& S BT e e

VAT O e b PEREASERSIER D LT b REL f bR i

Department of Computing Science and Mathematics
University of Sirling

I A R R R e R N I O O O N R o

Extending Hardwar e Description in SDL

F. Javier Argul-Marin and Kenneth J. Turner

Tedhnical Report CSMI-155

ISIN 14609673

February 2000

Department of Computing Sience and Mathematics
University of Sirling

Extending Hardware Description in SDL

F. Javier Argul-Marin and Kenneth J. Turner

Department of Computing Science and Mathematics
University of Stirling
Stirling FK9 4LA, Scotland

Telephore +44-1786467-421,Facsimile ¥44-1786464-551
Email javargul @bbvret.com, kjt@cs.stir.ac.uk

Tedhnical Report CSMI-155

ISIN 14609673

February 2000

Abstract

The use of SDL (Spedficaion and Description Language) for digital hardware description and analysis
is investigated in this report. It continues the work undertaken at the University of Stirling and the
Tedhnicd University of Budapest on hardware description with SDL, offering a moduar approac to
hardware designin SDL.

Although SDL iswidely used in the software and telecommunication community, it is not very popular
with hardware designers. However, it has attraded the reseacher’s interest because it offers good system
structuring feaures and the passbility of software-hardware m-design.

One way of suppating herdware engineas when trandating a drcuit schematic into a SDL
spedficaion is to have alibrary of ready-to-use or pre-defined dgital components. These dements may
then be used as buil ding blocks to aid in the development of more mmplex eledronic hardware.

The main goal of this report has been to extend an existing SDL logic library, in an attempt to reflea
the range of components typicdly avail able to eledronics designers. Using these libraries and a mommercial
tod for SDL the properties of a redistic drcuit can now be investigated. Making use of these new
elements, a pradicd case study has been caried out. The overall results clealy show that hardware
description in SDL is an interesting alternative to ather more traditi onal methods of hardware analysis.

Thanks to the Faaulty of Management for the financial suppart for this projed and, finally, thanks to the
Department of Computing Science and Mathematics as a whole becaise it has been the perfed
environment for this work. Financial suppat is gratefully adknowledged from NATO under grant
HTECH.CRG 974581

Table of Contents

N 0151 = o S PSPPI I
TADIE OF CONEENES ...ttt ettt e e ettt e e e e e e e e e e s e eanebe e e e eaeeeeeannnnnsmmnnd iii
I F g1 0o 1 o o o PP PPRPRTRRRRRRPR 1
0 A == To X | {01 00T 1P a0 @] g 1= 1
1.2 SCOPE @10 ODJEAIVES.ccieiiiiiiiiiee et eeretite e e e e e e s e st e e e eeeaeeeaeeesesantasaeeraaaeeaanaaesessnnsnes 1
1.3 StrucCture Of the DiSSEItaIION.uurirreiiiieeeeiie et eeeete et e e et e e e e re e e e e e s s e s e e e e e e e aaaeeeeas 1

S = (T o) I 0 N o PRSP 3
2.1 Digital Hardware COMPONENES.uuureeriiiiietieeeeeeeeenteeeessssssstnsseeeeesessianaessssnsssssneeraasesssnnsanns 3
2.2 Hardware Description LanNQUAJEScooceuuuutieiiiieeieaauitieeeeeaaeesaaannstsseeemneseeeeaaeesaannnnssneeeeess 4
2.3 SDL (Spedficaion and Description LANQUAGE).......ccueuieeeeeaaeaaiieiiacce e eieiee e e e e e 5
2.4 ANISEED........c.otiiiiiii ittt ettt ettt eea e e e — e e s b e e e et rrana e e e atbe e e e antaeaeennreeans 6
KGN o] (o 7= Vo £ [PPSR 7
3.1 General Approac to Hardware Description in SDL.........coooiiiiiiiiiiiiiieee e 7
3.2 Simulation/ Validation apPrOBMN.cueeiieeiee e a e 8

N T = =Y B LYol = PO PRPPTUPPRN 11
4.1 DESCIIPLON ISSUESeiieiicciiiiieitetieeeeestteaeeeeeaesesassatteeemnnteeseeeaeeesssassssaneeeeanneeeeaaesssnnsnen 11
4.2 Library COMPONENEScciiiieiietiiietiee s ieeetteee e e eeee e s s s tee e e eseeeaeeeaeeeessannsntaeaeeeaeeennaeeeessnnnsnes 13
G R & [T = o o PRSPPI 20

5 (De)coders and (DE)MUILIPIEXEN'Svuvueeiieiiieiiee e e e s eeee e e e e e e e e s s eae e e s s s baaer e e e e e e s e snnanne 22
TN B = o] o o g B S =SSR RR 22
511 BCD-t0-Dedmal DEMIOEYS.......cceeeeeeeieeieieiieee ettt e e e e e e e e e e e e e e e e nneeees 22
51.2 Deders/DemUIti PIEXEIS.ccooiiiiii ittt e ettt e e e e et me e e e e e e e e e e eeeeaas 22
LN I T = 0o To = = U UUTUPUPPRRRR 23
LN I S Y U 1 o] = SO 24

5.2 Library COMPONENES.uuuiiieiiieiiiei ettt e e e et e ae e e e e et e e e e e e e e e s s ennneeeeeeas 24
G 1o = (o o PO U UR P RRR 29

S 0 oo PSPPSR 31
LN B = o o o g B S == SRR 31
L2 I o] - YA @01 1] 1=] £SO 33
LSS BV Ko = 1o OO OPPRPOPRRY” |0

T PULING Tt All TOQEINET ... eeer e e e e e s e e e e e ee e e s e s saseb e e e e e eneaeeeaeeeesannsnnenes 42
7.1 Constructing the New ANISEED liDFarycoouiiiiiaaii e 42
7.2 USING The NeW Library........ooo e eee e 43
7.3 CaseStudy — The SINGIE PUISENot e e e eee e 44

B CONCIUSIONS ... eeeeei ettt ettt e e e e oo et mm bttt e et e e e e e e e nn bt be et e ennseeeeaaeeesaannbbeseeeeaeanaeeaens 51
I = = o= RSP SRP 52
Y | I (o) = 1 o o O PPPRRTT 54
B. List of New Library COmMPONENES...........cooiiiiiieiiieriieeesiirtee e e e e e e e s s snneveemmeseaeeeeeaesessnnnssnneeeees 57

List Of Figures

Figure 1. Basic logic gates symbals and their corresponding truth tables...........ccccoevviieiiiiiicceeeeeieeneeenn 4
Figure 2. Truth tables for the new AndB and OrB it OpEratorS.cvvuuiiieiieie e e e e e 8
Figure 3. Symboals and truth tabl €S for triState INMVEITEIS.......u.iiee e e e e e e e e e e e eaa e eees 12
Figure 4. Hex inverter buffer With triState OULDULS.......u.iieeiieieeiee e eemme e ee et e e et eeeea s s s e s esaeeeenaneaes 12
Figure 5. SDL system diagram for atristate AND gate With tWO INPULS.........ccoveevevniieeieiiieceieeeeeeeeeeiann, 14
Figure 6. Processes contained in the block sShown in figQUre5.........eivivieeiiiiiiiceeeee e 15
Figure 7. SDL-GR representation of the processEnablein its Ready State..........cveevvevveeiiiiievimmeiieeeeeeens 16
Figure 8. ProcessEnable waiting for the timer 10 EXPITEovveveeeiieieieee e eeeee e eee e 16
Figure 9. SDL description for the Tristate And2 gate in its Realy State.........oeevevvevniiieieeiieceieeeeeeeeeeevennn 17
Figure 10. Tristate gate waiting for the propagation delaysto finiSh.........cuueiiiiiiiiiiiii e, 18
Figure 11. Waitingwhile in high imPEANCE..........couniiiieieie et e e 19
Figure 12. Tristate gate in high iMPEANCE.uuiiiiieiee e ceeee et e e e et e e e e e e e e et eeeeaaeesaaaneeenn 20
Figure 13. Schematic and truth table for a BCD-to-Dedmal de0Erceevuiiieniiiiiieeieemee e 22
Figure 14. Schematic and truth table for a decoder/demultiplexer 74LS139......ccuiiiieiiiiiieiei e 23
Figure 15. Switching charaderistics for the device 74LS139..... oo eeeaas 23
Figure 16. 8 to 3encoder, logic diagram and truth table............oooiveveiiiiiiiee e 24
Figure 17. Dual 4-input multi plexer, logic diagram and truth table............ceueiiiiiiiiiiiceen e 24
Figure 18. Block with asingle processto spedfy ademulti PIEXEYccveeveiieieeiei e 25
Figure 19. Random output initialisation in an encoder (left) and ademultiplexer (right)........coeevevvvevnnneen 26
Figure 20. Referencesto procedures New In and New Sin the procesSMUX4t01.........ccocevvvvveneereevnnnn. 26
Figure 21. Two approades to input deaoding: BCD-to-Dec (left) and Encoder8-to-3 (right) 27
Figure 22. Use of propagation delays as adual parametersin procedure CalS.........oceuvvveveeiiiinieivemmneens 27
Figure 23. Wait states and use of timers to modify outputs at the right time...........cceueivivieriiiiiicemeeeeeeee 28
Figure 24, ProCeOUIE SEE OULceueeieiiiie et et s e e e e et e e e e e e s e e e e eeaa e s eeeseeaaaa s eenaaseeesesensranns 28
Figure 25. ProCEAUrE QUIPULS.u.iiete it eeeteeeeeeeeeta s eeesaasessaasessaaesaa s sessaassesstasseessnssmmnssessnssessnnseaes 29
Figure 26. Transition coverage treeshown in the cverage viewer (BCD-to-DEC deaoder)coevveeeee.. 30
Figure 27. SYmMboOl COVEIA0E OraDS. .. .cuuiiiee ittt e e e et e e e e e e e et eessae e e s et e seebasenneesenns 30
Figure 28. Negative and pasitive adge-triggered D flip-flopS........viiiiiieiiiiiieceeeie e 31
Figure 29. JK flip-flops (negative and pasitive-edge trigoered)ueeveeieereieeiee e 32
Figure 30. Positive-edge triggered D flip-flop with Preset and Cle&uuvvivieveeiiiiiiieemeee e, 32
Figure 31. Function table for a master-slave JK flip-flop with Preset and Cleaocovvvveeiievieviniieeennnn. 33
Figure 32. Timing parameters for aD flip-flop with Preset and Clea inputS...........cceveiviiveieeiiieeeeeeeeeees 33
Figure 33. Multi-processSDL descriptions for flip-flops with different complexity levels...................... 34
Figure 34. Minimum pulse width spedfication in the PreéSet iNPUE...........ooeveiiiiiniiiisceeee et eeeae e 35
Figure 35. Avoiding the flip-flop keing overdriven if the dock iSt00fast.......ccoocveviiiiiieiiiiiieeee e 35
Figure 36. Random output initi alisation dUring SEArUD.eerniiieie e iemme e e e e e e s e s sma e e eaaeeeees 36
Figure 37. Preset or Clea signals whileinthe REaIY StALoeivniiiee it 36
Figure 38. Demoding of the inputs J and K after apositive dock €d0.........cevvviiieniiiiiiieceeeee e 37
Figure 39. Preset or Clea Signals during hold timME.........iviiveeiiiiiie e e e e 38
Figure 40. New clock pulses or datasignals during hold time.........uuviiiiveeiiiiiiiiiee e 38
Figure 41. Output processinstances after ahold timer hasS eXPIred...........oeuveeieiiieeiiiiieeee e 39
Figure 42. Cleaing State DENAVIOULiiiiiiie it e e e e e e e e e e e eebb e erna e eeas 39
Figure 43. Reaovery time after finishing @ PreSet OF ClEEovvvveiiiiieie et £ 40
Figure 44. Output process frowing the formal ParamELErS.uueiiiieereiiee et e e e e e e e aees 40
Figure 45. Bit state exploration for @D flip-flOp........cuuiiiuii e ee e e e e 41
Figure 46. Use of Message Sequence Charts to analyse system behaviourcooeevviiveieieeiicemieie e, 41
Figure 47. One possble implementation of the SINGIE PUISETcueiiieniiiiiieii e eeeaas 45
Figure 48. Example waveforms for the single-pulser (no delays considered)..........ovvvevivivieiiiiiecereeennnnns 45
Figure 49. SDL implementation of the single pulser using the ANISEED library........ccooovveeiiiiniiiinieeen.. 46
Figure 50. Structure of the SDL system for the SINAIE PUISETvvvriiiiiiiieie e e e eeb e 47
Figure 51. Timing diagram after smulating the SDL description of the Single pulSercoovvveeveeievvennnnns 48
Figure 52. Timing diagram for the SINGIE PUISENiiiiei e e et e e e e e e e e s eeaaaaas 49

Figure 53. Time diagram showing a ansecutive sequence of output pulses

Vi

1 Introduction

1.1 Background and Context

During the last decale, hardware design has evolved from using tods for synthesis from Boolean
equations and state diagrams, to synthesis from behavioural descriptions using HDLs (Hardware
Description Languages). Nowadays, high-level synthesis todls are cmmmercially available and widely used
for design.

Although improving the performance of high level synthesis tods is an adive reseach area some
reseachers have dso started looking at the problem of dired synthesis from system spedfication languages
like SDL [1] (Spedficaion and Description Language). The use of forma methods for hardware
description and spedfication is a relatively new reseach area athough much of the experience and
commercial tods for formal software design could be used for hardware too.

Digital hardware and software ae not that different after all. They share things in common that could be
exploited to achieve abetter understanding of complex structures implemented as hardware dements or
software routines. At a higher level of abstradion, system designs can be analysed, optimised and tested
independently of the implementation. The use of formal methods for hardware analysis and the new
approaches towards co-design can certainly weaken the barriers traditionally built between the two worlds,
the hardware and software redms.

1.2 Scope and Objedives

This dissertation continues the work already undertaken at the University of Stirling and the Technicd
University of Budapest on hardware description with SDL. Kenneth J. Turner, Gyula Csopaki and Stephen
D. Laing have jointly devel oped the foundation work in the projed ANISEED (Analysis In SDL Enhancing
Eledronic Design) an innovative dtempt to offer to eledronics enginea's a modular approach to hardware
designin SDL.

Complex circuits can be described and analysed in ANISEED making wse of a library of electronic
components described in SDL. In order to extend the functionality and pcssbiliti es of ANISEED, the main
goal of this dissertation has been to extend the existing SDL logic library, in an attempt to refled the range
of components typically available to eledronics designers. Several components have been seleded from
typicd device families aich as tri-state logic gates, flip-flops, code @nverters, multiplexers, etc. The
behaviour of hardware functional units has been spedfied by block types, and all the comporents gored in
SDL packages to be used as generic definitions. These generic dements can now be instantiated to spedfy
the dharaderistics of particular components, including parameters such as names of input and ouput
signals, timing charaderistics, propagation delays, etc.

The main outcome of this projed has been an extended SDL library for future use in ANISEED.
Besides, to make use of these new elements a pradicd case study has been carried out. The overall results
clealy show that the ANISEED approach to hardware description in SDL is an interesting alternative to
other more traditi onal methods of hardware design and analysis.

1.3 Structure of the Report

This dissertation is dructured as foll ows:

e Chapter 1. (This chapter). Introduces the badkground and context of the work, establishing the
goals and main ohjedives.

e Chapter 2: Gives me notation and semantics of the basic digital components needed to
understand the following work. It also describes the state of the at in the most currently used
hardware description languages. The main charaderistics of SDL are presented, and the ANISEED
approach is briefly described.

e Chapter 3: The gproac to hardware description in SDL that has been followed in this work is
presented. Some simulation and validation issues are dso discused. Explanation of how a
commercial tod can be used to validate SDL descriptions of digital circuitsis given.

Chapter 4: This chapter is dedicaed to tri-state devices. Some particular aspeds of these
components are commented on, the new elements included in the library are eplained, and a
detail ed exampleis given.

Chapter 5: Code mnverters and multi plexers are presented in this chapter. Common aspeds and
SDL descriptions of coders, decders, BCD to dedmal code mnverters and multiplexers are
discussed.

Chapter 6: More than twenty different types of flip-flops have been included in the ANISEED
library. Different kinds of flip-flops and their timing constraints are described, discussng the
solutions found to ded with the inherent complexity of all these timing aspedsin SDL.

Chapter 7: This chapter describes how the new library was constructed and how to use it. Some
problems with the todl and the solutions found are dso discussed. A case study shows our approach
to hardware analysisin SDL in action.

Appendix A: The most commonly used SDL symbals and notation are included for reference
Appendix B: A list of the new ANISEED library components.

2 Stateof TheArt

2.1Digital Hardware Components

Digital systems are etensively used in computation and data processng, control systems,
communicaions, measurement, etc. Because digital systems are cgable of greaer acairacy and reliabili ty
than analogue systems, many tasks formerly done by analogue systems are now being performed dgitally.

The design of digital systems may be divided roughly into three parts; system design, logic design and
circuit design [2]. System design involves bre&ing the overall system into subsystems and spedfying the
charaderistics of ead subsystem. Logic design involves determining how to interconned basic logic
building blocks to perform a spedfic function. Circuit design involves Pedfying the interconnedion of
spedfic components like resistors, transistors, logic gates etc. to form logic building blocks. Most
contemporary circuit design is done in integrated circuit form using appropriate computer-aided design
todlsto lay out and interconnect the components on a chip of sili con.

Many of the subsystems of a digital system take the form of a readive system with one or more inputs
and outputs which take discrete values. In combinational networks the output values depend only on the
present value of the inputs and not on past values. However, in a sequential circuit the outputs depend on
both the present and past input values. In other words, to determine the output of a sequential circuit a
sequence of input values must be spedfied. Sequential circuits are said to have memory becaise they must
remember something about the past sequence of inputs, while mmbinational networks do not.

The simplest buil ding blocks used to construct combinational circuits are logic gates. The logic designer
must determine how to interconned these gates in order to convert the input signals into the desired output
signals. The relationship between these input and output signals can be described mathematicdly in terms
of Bodean algebra.

The basic memory elements used in the design of sequential networks are flip-flops or latches. Flip-
flops can be interconneded with gates to form counters, registers and the like. The first step in designing a
sequential circuit is to construct a state table or graph which describes the relationship between the input
and output sequences. After doing that, there ae different methods to implement sequential circuits, going
from a state table or graph to a network of gates and fli p-flops.

Digital logic and dgital systems design are highly developed topics. The operation of logic gates and
how to combine them into larger circuits and modules is well documented in the literature. Traditional
digital logic design rnormally uses hardware cmponents as building blocks that are available in
manufadurer’s catalogues and datasheds.

The behaviour, truth tables and charaderistics of the dectronic components described in SDL for the
ANISEED library will be gradually explained in the following chapters. As a basic reference, the symbals
and truth tables for the basic logic gates (with two inputs) are presented in Figure 1.

AND

A AR P OK AB P
_ o0 0 A 00 O
:])j 01 o :Dj 01 1
- 10 0 10 1
B 11 1 B 11 1
NAND B D NORE AB D
A oo 1 A 00 1
’7>_P 01 1 D_P ¢l 0
— 10 1 10 0
B 11 0 B 11 0

XOK XNOR
A AR P A _AB P
e N S T
10 1 10 0
B 110 B 11 1

NOT (Inverter)

A P A P

— 0 1

1 0

Figure 1. Basic logic gates ymbols andtheir correspondng truth tables

2.2Hardware Description Languages

Hardware Description Languages (HDLSs) are, as the name implies, languages used to design hardware.
HDLs can be used to describe the functionality of hardware & well as its implementation. Nowadays,
hardware description languages that resemble software-programming languages are central to dgital circuit
design.

Hardware description languages can describe the functionality of a piece of hardware
independently of the implementation. A grea advance with modern HDLs was the fad that a single
language could be used to describe the function of the design and also to describe the implementation. This
allows the entire design processto take placein a single language.

VHDL (Very high-speed integrated circuit Hardware Description Language) [3] and Verilog [4] are
some of the most widely used HDLs nowadays. VHDL has been an IEEE Standard since 1987, It is an
Ada-based language that supparts the development, synthesis, and testing of hardware designs through
simulation of hardware descriptions. Several synthesis, verificaion and simulation todls based on VHDL
are ommercially available. The Verilog HDL was designed and first implemented at Gateway Design
Automation in 1984 Due to industry concerns about the proprietary nature of Verilog, the control of the
language was eventually given to a standards committee Verilog is now an IEEE standard that is
maintained by the Design Automation Standards Committee It is a language intended for use in all phases
of the aedion of eledronic systems, but it is primarily used for the design of integrated circuits at various
levels of abstradion.

