java expert"> <!-- forward to Java expert -->
 <action_name >forward_to(arg1)
 <polrules> <!-- policy rules group -->
 <policyrule> <!-- policy rule 3 -->
 <triggers> <!-- triggers group -->
 <trigger> <!-- trigger -->
 <trigger_name>no_answer <!-- no answer? -->
 <actions> <!-- actions group -->
 <acts> <!-- actions -->
 <action arg1="2000@company.com"> <!-- forward to voicemail -->

 38

 <action_name>forward_to(arg1)

5.3.2 Bandwidth Policy

A bandwidth request is a special request message for an H.323 call. Therefore, a bandwidth policy is defined for
the H.323 underlying communication layer. The management device of an H.323 network, the gatekeeper, can
manage the bandwidth. Bandwidth is an aspect of QoS (Quality of Service). When the caller and the callee
request admission from the gatekeeper, the admission request message (ARQ) might contain a bandwidth
request message. During the call, the caller, the callee or the gatekeeper can ask to change the bandwidth
amount. The user gains the best economical calls through setting the bandwidth policy. The organisation obtains
good use of the network bandwidth though bandwidth policies.

Here, we discuss an example. The bandwidth policy is made up of two policy rules, checked in the specified
order. They are described in the policy language.

The first rule says that when a bandwidth request happens, if the requester is from an H.323 network, traffic
load is high, there is no emergency, priority is normal, and bandwidth request is for more than 500K, the action
is rejection with two arguments. One is the reason (bandwidth lack) and the other is the allowed maximum
bandwidth (100K).

The second rule says that when a bandwidth request happens, if there is an emergency or the priority is high,
the bandwidth is granted.

<policy owner="me@company.com" appliesTo="2000" id="bandwidth_request" enabled="true">
 <policyrules> <!-- all policy rules -->
 <sequential/> <!-- try rules in sequence -->
 <polrules> <!-- policy rules group -->
 <policyrule> <!-- policy rule 1 -->
 <triggers> <!-- triggers group -->
 <trigger> <!-- trigger 1 -->
 <trigger_name>bandwidth_request <!-- bandwidth request? -->
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 1 to 5 hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 1 -->
 <param>network_type
 <compop>is <!-- network is H.323? -->
 <value>H323 Network
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 2 to 5 hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 2 -->
 <param>traffic_load
 <compop>is <!-- traffic load is high? -->
 <value>high
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 3 to 5 hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 3 -->
 <param>emergency
 <compop>is <!-- not emergency? -->
 <value>no
 <conditions> <!-- conditions group -->
 <and/> <!-- conditions 4 to 5 hold? -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 4 -->
 <param>priority
 <compop>is <!-- normal priority? -->
 <value>normal
 <conds > <!-- conditions -->
 <condition> <!-- condition 5 -->
 <param>bandwidth
 <compop>gt <!-- bandwidth over 500 Kbps? -->
 <value>500K

 39

 <actions> <!-- actions group -->
 <acts> <!-- actions -->
 <action arg1="bandwidth-lack" arg2="100K"> <!-- reject request -->
 <action_name >bandwidth_reject(arg1, arg2)
 <polrules> <!-- policy rules group -->
 <policyrule> <!-- policy rule 2 -->
 <triggers> <!-- triggers group -->
 <trigger> <!-- trigger 2 -->
 <trigger_name>bandwidth_request <!-- bandwidth request? -->
 <conditions> <!-- conditions group -->
 <conds > <!-- conditions -->
 <condition> <!-- condition 6 -->
 <param>emergency
 <compop>is <!-- is emergency? -->
 <value>yes
 <actions> <!-- actions group -->
 <acts> <!-- actions -->
 <action> <!-- confirm bandwidth -->
 <action_name >bandwidth_confirm

5.4 H.323 Policy Parts of Policy Server

Figure 31. H.323 Policy Server

Figure 31 shows the implementation flow for H.323 polices. Most of the policy server classes are defined in
[9], but some are special for H.323. One is the H323MsgHandler class, while another is some filtering class.

