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Abstract

Medical Expert Systems have been under development for several years, MYCIN [1] being a
typical example of a major project. Many of these recent systems have been constructed
through expert opinions. In this paper we focus our attention on the semi-automated
construction of a classifier directly from the database itself. The methodology employed
utilises a data set specifically concerning the domain of Acute Abdominal Pain (AAP),
courtesy of St John’s Hospital, Livingston, Scotland. Our objective is : given a set of diseases
the computer diagnostic system will use a certain procedure to classify patients in accordance
with their symptoms.
   The classifying procedure we propose to use centers on the assumption of independence.
More specifically, a model described by naive Bayes (some times referred to as simple Bayes)
and a new proposed model derived from Mutual Information Measure (MIM). Both models
are constructed from a 2/3 randomly selected subset of the AAP data set and then validated by
the remaining 1/3 unseen test data sample.
   A total of 3705 patient record test samples were classified using the two models and
compared to the results obtained by the Doctors at St John’s Hospital. The MIM classifier
identified correctly 70.04% of the unseen test samples with the naive Bayes classifier
achieving 73.17%. In comparison to the Doctors’ 70.77%, both models of independence
performed with a similar level of expertise, naive Bayes being marginally higher.
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1   INTRODUCTION

EARLY work in Artificial Intelligence concerning the building of expert systems involved a
tedious process of manual knowledge acquisition [2]. Through a procedure of assessment and
elicitation experts were required to be interviewed in order to obtain prior estimates of
relevant quantities. This presented knowledge engineers with a problem. Whilst on one hand,
domain experts may be needed in order to circumscribe the learning component, for example,
which variables might be used, what is being predicted from what, etc. On the other hand,
domain experts can be poor at judging their own limitations and capabilities, and estimating
probabilities [3]. However, to build a model and carry out subsequent evaluation to determine
what's going on with the data, we often require prior knowledge and this may only be
obtainable from domain experts.
  This sort of dilemma led naturally to the development of systems whose elicitation processes
suffered less constraints and uncertainty. Researchers such as Pearl [4] and Spiritus [5]
proposed through their work some of the earliest algorithms for learning structure from data.
Essentially, on the assumption that there is a sufficient volume of data, in order to accurately
estimate various probabilities, a graphical structure with parameters can be reconstructed.
This approach removes the knowledge acquisition bottleneck and reduces the dependency
upon expert subjectiveness.
  The theory of network identification from data forms a precursor to techniques for learning
using representative samples. The earliest result in structure learning was the Chow and Liu
algorithms for learning trees from data [6]. That is it learns a Bayesian network whose shape
is a tree. Kutató[7] demonstrated further that more complex structure learning was possible
from quite reasonable sample sizes.
  Other early work on structure learning was often based on identification methods and the
reader is directed towards [4,5,8,9] and to [34,35,36,37] for systems that extract knowledge
from databases.
  In this paper we present two models that represent methodologies of semi-automated expert
system construction. Using a domain specific database describing AAP both models extract
the structure and corresponding branch parameters, directly from the database. One model is
founded upon a simplification of Bayes theorem, the other is a modification to Chow and Liu
[6] and its tree construction algorithm. Both models will be investigated in respect of their
ability to classify and compared to results obtained from domain experts on a sample of
unseen test data.
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2   HISTORY OF THE DATABASE - ST JOHN’S HOSPITAL

PRIOR to patient records being formalised into a standard format, during Accident and
Emergency (A&E) admittance, the average success rate for diagnostic accuracy was around
55%. This resulted in 18% of all emergency abdominal operations being unnecessary with the
patient being placed in unnecessarily high risk, discomfort and subsequent loss of working
days.
The introduction of a standard format for collecting case history of patient symptoms and
examination increased the casualty officers’ diagnostic accuracy to 66%. Essentially a
standard data collection form containing 33 data points covering 135 features was completed
during a patients examination on arrival to the A&E department.
  A natural progression from the manual completion of standard forms was the introduction of
a computer assisted diagnostic system. Work previously carried out by Professor Tim de
Dombal in the academic unit, Leeds [10,11] was continued by Mr AA Gunn at Bangour
General Hospital. A computer assisted diagnostic program was introduced as routine practice
into the A&E department. Casualty officers were required to enter the case history and
examination, using the standard form as a source of input for all patients entering A&E. In
return the computer would supply the probability of a disease (one from a possible nine).
  With the examination procedures now structured it was possible to follow up cases to not
only determine what actually happened to the patient but provide the casualty officers with
feedback of their ‘initial’ diagnostic accuracy.
  The introduction of the completed system together with an auditing procedure increased the
diagnostic accuracy of the casualty officers to 76%.
  The collective information gathered both during examination and subsequent audit
administration formed what is considered the largest database of AAP in Europe and is
abbreviated as CADA. The Computer Assisted Diagnostic and Audit database is essentially a
collection of patient records for every abdominal pain attendance containing every symptom
and investigation. Each completed file records the Doctors’ ‘initial’ diagnosis, the computers
suggested diagnosis ( based upon a naive Bayes model) and the ‘actual’ diagnostic group a
patient was determined as really belonging to, on their discharge from hospital.