Besides pedfic HDLs, some software-oriented languages have been used for hardware description too.
In a paper by Janstch [5], SDL and functional languages like Erlang [6] or Haskell [7] are found
appropriate to describe combined software/hardware systems.

The use of formal methods for verifying and vali dating complex systems behaviour is an adive reseach
area System level spedficaions can be used as a basis for deriving implementations, but with a higher
level of abstradion, in order to pastpone implementation dedsions and not to exclude any valid redization.
Many intermediate refinement steps are neaded to achieve aredizaion, gradually closing the gap between
the spedficaion and the implementation. However, several concepts suppated by system level
spedficaion languages are not easily represented in hardware description languages and, sometimes,
clumsy implementations are needed.

Initial work by researchers for hardware synthesis from SDL spedficaions was mainly exploratory.
The initial objedive was to demonstrate the feasibility of synthesis rather than development of pradicd
todls or methoddogies. A very common strategy has been to seled a restricted synthesisable subset of SDL
and then provide trandators to VHDL code [8, 9,10,11]. Although SDL is widely used in the software and
telecommunicaion community, it is not that popular with hardware designers. It has attraded interest
becaise it offers good system structuring features, high level communicéaion and the possbility of co-
design [12,13/14].

Like SDL, LOTOS (Language Of Temporal Ordering Spedfication [15]) was developed for describing
communicaions systems. The inspiration for the work reported in this report was the LOTOS-based
approach to hardware description currently under development at the University of Stirling: DILL (Digital
Logicin LOTOS]|[16, 17,18]).

2.3SDL (Spedfication and Description Language)

SDL (Spedfication and Description Language) is an objedoriented formal spedficaion and
description language for developing the structure, behaviour and data of complex systems. SDL serves as
the main international standard for protocol and system description in telecommunications, being
standardized by ITU (International Telecommunication Union) in recommendation Z.100. Although SDL is
widely used in thetelecommunicaionsfield, it is aso being applied to a diverse number of other areas.

SDL has been evolving since the first “Z.100 Recommendation” in 1980with several updates. Objea
Oriented feaures were included in the language in 1992 For some time most toals only supparted the 1938
standard and, as a consequence, a distinction was made between “SDL-88" and “SDL-92", even though
eah rew ITU standard has replaceal the previous version. SDL-96 and SDL-2000 have offered new
feaures, though commercial suppat is gill to cach up.

SDL feaures a formal definition, i.e. rules that formally define the semantics behind eat symba and
concept, and stipulates how parts of the language fit together. SDL’s formality enforces predsion during
spedfication and provides suppart for analysis and verification. SDL also supparts dynamic feaures that
are software oriented, like dynamic process credion and dynamic addressng. This hightevel language
improves productivity of the design processby letting the designer concentrate on the gplication problem
instead of deding with low level programming issues. The formal nature of the language dso fadlitates
automatic generation of application code diredly from SDL designs.

For systems engineaing SDL is normally used in combination with other languages such as the
OMT/UML objed model, MSC (Message Sequence Chart) or ASN.1 (Abstrad Syntax Notation). The ITU
Z.105 standard defines the use of SDL with ASN.1, and the Z.120 standard defines Message Sequence
Charts [19]. MSC is a graphicd and textual language for the description and spedfication of the
interadions between system components. The main areaof application for Message Sequence Charts is as
an overview spedfication of the communication behaviour of red-time systems. Message Sequence Charts
may be used for requirement spedficaion, simulation and validation, test-case spedficaion and
documentation. They have been widely used to vali date the hardware descriptions presented in this work.

The static structure of a system is described in SDL by a hierarchy of blocks. A block can contain other
blocks, resulting in a tree structure. The behaviour of the blocks is described by one or more
communicaing processes, which are described by extended finite state machines (a number of states, and
transitions conneding these states).

Processes are mnneded with each other and to the boundary of the block by signalroutes. Blocks are
conneded by channels. A communication through signalroutes is timeless while a @mmunicaion through
a channel is delayed non-deterministicaly. Channels and signalroutes may be both uni- and bi-diredional.

Each processis composed of a set of states and transitions and has an input queue where signals are
buffered on arrival. The arival of an expeded signal in the input queue enables a transition. The process
can then execute aset of adions such as manipulating variables, cdling procedures and sending signals.
The recaved signal determines the transition to be executed. When a signal has initiated a transition it is
removed from the input queue. Synchronizaion between processes is achieved using an exchange of
signals.

Each process has a unique aldress (processidentifier) which identifies it. A signal always caries the
address of the sending and the receving processes in addition to passhle values. The destination address
may be used if the destination processcannot be determined staticdly. The aldressof the sending process
may be used to reply to asignal.

In my view, SDL is a user-friendly language, mainly due to its graphicad representation, SDL/GR, in
which graphical syntax is complemented by textual syntax when needed. There is also a textual phrase
representation, SDL/PR, using only textual syntax. SDL/GR and SDL/PR have a @mmon subset of textual
syntax, and thus overlap ead other. All new hardware dements included in this report have been
developed in SDL/GR but converted into SDL/PR to be included as part of the ANISEED library.
Appendix A contains the graphic representations, names and meanings of the most commonly used SDL
symboals and notation.

2.4ANISEED

The ANISEED (Analysis In SDL Enhancing Eledronic Design) projed has been briefly presented in
chapter 1. Now it is time for a more detailed description, asit is the context in which the present work is
emboded.

Initial work on using SDL for hardware description in ANISEED has been caried out at the University
of Stirling (Department of Computing Science and Mathematics) and the Technicd University of Budapest
(Department of Telecommunications and Telematics). A paper [20] by Gyula Csopaki and Kenneth J.
Turner addressed the spedfication and validation of digital components and digital systems using SDL in
ANISEED.

Hardware engineeing usually deds with relatively low-level isuues and, maybe for that reason,
spedficaion and design are rather close. In software engineaing a sharper separation is made between
requirements, spedfication and design. ANISEED brings this perspedive to hardware engineeing by using
SDL in the ealy stages of requirements definition and spedficaion. The am of ANISEED is therefore to
model a system before it is redised as even a hardware prototype. This higher-level, software-inspired
approach alows the feasibility and charaderistics of a drcuit to be evaluated at an ealy stage. As well as
being the projed hame, ANISEED also refers to the hardware description method and the spedal-purpose
todsand library developed within the projed.

ANISEED suppats the hardware enginee when trandating a drcuit schematic into a SDL
spedfication, sinceit contains a variety of pre-defined components. Libraries in the form of SDL padages
supply ready-made drcuit elements and design structures. These present solutionsin a form that is famili ar
to eledronics enginees. Trandlation into ANISEED allows properties of a drcuit to be investigated,
making use of the resources available in a commercia toal for SDL [21]. Since SDL is widely used in
industry and well supparted by commercial todls, it is hoped that the gproach will be atradive to
hardware designers. Only a basic knowledge of SDL isrequired in order to describe and analyse drcuits.

The behaviour of afunctional unit is givenin ANISEED by an SDL description. Block types are used to
represent generic components, adual components being instances of these. Component descriptions are
stored in alibrary as SDL named pacdkages. When the generic definition of a mmponent is instantiated, its
parameters are set to describe the charaderistics of the particular instance Parameters usually include the
names of input and output signals and timing charaderistics such as propagation delays.

ANISEED follows a modular approach to hardware description. Once the design of a module is proved
corred, it may be used as a building brick in higher level designs. That is, it may be treaed as a bladk box
whose internal structure is unimportant at a higher level of abstradion. A circuit design wsually employs a
certain number of components. Processs are therefore combined into a SDL block structure. As a block
type, astructure can also be stored in an SDL padkage for future use.

ANISEED makes it possible to describe mixed hardware-software systems within the same framework.
If the designer wishes to spedfy functional behaviour at an abstrad level, it is usualy irrelevant whether
the redisation is in hardware or software. The designer merely has to spedfy the interfaces of the
functional unit, including input and output data (structures) and timing constraints. At this level of
abstradion, afunctional unit can be ahardware or software dement, as both redi sations may be avail able.

The ANISEED method can also be used for spedfying and analysing timing charaderistics of hardware
designs. The original developers [22] have mncentrated on timing aspeds of hardware spedficaion and
analysis, the main goal being to alow timing constraints on circuits and components to be spedfied and
analysed at various levels. Timing may be spedfied in ANISEED at an abstrad (overall sequencing
constraints), behavioural (bladk-box viewpoint) and structural (internal design) level. For timing analysis,
ANISEED achieves a discrete event ssmulation by automaticadly modifying the scheduling strategy of a
standard SDL simulator. Another general approach, based on modified SDL descriptions, is currently being
developed at the Technicd University of Budapest for red-time hardware smulation in SDL.

3 Approach

3.1General Approach to Hardware Description in SDL

Most uses of SDL for hardware description have dmed at synthesis using standard engineeing toals.
As has been said in chapter 2, SDL hardware descriptions are often translated into VHDL. This alows SDL
to be used for high-level hardware description, coupled with common tods for hardware synthesis and
more detail ed analysis.

Hardware-software m-design using SDL has also been investigated. Hardware dements are usually
generated via VHDL, while software dements are generated in high level languages like C or C++. Some
SDL todsetsthat suppart co-designinclude COSMOS [23] and ODE [24]. A system is generally viewed as
a set of communicaing hardware (VHDL) and software © subsystems. The same C, VHDL descriptions
can be used for both cosimulation and hardwaresoftware csynthesis. In ANISEED the behaviour of a
functional unit is given by an SDL description. Trandation to VHDL and/or C is assumed to be dedt with
by other todls.

The gproach followed in ANISEED deds only with discrete signals, but it models continuous sgnals
implicitly by modelling discrete changes in them (the edges). Hardware signals are modelled as SDL
signals with two parameters. the time when the signal is generated, and the logic value. The time value of
an input signal records when it was generated. The time value is used to determine the time of possble
output signals (acording to the time delay inherent in a component). The logic value of asignal may be a
single bit, but for generality a vector of bits (multi-bit) may be used. This caers for common situations
such asabusor agroup o wiresthat isto be spedfied asawhadle.

Time delays are often significant in the design of digital logic — espedally in asynchronous circuits. It is
important that the designer be &le to state propagation delays and timing restrictions explicitly. Timing
information appeas in process parameters and in signals. The unit of time in an SDL description is at the
discretion of the spedfier. Integer time values are commonly used, with a typicd interpretation being
nanoseconds.

The wires of a drcuit are normally considered to carry signals instantaneously between components.
Thisis not strictly true, but the transmisgon time over awire is usually negligible compared to the readion
time of a component. In high-speeal circuits, a wire can be modelled as a delay if neaessary. In digital
hardware, the wires between components usually cary signals only in one diredion. However bi-
diredional signals are possble, for example over a bus. The SDL processes representing components are
conneded by zero-delay channels representing the wires. As usual, channels can be uni-diredional or bi-
diredional.

One of the problems in modelling digital logic is that the initial state of a digital system often cannot be
predicted. A simple way to modd initialisation is to set each output to 0. This assumption can gve
temporary inconsistencies when two logic gates are mnneded, for example two invertersin series. To ded
with that, a more acarate model isused in ANISEED. Although binary signals havethevalue of 0 or 1, a
bit variable is also permitted to have the value X (meaning unknown). We make X theinitial state of every
signal. X can be interpreted as ‘unknown’, ‘arbitrary’ or ‘do not care’. This removes inconsistencies such
asinthe example @ove. The implications of having signals which can be in one of threestates, 1, O, or X,
is that the SDL built-in logicd operators for the Bit type, AND, NOT, OR, etc. are no longer useful.
Therefore, ANISEED spedficdions use alibrary of abstrad data types (ADTs) for the logicd operators
AndB, NandB, OrB, NorB, etc. These new operators allow for operands with value X. As an example,
Figure 2 shows the truth table for the new AndB and OrB operators included in the padage Bit1.

Input 1 Input 2 | Output (AndB) | Output (OrB)

X[[X|o|r|r|o|o|o
X[[X|o|X|[r|o|r|o
X|X[X|o|lo|r|o|lo|o
X[| X|X[r|r|r|O

Figure 2. Truth tables for the new AndB and OrB hit operators

Some apeds of logic design require speda “components’ in SDL. Sometimes it is necessary to
spedfy a source of logic 0 or 1, say to tie an input to a spedfic level. This is a nullary logic function,
spedfied by block types ZERO and ONE that provide logic 0 and 1 respedively. It may also be necessary
to spedfy a source of other constant values (e.g. some binary input vedor). The CONSTANT block type
provides a constant output given by its parameter value. Logic sources generate their constant signals at
simulation time zeo.

If the output of a cmponent is not conneded to anything, processoutput signals have to be mnsumed
but not used. The ABSORB block type is ready to accept and absorb any signal. Note that this differs from
standard hardware design: if an output of a component is unused, the enginee simply does not conned
anything to it. However, the crresponding SDL process must have aroute for output signals to follow
(even if nothing is done with them). With a little pre-processng, this can be made invisible to the spedfier.
Nonetheless it could be agued that it is desirable to force an explicit choice of what to do with ead
output. If an output is acddentally left unconnected, it is useful that a check of the crresponding SDL
should pant out the aror.

In general, signals carry time and value parameters but the time parameter of a signal may be omitted
when timing charaderistics are not significant. This is appropriate for synchronous clocked logic, where
output signals are enabled by clock pulses. In synchronous circuits, component delays can be ignored since
it is assumed that the readion time of a wmponent is faster than the dock rate. But in an asynchronous
(unclocked) circuit, exad knowledge of component delays may be necessary to avoid race onditions.
Corred operation in the presence of timing constraints may be decked through simulation or through proof
of corredness

Red logic gates have afan-out (the maximum number of other gates that can be connected to an output)
and a fan-in (the maximum number of inputs). These ae cmponent limitations that can be dcecked by
static analysis of the SDL description. Since fan-out and fan-in have an effed on the delays introduced by
gates, the designer can take them into ac@unt by choaosing appropriate values for the process delay
parameters.

A limitation of SDL isthat an output cannot be broadcast to an arbitrary number of processes. To solve
this problem, ANISEED uses junction “components’ that model the wnnecting points of wires. Although
these gpea in a drcuit diagram as small blobs, the spedfier must instantiate ajunction block type to link
the cmmponents. Where multi-bit components are interconneded with uri-bit components (e.g. a 4-bit
adder feeding into four inverters), a split ‘component’ is used to separate the bits. Correspondingly a merge
‘component’ is used to combine uni-bit signalsinto a multi-bit signal.

Making wse of the solutions explained above, and exploiting the posshilities offered by commercial
SDL todls, complex circuits can be described and analysed in SDL with relative ease.

3.2Simulation / Validation approach

A standard SDL validator can be used to chedk for timing or functional errorsin hardware design, and
also for consistency between design refinements. One method widely used with software, and implemented
inthe SDL tool used in thiswork, is based on the state space &ploration technique.

State space aploration emerged from research on applying formal methods to dstributed, concurrent
systems, and has been used for severa yeas to analyse telecom protocols. Telelogic [25] has implemented

state space aploration in its SDT Validator, which is one component of Telelogic’'s SDT (SDL Design
Tool), the software design and development tool based on SDL that ANISEED currently uses.

Testing complex systems usualy consists of two parts: conformance testing to see that the required
functionality is implemented, and robustness testing to see that the system responds reasonably to
unforeseen inputs [26].

Conformance testing is a cmplex but welldefined task, since the requirements are known when
testing. Robustness testing is more difficult since it tests the unknown ways the system might run.
Robustness testing beames even more difficult for distributed systems because their concurrent nature
causes interleaving of events that can be difficult to deted in advance Traditionally, robustness testing was
done manually, which is costly, tedious and prone to error. Tools like the SDT Validator automate this
procedure to increase cnfidencethat the system will work as expeded. Informally, a validator executes all
possble combinations of events that can happen, and reports any indicaion that something has gone
wrong. Inthisway, it feeds badk problems to the developer ealy in the process reducing later maintenance
and debugging.

Systems validation is usualy based on state space eploration: the automatic generation of the
reatable state spacefor the system. That means al posdble states a system can be in, and al possble
ways it can be executed. A readability graph represents the mmplete behaviour of a system. The nodes of
the graph represent SDL system states. The alges of the readabili ty graph represent SDL events that can
take the SDL system from one system state to the next one. The alges define the aomic events of the SDL
system. These @n be SDL statements like asignments, inputs and outputs, or complete SDL transitions
depending on how the state space eploration is configured. The state spaceof a system can be explored
using different algorithms. SDT includes random walk, exhaustive exploration, bitstate exploration,
interadive simulation, etc.

As its name implies, the random walk algorithm randomly traverses the state space Each time several
possble transitions are available, the validator chooses one of them and executes it. The random walk
algorithm is useful as an initial attempt for robustnesstesting and when the state spaceistoo large even for
apartitioned hit state search.

The exhaustive exploration algorithm is a straightforward search through the reachability graph. Each
system state encountered is dored in RAM. Whenever a new system state is generated, the dgorithm
compares it with the previously generated states to ched if the state was readed already during the seach.
If the state was previoudly readed, the seach continues with the successors of this gate. If the new stateis
the same @ a previously generated state in RAM, the arrent path is pruned, and the search badks up to try
more dternatives. The exhaustive exploration algorithm requires lots of RAM, which limits its pradicd
applicaion. Even with a powerful machine like the one used in this work (a Sun workstation with 512
Mbytes of RAM) only very small SDL systems have been successfully validated with the exhaustive
exploration algorithm. The most common result has been the system running out of memory (after severa
thousands of iterations), and the vali dation processabruptly finished.

The bitstate dgorithm is fairly efficient for state space eploration. It works well, in particular if
combined with a partitioned exploration strategy. This is the standard algorithm in the SDT Validator and
the one | always used first to find problems and achieve 100 % symbol coverage in my spedficaions.
Invented by Gerard J. Holzmann at Bell Laboratories in the late 198Gs for large verificaion problems of
distributed systems, the bitstate dgorithm is based on using a bit array. All bits are initially set to zero to
store the readability graph. The ideais to compute ahash value, used as an index into the bit array, for
ead generated system state. For ead newly generated system state, the dgorithm computes the hash value,
and chedks the bit array. If the bit array has a 1 at the given index, we asume this state has been visited
before, and prune the seach, i.e. badk up in the execution sequence and try another alternative.

During its exploration, the SDT validator cheds a number of rules executed for ead transition.
Whenever a rule is violated, the validator saves a report that includes information about what rule was
violated and the path in the state spaceto the violation. When the automatic exploration finishes, the reports
are presented in a clickable treeoverview, giving acces to the system states that require investigation. The
user investigates the reported situations via the validator’s interadive mode. Esentially, the user gains
accessto the complete execution path that led to the problem, being able to walk backward and forward in
this path to check the values of variables and ather aspeds of the system’s gate.

Message Sequence Charts (MSCs) can also be used to show an overview of signal interchanges
between the different processes adive in the investigated execution path. A “Navigator” fegure dlows the
user to manually check alternative paths in the state space This Navigator, combined with MSCs and

watch windows to show the values of variables, are some todls that have proved very useful (but time
consuming) during the validation of the systems presented in this report.

When the validator executes a transition and reades a new system state, the situations reported may
include traditional execution errors such as:

e Dataoperator errors (such asdivision by zero)

e Subrange violation (for syntypes)

¢ Index out of range (for arrays)

The validator also reports problem situations edfic for distributed and concurrent systems such as:

e Dealock

e Implicit signal consumption (One process &nds a signa to another process that is not able to

handle it)

¢ Crede @arors (SDL allows dynamic aeaion of processes, so spedfic problems may arise)

e Output errors (Output of asignal with no recaver or too many recavers, etc).

In pradice the predefined rules that the validator chedks ad as a fishing net that caches logicd design
errors. One of the most recurrent errorsin my ealy SDL descriptions was mething that, fortunately, the
validator deds very well with. In systems with several timers, many different states and a cetain degree of
concurrency, it is very likely that some signals are not properly handled in a particular state. The validator
redly helpsin finding bizarre combinations of signals and transitions that lead to wrong results. Even with
the most careful design efforts to dothings properly, it is very difficult to foresee some unpredictable (but
possble) sequences of events that make things go completely wrong.