5.4.1 The Handler of An H.323 Message: H323MsgHandler

H323MsgHandler is a special class for H.323 messages. It inherits from the GenericProtocolHandler class. This
is an abstract class with two member functions: initialise and handleMsg that are implemented by
H323MsgHandler.

Similar to SIPMsgHandler, the method initialise initialises an H323MSgHandler object. It sets the policy
store variable of an H323MsgHandle,r and also retrieves the action and event condition hashes from the policy
store.

The method handleMsg deals with three main tasks. The first is responsible for analysing the H.323
message. As mentioned previously, unlike SIP messages an H.323 message is not sent to the policy server. A
PRQ message mainly consists of some variable-value pairs. So, handleMsg places these environment variables
into a hashtable from the PRQ message. The second task is to invoke PolicyApplicator. The third task is to form
the PRS message (a structured string) from the actions returned by PolicyApplicator.

As shown in Figure 31, H323MsgHandler is invoked by ProtoMsgHandler. ProtoMsgHandler invokes a
specific class, such as SIPMsgHandler or H323MsgHandler, according to the protocol header of the incoming
message. H323MsgHandler then invokes PolicyApplicator in order to retrieve, filter and resolve polices.

5.4.2 The Filtering Classes for H.323 Environment Variables

2

3

4

8 7
6

5

GateKeeper MessageHandler ProtoMsgHandler

H323MsgHandler PolicyApplicator

1

 40

The policy server has a package for filtering call environment variables. The PolicyApplicator class invokes
this in order to finish filtering polices. In the package, each environment variable has its own filtering class. For
example, the environment variable caller has filtering class callerEnvEvaluate. Some environment variables
such as caller and callee have the same meaning in all underlying communications systems. However, some
environment variables are for specific communications networks. For example, topic is used by the SIP protocol
and bandwidth is used by the H.323 protocol. So, some special filtering classes need to be added for H.323
policies. For the moment, the following ones have been added. In future, if necessary, some new filtering classes
could be added.

All filtering classes inherit from an abstract class EnvEvaluate. This defines some ordinary comparison
operations. These may not make sense for all environment variables. For example, for a Boolean variable the
operators gt and lt may not be very meaningful. However, all filtering classes need to implement all comparison
operations. For those operations that are not applicable, their implementation body just returns false. In addition,
some individual filtering class may add special comparison operations.

 eq: equal
 ne: not equal
 ge: greater than or equal to
 gt: greater than
 in: inclusion
 nin: not inclusion (‘not in’)
 le: less than or equal to
 lt: less than

 Some special filtering variable classes for the H.323 protocol are listed below:

activeMCEEnvEvaluate : filters boolean activeMCE, marking whether an active MCE (Multipoint Control

Entity) is involved. This occurs with Setup and ARQ.

bandwidthEnvEvaluate : filters numeric bandwidth, standing for the amount of the resource bandwidth. It

occurs with ARQ and BRQ.

capabilitySetEnvEvaluate : filters string capabilitySet, representing the capability set of the H.323

endpoints. It is contained in an H.245 message. Notice the difference between this and capability, which is
described in [9].

srcCallSignalAddressEnvEvaluate , destCallSignalAddressEnvEvaluate , signallingIP : filters

sourceCallSignalAddress, destCallSignalAddress and callSignalAddress respectively. These environment
variables often occur in H.323 messages.

 conferenceTypeEnvEvaluate : filters callType. Notice that here callType has a different meaning from the

one defined for SIP in [9].

5.4.2 An Example: Forward-Always Policy

In order to show how an H.323 message passes through the implementation flow, an example (forward-always
policy) is given.

(1) The PRQ message from gatekeeper to MessageHandler

H323
SERVER_NAME: d254057.cs.stir.ac.uk
caller: 6000
callee: 7000
user: 7000
destCallSignalAddress: 139.153.254.57:1721
srcCallSignalAddress: 139.153.254.62:1733
conferenceID: 27A24B2B 58EF1810 87810003 472E970D
conferenceGo al: create
callType: pointToPoint
callIdentifier: Sequence

 41

endpointIdentifier: 7067_endp
mediaWaitForConnect: FALSE
canOverlapSend: FALSE
multipleCalls: FALSE

The PRQ message is a structured string with variable -value pairs. Each pair is listed on an independent line.