Other problems the validator deteds are related to events happening at the same time in different parts
of the system. For example, asignal is recaved from the system’s environment at the same time & a timer
expires, leading to two dfferent chains of execution interfering with each other in unexpeded ways.

In addition to robustness testing, SDT’s validator automaticdly verifies consistency between message
sequence charts (MSC Verificaion). The validator automaticaly verifies consistency between MSCs and
the SDL system to insure that the SDL system fulfils user requirements and will solve the right problem.
The verification is achieved by giving the validator an MSC as input and checking the MSC during the
state space eploration. The validator matches the MSC with the possible execution sequences. When a
sequence of eventsis found that matches the MSC, an MSC verification is reported. An MSC violation, on
the other hand, is reported when the system might behave differently than the MSC prescribes. In pradice
| found some difficulty in making the best use of this last feaure to validate the resulting block types of the
ANISEED library. It proved problematic and time cnsuming becaise of the differences in notation
between my original SDL descriptions that generated the MSCs to be verified and the systems under test
(instances of the new block types in the library). | had to re-arrange the names of signals in the systems
under test, but new problems related to the names of parameters arose, making this feaure hard to use in
this particular case.

Fully validating a cmplex system with the SDT validator is avery time cnsuming task. The tod redly
helpsin finding all possble combinations and deteding some dea error situations. However, chedking that
in al circumstances the simulated behaviour matches the expedations is a question of long hours and
requires careful analysis by the user. The reward after a successul validation is a high degreeof confidence
in the quality and robustness of the description.

10

4 Tristate Devices

4.1 Description Issues

Under some alverse drcumstances, a logic drcuit will not operate arredly if the outputs of two or
more gates are mnneded to ead other. For example, if one gate has a “0” output (low level voltage) and
another hasa“1” (high level voltage), when the outputs are wnneded together the resulting voltage may
be some intermediate value that does not clealy represent either a0 or a 1. In some caes physicd damage
to the gates may resullt.

Use of tristate logic permits the outputs of two or more gates to be amnneded together, solving this
problem. A tristate output is a feaure of some digital eledronic devices that allows a pin to either ad as a
normal output, driving a signal onto aline, or to be placel in third state- a high-impedance @ndition. This
allows other outputsto drive signals onto the same line.

Tristate outputs are typicdly used for the connedion of several digital components to a shared bus onto
which any one of them may output data for the others to input. There ae tristate versions of the most
commonly used digital gates such as And, Or, Not, etc. Many other components such as buffers, drivers,
multi plexers, latches or flip-flops are dso commercially available in tristate versions.

Besides the normal signals for any eledronic component, tristate devices have an additional enable
input that controls the functionality and state of its outputs. Depending on the logicd adive level of this
enable signal, two basic versions of these devices exist, low or high logical level enabled. When a tristate
device is enabled (its enable input is st high or low as appropriate) it behaves like anormal component.
Outputs foll ow the variations in inputs, and their values depend on the intrinsic behaviour implemented in
the gate (And, Or, Not, Xor, etc). However, when the deviceis disabled, its outputs ad like an open circuit.
In other words, the outputs are dfedively disconneded so that current can not flow. This is often referred
to as a high impedance state of the output, sincethe drcuit offers a very high resistance or impedanceto the
flow of current.

Figure 3 shows two dfferent kinds of tristate inverters and their corresponding truth tables. The one on
the left is a high-level enable version. When the enable input B is st to a high logic level the inverter
output is enabled, and it operates normally (like any other inverter). However, when B = 0 the inverter
output is effedively an open circuit. It remains in a high impedance state independently of its input value.
The low level enable version (on the right) is conceptually similar, but its enable (B) input is negated,
resulting in the inverter being in high impedancewhen B = 1.

11

High Level enable Low Level enabkle

B B
n Il s C

B i C E i C

u} u} High Imp. o o 1

fu} i High Imp. a 1 u}

1 u] 1 1 o High TImp.

u]
1 1 1 1 High Imp.

Figure 3. Symbads andtruth tables for tristate inverters

As an example of the tristate components avail able on the market, figure 4 shows the internal structure
of a hex inverter buffer with tristate outputs (74F368 series). Six identicd inverters are integrated in the
same chip. Two dfferent enable signals (OE1 and OE2) control the behaviour of four and two inverters
respedively. As shown in the figure, these enable inputs are internally inverted and, for that reason, an
output Ox isin high impedance when its corresponding enable input is at high level.

74F368
oF,] _/ 16,

! 2 ‘L] 15 —CC
Ip— 0OE,
Ry 12,
| T
5= 12
= 1
02_?} 0 | 4
2 5

eNp—2 (s B
Inputs Output
OE |)
L L M
H L
M X Z
| = LOW Voltage Level X = Immaterial

H =HIGH Voitage Level Z = High impedance

Figure 4. Hexinverter buffer with tristate outputs

12

Timing charaderistics are an intrinsic part of digital hardware behaviour. Manufadurers offer timing
values for their products in datasheds where AC and DC charaderistics, reammended operating
conditions and absolute maximum ratings are given. Parameters such as propagation delays, set-up and
recovery times, minimum pulse widths, etc. are important elements to be taken into acmunt by digital
designers. All these parameters will be dedt with and explained in the following chapters, where SDL
descriptions for components with timing constraints are presented.

Tristate cmponents are not espedally complex as far as timing is concerned. They have, however,
some further complexity in relation to their equivalent (non tristate) components. The existence of a new
enable-disable input makes it necessary to ded with new propagation delays. Datasheets include switching
charaderistics for tristate inverters like the one presented in figure 4. Minimum, maximum and typicd
values for the propagation delays are given (in nanosemnds) as tested by the manufadurer under certain
conditions. Names like TpLH and TpHL are commonly used to indicae propagation delays for Low to
High and High to Low level output transitions respedively. These two values are cmmon to any inverter
(non tristate inverters also have these two parameters). They represent the time needed by the inverter to
togdleits output after a change initsinput. The adual values grongly depend on the technology and family
of the device, but it is common to find dfferent values for High to Low and Low to High transitions. The
reason for this discrepancy is normally due to different parts of the internal circuit and even different levels
of logic being involved in one or another kind of transition.

Another delay normally given for tristate cmponents is the time that the gate neeals to re-establish its
output after receving an enable input signal. This delay assumes that the output was in high impedance
when the enable input was recaved. Finally, another delay represents the time between a disable signal
being receved and the output being changed to high impedance.

4.2 Library components

To construct a new SDL padkage for tristate ammponents a divide-and-conquer approach was foll owed.
It was dedded to start by describing two different basic tristate gates in both high and low level enabled
versions. An inverter and a two input And gate were selected as it was clea that all tristate gates,
independently of the function implemented (And, Or, Nor, Nand, etc.) would have avery similar structure.
After findinga solution for the ones ®leded as representatives, many things could be aitomaticadly applied
to the others. This approach has been extensively applied to hardware description at later stages in this
work. It is difficult and time cnsuming to find an SDL description for a new hardware component,
espedaly if a thorough validation is performed to make sure that the description exadly matches the
expeded behaviour. However, after finding a valid solution it can be used to describe other hardware
components with similar structure. There is no need to construct and validate SDL descriptions for, say,
threeinput Or and Nor gates. Timing constraints, usually the most difficult part of the spedficaion, are
identicd in both cases. Only the logicd function implemented by the gate, and perhaps the values for the
delays (that can be seleded as parameters), are different. Untimed versions of the cmponents are even
eaier, asthey only need to amit time parametersin signals and delays (timing charaderistics are no longer
significant in these devices). It was obvious that this circumstance had to be exploited, and it certainly was.

Figure 5 shows the SDL system constructed to spedfy a tristate positive-level enabled And gate with
two inputs. This hardware dement is described as a single SDL block with two data inputs, one enable-
disable input and one output. Communication between the block and the environment is performed by
means of the channels Ch1 to Ch4. Channels Ch1 and Ch2 cary input signals from the environment to the
gate (Spland Sp2). Channel Ch4 corresponds to the enable signal SE. Finally, the output pin of the gateis
represented by channel Ch3 and signal SOp. All these signals are dedared in a text box in the top-left
corner of the figure. As described in chapter 3, signals carry time and value parameters. (We ae deding
with timed versions of the gates, as the untimed ones are just a simplification.) “Bitllib” is the SDL
padkage with abstrad data types for the bit operators that was described in chapter 3. It is referenced in the
spedfication by means of a“use” clause.

13

uze Bit1Lik; f

System AndZ_One 11

signal

glm{'ﬁme, Bit1},
SIp2(Time, Bit1),
S0 Tirme, Bit13,
SE(Time, Bit1y;

Cha

ichZ

Ch3 AndZ_COneBlk \[Slp:E]
ISDF’] chi
[sip1]

Figure 5. DL system diagram for a tristate AND gate with two inpus

When signal SE carries a positive logicd value, the gate is enabled (after the arresponding delay).
When the gate is enabled, the values of Sp1 and Sp2 determine the output. It is cdculated by applying the
bit operator AndB to the input values. Whenever the inputs change, the output follows them acordingly,
but the variation in output is not instantaneous, since propagation delays must be respeded.

As noted in chapter 2, SDL follows a hierarchicd structure in which systems are compaosed of blocks,
blocks contain processes and so on. A single process could be used to describe the functionality of our
tristate And gate, but after some dtempts at deding with timing constraints in the gate, a solution
consisting of two dfferent processes proved to be deaer and easier to implement. As down in figure 6,
the process named And2_One receaves the two input signals that come from the environment and outputs
signal SOp. Another process (Enable) receves sgnal SE, deding with timing constraints in the enable-
disable signal. Both processes are marked (1,1) meaning there is exadly one instance of them.

Another internal signal has been included. Noticethat signals SE, Sp1, Sp2 and SOp were dso present
in figure 5. They are externa signals between the gate axd the ewironment. However, SEnale is an
internal signal dedared within the block. It goes only between communicaes processes and does not have
any dired relationship with the ewironment. As we will see shortly, SEnalle follows the variations in
signal SE but only after process Enale has dedt with the enable-disable timing aspeds. This way of
dividing the spedfication into several processes makes the whole solution simpler. With a single process
the number of different states the system can be in grows alarmingly. Four different delays and two timers
had to be cnsidered, and things tended to become complicated even in a simple device like the one
discussed here. A similar approach has been used to describe other hardware dements such as the fli p-flops
presented in chapter 7.

14

Ch4

Block AndZ_CneBlk 101
____________ " Erd
[se]
signal SEna\t:nle(‘l’ime,Eliﬂ);l}1
Enabile(1,1)
3En
[sEnabie]
3re
] Chz
Slp2
3r3
cha AndZ_COne(1,1)
SOp] 3r1
Ch1
sip1 |

Figure 6. Processes contained in the block shown in figure 5

It is out not pradicable to present a detailed description of al the SDL spedfications written during the
projed, but some SDL-GR diagrams may help to understand and ill uminate the most interesting points of
some @mponents. As an example, consider the processEnalle. As shown in figure 7, it is rather smple.
Asfar as the enable-disable behaviour is concerned, the tristate gate can only be in one of two states, ready
to recaeve enable-disable inputs or delaying a previous input. To avoid the temporary inconsistencies in the
initial state of digital logic mentioned in chapter 3, al signa values are initialised to X (unknown or
arbitrary) during start-up. A portion of SDL code deds with BE (the value of signal SE) being
undetermined and randomly chooses a value of 0 or 1 for it. Signal SEnabe is snt at time 0 with the
random value chosen. When an enable signal SE is receved, it contains the time & which it is generated,
Tlp, and its logicd value Ble. Depending on the value, the crresponding delay is slected: TDelayEnalde
when the gate is going to be enabled and TDelayDisable in the other case. These two delays can be set as
parameters, so the user can gve the particular values for agate in a drcuit.

15

TDBI+I = TDelayD

sable TDel*yI = TDeIayE}wable

Tg

y

setf

Figure 7. SDL-GR representation o the processEnalein its Ready state

Oncethe gpropriate delay has been chosen, the output time for the signal SEnalle is cdculated and a
timer Th is t. While the timer is running the processenters a wait state. Basicdly two things can happen

during this period (figure 8).
Th SE(Tlp, Bi~<

EE = ENextH reseti{Th)

SEnahIe(T%BE) Lia1

Fieady

Figure 8. ProcessEnable waiting for the timer to expire

Either the timer expires and then the signal SEnableis snt (at the cdculated output time TOp with the
receved value BE) to the processAnd2_One, or another signal SE isreceved. In this case the delay has not
been completed, in some way we could say respeded. The gate did not have enough time to complete the
previous transition and now it has to ded with new changes. The timer is reset and a new attempt is made
to foll ow the inputs. Could some strange things happen then...?

Unpredictable behaviour is something redly difficult to speafy. Datashees do not explicitly say what
happens when timing constraints are not respeded. The drcuit will certainly behave in some way. Its
outputs will have a cetain logicd value, but these may be random or hard to predict. Manufadurers only

16

guarantee that their products behave in a catain way when the devices are operated as expeded. A high
level enabled tristate inverter, for example, will set its output to high impedance a ceain number of
nanosemnds after its enable input has gone low. If during this delay the enable input changes again, the
inverter will certainly not be ale to read or maintain the high impedance state.

There is ome degreeof non-determinism in the behaviour of electronic hardware. Thisis certainly true
at start-up, since every chip will set its outputs to certain values that cannot be eaily predicted. We have
modelled this in SDL using the value X (unknown) and giving random values to outputs at start-up.
However, there is another chance for non-determinism when timing constraints are not respeded. The
hardware will certainly behave somehow, but how can this be spedfied? Well, thisis something that made
me think for a while ard more than once made me think that | was getting everything completely wrong. It
is impaossible to spedfy something that red hardware cannot guarantee We just can make sure that our
SDL system behaves like red hardware when it is operated under the alequate cnditions. As a further
issue, what would happen if the inputs of a gate were @ntinually changed at a faster rate than the
propagation delays for the gate? Well, it would certainly not follow the inputs, so its output would not be
the, say, And combination of its inputs at any given moment.

Coming badk to our Enable process we can just guaranteethat if the enable-disable signal is set and the
corresponding delays respeded, the gate will change from normal functioning to high impedance or vice
versa. If the delays are not respeded the system will try its best to follow the demanding inputs, but no
successcan be guaranteed.

The process And2_One shown in figure 6 implements the behaviour of the gate without having to be
bothered about timing aspeds in enable-disable signals. This process has four different states: Ready,
Highlmp, Waiting a HighlmpWait.

The gate is Ready (figure 9) when the output is alrealy the logicd And of the two inputs and it is ready

to recave new inputs.
Feady

Slpt (Tlp,g 51 3,5 p2(TIp,Blp2) <BDp # > NewDutE@dB,BIm}lpE,BDp)
- 1—@—‘ BiMewxt Op =| Apply2d And BBl Blp2)
{ 8]

BOp =1 EOp =0 MextOp

{0y (i
SDp(U,BDp;

—

elay = TDelayd Thelay = TDelayl

— =

TOR = Tl + TDegay

set{naw + TDelay, Throp)

‘Waiting

) (=)

Figure 9. SDL description for the Tristate And2 gdein its Ready state

17

As shown in the figure, a similar approach to the one used in the process Enable is followed here: the
output value BOp is randomly initialised to 1 a 0 at start-up. While in the Ready state the process
And2_One can recave threedifferent signals: Spl, Sp2 and SEnabde. New input values (Blpl and Blp2)
are recaved at their corresponding time (TIp). Tlp represents the last input time, that is, the time when the
last input has been recaved. The bit operator NewOut2 (included in the padage Bit1) is used to determine
if a new output is required as two inputs generate adifferent value. It applies the operator AndB to inputs
and compares the resulting value with the airrent output, generating a Boolean (true if a new output is
needed). Apply2 is also a hit operator contained in the padkage Bitl. It is used to cdculate the resulting
AndB value of the two inputs. This resulting value determines whether the next transition is going to be
from low to high logicd level or vice versa. Thisisimportant to find the crresponding propagation delay
that hasto be used to set the timer. After setting the timer, the processenters the state Waiting.

Some problems arose with bit operator names being overloaded (the C compil er that trandates C code
generated from SDL complained cuite alot). To get round this problem, Ken Turner has developed a new
version of the padage Bitl with dightly different names for the operators.

While in the Ready state an enable-disable signal can also be recdved. The gate we ae talking about is
high level enabled, so only when Ble (the value of signal SEnable) is O does the gate enter the high
impedance state. Notice that no timing aspeds in the signal SEnalle are cnsidered here. These timing
congtraints have been dedt with in the process Enalde. This process €nds the signal SEnalle only when
the enable or disable propagation times have been completed. When the process And2_One recaves the
signal SEnable, it just responds to it instantaneoudy. If we were not using two dfferent proceses sveral
more states would be needed, and the overall description would be far more compli caed.

Waiting (figure 10) represents the state where the gate has receved new inputs
that require a tange in output to be made. The gate isin some way busy trying to modify its output, and to

compl ete this task some time is needed.
Waiting

Slp1(Tlp, Bip1), 5Ip2(TIp, Blpz) Tprop

SEnable(H, Ble)

reset{Tprop) BIOp = BMextCip

Ready

Figure 10. Tristate gate waiti ng for the propagation delays to finish

If further input signals are receved whil e waiting, the timer is reset, and the gate goesto its Ready state
again. If anew output neals to be generated, the gate will enter the wait state again but after setting a new
timer.

If the timer expires while waiting, the output is made available with value BOp and time TOp. This
output time was cdculated before starting the timer.

The last option contemplates the passbility of receving an enable-disable signal while waiting. If the
value of this ggnal is“1" the gate goes on waiting, as it was arealy enabled. If the value is “0” the gate
goes on waiting but now in a different state (HighlmpWait). The gate waits for propagation delays to be
finished, but the output will no longer follow the input asit is now in high impedance

Maybe we should say something abou how to best model “high impedance” in SDL. Initial thoughts
were oriented towards ome sort of spedal output value. The values used for signals © far are 1, 0 or X,
this last one only used as an initial value. Adding another value such as Z to represent high impedance
would not offer new feaures to ANISEED, and it would make bit operators far more complicated. It was
then dedded not to modify output values to represent high impedance A gate in high impedance will not
follow variations in its inputs, and its output will remain in the logicd level that it was before entering in

SOpTOp,BOp

18

high impedance The value of the output while in high impedanceis not significant. To be exad, agatein
the high impedance state does not output at al. Only the fad that it no longer foll ows the input is modell ed,

and that it no longer interferes with other passble signals conneded to it.
HighlmpWait (figure 11) models the situation where the gate is in high impedance but the inputs have
changed, or the gate was waiting and a disable signal was recaved. The output state will remain in high

impedance & it does not depend on the
inputs, but the theoreticd output value must be cdculated, just in case the gate returns to its normal

operating conditions after an enable signal has been recaeved. Timers are then normally used, but when
they expire the output is not changed unlessthe gate leares the high impedance state.

Highlmp'Wait

Sl (Tl Bip1), SIp2 (Tip,BlpZ) Tprop

SEnahle(Hp, Ble)

reset{Tprop) BiOp = BMextCp

Highlmp Highltnp - SOp(TIp,Bé)
Waiting

Figure 11. Waiting whilein highimpedarce
Highlmp (figure 12) represents the state where the gate is disabled so the output is in high impedance
independently of the input values. Notice that despite being in high impedance when the inputs are
receved, the crresponding output value is cdculated and the propagation timer is st. This is nealed to
re-establish the output to the right value and at the arresponding time when the gate receves an enable

signal again.

19

Highlmg

SEnable(T4<B|e) smmm,a@),5|p2(T|p,B|p2) Newoutz@ds,mm}lpe,aop)

a3 {1y BMextOp =| dpplyaland B, Blpt , Blp2)

(-) SOp(Ti, B})
MextOp
(o} (1)

Feadly elay = TDelagd Thelay = TDelayl

TOp = Tlp + TOeay

set (how + TDelay, Torop)

Highlrpitait

Figure 12. Tristate gate in high impedance

=

4.3Validation

Testing and exhaustive exploration of the tristate SDL descriptions was performed with the validator
included in SDT. Even with the help of the todl validation is an arduous task, maybe not for al descriptions
but certainly for the more cmplex ones. Four SDL spedfications, corresponding to high and low level
enabled versions of an And2 tristate gate and an inverter were mnstructed and tested. 100% symbd
coverage was achieved in al cases, and no error reports were given in the final versions. A bit state
exploration for an And2 gate reported the foll owing results:

The power walk algorithm was also used, and 108% symbal coverage was easily achieved:

Command @ bit-state

sk Starting bit stote ewploration
Search depth 188
Haosh table size : 18608808 bytes

#k Bit stote exploration statistics
Ho of reports: B.

Gerierated stotes: 7897,

Truncated paths: 217,

Unique system stotes: 4339.

Size of hash toble: GEBEEER (1BEEEEE bytes)
Ho of bits set in hash table: 7343
Collision risk: B %

Max depth: 188

Current depth: -1

Min state size: 164

Max =tate size: 368

gymbol coverage @ 188.88

Even exhaustive exploration, something not very easy to achieve a will be discussed later, was feasible
for the And2 tristate gate:

20

After examining the Message Sequence Charts resulting from the power walk algorithm, and testing the
system with the navigator, a high degree of confidence in the goodness of the tristate components was
achieved.

Command : Exhaustive-Exploration

#4 Starting exhoustive explorotion ##

Search depth : 188

#k Exhaustive exploration statistics s+
Ho of reports: B

Genergted states: 71688

Truncated path=s: 217,

Unique system stotes: 4342,

Size of hash table: 1ABBEA (4800EE bytes)
Current depth: -1

Moz depth: 188

Min stote size: 164

Max state size: 30A

Symbol coveroge : 188.88

The new tristate components in the library are summarised in appendix B. A short description of how to
instantiate them with the gpropriate parametersis also given.

21

5 (De)codersand (De)multiplexers

Several devices such as encoders, decoders and multiplexers are presented in this chapter. These
components are commonly available & MSI (Medium Scde Integration) circuits, and can be used for
different purposes. Several SDL descriptions have been creaed for these famili es of devices, and two new
padkages (aniseal_coder and aniseed_mux) added to ANISEED’ s new library.

5.1Description Issues

5.1.1 BCD-to-Dedmal Dewders

In digital systems, binary representations are the most efficient way to store numbers and compute
results. However, binary numbers are not easy to convert from or to dedma numbers, for human use for
example. If efficiency of storage and speed of computation are not criticd, Binary Coded Dedmal (BCD)
number representations may be preferable becaise they are eaier to convert to a human-compatible formet.
BCD numbers are divided into 4-bit groups; the bits within ead group are binary weighted, but may take
on the values from only 0 to 9. Each group or BCD digit has a weight corresponding to a power of 10. Note
that an 8-bit BCD number may represent integers from 00 to 99 while an 8-bit binary number may
represent values from 0 to 255

One possble design for a BCD-to-Dedmal decoder and its corresponding truth table is own in figure
13. It consists of eight inverters and ten, four-input Nand gates. The inverters are wnneded in pairs to
make BCD input data available for decoding by the Nand gates. Full decoding of input logic ensures that
all outputs remain off (this means high level in this example) for al invalid input conditions. There ae
similar versionsin positive logic, where the “ off” stateisalow logic level.

G a —%ﬂ OUTPUT & No. BCD Input Decimal Qutput
INPUT A ; D € 8 A|0 1 2 3 4 5 & 7 8 9
T @
o L L L L|L H H H H H H H H H
al deo— OUTRAIT 1 1L L L H/H L H HHHHUHH H
; @ 2 L L H L|H H L H HHHHHH
- QUTPUT 2 3 /L L M H|H H H L H H B H H H
[4 L H L £|/H HH H L HHHHBH
_ = | () 5 L H L H{HH HHH L H H H H
INFUT aﬁDc_ . 8 = OUTPUT 3 6 |LU H H L|H HH HHGH L HHH
- 7L H H HIHHHHUHUHHLHH
| 8 [H L L L|H H H H H H H H L H
& u_jo_ QUTPUT 4 s |H L L H|H HHHHHHIHHL
K T 6) P |H L # Lt|H H H H HH A H H H
) < | Jo— ouTeuT 5 N |H L H H/HH HHHHHHHH
1 V| H H L LIH H H H H H H H H H
c | (7 A|H H L H|/H H H H H H H H H H
0_._)0— OUTPUT & L |H H H L|H H H H H H H H H H
i {H H # H|{H H H H H H H H H H
_ | (9) D
12} =3 : OUTRPUT 7
INPUT D—DC ’
(10)
LOD o 0—|I Jo— ouTPuT 3
T {11y
d_)o_ OUTPUT 9

Figure 13. Schematic and truth table for a BCD-to-Dedmal decoder

Switching charaderistics for a BCD to dedmal dewder usualy include two dfferent propagation
delays. After a variation in inputs, TpLH represents the time needed to set the outputs that must be high,
and TpHL the delay for the outputs that must be changed to alow logic level.

512 Dewders/Demultiplexers

Dewmders are widely used in memory-decoding or data-routing applicaions. There ae some versionsto
be used with high-speed memories that offer very short propagation delay times. The delay times of these
dewmders are usually lessthan the typicd accesstime of the memory, and this means that the effedive
system delay introduced by the deaoder is negligible.

22

A deooder such as the 74LS138 deaodes one-of-eight lines, based upon the conditions at three binary
seled inputs. Two adive-low and one adive-high enable inputs reduce the need for external gates or
invertersin circuits with more bits. A 24-line deader can be implemented with no external inverters, and a
32-line demder requires only one inverter. Exadly one of the output lines will be adive (1 or O depending
on the logic of the device) for ead combination of values of the inputs.

Other devices aich as the 74L.S139 (figure 14) comprise two separate two-li ne-to-four-line deaders in
asingle dip. It also includes an adive-low enable input that can be used as a data line, making it possble
to use the device both as a deader (while the Enalle input is adive the two Seled inputs are decoded) or
as ademultiplexer (depending on the Seled values, the Enabde input is ent to the desired output).

15139

4 1y Inputs Outputs
ENABLE G1 % q (%) . Enable Select
1 G B A YO Y1 Y2 Y3
12)
SELECT [Al - DC CD_" o L L L L H H H
INPUTS DC i
e QD oaTa L L H H L H H
P [St eureuTs L H |l L[H H L H
091 L H H H H H L
1)
st DOLZV’ H = High Level, L = Low Level, X = Don't Care
4 (10}
AL ’_!:)}_zv2
SELECT D . CD 1 @)
INPUTS | o V130 D - D ’:D)—zva

Figure 14. Schematic and truth table for a decoder/demultiplexer 74LS139

Typicd switching charaderistics for a demulti plexer usually comprise 4 propagation delays. Seled-to-
output and Enable-to-output readion times are usually different. This circumstance, combined with another
two propagation delays for Low-to-High and High-to-Low output transitions, leal to the 4 delays shown in
figure 15.

From {Input) R, =2 ki2
Symbol Parameter To (Output) C_=15pF C, = 50 pF Units
Min Max Min Max

tory Propagation Delay Time Select to 18 27 ns
Low to High Level Qutput Qutput

oy Propagation Delay Time Select to 27 40 ns
High to Low Level Qutput Output

tein Propagation Delay Time Enable to 18 27 ns
Low to High Level Output Qutput

torL Propagation Delay Time Enable to 24 40 ns
High to Low Level Output Output

Figure 15. Switching characteristics for the device 74L S139
5.1.3 Encoders

The terms encoder, deader and code converter are often used interchangeably. Encoders and deaoders
are widely used in communicaions. An encoder basicadly converts its input into an output code with a
fewer number of lines. A decoder islater used to re-construct the original representation of the data again.

Priority encoding ensures that only the highest order input data line is encoded. An 8-to-3 priority
encoder accets 8 input request lines 0—7 and outputs 3 lines AO-A2. Figure 16 shows the logic diagram
and truth table for one of these devices (74HC148). All data inputs and outputsin this particular component
are adive & the low logic level. This device dso includes cascading circuitry (enable input El and enable
output EO) to alow octal expansion without the need for external circuitry, but these inputs have not been
included in the SDL spedfication.

23

) °D L Inputs Outputs
= 0123456 7]A2Al A0
2 1 ab—&,_ XXX XXXXX|HHH
1 HHHHHHHH|H H H
e > § XXXXXXXLIL L L
XXX XXXLH/L L H
. e XXXXXLHHIL HL
“ % ! XXX XLHHHL H H
Ml XXXLHHHH/H L L
o XXLHHHHH/H L H
5 P> i XLHHHHHHH H L
LHHHHHHHIH H H

NE m“ H=HIGH

o, L=LOW

(1) :{> L_ X = Irrelevant

Figure 16. 8 to 3encoder, logic diagram and truth table

514 Multiplexers

A multiplexer (or data seledor) has a group of data inputs and a group of control inputs. Control inputs
are used to seled one of the data inputs and conned it to the output terminal. Multiplexers are wmmonly
available in integrated circuit padkages in several configurations: quadruple 2-to-1, dual 4-to-1, 8-to-1 and
16-to-1. In general, a multiplexer with n control inputs can be used to selea any one of 2" data inputs.
Multi plexers are frequently used in digital system design to seled the data that isto be processed or stored.
They can also be used to implement combinational logic functions. A 4-to-1 multiplexer can redize ay 3
variable functions with no added logic gates.

Figure 17 shows a dua 4-input multiplexer (74F153). This device is a high-speed multiplexer with
common seled inputs. The two bufered outputs present data in the true (non-inverted) form. It can seled
two hits of datafrom up to four sources under the mntrol of the Seled inputs (SQ SJ).

3 oz 2 12 u 1 R Ygts by e 52 b

Select Inputs Inputs {a or b} Output
S S |[E |4 4 L L[| 2z
X X H X X X X L
L L L b X X X L
I L L L H X X X H
H L L X L X X L
H L L X H X X H
b M L X X L X L
L H L X X H X H
H H L X X X L L
H H L X X X H H

%

Figure 17. Dual 4-input multi plexe, logic diagram and truth table

A multi plexer such as thisis the logic implementation of a 2-pale, 4-position switch, where the paosition
of the switch is determined by the logic levels supplied to the two Seled inputs. A less obvious application
isto use this device a afunction generator: it can generate two functions of threevariables. This is useful
for implementing highly irregular random logic or functions that involve a @mplex gating structure.

5.2Library Components

The new SDL padages for multiplexers and coders in ANISEED’s library are based on SDL
descriptions of components that were mnsidered representative, namely a 4-to-1 multiplexer, an 8-to-3
encoder, a 2-to-4 decder, a BCD-to-Dedmal decder and a 2-to-4 demulti plexer.

24

There ae some common aspedsin al these devices that can be spedfied in asimilar way. For example,
almost all them share the same number of posshble states (in the SDL sense). A BCD-to-Dedamal decoder
and a demultiplexer, for example, can basicdly be in one out of threepossble states: realy for new inputs,
waiting after a new input has been receved but no outputs have changed yet, or waiting after some outputs
have changed but not the others yet. In this last case two consecutive states are involved: waiting for low-
to-high or high-to-low output transitions to occur. The relative values of the low-to-high and high-to-low
propagation delays will determine which state of these two will happen first. This has been modelled in
SDL making wse of four states, namely Ready, WaitingAll, WaitingHL and WaitingLH.

Timing constraints in decoders and multi plexers are rather straightforward. Even when four different
delays are involved (such is the aase in a demultiplexer, for example), the number of possble states the
device can bein does not grow exponentially. Readion timesin a demultiplexer will be different depending
on which input (Seled or Enalle) has caused the transition. Even if response times are different (requiring
amore complex spedfication) the device still has the same number of states: ready, waiting for al outputs
to change, waiting for some outputs to go high after cleaing the others or vice versa. For this reason,
solutions including a singe process per block (as down in figure 18) seemed to be dea and simple
enough, so they have been used.

Elock Demu=2tod 1

——————————

v
Ch¥0

S
Ch'1

s Demux2iod(1,1) arv [sv

[chvz

Ch

53
Ch¥'3

Sré SrB

Cha ChB

Figure 18. Block with asingle processto spedfy a demulti plexe

As in the previous chapter, outputs are initialised to X (unknown) to avoid inconsistent states during
start-up. Once the system is realy, outputs are given values randomly. Different approaches have been
followed to initialise devices with valid outputs. As sown in figure 19, an encoder can have any
combination of “1s’ or “0s’ in its output, so the gproach on the left has been used. However, a valid
output for a demultiplexer consists of certain combinations only, so a solution like the one on the right is
better.

25

Readl
b Ready

BOO=X %Eow:x ? BO2=X
BYD=X OR B‘/<<=)< OR Ev}x OR BY3=)
¢ o)a,,y\
0 i 9 9 E E
BOO =0 BOO =1

BYD:=0 BYD:=1 BYD:=1 BYD:=1

o $ 0 BY1:=1 BY1:=0 BY1:=1 BY1:=1
‘ BO1:=0 ‘ | BO1:=1 ‘

‘E‘/Z-=1 ‘ ‘E‘/Z-=1 ‘ ‘E‘/Z-:D ‘ ‘E‘/Z-=1 ‘

i [[[[
0 ¢ 0 BY3:=1 BY3:=1 BY3:=1 BY3:=0
[| I T

w (0,BY1),5%2(0,BY2),5Y3{0,BY3)
500(0,B00)»501(0,801),502(0,802)

Figure 19. Randam output initialisation in an encoder (left) and a aémulti plexe (right)

Procedures dedared within processes (figure 20) have been extensively used. Some tasks, such as
setting the outputs or checking if the inputs have acually changed their values were found repetitive, the
only difference being the adual values involved in ead instance of the operation. Procedures were very
useful, sincethey can be particularised using different parametersin each cal.

Process kU H4t01

' v ol I
i H EI0,BI,BI2,EI3, Mew_In
[EFrev|d, BFrewll BPrevl2, BEFrev]3,

BS0, BS1,
EFrewS0, BFrevs1,

EZ,
EMextZ Bitl = &;
del Tip, NEW—S l
0

b Tirme;
del TpLH_S, ToHL_§,
ToLH_I, TpHL_| duration = 1;
ol T duration :=1;
el Mew Input boolean = false;
timer Tprop,;

Figure 20. Referencesto procedures New_InandNew_Sin the processMUX4tol

When procedures are referenced within a process they have acces to its variables. Every process has
its own variable space and SDL does not diredly allow the use of global variables between processs.
However, | could not find any recommendation against accessing processvariablesin a procedure dedared
within the process(and the todl certainly did not complain about this). An alternative to this lution could
be to passall processvariables that have to be modified as parameters to the procedure. | tried it (I must
admit that | felt uncomfortable éout accessing variables that were dedared outside the procedure), but it
made no difference, and in fad it was redundant and not needed at all .

Different solutions have been found to deaode inputs and set outputs acordingly. In a BCD-to-Decimal
dewder, for example, an internal value is computed to determine the dedmal equivalent of the inputs
(figure 21). However, in a priority encoder the order in which the inputs are dchecked is of the utmost
importance, so a solution like the one shown in figure 21 (on the right) was chosen. Calls to procedures
Set Out contain, as adual parameters, the next output values needed (either Os or 1s). This does not mean
that the outputs are changed instantaneously, as propagation delays have to be taken into acount and dedt
with properly using timers.

26

Process BCDtaDEC

Frocess EncoderGto3

2(3)

Wit

[0}
5=LD 0,1,1,1,1,1 NRRY] SeLD 1,1,1,1,1,1 NRRY]
1) 5]
e .‘,L‘l o "' 2
12) @
su_o 1,11011,1,1,1,1,1) SeLD 1,1,1,11111,1,%1
13) [l E#LDuT[‘,‘HJ #Louno,o“ #Loum,o“
SGLD 1,1,1,0,1,1,|,1,n EGLO 1,1,1,1,|,|,a,1,n
) 151
e || R e ,LLH
&
Waithll San 1,1,1,1,|,n,1,1,13 il

SI0(Tip, BIFf, S11(Tip, 6111, SL2A(TIF,BI2), SI5(TIp, BI3],
514{Tle, BIF, SIS(TIF,BI5), SIGCTIF,BIG, SIPCTIF, BI7)

a4y

4)
3

Figure 21. Two appoachesto input deaoding: BCD-to-Dec (left) and Encoder8-to-3 (right)

In some caes (when there ae more than two pcssble delays in adion) the particular delays involved
have been used asadual parametersin cdlsto procedures. In a demulti plexer, for example, the propagation
delay between a change in the Enalde line and the output transition is different to the delay after a change
in the Seled lines. Figure 22 shows a portion of SDL-GR code used to particularise the cdls in a
demultiplexer. TpLH_D and TpHL_D are the delays to change the outputs to high and low level after a
change in the Data line. TpLH_Sand TpHL_S are the ones corresponding to changes in the Seled lines.

These delays are used in the procedure Set_Out to runtimers.

{false)
(true)

{false)

(true)

set_Out1,]|.1,1,TpLH_|

“WaitingALL

et_Out(1

[,1,1 ,TpLH_ ToHL_5set_Out(0

WaitingALL

TpHL_D »

L0 TeLH_R,TRHL_S)

,1,1,TpLH_,TpHL_5

Figure 22. Use of propagaion delays as actual parameters in procedure alls

The behaviour during the wait states has been described foll owing the gproach shown in figure 23.
Threedifferent wait states have been used. WaitingAll is used to describe the system when the outputs are
going to be dchanged but no one has changed yet. Two different timers are running in this gate, TPropLH
and TPropHL. When TPropLH expires, the outputs that must go high are dhanged. If the expiring timer is
TPropHL, the outputs that must go low are the ones involved in the transition. The procedure Outputs deds

27

with the adual output signals being sent. Only one of these timers will expire while in the state WaitingAll.
Noticethat after any timer has expired the system changesiits gate.

WaitingLH is the state readed after changing the outputs that had to be & low level. Now we are
waiting for the exad instant when the other outputs must becme high. Only one timer is running in this

state, as the other timer expired before entering this gate. WaitingHL is conceptually similar, but swapping
high and low levels as needed.

Frocess ECDtoDEC

pmmmen . WhitALL
| Ly
| |

STl B&% SE(TIp, BE),
SC(TIF, B4, SDI(Tlg, BD)

STl B&% SE(TIp, BE),
SC(TIF, B4, SDI(Tlg, BD)

SA(Tle, B SE(TIp, BE),
SCITIF, BCY, SDiTlp, BO)

sl -

Figure 23. Wait statesand se of timers to modify outputs at theright time

If the inputs change their values while the system is waiting, the wait is immediately stopped. The
timers that are till running are reset and the new inputs are decoded again as shown in figure 21. After
dewding, the next output values and timers are set again.

Three basic types of procedures (with some variants) have been used to spedfy repetitive tasks.
Procedure Set_ Out, similar to the one shown in figure 24, receves as parameters the next values to be
output and, in some devices, the delays that must be used. Using these delays, the times when the outputs
will beready are cdculated, and the arresponding timers are set.

TOpLH :=Tip + TDebyLH
TOpHL =Tl + ToekyHL
set{now |+ TDelay LH,TpropLH}

set{no

Figure 24. Procedure Set_Out

Several procedures smilar to the one shown in figure 25 (for an 8-to-3 encoder) have been used to send
output signals. This kind of procedure receves two parameters: the time outputs must be sent at, and the
logic level of the outputs that must not be changed in thiscal. A procedure cadl li ke Outputs(1, TOpHL), for
example, sends to the environment all output signals that must go to low level at time TOpHL. Maybe the
other way round could have been more intuitive, in that case a cd li ke Outputs(1, TOpHL) would change
only the outputs that had to be & high level. The first dternative was used, firstly because it certainly

28

worked, and secondly because it took advantage of a single condition symbal being required, since only
those outputs that are not alrealy at the required level are adually changed (both conditions are checked in
the same instruction). Noticethat a ammplete dhange in the state of a device needs two conseautive cdlsto
this procedure. In one cdl the outputs that change from high to low level are dtered. The other cdl deds
with the remaining outputs. The relative values of the high-to-low and low-to-high transition propagation
delays determine which ones will be first.