All values are simple strings.

(2) The message from MessageHandler to ProtoMsgHandler

Comparing Figure 2 and Figure 3, we can see the message from MessageHandler to ProtoMsgHandler is
obtained through removing the protocol header (H323) from the original PRQ message. The policy server
chooses the H323MsgHandler according to the protocol type.

SERVER_NAME: d254057.cs.stir.ac.uk
caller: 6000
callee: 7000
user: 7000
destCallSignalAddress: 139.153.254.57:1721
srcCallSignalAddress: 139.153.254.62:1733
conferenceID: 27A24B2B 58EF1810 87810003 472E970D
conferenceGoal: create
callType: pointToPoint
callIdentifier: Sequence
endpointIdentifier: 7067_endp
mediaWaitForConnect: FALSE
canOverlapSend: FALSE
multipleCalls: FALSE

(3) The message from ProtoMsgHandler to H323MsgHandler

This message is the same as for (2).

(4) The message from H323MsgHandler to PolicyApplicator

SERVER_NAME: d254057.cs.stir.ac.uk -- String
caller: 6000 -- LinkedList
callee: 7000 -- LinkedList
user: 7000 -- String
destCallSignalAddress: 139.153.254.57:1721 -- LinkedList
srcCallSignalAddress: 139.153.254.62:1733 -- LinkedList
conferenceID: 27A24B2B 58EF1810 87810003 472E970D -- LinkedList
conferenceGoal: create -- LinkedList
conferenceType: pointToPoint -- LinkedList
callIdentifier: Sequence -- LinkedList
endpointIdentifier: 7067_endp -- LinkedList
mediaWaitForConnect: FALSE -- LinkedList
canOverlapSend: FALSE -- LinkedList
multipleCalls: FALSE -- LinkedList

H323MsgHandler modifies two aspects of the message. One is to map the terminology from H.323 to
policy. For example, callType is changed to conferenceType. The other is to set up some variable -value pairs
into a Java structured type LinkedList.

(5) The response message from PolicyApplicator to H323MsgHandler

forward_to(1000) -- LinkedList

The response message is set up in a LinkedList. Moreover, the terminology is that of policies.

 42

(6) The response message from H323MsgHandler to ProtoMsgHandler

forward(1000) -- String

H323MsgHandler implements the inverse procedure for the response message. For example, forward_to

(policy terminology) is changed to forward (H.323 terminology).

(7) The response message from ProtoMsgHandler to MessageHandler

This response message is the same as for (6).

(8) The PRS message from MessageHandler to gatekeeper

The PRS message is the same as for (6).

 43

Abbreviations

APDU Application Protocol Data Unit
ARQ/ACF/ARJ Admission Request/Confirm/Reject
BRQ/BCF/BRJ Bandwidth Request/Confirm/Reject
DRQ/DCF/DRJ Disengage Request/Confirm/Reject
GRQ/GCF/GRJ Gatekeeper Request/Confirm/Reject
IRQ/IRR InfoRequestResponse
LRQ/LCF/LRJ Location Request/Confirm/Reject
MCU Multi-Control Unit
PRQ/PRS Policy Request/Response
RAS Registration, Admission and Status
RRQ/RCF/RRJ Registration Request/Confirm/Reject

 44

References

[1] ITU-T. Packet-Based Multimedia Communications Systems, Recommendation H.323, International
Telecommunications Union, Geneva, Nov. 2000

[2] ITU-T. Call Signalling Protocols and Media Stream Packetization For Packet-Based Multimedia
Communication Systems, Recommendation H.225, International Telecommunications Union, Geneva,
Nov. 2000

[3] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced communications services, FORTE
2002, pages 130–145, Nov. 2002

[4] S. Reiff-Marganiec and K. J. Turner. A policy architecture of enhancing and controlling features, Feature
Interactions in Telecommunications and Software Systems VII, pages 239–246, Jun. 2003.