{BMNextO0=COthaf

{true)

{BNextD1=0thet EH=H01)

{true)

(ENextD2=0that

{true)

Figure 25. Procedure Outputs

5.3Validation

The SDT validator was again used to test and validate the SDL descriptions of the devices presented in
this chapter. Individual components like the ones $own here an be fully validated using the exploration
algorithms that were presented in chapter 3. Depending on the complexity of a system, full exploration can
take aything from a few seconds to hours or even days. Achieving 100% symbal coverage in the systems
presented here was not that time-consuming, but analysing the generated MSCs and performing tests with
the navigator certainly was. Some validation options had to be particularised in order to achieve 100%
symbal coverage. The maximum depth and abort conditi ons such as the number of repetitions in the power
walk algorithm, for example, had to be increased to achieve 100% coverage in some systems.

MSC traces were used in the analysis of the SDL spedfications. They can be viewed as a spedal trace
language, which mainly concentrates on message interchange by communicating entities (such as SDL
processes and blocks) and their environment. The main advantage of an MSC is its clea graphicd layout,
which gves an intuitive understanding of the described system behaviour. Maybe the main disadvantage is
that almost all the interpretation work is left to the user. Only some evident errors are reported as sich by
the todl, but the user has to carefully chedk that the adual behaviour matches the expedations under every
possble cmbination.

The SDT Validator automaticdly generates test values for the SDL system to be validated, but the user
must also chedk that the seleded values are gpropriate to test the system with. When validating a drcuit
from the ANISEED library, the SDT Validator generates the test values 1, 0, and X for the user-defined
sort, Bitl. The X value is unsuitable for input as a test value since this is only used by ANISEED to
initialise the inputs and output signals. Fortunately, unsuitable test values can be removed from the list of
test values using the ‘clea test value’ option in the validator.

Some initial attempts at fully validating these systems produced some symbal coverages dightly less
than 100%. This was further investigated using the coverage viewer, but it sometimes showed that the

29

system acdually had 1006 symbol and transition coverage. Maybe one reasonable explanation for this
could be the use of operators defined in ANISEED’s sngle bit Data Type library (padkage Bit1). Perhaps
the SDT Validator is not able to fully validate this library because the operators have been implemented in
C code. However, by trying validation runs with different parameters, 100% coverage was finaly readed.
It is surprising that the information displayed in the coverage viewer was exadly the same when, say,
98.7% or 100% coverage was achieved-something redly strange, | must say. Figures 26 and 27 give some
examples of the mverage diagramsthat the SDT Validator automaticaly generates.

Transition Coverage Tree
Information from:
It U
Fal

(total)y
270804 (0 - 26658)

BCDioDEC Bit1 Packace
270804 {2650 - 28658) o

mycoder
270504 {2650 - 20658)

mycocder_Bed DecDecoder T
270804 {2650 - 28658

Mewln Outputs SetOut Start FRieauly “Waitingll ‘WaitingLH ‘Waiting HL

0 1) 1] T441 71539 (17758 - 15100) 142436 (14111 - 28658) 24344 (2650 - 5486) 25044 (2793 - S705)
ootk hhchtcds ke &
Start Start Start GA SB sC 5D GA 5B sC 5D TProp! TProp0 5S4 SB SC SD TPropl SA SB SC SD TPropd
(173241 (340473 (88607 17872 18100 17759 178058 28596 28658 23301 28277 14493 14111 5436 5364 5420 5424 26850 5675 5502 5708 5366 2793

Figure 26. Transition coverage treeshown in the mverage viewer (BCD-to-DEC deaoder)

Symbol coverage chart for
System (total)
Total number of executed symbols: 14263
81 of 81 symbols (100 %) have been covered
0 of 81 symbals (0 %) have not been covered
(no of symhols)

L

m‘ |

{no of times) G637

-

Figure 27. Symbal coverage graphs

30

6 Flip-Flops

6.1 Description Issues

Flip-flops are one of the most commonly used devices in sequentia circuits. Basicdly, aflip-flopisa
device that can assume one of two stable output states, has a pair of complementary outputs, and one or
more inputs that can cause the outputs gate to change. There ae severa kinds of flip-flops, but all have
some @wmmon charaderistics. Some of the most widely used types are the docked JK and D (or Delay)
flip-flops. These devices read to clock edges (either paositive or negative), the output values depending on
the inputs. These types, and athers sich as T (Toggde) or R-S (Reset-Set) flip-flops, are realily available in
integrated circuit form.

Different notations can be found in the literature to represent the previous and next states of fli p-flops.
Previous-state usually means the state of the Q output before the adive dock edge. Next-state means the
state of the Q output after the flip-flop has readed to the dock pulse.

The function table and symbals for two D flip-flops are shown in Figure 28.

—| D O — D Ql—
—op Clodk Q— — Clok Q—
MNegative Edge Triggered Posttive Edge Triggered

Figure 28. Negative and positive alge-triggered D flip-flops

The state of these flip-flops (Q in figure 28) after the dock pulse is equal to the input D before
recaving the dock. For example, if D = 1 before the dock pulse, Q will be 1 after the dock edge
regardlessof the previous value of Q. The arowhead on the D flip-flop symba marks the dock input, and
the small inversion circle indicates that the state changes occur on a high to low transition (negative-edge
triggering). When there is no inversion circle (as in the right side of figure 28) the state thanges occur on a
low to high transition (positive-edge triggering).

A clocked JK flip-flop (figure 29) has threeinputs: J, K and the dock. This component changes gate a
short time dter the rising or falling edge of the dock pulse (depending on the kind of device). If J=1
during the dock edge, Q will be set to 1 If K =1 during the dock pulse, Q will be set to zero. However, if
J=K =1, Qwill toggle state &ter the dock adive alge. If J= K = 0 the outputs will remain the same. The
changein state isinitiated by the dock pulse and never by a changein Jor K.

31

I K Q| Qf

i a a 0

a a 1 1

a 1 a 0

a 1 1 0
— 1 o] 1 0 0|1 — I Ql—
—p= Clock Lot —

oc _ L1 0 1 Clock _

—K Q— 11 1o — K Q-
Negative Edge Triggered Positive Edge Triggered

Figure 29. J-K flip-flops (negative and piti ve-edge triggered)

A JK flip-flop is more versatile than a D flip-flop. Only two operations are possble with the D flip-
flop: setting the D flip-flop autput to 1, and resetting its output to O. Four operations are possble with the J-
K flip-flop. Besides the operations of setting or resetting its output at each clock transition, the J-K flip-flop
may also toggle or remain in the same state.

Flip-flops have some important timing constraints and charaderistics that must be considered when
analysing sequential circuits. In a D flip-flop there ae two main considerations. Firstly, when the dock
makes the adive transition the outputs do not change instantaneoudly: there is a cetain propagation delay
between these two events. The second consideration is that the data on the D input should be steady before
the dock pulse. If the data is changing too closely to the instant of the dock pulse the stored value is
unpredictable. For this reason, the setup time is the minimum time interval the input must be stable before a
clock pulse. Similarly, the hold time is the minimum time interval the input must be held steady after the
clock edge. If these timing constraints are not respeded the flip-flop autput is unpredictable.

Users of JK flip-flops also have to take timing charaderistics into consideration. Both the J and K
inputs have associated time intervals, tseyp and tygg, Where tsqyp is the minimum time interval the J and K
inputs must be stable before the dock pulse and tyqq IS the minimum time the inputs must be held steady
after the dock pulse. Failure to adhere to these timing constraints again results in an unpredictable output.

Integrated circuit flip-flops often have alditional inputs (Clear and Preset) that can be used to set the
flip-flop to an initial state independently of the dock. An appropriate logicd level applied to the Clear
input will reset the flip-flopto Q = 0 and Qbar = 1. Similarly, an adive signa on the Preset input will set
the flip-flop to Q = 1 Qbar = 0. These inputs override the dock and any other input. That is, a signa
applied to the Clear input will reset a JK flip-flop regardless of the values of J, K and the dock. As an
example, figure 30 shows the function table for a D flip-flop with low level adive Preset and Clear
(54HC74A). In this figure H represents a high logic level, L alow level and X is either high or low level.
QO is the level of the Q output before the indicated input conditions were established. The states marked
with an asterisk represent non-stable configurations; that is, they will not persist when Preset and Clear
return to their inadive level. The arows represent positive dock edges.

Inputs Outputs
PR CLR CLK D Q Q
L H X X H L
H L X X L H
L L X X I H*
H H T i H L
H H T L L H
H H L X Qo Qo

Figure 30. Positive-edge triggered D fli p-flop with Preset and Clea

Master-dave versions of the flip-flops discussed above ae dso commercially avail able. These devices
need a amplete dock pulse (with arising edge and a falling edge) to change their outputs. For example, a
master-dave J-K flip-flop (figure 31) processes the J and K data dter a cmplete dock pulse. While the
clock islow the dave isisolated from the master. On the positive transition of the dock, the data from the J
and K inputs is transferred to the master. On the next negative transition of the dock, the data from the
master istransferred to the dlave. The logic state of J and K inputs must not be dlowed to change while the
clock is high. As in previous flip-flops, an adive logic level on the Preset or Clear inputs will set the
outputs regardlessof the other inputs.

32

Inputs Outputs

PR CLR CLK J K Q Q
L H X X X H L
H L X X X L H
L L X X X H* H*
H H I L L Qg Qg
H H JL H L H L
H H I L H L H
H H JL H H Toggle

Figure 31. Functiontable for a master-save JK flip-flop with Preset and Clea

In figure 31, the paositive pulse symbad in the dock column indicates that it is a master-dave flip-flop,
so Jand K must be held constant while the dock is high. As commented above, data is transferred to the
outputs on the falling edge of the dock pulse. Toggle means that each output changes to the complement of
its previous level on eat complete positive dock pulse.

6.2Library Components

Twenty different models of flip-flops have been spedfied in SDL, validated and included in the new
ANISEED library. Appendix B includes detail s of the devices available and their main characeristics. Due
to spacelimits, only some general issues and a small example will be described here.

Timing constraints in fli p-flops proved rather complicaed to spedfy, espedally in models with Preset
and Clear inputs. As shown in figure 32, atypicd D flip-flop with Preset and Clear includes parameters
such as the maximum operating frequency, setup and hold times, 4 dfferent propagation delays, removal
(or recovery) times and minimum pul se widths.

AC Electrical Characteristics voc=5v, To=25C, G =15 pF, L =4=6ns

Guaranteed

Symbol Parameter Conditions Typ Limit Units
A Maximum Operating .
Fraquency T2 an Miz
el PLH Maximum Propagatan
Delay Clock to G or T 1o a0 s
top. oy Maximum Propagation 17 40 e

Dalay Prasat or Glear to Q or G

lasm Minsmutn Ramoval Tima, 5 5 ns
Preset or Claar to Clock

Mingrmum BP.':u;) Tima o a0 s
Ly Mirinum Haold Tirme
0 o X
Ciock lo Data 0 ' "
tyy Mirgmum Pulse Width 8 . s

Clock, Prasel or Clear

Figure 32. Timing paameters for a D flip-flop with Preset and Clea inpus

The problem of formally spedfying these devices in SDL was initially tackled following a one-
block/one-process approach. This olution was rather straightforward for D or T flip-flops without Preset
or Clear inputs, but it proved inadequate for more complicated devices. Using just a single processled to
very complex descriptions with a large number of possible states and very intricae timing behaviour. The
resulting spedficaions were difficult to understand and, what was even worse, adding new elements to
complete aspedfication required further and error-prone changesin al previous parts. It seemed clea that
amulti-processapproach was needed, so solutions $milar to the ones shown in figure 33 were used.

33

bloek JKEIk 1 Elock JKFF_FrCirFosElk (1)

77777777

sianal
5.J0ats(Time, Bit1),
SKDad it
STl

SClzarlTime, Eirl],
5FrecetTime, Birl)

gr2

[=]

Clear
Klnputs(1,1 Clearin
ot Clearlnput(1,1 ht
SClear] [scer]
Srl

[=]

uta,]
Jlnputé1, 13 fh
s .
s s 57]] 51035 £
[sabar]
JEDutput(a, JKFipFapil, 1y || SE0em]
. Ut inAop{1,1}] JKFFPast1,1) Clockin Clock
Che f__an Clack(1,1) rha
[=4] BN s 5c]
Cut Qhar
Ch7| JK_Out Gbar(0)
[5en] SBar]

Khatain | Keput(1 13 LI Y
5KDiat) [=K]
Sr3
StE
Claock Input{1,1 Ch3
- [sc] Presetin Fresetingl, 1) Preset |- o
SPrecet] ELL|

Figure 33. Multi-processSDL descriptions for flip-flops with dfferent complexty levds

The diagram on the left side of figure 33 shows one possble solution for a JK flip-flop without Preset
or Clear. Both inputs (J-K) are included in a single process named JKInpus. The dock signal goes to
another processthat deds with the maximum frequency rate for the device. Both outputs (Q and Qbar) are
also included in asingle process JKOutput. Multi ple instances of this processcan be aeaed by the process
JKFlipFlop as required.

The diagram shown on the right side of figure 33 corresponds to a J-K flip-flop with Preset and Clear.
This is one of the most sub-divided spedficaions that have been developed. It contains one process for
every input signal. Even the two outputs are dedt with separately, the reason for that being that now they
must be ntrolled independently. In this device Qbar is not always the negation of Q sincethere isa nor-
stable state (when both Preset and Clear inputs are adive) in which both outputs are & a high level (see
figure 31). A different solution consisting of a single output process with independent parameters for the
two output values was also tested in other flip-flop spedficaions.

With these multi-process approaches me alditional internal signals are required. In the diagrams
shown in figure 33 aly the internal signals are dedared. The obvious reason for this is that the external
ones were dedared with the external block (not included in the figure). The central process JKFFPos
receves these internal signals from the input processes without having to be bothered about external signal
timing constraints. Now, the particular timing aspeds for ead input signa are dedt with in its
corresponding process Setup times, minimum pulse widths and maximum operation rates, for example, are
considered in these processes. Notice that, as shown in the figure, input processes have one initial instance
and can have amaximum of one instance, whil e the output processes have no initial instances and can have
an infinite number of instances.

Timers are used to model the time difference between input signals arriving and the output being
generated. Several timing aspeds must be taken into consideration. First of all, upon receving an input the
corresponding setup timer is set. For data inputs this setup timer represents the time prior to recaving a
clock pulse that the signal must be present. In Preset or Clear inputs the setup time can be used to model
the minimum pulse width required for these signals (the flip-flop daees not read to Preset or Clear adive
signals shorter than a cetain duration). New inputs during the setup time make the process re-start the
corresponding timer and re-enter the setup state. Only when an input signal has completed its setup time is
it made available to the ceantral process JKFFPos. As an example, figure 34 shows an (incomplete) SDL
spedfication for the processPresetin. Only when the timer TPulseMin expires is the internal signal SPreset
sent (at the cdculated time TOp) to the central process Preset inputs shorter than the minimum time given
as parameter will not cause the flip-flop to read.

34

TOp =

Figure 34. Minimum pulse width spedfication in the Preset input

Similarly, the processClock (figure 35) uses atimer to avoid the flip-flop working above its maximum
frequency rate.

Inck Dizakledd

‘ SC{Tip, BE) ‘ Mineuse

Delay Mau: Fre], TMinPulse) Reacly

i}

setinow + T)

Jock Disahled

Figure 35. Avoiding theflip-flop being overdriven if the dockistoo fast

As shown in the figure, after a dock edge has been recaved there is a period d time where no new
clock pulses can posshbly be atended to. A flip-flop working at clock speeds faster than the nominal rate
will certainly behave in a strange way. Even physicd damage to the device might result, but no explicit
information about this issue is given in datasheds. The SDL spedfication presented in figure 35 deds with
this problem by ignoring clock pulses faster than the nominal rate. With this approac, the flip-flop will
simply ignore any premature dock pulse.

Similar to the devices presented in previous chapters, the central process JKFFPos randomly initialises
the flip-flop autputs during startup. As shown in figure 36, when BQ (the value of output Q) is unknown
(X), instances of the output processes are aeaed with a random value and time 0 as parameters. The same
value (BNexQ) is passd to the two ouput processes. However, as will be described later, the process
JK_OutQbar internally negates this parameter.

Raady

SIDatelTIg, BJ), S KDatlTlp, BK)

Figure 36. Randam output initialisation duing startup

Figure 36 also shows that new internal data signals do not cause the flip-flop to change its date. This
flip-flop anly readsto pasitive-edge dock signals, so the new inputs (after having finished their setup time)
are just receved without further processng until the gpropriate dock signal arrives.

Figure 37 shows the behaviour of the flip-flop when Preset or Clear signals are recaved whil e the flip-
flop is in the state Ready. First of al, the value of the signal is checked. Preset or Clear signals in this
particular flip-flop are low-level adive, so only when their values (BCLR or BPR) are 0 are further adions
needed. If the outputs have to be modified, new instances of the output processes are aeded with the
proper values and times as parameters. Depending on the input signal receved, the system changes either
to the state PreSetting or Clearing.

I

JE_Dn

Clearing

Figure 37. Preset or Clea signdswhilein the Ready state

The deding of inputs after recaeving a positive dock edge is sown in Figure 38. Basicdly, four
different paths can be taken. If the inputs J and K are bath 0, no change in outputs is required so the flip-
flop is ready again without further adions. If Jand K are bath 1, the fli p-flop must toggle its outputs © a
timer (Thald) is st to control the hold time before entering the state Holding_TQ. Similarly if J=1 and K

36

= 0, the flip-flop enters the state Holding_) (after the hold time the output Q will be set and Qbar
cleaed). Finally when J= 0 and K = 1, the flip-flop enters the state Holding_RQ to indicate that the output
Q is going to be deaed and Qbar set to 1 Notice that the inputs that are decmded are the internal data
signals, not the external ones that come from the environment. These internal signals are cnsidered steady
sincethey were generated after the external ones finished their setup times.

Some time was Pent analysing the crredness of this approad, since bizarre situations may occur. For
example, imagine that the external inputs J and K are receved, their setup times completed, and the
corresponding internal signals are sent to the process JKFFpos. This processis not concerned about setup
times, so as oon asit recaves a positive dock pulse it decodes the values of the internal data signals to set
the outputs acardingly. Everything goes fine so far, but what would happen if during the hold time anew
external input were recaved? Setup times are usually longer than hold times, so the central processwould
not know that the external inputs have thanged while it was doing the holding. The outputs would be set as
appropriate and everything considered to be finished. Only when the externa data signals finished their
setups would the central process know the new values, but it would not read to them until a new clock
pulse was recaved. This flip-flop spedfication then seems to have some sort of inertia. It does not respond
to input changes until setup times have finished. In an extreme bizarre situation where the inpus changed
continuously without finishing their setups, the central process (and hence the whole flip-flop) would
remain ignorant of the external events. However, this stuation (and some others that caused concern while
developing the flip-flop spedfications) are examples of non-deterministic behaviour. If setup times are not
respeded the flip-flop will behave in away that is not spedfied by the manufadurer. Datasheets, and hence
the SDL spedficaions, only guarantee that when the timing constraints are respeded will the system
behave & predicted. If for some reason setup times, hold times or clock rates are violated the behaviour of
the device will be unpredictable. Beaing thisin mind, it does not redly matter what output values the flip-
flop has when timing is not respeaed. Any logic level would be defensible, sincethe deviceis not working
under its normal conditions.

Process JKFFPaos

(true)

true

4] Readly

(13
TOp ¢ Tip + TDelayHold TDp|.=T|p +TDe\ay}-1UId Top |z Th + TDe\ay}-(Uld
+ TDelayHold] THold set(mu1+ TDe\ay'HDIJr THold) setinow|+ TDelayHold

Haolding_Sa, Holding_Ra Holding_Ta,

Figure 38. Deading d the inputs J and K after a pasitive dock edge

Preset and Clear signals can also be receved while the flip-flop is in one of the threepaossble holding
states. As down in figure 39, when this happens the adive hold timer is reset, the output processes are
instantiated, and the system is moved from the original holding state into PreSetting or Clearing.

set{now

THald)

37

Haldina_T,|Helding_ 5 |Haldina_ R

Figure 39. Preset or Clea signdsduring hold time

New clock pulses are simply ignored during hold time (figure 40). This stuation is not spedfied in
datasheets and it is very unlikely to occur in pradice since hold times for modern fli p-flops are usualy as
short as one nanosecnd. Two consecutive dock pulses in less than one nanoseoond is clealy beyond the
normal frequency rate for common flip-flops. This situation would also be intercepted in the processClock
if the parameter “maximum clock rate” were set to a sensible value. Figure 40 also shows that new data
signals SJData and SKData cause the holding time to be interrupted and the system moved to the state

Ready.
Holding_TG [Halding_SG,|Holding_RQ

‘sokmp,@ ‘ SJData(TH, BJ), SKData(Tlp, BK)

|
=

reset(THold)

Ready

Figure 40. New clock pulses or data signdsduring hold time

Figure 41 shows that new output proceses are aeded when the timer THold expires. This figure

corresponds to the state Holding_RQ, but simil ar spedficaions have been used for the other two hold states
(Holding_SQ and Holding_TQ).

38

JK_O

Figure 41. Output processinstances after a hdd timer has expired

The behaviour of the flip-flop in the states Clearing, Presetting or ClearAndSet (this gate is reated
when the Preset and Clear inputs are bath adive) is very similar. As an example, figure 42 shows the
spedficaion for the state Clearing. In this gate the flip-flop anly reads to Preset or Clear inputs, either to
return the device to its Ready state or to move it to ClearAndSt when both are adive & the same time.
New datainputs or clock pulses are ignored in this state. The Clear AndSet and Presetting states, not shown

here, are similar.
Clearing

SPresel(TH,BFR) ‘smata(‘n;(m),SKData(r\p,B

CLR)

g

setinow + TD, TRecovery)

BNeG = 1
DutGBNEx®, i)

JE_(

ClearandSet

Figure 42. Cleaing state behaviour

As described in figure 32, a flip-flop is not immediately ready after a Preset or Clear. When these
signals are inadive again, thereisaremoval or recmvery time during which no clock pulses can possbly be
attended. This has been modelled in SDL using another timer (TRecovery) and the diagram shown in figure
43. During remvery new clock pulses and data signals are ignored. However, Preset and Clear are
independent of the dock and, for that reason, can make the device to enter into Clearing or Presetting

again. If the timer TReoovery expires, the flip-flop enters the state Ready so new clock edges will be
deteced again.

39

Recowering

|TR eeeee ,,< |5C‘|eaﬂ:T|n<CL 3 5Pne;e'(Tj<BPR] |s,|mnm;é.n,sxn;nm.;, B |(:s-:|kmp,é1

Rready -
a}] > < o
BCLR BFR

set{TRecoueJr] r{se'{TRecove+’l

1

Clezsing

Bhent = o|

BNemQ:=1|
[[
JK_iJuiQ[BNenin TIe) JK_{JMQ[BNem‘Ql Tie)

[[
JK_Dinbar{BNean, T JK_D+1Qbar{ BNeHr|;l, Tied
[[
| B =0 | | B 1 |
L I

[s | [reseros|

Figure 43. Recovery time after finishing aPreset or Clea

Finally, one of the two output processes (JK_OutQbar) is shown in figure 44. This process cdculates
the adual output time as the input processtime plus the propagation delay duration (TDelayProp). It also
sets a timer TProp that models the time it takes for the output to be generated. Once the TProp timer
expires, the output signal SQBar is generated. Notice that this particular example uses a bit operator NotB
to invert the value BQ passed as a parameter. After sending the output signal this output processinstance
dies, but anew one will be aeaed later if anew output is required.

Process JK_OutGhar

fpar
BQ Bit1,
Tip Time;

Delaying

del

TDelayPrap Duration := 1, Top
del

Tip + TDelayProp
+ TDelayProg, TProg) |:>

SQBarTOR:NotB(EQ))

TOp Time;
timer
TPrap;

set(now

Delaying

Figure 44. Output process fiowing the formal parameters

6.3Validation

Except for the simplest T flip-flop spedfications, exhaustive exploration for the flip-flops presented
here has not been possble. The state space &plodes exponentialy and the SDT Validator terminates ealy
with an ‘out of memory’ error message. A valid alternative has been to use the random-walk or power-walk
algorithms with the SDT Validator advanced options <.

40

Bit state explorations for these devices achieved 1006 symbad coverage (figure 45). The time neeled
strongly depends on the complexity of the description. Sometimes the default parameters of the SDT
Validator had to be dchanged. Values such as the termination conditions in the power walk agorithm
(number of repetiti ons, maximum depth, etc.) had to be increased to achieve 10026 symbal coverage.

#4 Bit stote exploration statistics #+

No of reports: B.
Generated states: 4774620,
Truncated paths: 1B14383.

Unigque system states: 2936534.
Size of hash toble: SEOEAEE (1060008 bytes)

Mo of bits set
Collision risk

Max depth: 168
Current depth: -1

Min state size
Max state size
Symbol coverage :

1298
Hl i

in hash table: 4313695
HE=X -

Figure 45. Bit state exlorationfor a D flip-flop

Besides automatic exploration, MSCs have been extensively used to analyse behaviour. They have
proved useful to find intricate erors and strange combinations that caused problems. As an illustrative
example of the kind of things MSCs are useful for, figure 46 (left) shows a sequence dart taken from an
originally wrong spedficaion. Here, a Preset signal has finished its setup time while the flip-flop is
recovering from a previous Preset. This gedfication ignored Preset signals during recovery, but that was
certainly wrong. Since Preset and Clear are independent level signals, the flip-flop should immediately
enter the state Presetting again. This stuation is very unlikely to occur in physicd fli p-flops, sincerecovery
times (typicdly 6 ns) are usually shorter than Preset or Clear setup times (typicdly 9 ns). The diagram on
the right shows what would happen in a flip-flop with sensible parameters; now the behaviour is corred.
However, just in case fli p-flops with strange parameters exist, the origina spedfication was modified to get
round this problem.

Dingut DEE
[ewd | [Dputd | [DFF2 | [Clearinput 3 | [Presstinput 2

LUt DEE
env 0 | [Diput_1 | [DFF2 | [Clearinput 3 | [Fresetinput_a | [CLKInput_S
1

Entering _
recavery time

‘/////’

ThRecorvery(1 .0l
=

Recoverifiy

/J””(;;E>

TPulseMing1 0000}
=9

SettingPreset

-
SPreset

Preset active | SFR
agan

{0.0000, 0)

“Fresst" setup
time finishec.
It is ignored,
a5 we sl are i
rECOVErY time

o1

Fecoverifiy

.

l

,/Jmm;éz>

TPulsshing1 0000}
=S

SettingPreset

!
SPreset

SPR

‘/////’

TRecovery(1 .01
=

Recoveri

il

//”*“ﬁ?;§;>

0’

)

SettingPrdsst

[
SPreset

(0.0000, 0}

et

‘,/////

< Presetting >

TPulseting1 .00
o

SettingPrdsst

.
SPreset

HE@

o,

Figure 46. Use of Message Sequence Charts to andyse system behaviour

41

Fecovery is always
than setup time in in

iter
uts

7 Putting It All Together

7.1Constructing the New ANISEED library

The SDL spedfications presented in the previous chapters were not added to the library in their original
format. Although it would have been possble to speafy all the library components individually, this would
have been very inefficient. For example, a two-input tri-state Nand gate has largely the same spedficaion
as one with threg four or eight inputs. The gates for And, Or, Nor, Xor and Xnor differ from Nandonly in
their logic function. Since eab kind of logic gate has uni-bit/multi-bit and untimed/timed versions, a large
number of variants would have to be spedfied explicitly. As a more pragmatic solution, these were &l
generated automaticaly from an SDL template that is parameterised by the logic function, the number of
inputs, whether timed and whether multi-bit.

The original SDL-GR spedfications were mnverted into textual SDL-PR format and comments added
to the cde. This proved a time-consuming and error-prone task, as thousands of lines of SDL code were
generated. After adding comments, the resulting PR files were re-imported into the toadl, trying to re-
construct the original SDL-GR systems. That was the best way of cheding that the final PR files (after all
the adliting work) were still corred. Common problems were minor syntadic erors due to the aditing.

Using the SDL-PR files, Ken Turner constructed library modues in the maao language m4 format.
These fil es were processed by the maao processor m4 [25] to generate the new PR library padkages. This
approach makes the m4 library much smaller and more maintainable, since asingle template needs to be
changed if modifications are required. In every case alibrary PR padkage is automaticdly generated from a
library m4 module, including explanatory comments.

The conversion from the original PR filesto library form required many global edits and modificaions
of a syntadic nature. All original blocks became block types. Block types were given synonym context
parameters for timing parameters and signal context parameters for external signals. Block types were dso
given gate parameters corresponding to channels. Processes needed SigndSet parameters for inputs. All
these modificaions and global edits proved ared risk of acddental alterations.

The next step in constructing areliable library was to instantiate and test the brand new block types. We
constructed SDL systems with single blocks that were instances of the block types contained in the library.
Due to limitations of the SDT todl, a filter written by Ken Turner was used to handle mntext parameters.
An environment variable (SDLPATH) causes an automatic seach for the arresponding definitions. The
only padkages that need explicit “* #INCLUDE “ or “Use” clauses are those that have to be imported
literally (basicdly the “Bit1” and “BitM” padkages for single and multiple bits). Appropriate parameters
are given and gates conneded via channels to the ewvironment. The signalroutes within the block (i.e.
among its processes) are automaticdly inferred by SDT.

The resulting systems were tested again as before they were put in the library. Unfortunately, due to
time limitations, a thorough and complete validation could not be performed again for all block types.
However, they were instantiated to chedk that SDT could use them without errors. Whenever problems
were found, they were rreded in the m4 source files, and the library reconstructed again. The most
common errors were wrong rumber of parameters in block types, missng gate dedarations, missing
Sgnd Sets and some spelling problems with signal names.

Further problems with SDT arose while trying to use the library to do some ca&e studies. Context
parameters are not supparted by SDT so they are dedt with by a script (sdictx) developed by Ken Turner
and used as afilter in the SDT analyser. The interadions between the script and the tod are arrently being
investigated by Ken Turner, but error messages about several units leading to the same name were given
when trying to start a validator in systems that included bock type instances (Telelogic has subsequently
confirmed that this is due to a limitation of SDT). Fortunately, a temporary solution to get round the
problem was found. Since no errors were reported by the tool when running the analyser (only the vali dator
was in corfflict), avalid PR file was generated by SDT for eat of our systems. Converting these PR files
into GR format and importing them into the tool was a messy but usable solution to vali date systems with
instantiated block types. Foll owing this approad, the ANISEED library could finally be used to implement
and analyse dedronic designs. The new available dements in ANISEED library are summarised in

appendix B.

42

Achieving 100% symbad coverage when vali dating instances of block types proved harder than with the
origina descriptions. The seledion of parameters for block typesis criticd. Depending on the values given
to parameters such as propagation delays, some parts of the system may not be mvered. Thisis ssmething
ressonable, since the spedficaion contains descriptions for al possble situations. For example, if a
particular component has a propagation delay for low-to-high transitions (TpLH) shorter than TpHL, (high-
to-low) the portion of the general spedficaion that deds with TpHL finishing first will never be executed.
Several validation runs with different parameters were tried and, sometimes, conflicting parameters were
given the very same values, so that the validator could follow all possible paths. Even with this approach
some devices such as fli p-flops with preset and clea signals needed long validation times.

7.2Using TheNew Library

Oncethe library is ready to use, modelling eledronic drcuitsin SDL is arather straightforward task. A
circuit can be spedfied as a SDL system with some inputs and outputs to interad with the eavironment.
The system will be composed of SDL blocks that are instances of the block typesincluded in the library.

As mentioned before, all the dements included in the library are generic block types that can be
instantiated with adual parameters. The values given to these parameters allow designers to adapt the
behaviour of the drcuits under test to their particular needs. Parameters such as propagation delays, setup
intervals etc. are reaily avail able in datasheds, making it possble to represent different logic famili es and
commercia devices.

The SDL-PR files contained in the ANISEED library include details about the parameters needed to
instantiate every particular block type. For example, as $own in the following fragment taken from
anisead_mux.pr, to instantiate a four-to-one multiplexer four timing parameters are needed: TDelayS],
TDelaySQ TdelayD1 and TdelayDO.

Block Type FourOneMultiplexerAT

<
Synonym TDelayS1 Duration; [* Select-high prop. delay */
Synonym TDelaySO0 Duration; [* Select-low prop. delay */
Synonym TDelayD1 Duration; /* Data-high prop. delay */
Synonym TDelayDO0 Duration; /* Data-low prop. delay */
Signal /* Input-output signals */
SIp0 (Time, Bitl), Slpl (Time, Bitl), /* Inputs 0-1 */
Slp2 (Time, Bit1), SIp3 (Time, Bitl), /* Inputs 2-3 */
SSel0 (Time, Bitl), SSell (Time, Bitl), /* Select 0 and Select 1 */
SOp (Time, Bitl) /* Output */
>

TDelayS1 and TDelaySO0 represent the propagation delays after a variation in the Seled inputs. Two
values are needed since these delays are usually different depending on the output previous and next logic
levels. TDelayS1is the delay for low-to-high output transitions, and TDelaySO the delay for high-to-low
ones. Similarly, TDelayD1 and TDelayDO represent the low-to-high and high-to-low propagation delays
after avariation in the multiplexer Data inputs.

If a particular four-to-one multiplexer has to be used in a drcuit, now it can be modelled as an instance
of the ANISEED library block type FourOneMulti plexe AT. The name for the new block, the block type to
be instantiated, the parameters and the signals involved must be given. As an example, the foll owing code
credes ainstance with timing values (in nanoseconds) taken from a datashed:

MyMux: FourOneMulti plexerAT<18, 27, 18, 24, SIp0, Slpl, SIp2, Slp3, SH0, SH 1, SOp>

MyMux is the name given to the new block. Any valid SDL name @n be seleded for this purpose. The
semicolon indicaes that MyMux is an instance of a block type, in fad it is an instance of the block type
FourOneMultiplexeAT included in the library. The four numerical values are the adual parameters in
nanosends for the propagation delays (TDelayS1, TDelaySOetc). Sp0to Sp3 are the Data input signals,
S0 and S=1 the Seled input signals and SOp the multi plexer output signal. These signals must also be
dedared in the SDL diagram.

43

Telelogic SDT does not suppart context parameters, so they are managed by a script (sdlictx) written by
Ken Turner and used as afilter in SDT. Every devicein the library needs sme particular parametersto be
instantiated. For example, as siown in the following PR code taken from aniseed_flipflop.pr, a D flip-flop
without Preset or Clear only has three parameters: the Setup period, the Holding time and the propagation
delay. If the number of parameters passed in the cdl i s not consistent with the block type dedaration, sdlctx

reports the problem.
Block Type DFlipFlopAT
<
Synonym TDelaySetup Duration; [* Setup delay */
Synonym TDelayHold Duration; /* Hold delay */
Synonym TDelayProp Duration; [* Prop. delay */
Signal /* 1/O signals */
SC (Time, Bitl), SD (Time, Bitl), /* Clock and Data */
SQ (Time, Bitl), SQBar (Time, Bitl) /* Outputs */
>
Gate D In; /* Input data */
Gate C In; /* Input clock */
Gate Q Out; /* Output */
Gate QBar Out; /* Output negated */

As shown in the PR code @ove, besides the timing parameters four signals are dso needed to
instantiate aD flip-flop: two inputs (Clock and Data) and the outputs. The arresponding gate dedarations
for these signals are dso shown in the cde. Since every block type instance includes the input and output
signals, the interconneding wires for the drcuitsin SDL diagrams are adually optional. However, they can
be modelled as SDL channels for clarity. Sdctx also infers the gate names, so they do not have to be
explicitly typed in the SDL diagram. To make things cleacer, the foll owing section presents an example of a
complete SDL system with two instances of D flip-flops and ather components. Some points presented here
are discussed in more detail .

7.3 Case Study — The Single Pulser

In order to demonstrate that the ANISEED methoddogy can be used to implement and analyse pradica
circuits, a cae study was carried out. This case study is a drcuit design taken from the standard benchmark
circuits for verificaion and validation [28]. These benchmark circuits are widely used to assess the
performance of hardware validation tools.

A single pulser is a docked-sequential device with one-bit input | and one-bit output O. It has a
debounced push-button, on (true) in the down position, off (false) in the up pasition. An eledronic drcuit
senses the depresson of the button and asserts an output signal for one dock pulse. The system should not
allow additional asertions of the output until after the operator has released the button. Assuming that the
circuit is synchronous, the spedfication may be stated as saying that for ead input pulse, the Single Pulser
issues exadly one pulse of unit duration regardless of the duration of |. The spedficaion may be dso
charaderised by the foll owing threeproperties [29]:

1. Whenever thereisarising edge & I, O becomes true some time later.

2. Whenever O is true it beaomes false in the next time instance and it remains false & least until the
next rising edge on I.

3. Whenever there is a rising edge, and assuming that the output pulse does not happen immediately,
there ae no more rising edges until that pulse happens (There can not be two rising edges on | without a
pulse on O between them).

The implementation shown in figure 47 is taken from [30]. The incoming, not yet debounced
asynchronous sgnal Pulse_In isfed to a D flip-flop and thus beaomes the synchronised signal Pulse_sync,
which is then delayed for one dock cycle by using another D flip-flop. Its output is negated, and the And-
connedion of the synchronous pulse with its own delay generates the resulting, one dock-cycle lasting
signal Pulse Out. Figure 48 shows ome ided (no delays) waveforms that illustrate the behaviour of the
circuit.

44

DFF Delayed Pulse SInv

Clk I
Inverter AMDZ
Sk e RSN

o
Fulse_TIn Pulse_sync FPulse_Out
Figure 47. One posdble implementation o the single pulser
I o I P
/SINGLEPUUSER_TESTBENCHPULSE IN [| [|
fBINGLEPULSER TESTBENCHCLK
FSINGLEPULSER T SE_OUT| W

. a0 ano

Figure 48. Example waveforms for the single-pulser (no delays considered)

The SDL system constructed to simulate and analyse the single pulser is shown in figure 49. It consists
of a system with eight blocks that are instances of block types contained in the library. In this figure the
interconneding wires for the drcuit are modelled as SDL channels. They have been included for clarity but
they are not compulsory.

DFF1 and DFR2 are instances of the D flip-flops with positive-edge triggering included in the library
(DFlipFlopAT). The parameters given are the setup time (10 ns), holding time (1 ns) and the propagation
delay (8 ns). These values have been seleded as being representative of some D flip-flops available on the
market. The signals that every flip-flop receves are dso included as parameters. Gate names are not
explicitly required in the diagram, but SDT still shows (figure 49) these small squares (within block bodes)
where gate names are supposed to be. Adding gate names is time cnsuming and error prone, so they are
inferred by sdlctx, the script that deds with context parameters as well.

The inverter and the two-input And gate ae instantiated in a similar way. Parameters include the low-
to-high and high-to-low propagation delays (values taken from an inverter 74H05 and a gate 74L S08) and
the signals. All signals are dedared in atext box on the left battom corner of the figure.

45

Pt AMISEED Bt [

System Pulzer 11
P g [
1 v
-------- 4 Iierter T
<108,
SDelayed_Fulsd,
Junction: Sl
Junction2T
<5Clk, Clk2 Drelaped
SCIk1, —
o | SCk2: - [seik2] ID:F|F2' = [smelaszd_Puise] = =
O O - DFlipFlopasT
[sclk] Junctionz: <10,1,8,
Clk1 Junction2T SCIk2,
< 5Pulse_Syne, SPulse_Synct,
O SFulse_synct, SDelayed_Pulsd,
[SC"“] SPulse_Syncz: Synct Sbar2y Sbar2
(| O
DFF1: O Syne O [S Pulse_ Ss-ncl:
E)‘FE:DIHQDAT [5 Pulse_ s,m] O Inverted_Pulse
SCIkT SPukse_in, [soter]
SPulse_Syne,
Slhart»
Fulse_In Sobar D
|:| I: Sync2 Sink2:
[s o AbsorbT
ulse_in] <50hard>
L Fulze_Out
[SQ‘W"] [Slnu] o -
signal D
sclklcrime,sihj, . 0 [sFutse_ouf]
ggrﬁ?ﬁlnqgrg?fifl " D [SPuIse_smcz:l
SClk2iTime, Bit1), . .
Ise_ Sy Time, Bit Sirk1 AND2:
S o it
U5 C1CTime, Bit1],
sPu:s::Symnclz(Tin_\e, sitl, < SGhart > fa?ﬁlrd’
sgggﬁ-l—nfguge“""e Eitl, SPulse_Syncz,
SiruiTime, Eit), SPulse_Out:
SPulse_outiTime, Eit1); =

Figure 49. SDL implementation d the single pulser using the ANISEED library

There ae some other peadliaritiesin the SDL system given in figure 49. Eledricd connedions between
wires are represented by instances of block type JunctionZT (a timed junction with one input and two
outputs). As described in chapter 3, alimitation of SDL isthat an output cannot be broadcast to an arbitrary
number of proceses. To solve this problem, ANISEED uses junction components that model the
conneding points of wires. In addition, process output signals have to be cnsumed even if not used.
Unused terminals (such as the inverted outputs of the D flip-flops) are conneded to instances of block type
AbsorbT. The Absorb processtype is ready to accept and absorb any signal. Both Absorb and Junction are
part of the previous ANISEED library, but are dso avail able in the new version.