[5] GNU Gk. http://www.gnugk.org, Apr. 2004.
[6] ITU-T. Call Diversion Supplementary Service for H.323, Recommendation H.450.3, International

Telecommunications Union, Geneva, May. 2000
[7] ITU-T. Call Hold Supplementary Service for H.323, Recommendation H.450.4, International

Telecommunications Union, Geneva, Sep. 1998
[8] ITU-T. Call Intrusion Supplementary Service for H.323, Recommendation H.450.11, International

Telecommunications Union, Geneva, Nov. 2000
[9] S. Reiff-Marganiec. The ACCENT Policy Server, Technical Report CSM-164, Computing Science and

Mathematics, University of Stirling, Nov. 2003.
[10] ITU-T. Information Technology – Abstract Syntax Notation One (ASN.1): Specification of Basic Notation ,

Recommendation X.680, International Telecommunications Union, Geneva, 1994.
[11] ITU-T. Information Technology – ASN.1 Encoding Rules – Specification of Packed Encoding Rules (PER) ,

Recommendation X.691, International Telecommunications Union, Geneva, 1994.
[12] S. Reiff-Marganiec. ACCENT Project Policy Environment/Language, Technical Report CSM-161,

Computing Science and Mathematics, University of Stirling, Nov. 2003.

 45

Appendix: H.323–SIP Interworking

This appendix provides brief development notes on the supplementary work undertaken to link SIP devices into
an H.323 network.

1. Development environment and tools

Operating system: Redhat Linux 9.0
Edit software: Source-Navigator 5.1.2
Debugging tool: ddd v3.3, GNU gdb 20030609
Compile tool: GNU Make version 3.79.1

2. Underlying support library

(1) pwLib: Portable Window Library, version 1.4.11

(2) openh323: the underlying infrastructure for H.323 protocol, version 1.11.7

3. Related websites and documents

(1) www.openh323.org

(2) www.gnugk.org

(3) www.vovida.org

(4) L. Dang, C. Jennings and D. Kelly. Practical VoIP Using VOCAL , O'Reilly.

(5) www.gnugk.org/h323manual.html (manual for openh323gk)

4. Infrastructure software

(1) openh323gk

(2) siph323csgw

5. Three aspects of the H.323 policy work

(1) A SIP-attached H.323 network

A SIP-attached H.323 network refers to an H.323 network that has no H.323 management device gatekeeper and
uses a SIP server. All H.323 terminals register with the SIP registration server through siph323csgw. The key
issue is how to assign an alias for an H.323 terminal. Normally, an H.323 terminal does not have a SIP-like
address resembling an email address, but a simple alias or a number. So, siph323csgw adds its own IP address or
domain name to the end of the H.323 terminal’s alias or number. Suppose the terminal registers with the SIP
proxy server as 2000@139.153.254.57.

In this architecture, the SIP Server is responsible for enforcing both SIP policies and H.323 policies. The
siph323csgw package is the main focus. Because the original version of siph323csgw had some problems, these
bugs had to be removed.

 46

Figure 32. Policy Architecture for A SIP -Attached H.323 Network

(2) An independent H.323 network

Figure 33. An Independent H.323 Network

The openh323gk is a gatekeeper managing the H.323 Zone. It is the key of this research project. All H.323
terminals will register with the openh323gk. The openh323gk monitors all H.323 calls, communicates with the
policy server and enforce the H.323 policies.

(3) The enhanced siph323csgw between SIP network and H.323 network

Figure 34. Policy architecture for A SIP-Attached H.323 Network

SIP Client

H.323 Terminal

H.323 Terminal

SIP Client

H.323 Terminal

Policy Server

SIP Server 139.153.254.100

siph323csgw
139.153.254.57

2000

Policy Server

openh323gk

Policy Server

SIP Server
Openh323gk

Enhanced siph323csgw

 47

The SIP network and the H.323 network are relatively independent including their management servers. But

when communication between them happens, a gateway responsible for translating is required. The current
version of siph323csgw has not such a function. We need to enhance it.

6. Developments by the author

(1) Added the policy-supported part in openh323gk

(2) Added the H.323-supported part in the policy server including the code, the mapping database, and some

H.323 policies written in APPEL

(3) Fixed the bugs of siph323csgw in order to construct the policy architecture of the SIP-attached H.323

network