The singe pulser spedficaion was successully validated using the SDT validator. To get round the
compilation problems with the SDT code generator mentioned before, the PR file for the system was
converted into GR format and imported into the toal. Figure 50 shows the structure of the re-constructed
system. Files with extension “.sbk” are SDL blocks and files with extension “.spr” are processes.
“Pulser.ssy” represents the whole system. Noticethat the package Bit1 is also included.

46

Hsafmijavier/anisesd/NEW/SinglaPulser/PRioGRY
[=] BitiPackage Bit1 Package.sun

— 5Dl System Structure

F'ulser Pulser.ssy
Junctiond Junction1.shk
Junction1_JunctionzT Junction?_JunctionZT.spr
DFF2 DFFZ.shk
DFFZ_DFlipFlop DFFZ_DFlipFlop.spr
DFFZ_DOut DFFZz_DoOutspr

Inw.shk
% Inv_InvererT Inv_InverterT.spr
ANDE AMDZ. shk
% ANDZ_and2T ANDZ_AndZT.spr

mk2 Sinke.shk
S|nk2_AbsorbT SinkZ_absorbT.spr

DFFA DFF1.sbk
DFF1_DFlipFlop DFF1_DFlipFlop.spr
DFF1_DoOut DFF1_DOutspr

|nk‘| Sinkl.shk
S|nk1 _AbsorbT Sink1_ahsothT.spr

Junctiong Junctiong.shk
JunctionZ_JunctionzT JunctionZ_JunctionZ2T.spr

Figure 50. Sructure of the SDL system for the single pulser

Succesdul validation was achieved when wsing all but the exhaustive exploration algorithm. The bit
state dgorithm easily achieved 100% symbal coverage and no error reports were generated.

Transitions: 3300888 Stotes: 255B5ZZ Reports: @ Depth: 786 Sywbol coverage: 100.08 Time: Wed Sep 1 13:16:11 1%
Transitions: S4008000 States: 2593352 Reports: @ Depth: 91 Sywbol coverage: 188.80 Time! Med Sep 1 13116212 15
Tronsitions: S4Z0000 States: 2080413 Reports: 8 Depthi 52 Symbol coverage: 188.88 Time: Wed Sep 1 13:16:14 1%

#o Bit stote exploration stotistics
Ho of reports: 8.

Generated stotes: 34245594,

Truncoted poths: 4268225,

Unique system stotes: ZAASE97.

Size of hosh table: SAGEE0E (1608668 bytes)
Mo of bits set in hash table: 4183075
Collision risk: 91 %

Moy depth: 1EE

Current depth: -1

Min state =size:! 354

Max state sizei 972

Symbol coveroge @ 10E.88

The power walk and random walk algorithms aso finished without error reports. The resulting MSC
traces given by the tool were analysed to check the functionality and behaviour of the system.

Exhaustive exploration failed after the computer running out of memory in just a few minutes. The
madine used is a Sun workstation with 512 Mbytes of RAM memory, something that makes it difficult to
understand how this algorithm can fail in such a short period d time. From previous discussions with
Telelogic, it appeasthat SDT is sverely limited (and not by RAM) in exhaustive exploration.

Command = Exhaustive-Exploration

Starting exhaustive exploration
Search depth : 188

Passing SHAAA system states
Pazsing 160888 system states
Passing 158888 system states
Passing 280888 system states
Pazsing 250888 system states
Passing 3ARAAA system stotes
Pazsing 358888 system states
Pazsing 400688 system states
Passing 45AAAA system stotes
Pazsing SEOEEE system states
#0ut of memory. Exiting program.

47

After validation, the Single Pulser circuit was carefully simulated, using both the standard SDT
simulator and the new run time library developed by Stephen Laing [31] for red-time hardware simulation
with SDT. When appropriate signals were sent and all subsequent transitions exeauted before sending new
signals, no difference in behaviour was noticed between these two simulator scheduling algorithms. The
diagrams presented later in this chapter were obtained with the standard SDT simulator.

Some plans were made prior to the simulation, espedally lists of the signals that had to be sent at
certain times. The dock rate used to simulate the system was 10 MHz; that means 100 nanoseconds for the
clock period. MSC charts were adivated and the results were cnverted from MSC charts into timing
diagrams (figure 51). Timing diagrams are frequently used in the analysis of eledronic systems. These
diagrams sow various sgnals as a function of time. Several variables are usually plotted with the same
time scale so that the times at which these variables change with resped to ead other can easily be
observed.

Fulseln

210 510 5a0

Clk

FPulse3ync

&9 259 459 653

DelayPulse

759

Slnv |_

169 367 569 667

Pulselut

u} 50 100 150 200 250 300 350 400 450 so0 550 a00 650 o0 750 800 ns
267 377 577 877

Figure 51. Timing dagram after simulating the SDL description o the single pul ser

The oonclusion after simulation is that the single pulser circuit behaviour matches the spedficaion and
follows the properties dated in the benchmark document. Some interesting results were noticed. For
example, when a Pulse In signa arrives at the same instant as a Clock rising edge, no Pulse Out is
generated. The reason for thisis the setup time of the fli p-flop not being respeded, a situation considered in
our SDL spedfication (clock pulses during setup are ssimply ignored). The adual behaviour of a physical D
flip-flop under these @nditions is not spedfied by the manufacturer. Only normal operation is explained in
datashees, so non-determinism would apply to how ared flip-flop would behave in this case.

Before sending signals to the drcuit it is necessary to exeaute dl theinitial transitions. All the dements
in the drcuit have initialisation sequences smilar to the ones described in previous chapters. Outputs are
randomly initialised and the drcuit needs sme time to stabili se. Dedding when the system is gable is not
as ey asit might seem. In all time diagrams presented here, the duration of the first output pulseislonger
than the dock period (110 ns instead of 100), something that goes against the spedfication of the drcuit.
Thereason for thisisthe initial state of the second flip-flop and the inverter. In figure 52 the inverter output
ishigh at time 150, when a positive edge dock transition isreceved and Pulselnis also at high level.

48

Fulseln

izo 150

FPulselvync

B 159 e 459 759
DelayPulse

Z59 559

SInv

18 267 469 567
FulseOut

a 50 oo 150 200 250 300 350 400 450 500 550 [1u]n) 650 o0 780 800 ns
167 277 477 577

Figure 52. Timing dagram for the single pulser

After 9 nanoseands (1 ns for holding and 8 ns for propagation) the first flip-flop changes its outpuit.
Noticethat the setup time is not part of the flip-flop response time here, as it had finished before the dock
edge was receved (setup finished at 120+10=130ns). At time 159the And gate has its both inputs high, so
it starts a transition to set its output acordingly. After 8 ns (low-to-high propagation delay given as
parameter to the gate) PulseOut goesto high level, unfortunately 10 rs before it should.

Figure 52 also shows that a transient variation in Pulseln between positive edges of the dock is
irrelevant. Between times 550 and 650Pulseln islow for some nanosemnds, so we might think that at time
650 a new output pulse sequence would be initiated (the previous output pulse has already finished).
However, the first flip-flop anly reals the state of the input when it receves positive dock edges, so it does
not deted variations in input between clock adive signals. After completing an output pulse the drcuit
needs ome reaovery time before anew one @n be generated. Pulseln must be low during a period d time
long enough to read the next positive dock edge, so that the first flip-flop can effedively deted that
Pulseln has been at low level.

Only the first output pulse has the problem commented above. As shown in figures 51 and 52, the
seoond pulseisright, sinceit lasts exactly one dock period (100 ns). Figure 53 shows a sequence of several
conseautive output pulses. All but the first are crred. In the second output pulse, for example, the dock
edge isrecaved at time 250. Nine nanosends later the first flip-flop changesits date, but now the second
flip-flop changes too, sinceits input Pulse_sync was zero. The inverter now needs 10 nanoseconds to set its
output high. In the meantime, the AND gate has one of its inputs at low level, so it must wait until the
inverter has finished its propagation time. For this reason, the output pulse is 10 nanosecond shorter that the
first one. Asshownin figure 53, all pulses but the very first one ae wrred.

49

Pulseln

Clk

Pulsel3ync

DelayPulse

SInv

Fulse(ut

30 430 530
159 259 359 459 555 659
8 753
_18 167 269 367 469 567 660 767
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
67 177 277 377 477 577 677 777

Figure 53. Time diagram showing aconseautive sequence of output pulses

50

ns

8 Conclusions

SDL is a well-structured and user-friendly language. The language itself combined with the fadlities
included in Telelogic SDT made this work a rewarding experience However, even with the help of SDL
and SDT, formally spedfying of hardware componentsis not an easy task.

Describing truth tables and the basic behaviour of eledronic components is usualy a rather
straightforward adivity. However, timing constraints are dways the trickiest asped of the spedficaion.
Deding with timers, propagation delays and transient conditions have proved the hardest part of any
spedfication.

After achieving a dea and predse SDL spedfication for a device s normal operation, there was usually
aned for further questions. Datashees describe the behaviour of components under certain assumptions. If
the ‘rules of the game are not respeded, eledronic components will probably behave in a non
deterministic way. Something as smple & ignoring any strange nditions in the spedfication is adually
an explicit dedsion. More often than desired these refledions lead to very intricate thoughts about the best
way of deding with transient or abnormal behaviour whil e kegping the spedficaions smple.

Validating systems with the SDT validator is more aquestion of time than skill . The todl redly helpsin
finding the most bizarre cmbinations of inputs, outputs and adverse drcumstances that can make
everything go wrong. The bad news about this approach is that, even in a small size description, thousands
of posshle combinations may exist. Long hours of careful analysis of Message Sequence Charts are then
the cetral part of the job. Besides automaticdly generated MSCs, some SDT fedaures such as the
navigator, the watch window to tracevariables, and the mverage viewer to deted parts not fully explored
have proved redly useful.

SDT is quite an impressive tool. However, it credes red problems ometimes. More than once the
graphicd editor was suddenly closed, a big core dump was creaed and SDT closed without any chance of
getting the work saved. Some cae had also to be taken about “dead” processes running out of control in the
badkground after closing the todl.

SDL and the ANISEED approach have been shown to be very much applicable to the redm of
hardware analysis and design. It has been posdble to formally spedfy a whole range of eledronic
components that now can be used to creae and analyse more complex devices and eledronic systems. The
deep software roats of SDL make it clea that software-hardware @-design can also be adieved.

There is a grea ded of scope for future work on hardware description in SDL and ANISEED in
particular. These ae some of the future options:

e Providing a nicer graphicd front-end that all ows entry of circuit diagrams more dosely resembling

those an enginea would draw.

¢ Further extension of thelibrary.

¢ Investigating exhaustive validation further. The SDT validator fails very rapidly, even in machines

with a onsiderable amount of RAM.

e Carryingout new case studies.

e Automatic generation of tests from descriptions.

e Carryingout a pradicd comparison of ANISEED and cther traditional approaches such as VHDL,

for example.

e Looking at hardware-software c-design with SDL.

51

References

[1] ITU-T. “ Spedfication ard Description Language (SDL)” . Recommendation Z.100. International
Teleommunicaions Union, Geneva, 1996

[2] C. H. Roth. “ Fundamentals of logic design” . West publi shing company. 1992

[3] IEEE. “VHS C Hardware Design Language” . IEEE1076. Institution of Eledricd and Eledronic
Enginees Press New York, USA, 1992

[4] |IEEE. “ IEEE Standard Hardware Design Language based on the Verilog Hardware Design
Language’ . IEEE1364. Institution of Eledricd and Eledronic Engineeas Press New York, USA, 1995
[5] A. Janstch, S Kumar et al. “ Comparison d six languaggs for system leve descriptions of telecom
systems’ . Royal Institute of Technology. Stockholm, Sweden. 1997,

[6] J. Armstrong, B. Dadker et a. “ Erlangwhite paper” . http://www.erlang.org

[7] S. P. Jones and J. Hughes editors. “ Haskdl 98 Report” . http://haskell .org

[8] J. M. Daveay, G. Fernandes et al. “VHDL generation from SDL spedfications’. CHDL 97, April, 1997
[9]]. S. Bonatti and R.J. Figuerido. “An agorithm for the trandation d SDL into synthesizable VHDL"” .
Current Issuesin Eledronic Modeling, Vol. 3, August 1995

[10] O. Pulkkienen and K. Kronlof. “ Integration o SDL andVVHDL for High Levé Digital design”.
Proceedings of the European Design Automation Conference with Euro\VVHDL, September 1992 pp
624629,

[11] B. Lutter, W. Glunz and F. J. Ramming. “ Using VHDL for simulation o SDL Spedfications’.
Proceedings of EUROVHDL 1992 pages 630635.

[12] T. Benlsmail, M. Abid, K. O’'Brien, A. A. Jerraya. “ An Approach for HardwareSdtware Co-
design”, RSP'94, Grenoble, France, June 1994

[13] W. M. Loucks, B. J. Doray, D. G. Agnew. “ Experiences In Real Time Hardware-Sdtware Co-
simulation” . Proc VHDL Int. Users Forum (VIUF), Ottawa, Canada, pp. 4757, April 1993

[14] B. Svantesson, S. Kumar and A. Hemani. “A methoddogy and algorithms for efficient inter-process
communicdion synthesis from system descriptionsin SDL”.

[15] 1SO. Information Processng. Open systems Interconnedion. “L OTOS, A Formal Description
Technique based on the Temporal Ordering o Observational Behaviour” . ISO/IEC 8807. International
Organization for Standardization, Geneva, 1989

[16] K .J. Turner and R. O. Sinnott. “ DILL: Spedfying dgital logic in LOTOS' . In Richard L. Tenney,
Paul D. Amer and M. Umit Uyar, editors. Proc. Formal Description Techniques VI, pages 71-86. North-
Holland, Amsterdam, Netherlands, 1994

[17] J He and K. J. Turner. “ Extended DILL: Digital logic with LOTOS’ . Technicd Report CSM-142,
Department of Computing Science and Mathematics, University of Stirling, UK, Nov. 1997

[18] J He and K. J. Turner. “Timed DILL: Digital logic with LOTOS’ . Technical Report CSM-145
Department of Computing Science and Mathematics, University of Stirling, UK, Apr. 1998.

[19] ITU-T. “ Message Sequence Chart (MSC)” . Recommendation Z.120. September 1994

[20] G. Csopaki and K. J. Turner. “ Modelling dgital logicin DL”. In T. Mizuno, N. Shiratori, T.
Higashino and A. Togashi, editors, Proc. Formal Description Techniques X/Protocol Spedfication, Testing
and Verificaion XV I, pages 367—382. Chapman-Hall, London, UK, Nov. 1997.

[21] Telelogic AB. SDT 3.1: “Tutorial on DT Todls’ . Malmg, Sweden, 1996

[22] K. J. Turner, G. Csopaki and S. D. Laing. “Hardware Timing Analysiswith DL” . January 1999
[23] J.-M. Daveay, G. F. Marchioro, T. Ben Ismail, and A. A. Jerraya. " COSMOS. An DL based
hardwar e/software a@-design environment” . Current Issues In Eledronic Modeling, 8:59—-88 1997.

[24] T. Hadlich and T. Szczgpanski. “T he ODE system— An L-based appoach to hardware-software
co-design” . In C. Muller-Schlor, F. Geerinckx, B. Stanford-Smith, and R. van Riet, editors. Embedded
Microprocesor systems, pages 269-281 10S Press Amsterdam, Netherlands, 1996

[25] Telelogic. TAU 3.5 Manuds. Telelogic, Mamg, Sweden, May. 1999

[26] Anders Ek. “ Automatic Debugging of Communicating Systems using the SDT Validator”. Telelogic
AB, Mamg, Sweden. 1997

[27] R. Seindal. “ GNU md version 14" . Technicd report, Free Software Foundation, 1997,

[28] J. Staunstrup and T. Kropf. “ IFIP WG 10.5 benchmark drcuitsv1.2.0”.
http://goethe.ira.uka.de/hva/benchmarks.html

52

[29] S. D. Johnsons, P. S. Miner, and A. Camill eri. “ Sudies of the single pulser in various reasoning
systems’ . In T. Kropf and R. Kumar editors. Proc. 2" International Conference on Theorem Proversin
Circuit Design (TPCD94), volume 901 d Ledure Notesin Computer Science, pages 126—14%, Bad
Herrenalb, Germany, September 1994 Springer-Verlag. published 1995

[30] D. Winkel and F. Proseer. “T he art of digital design” . PrenticeHall Inc, 198Q

[3]] S. Laing. “ Hardware Spedfication ard Analysisin L" . Honours Dissertation. Department of
Computing Science and Mathematics. University of Stirling. April 1999

53

A. SDL Notation

Sywmbaols on Interaction Pages
|Symt-nlAppearajme | Synbol Hawme References to Z.100
zi00: 2.5.4 signal
zi00; 2.5.5 Fignal list
zi00: 5.2.1 Hewtype
2i00: 5.3.1.19 suntype
Text 2100: 5.3.1.1% spnonym
2100: 5.3.1.12.1 Generator
2100: 4.13 Remote wariable
2100: 4.14 Eemote
procednre
: Cornrnent. 2100: 2.2.6
1
1
zi00: 2.2.7
Text extension
(depends on the symobol conoected to)
zi00: 2.4.2 Elock definition
2100: &.1.3.2 Elock def based
on black typpe
Elock reference z100: &.1.2 Type eXpression
z100: &.2 Actual context
parameters
z100: 2.4.3 Process
definition
2100: 2.4.4 Rumber of
instances
Frocess reference 2100: &.1.3.3 Process def based
onn black type
z100: &.1.2 Type eXpression
z100: &.2 Actual context
parameters
SUbsStrUCTUre EBlock substructure reference 21iad: 3.2.2
Sexvrice veference z100: 2.4.4
tern rpe 2100: &.1.1.1
Eystam St e
Elock type zl00: &.1.1.2

54

@ Frocess type z100: 6.1.1.3
© Service type z100: £.1.1.4
Operator yeference
gl0o: 5.3.2 Referenced operater
OPEratof| |cnsDL-GR extension defined in SDT in SIL-FR
2100: B.1.4 Gate
/T] Gate z100: 2.5.5 signal list
Synbols on Flow Pages
|Symlmlﬁppearam:e | Sywbol Hame References to Z.100
2100: 2.6.3 state
2100: 4.4 Asterisk state
2100: 4.5 Multiple
State o nextstate appearence of
state
2100: 2.6.85.2.1 Rextstate
zi00: 4.3 Dash nextstate
2100: 2.5.4 Fignal
z100: 2.5.5 Zignal list
zi00: 5.z2.1 Rewtype
2i00: 5.2.1.19 snntppe
zi00: 5.3.1.13 STLLIIN
gl00: 5.3%.1.12.1 Generakor
2100: 2.6.1.1 Variable
2100: 2.6.1.2 W lew
Text z2100: 2.8 Timer
zi00: 4.13 Eemote wariable
zi00: 4.13 Inmported
wariable
zi00: 4.14 Eemote
procedure
z100: <4.14 Imporcted
procedure
2100: 2.6.4 Input
z100: 4.6 Asteriszk input
z100: 4.14 Bemote procedunre
input
Input z100: B.3.3 Virtual
transition
zio0: 5.4.3 Wariable
z100: 5.4.3.1 ZIndexed wariable
z100: 5.4.2.2 Field wariable

55

Cororoent Zi00: 2.2k

2100:
Sae 2100:
2100;

.B.E Save
Asterisk save
.33 Wirtnal sawve

L= O)
-a

2i00: 2.2.7

Textextension
(depends on the sytobol conmwcted 1o}

2100:
Decision 2100:
2100:

Decision
.9.1 Range condition
Informal text

(R]
[|
oh = n

2100:
2100:

In-connector

Ir- conrector o ouk- Connecbor 2 2 - cone cbor

[)
o

o0 -3

: Citput 2i00: 2.7.4

2100: 2.7.1 Task
zi00: 5.4.3 Assigoment
Task, set, reset o export =100, . % Set, Reset
2100: 4.13 Export
2100: 2.7.3% call
Froceduze call 2i00. 2.7.2 Actual parameters
Iacto call zio0: 4.2.3
Create request 2100 2.7.2
iei ; 2100: 4.3.4 Transition option
Transition aption z100: 5.%.1.9.1 Fange condition

2100: 4.11 continmens signal

Continwous signal or enabling condition 2100: 4 17 Enabling condition

[P
S

56

B. List of New Library Components

Naming conventions for logic components are & foll ows:

deaoder <func>Demder[<abst>][<time>][<mult>]
e.g. BcdDedewderAT, TwoFourDeooderT

encoder <func>Encoder[<abst>][<time>][<mult>]
e.g. EightThreeEncoder

flip-flop <func>Fli pFlop] <abst>][<time>][<trig][<pre>]
e.g. DFlipFlopA, JKFlipFlopATN, RSHipFlopATNP,
THipFlopAT

junction Junction<outputs>[<time>][<mult>]

e.g. Junction2T, JunctiondTM

merge Merge<outputs>[<time>][<mult>]
e.g. Merge2TM, MergeT

n-ary logic <func><inputs>[<time>][<mult>][<tris>]
e.g. And2T, Xor4TM, Nor8MH

nul ary <func>[<time>][<mult>]
e.g. AbsorbT, OneTM, Zero

split Split<outputs>[<time>][<mult>]
e.g. Split2TM, SplitH, Split TL
unary <func>[<time>][<mult>]

e.g. InverterT, RepeaerM, RepeaerTM

variants <abst> A/l (abstrad/intermediate, default gate-level)
<func> (function)
<mult> M (multi-bit, default single-bit)
<pre> P (preset/clea, default neither)
<time> T (timed, default untimed)
<trig> N (negative FFtrigger, default positive)
<tris> H/L (high/low tristate enable, default neither)

Naming conventions for context parameters and formal parameters are & foll ows:
data values Blp[<number>]
B[Next]Op
B<func>[Next]
e.g. Blpl, Blp0, BNextOp, BNextQ

input gates [p[<number>]
<func>
egC,D,lIp, Ipl
input signals S[<func>][Ip][<number>](<parameters>)

e.g. SDIp (Time, BitM), Slp (Bit1),
SIp0 (Time, Bit1)

57

output gates Op[<number>]
<func>

e.gOp, Op2, Q, QBar

output signals S[<func>][Op][<humber>](<parameters>)
e.g. SOp (Bit1), SOp0(Time, Bit1), SQ (Time, Bit1)

parameter values TDelay<func>
e.g. TDelayl, TDelaySetup

timers T<func>
e.g. T1, THold
times Tlp, Top

Aniseed_Coder (all componentstimed)

EightThreeEncoderAT Eight to threelines priority encoder
BcdDedemderAT BCD to dedmal deaoder
TwoFourDeoderAT Two to four lines decoder

Aniseed_FlipFlop

DFlipFlopAT D flip-flop paitive elge triggering
DFlipFlopATN D flip-flop negative edge triggering
DFlipFlopATP D flip-flop pasitive edge triggering with preset and clea

DFlipFlopATNP

D flip-flop negative edge triggering with preset and clea

M SDFli pFlopATP

Master—slave D flip-flop with preset and clea

JKFlipFlopAT JK flip-flop paitive elge triggering
JKFlipFlopATN JK flip-flop negative alge triggering
JKFlipFlopATP JK flip-flop pasitive alge triggering with preset and clea

JKFli pFlopATNP

JK flip-flop negative alge triggering with preset and clea

M SIKFli pFlopATP

Master-dave JK flip-flop with preset and clea

RSHipFlopAT RS flip-flop paitive edge triggering
RSHipFlopATN RS flip-flop negative elge triggering
RSHipFlopATP RS flip-flop paitive edge triggering with preset and clea

RSHipFIopATNP

RS flip-flop negative alge triggering with preset and clea

M SRSHi pFlopATP

Master-dave RS fli p-flop with preset and clea

THipFlopAT T flip-flop paitive edge triggering

THipFlopATN T flip-flop negative elge triggering

MSTFlipFlopAT Master-dave T flip-flop

THipFlopATP T flip-flop paitive adge triggering with preset and clea
THipFlopATNP T flip-flop negative alge triggering with preset and clea

Aniseed_Mux (all componentstimed)

FourOneMultiplexerAT

Four to one line multi plexer

TwoFourDemulti plexerAT

Two to four line demulti plexer

58

Aniseed_Trigate (all componentstri-state)

InverterH Untimed single-bit inverter with high-level enable

InverterTH Timed singe-bit inverter with high-level enable

InverterMH Untimed multi-bit inverter with high-level enable

Inverter TMH Timed multi-bit inverter with high-level enable

InverterL untimed single-bit inverter with low-level enable

InverterTL timed single-bit inverter with low-level enable

InverterML untimed multi-bit inverter with low-level enable

Inverter TML timed multi-bit inverter with low-level enable

And2H untimed single-bit “and” gate with 2 inputs with high-level enable
And3H untimed single-bit “and” gate with 3 inputs with high-level enable
And4H untimed single-bit “and” gate with 4 inputs with high-level enable
And8H untimed single-bit “and” gate with 8 inputs with high-level enable
And2L untimed single-bit “and” gate with 2 inputs with low-level enable
And3L untimed single-bit “and” gate with 3 inputs with low-level enable
And4L untimed single-bit “and” gate with 4 inputs with low-level enable
And8L untimed single-bit “and” gate with 8 inputs with low-level enable
And2TH timed single-bit “and” gate with 2 inputs with high-level enable
And3TH timed single-bit “and” gate with 3 inputs with high-level enable
And4TH timed single-bit “and” gate with 4 inputs with high-level enable
And8TH timed single-bit “and” gate with 8 inputs with high-level enable
AndZTL timed single-bit “and” gate with 2 inputs with low-level enable
And3TL timed single-bit “and” gate with 3 inputs with low-level enable
And4TL timed single-bit “and” gate with 4 inputs with low-level enable
And8TL timed single-bit “and” gate with 8 inputs with low-level enable
And2MH untimed multi-bit “and” gate with 2 inputs with high-level enable
And3MH untimed multi-bit “and” gate with 3 inputs with high-level enable
And4dMH untimed multi-bit “and” gate with 4 inputs with high-level enable
And8MH untimed multi-bit “and” gate with 8 inputs with high-level enable
And2ML untimed multi-bit “and” gate with 2 inputs with low-level enable
And3ML untimed multi-bit “and” gate with 3 inputs with low-level enable
And4ML untimed multi-bit “and” gate with 4 inputs with low-level enable
And8ML untimed multi-bit “and” gate with 8 inputs with low-level enable
And2TMH timed multi-bit “and” gate with 2 inputs with high-level enable
And3TMH timed multi-bit “and” gate with 3inputs with high-level enable
And4TMH timed multi-bit “and” gate with 4inputs with high-level enable
And8TMH timed multi-bit “and” gate with 8inputs with high-level enable
And2TML timed multi-bit “and” gate with 2 inputs with low-level enable
And3TML timed multi-bit “and” gate with 3inputs with low-level enable
And4TML timed multi-bit “and” gate with 4 inputs with low-level enable
And8TML timed multi-bit “and” gate with 8inputs with low-level enable
Nand2H untimed single-bit “nand” gate with 2 inputs with high-level enable
Nand3H untimed single-bit “nand” gate with 3 inputs with high-level enable
Nand4H untimed single-bit “nand” gate with 4 inputs with high-level enable
Nand8H untimed single-bit “nand” gate with 8 inputs with low-level enable
Nand2L untimed single-bit “nand” gate with 2 inputs with low-level enable
Nand3L untimed single-bit “nand” gate with 3 inputs with low-level enable
Nand4L untimed single-bit “nand” gate with 4 inputs with low-level enable
Nand8L untimed single-bit “nand” gate with 8 inputs with low-level enable
Nand2TH timed single-bit “nand” gate with 2 inputs with high-level enable
Nand3TH timed single-bit “nand” gate with 3 inputs with high-level enable
Nand4TH timed single-bit “nand” gate with 4 inputs with high-level enable

59

Nand8TH timed single-bit “nand” gate with 8 inputs with high-level enable
Nand2TL timed single-bit “nand” gate with 2 inputs with low-level enable
Nand3TL timed single-bit “nand” gate with 3 inputs with low-level enable
Nand4TL timed single-bit “nand” gate with 4 inputs with low-level enable
Nand8TL timed single-bit “nand” gate with 8 inputs with low-level enable
Nand2MH untimed multi-bit “nand” gate with 2 inputs with high-level enable
Nand3MH untimed multi-bit “nand” gate with 3 inputs with high-level enable
Nand4MH untimed multi-bit “nand” gate with 4 inputs with high-level enable
Nand8MH untimed multi-bit “nand” gate with 8 inputs with high-level enable
Nand2ML untimed multi-bit “nand” gate with 2 inputs with low-level enable
Nand3ML untimed multi-bit “nand” gate with 3 inputs with low-level enable
Nand4ML untimed multi-bit “nand” gate with 4 inputs with low-level enable
Nand8ML untimed multi-bit “nand” gate with 8 inputs with low-level enable
Nand2TMH timed multi-bit “nand” gate with 2 inputs with high-level enable
Nand3TMH timed multi-bit “nand” gate with 3 inputs with high-level enable
Nand4TMH timed multi-bit “nand” gate with 4 inputs with high-level enable
Nand8TMH timed multi-bit “nand” gate with 8 inputs with high-level enable
Nand2TML timed multi-bit “nand” gate with 2 inputs with low-level enable
Nand3TML timed multi-bit “nand” gate with 3 inputs with low-level enable
Nand4TML timed multi-bit “nand” gate with 4 inputs with low-level enable
Nand8TML timed multi-bit “nand” gate with 8 inputs with low-level enable
Or2H untimed single-bit “or” gate with 2 inputs with high-level enable
Or3H untimed single-bit “or” gate with 3 inputs with high-level enable
Or4H untimed single-bit “or” gate with 4 inputs with high-level enable
Or8H untimed single-bit “or” gate with 8 inputs with low-level enable
Or2L untimed single-bit “or” gate with 2 inputs with low-level enable
Or3L untimed single-bit “or” gate with 3 inputs with low-level enable
Or4L untimed single-bit “or” gate with 4 inputs with low-level enable
Or8L untimed single-bit “or” gate with 8 inputs with low-level enable
Or2TH timed single-bit “or” gate with 2 inputs with high-level enable
Or3TH timed single-bit “or” gate with 3 inputs with high-level enable
Or4TH timed single-bit “or” gate with 4 inputs with high-level enable
Or8TH timed single-bit “or” gate with 8 inputs with high-level enable
Or2TL timed single-bit “or” gate with 2 inputs with low-level enable
Or3TL timed single-bit “or” gate with 3 inputs with low-level enable
Or4TL timed single-bit “or” gate with 4 inputs with low-level enable
Or8TL timed single-bit “or” gate with 8 inputs with low-level enable
Or2mMmH untimed multi-bit “or” gate with 2 inputs with high-level enable
Or3mMH untimed multi-bit “or” gate with 3 inputs with high-level enable
OrdMH untimed multi-bit “or” gate with 4 inputs with high-level enable
Or8MH untimed multi-bit “or” gate with 8 inputs with high-level enable
Or2ML untimed multi-bit “or” gate with 2 inputs with low-level enable
Or3ML untimed multi-bit “or” gate with 3 inputs with low-level enable
OrdML untimed multi-bit “or” gate with 4 inputs with low-level enable
Or8ML untimed multi-bit “or” gate with 8 inputs with low-level enable
Or2TMH timed multi-bit “or” gate with 2 inputs with high-level enable
Or3TMH timed multi-bit “or” gate with 3 inputs with high-level enable
OrdTMH timed multi-bit “or” gate with 4 inputs with high-level enable
Or8TMH timed multi-bit “or” gate with 8 inputs with high-level enable
Or2TML timed multi-bit “or” gate with 2 inputs with low-level enable
Or3TML timed multi-bit “or” gate with 3 inputs with low-level enable
OrdTML timed multi-bit “or” gate with 4 inputs with low-level enable
Or8TML timed multi-bit “or” gate with 8 inputs with low-level enable

60

Nor2H untimed single-bit “nor” gate with 2 inputs with high-level enable
Nor3H untimed single-bit “nor” gate with 3 inputs with high-level enable
Nor4H untimed single-bit “nor” gate with 4 inputs with high-level enable
Nor8H untimed single-bit “nor” gate with 8 inputs with low-level enable
Nor2L untimed single-bit “nor” gate with 2 inputs with low-level enable
Nor3L untimed single-bit “nor” gate with 3 inputs with low-level enable
Nor4L untimed single-bit “nor” gate with 4 inputs with low-level enable
Nor8L untimed single-bit “nor” gate with 8 inputs with low-level enable
Nor2TH timed single-bit “nor” gate with 2inputs with high-level enable
Nor3TH timed single-bit “nor” gate with 3inputs with high-level enable
NordTH timed single-bit “nor” gate with 4inputs with high-level enable
Nor8TH timed single-bit “nor” gate with 8inputs with high-level enable
Nor2TL timed single-bit “nor” gate with 2inputs with low-level enable
Nor3TL timed single-bit “nor” gate with 3inputs with low-level enable
NordTL timed single-bit “nor” gate with 4inputs with low-level enable
Nor8TL timed single-bit “nor” gate with 8inputs with low-level enable
Nor2MH untimed multi-bit “nor” gate with 2 inputs with high-level enable
Nor3MH untimed multi-bit “nor” gate with 3 inputs with high-level enable
NordMH untimed multi-bit “nor” gate with 4 inputs with high-level enable
Nor8MH untimed multi-bit “nor” gate with 8 inputs with high-level enable
Nor2ML untimed multi-bit “nor” gate with 2 inputs with low-level enable
Nor3ML untimed multi-bit “nor” gate with 3 inputs with low-level enable
NordML untimed multi-bit “nor” gate with 4 inputs with low-level enable
Nor8ML untimed multi-bit “nor” gate with 8 inputs with low-level enable
Nor2TMH timed multi-bit “nor” gate with 2inputs with high-level enable
Nor3TMH timed multi-bit “nor” gate with 3inputs with high-level enable
NordTMH timed multi-bit “nor” gate with 4inputs with high-level enable
Nor8TMH timed multi-bit “nor” gate with 8inputs with high-level enable
Nor2TML Timed multi-bit “nor” gate with 2 inputs with low-level enable
Nor3TML Timed multi-bit “nor” gate with 3 inputs with low-level enable
NordTML Timed multi-bit “nor” gate with 4 inputs with low-level enable
Nor8TML Timed multi-bit “nor” gate with 8 inputs with low-level enable
Xor2H Untimed single-bit “xor” gate with 2 inputs with high-level enable
Xor3H Untimed single-bit “xor” gate with 3 inputs with high-level enable
Xor4H Untimed single-bit “xor” gate with 4 inputs with high-level enable
Xor8H Untimed single-bit “xor” gate with 8 inputs with low-level enable
Xor2L Untimed single-bit “xor” gate with 2 inputs with low-level enable
Xor3L Untimed single-bit “xor” gate with 3 inputs with low-level enable
Xor4lL Untimed single-bit “xor” gate with 4 inputs with low-level enable
Xor8L Untimed single-bit “xor” gate with 8 inputs with low-level enable
Xor2TH Timed single-bit “xor” gate with 2 inputs with high-level enable
Xor3TH Timed single-bit “xor” gate with 3 inputs with high-level enable
XordTH Timed single-bit “xor” gate with 4 inputs with high-level enable
Xor8TH Timed single-bit “xor” gate with 8 inputs with high-level enable
Xor2TL Timed single-bit “xor” gate with 2 inputs with low-level enable
Xor3TL Timed single-bit “xor” gate with 3 inputs with low-level enable
XordTL Timed single-bit “xor” gate with 4 inputs with low-level enable
Xor8TL Timed single-bit “xor” gate with 8 inputs with low-level enable
Xor2MH Untimed multi-bit “xor” gate with 2 inputs with high-level enable
Xor3MH Untimed multi-bit “xor” gate with 3 inputs with high-level enable
Xor4dMH Untimed multi-bit “xor” gate with 4 inputs with high-level enable
Xor8MH Untimed multi-bit “xor” gate with 8 inputs with high-level enable
Xor2ML Untimed multi-bit “xor” gate with 2 inputs with low-level enable

61

Xor3ML Untimed multi-bit “xor” gate with 3 inputs with low-level enable
Xor4dML Untimed multi-bit “xor” gate with 4 inputs with low-level enable
Xor8ML Untimed multi-bit “xor” gate with 8 inputs with low-level enable
Xor2TMH Timed multi-bit “xor” gate with 2 inputs with high-level enable
Xor3TMH Timed multi-bit “xor” gate with 3 inputs with high-level enable
Xor4dTMH Timed multi-bit “xor” gate with 4 inputs with high-level enable
Xor8TMH Timed multi-bit “xor” gate with 8 inputs with high-level enable
Xor2TML timed multi-bit “xor” gate with 2inputs with low-level enable
Xor3TML timed multi-bit “xor” gate with 3inputs with low-level enable
Xor4dTML timed multi-bit “xor” gate with 4inputs with low-level enable
Xor8TML timed multi-bit “xor” gate with 8inputs with low-level enable
Xnor2H untimed single-bit “xnor” gate with 2 inputs with high-level enable
Xnor3H untimed single-bit “xnor” gate with 3 inputs with high-level enable
Xnor4H untimed single-bit “xnor” gate with 4 inputs with high-level enable
Xnor8H untimed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2L untimed single-bit “xnor” gate with 2 inputs with low-level enable
Xnor3L untimed single-bit “xnor” gate with 3 inputs with low-level enable
Xnor4L untimed single-bit “xnor” gate with 4 inputs with low-level enable
Xnor8L untimed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2TH timed single-bit “xnor” gate with 2 inputs with high-level enable
Xnor3TH timed single-bit “xnor” gate with 3 inputs with high-level enable
Xnor4TH timed single-bit “xnor” gate with 4 inputs with high-level enable
Xnor8TH timed single-bit “xnor” gate with 8 inputs with high-level enable
Xnor2TL timed single-bit “xnor” gate with 2 inputs with low-level enable
Xnor3TL timed single-bit “xnor” gate with 3 inputs with low-level enable
Xnor4TL timed single-bit “xnor” gate with 4 inputs with low-level enable
Xno8TL timed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2MH untimed multi-bit “xnor” gate with 2 inputs with high-level enable
Xnor3MH untimed multi-bit “xnor” gate with 3 inputs with high-level enable
XnordMH untimed multi-bit “xnor” gate with 4 inputs with high-level enable
Xnor8MH untimed multi-bit “xnor” gate with 8 inputs with high-level enable
Xnor2ML untimed multi-bit “xnor” gate with 2 inputs with low-level enable
Xnor3ML untimed multi-bit “xnor” gate with 3 inputs with low-level enable
Xnor4dML untimed multi-bit “xnor” gate with 4 inputs with low-level enable
Xnor8ML untimed multi-bit “xnor” gate with 8 inputs with low-level enable
Xnor2TMH timed multi-bit “xnor” gate with 2 inputs with high-level enable
Xnor3TMH timed multi-bit “xnor” gate with 3 inputs with high-level enable
Xnor4TMH timed multi-bit “xnor” gate with 4 inputs with high-level enable
Xnor8TMH timed multi-bit “xnor” gate with 8 inputs with high-level enable
Xnor2TML timed multi-bit “xnor” gate with 2 inputs with low-level enable
Xnor3TML timed multi-bit “xnor” gate with 3 inputs with low-level enable
Xnor4dTML timed multi-bit “xnor” gate with 4 inputs with low-level enable
Xnor8TML timed multi-bit “xnor” gate with 8 inputs with low-level enable

62