2.1   The CADA Database - Description

The CADA database will be used to test the proposed methods. The total consists of 10,927
records of patients who were admitted to hospital suffering from acute abdominal pain. The
actual contents of this database far exceed the requirements of this paper and mainly provide
information necessary for Hospital Audits. The precise format relevant to this paper can be
found in Appendix B. The CADA database consists of nine groups as defined by the experts
concerning the domain of Acute Abdominal Pain (AAP). These are : Appendicitis (APP),
Diverticulitis (DIV), Perforated Peptic Ulcer (PPU), Non Specific Abdominal Pain (NSAP),
Cholecystitis (CHO), Intestinal Obstruction (INO), Pancreatitis (PAN), Renal Colic (RCO)
and Dyspepsia (DYS). With the exception of one attribute namely ‘AGE’, which is strictly a
continuous variable, all of the 32 attributes represent discrete variables, the Doctors
themselves have provided the discrete parameter conversion. The group NSAP is not actually
a diagnostic group but a catch all category into which the doctors assign the patients who do
not fit into one of the other true eight diagnostic groups. PAN is a poorly characterised group
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as many of the significant symptoms, such as a blood test for levels of alcohol, are not
included within the 135 symptoms recorded during patient examination. For the proposes of
this work, the database sample has been partitioned into an ‘extraction/learn’ and test block.
The extraction/learn part being approximately 2/3 whilst the test, the remaining 1/3 of the
entire sample size. The data is randomly split into the two partitions. One comprising of 7222
training samples (2/3) and the remaining 3705 samples representing unseen test data (1/3
external). Table 1 shows the actual data distributions.

Disease
Group

 Training
Data

Test (External)
Data

Totals

APP 770 385 1,155
DIV 182 92 274
PPU 112 56 168

NSAP 3,344 1,764 5,110
CHO 614 308 922
INO 456 228 684
PAN 144 72 216
RCO 573 287 860
DYS 1,025 513 1,538

Totals 7,222 3,705 10,927

                                                Table 1. Sample Distributions.

  With reference to Appendix B, overall there are 33 symptoms and 9 diagnostic groups or
classes. Each symptom has associated with it a set of parameters, for example symptom
number 21 MOOD has parameters : normal (21/0), distressed (21/1), and anxious (21/2). In
total there are 135 parameters describing the 33 symptoms. In a similar manner to the
symptoms, diagnostic groups have 2 parameters namely, Absent and Present.
  On examination of the database, records were found to have multiple parameter values
stored in respect of some of the symptoms and in other cases none of the symptoms
parameters were recorded. Rather than ignore these anomalies, two additional parameter
values have been attached to each of the symptoms. They are : missing (99) and composite
(88). For example MOOD number 21 will now be described by parameters normal (21/0),
distressed (21/1), anxious (21/2), composite (88) and missing (99). This increases the input
stream from 135 to a total of 201.
  It is possible to gather groups of symptom parameters that have been assigned to composite
(88) attributes, and represent them as a ‘single’ combinatorial parameter in respect of each
symptom. Assuming that the data representing these combinations of parameters is not too
sparse. In deed the G&T [12] system actually considers symptom parameters as a series of
combinations, however, in this system 2χ  thresholding is employed to determine irrelevance
and overcome the problems of scarcity. In this paper, we will be assuming models of
independence. Symptom parameters grouped in this way (considered to be significant by 2χ
tests) imply dependency and so conditional independence is no longer valid. In addition a
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symptom consisting of n parameters, would mean that a symptom parameter list would
expand to 2n - 1 (missing (99) items not being included), resulting in a rise of complexity.
With this in mind we shall avoid using this form of representation and assign (88) to all
composites.

3    MODELS OF INDEPENDENCE

WHEN a diagnosis is performed, and it is necessary to take into account more than one
symptom, the situation becomes complicated. However, a simplification is possible if it can
be assumed that certain symptoms are independent of each other. Previous work that assumed
a model of independence proved both to perform well, sometimes outperforming
conventional dependency models, and to reduce the computational complexity in dealing with
dependencies. Professor Tim de Dombal’s system [10,11], which assumed independence in
naive Bayes, successfully applied the theorem to the diagnosis of Acute Abdominal Pain
diseases. Another was PROSPECTOR [13] which was designed to aid geologists in
evaluating mineral sites for potential ore deposits. The reader is directed to Michie [14,15] for
a detailed study comparing the naive Bayes classifier to other learning algorithms.
  The development of both these systems was based on a set of controversial assumptions.

Ø The symptoms must be independent. That is, the appearance of one symptom cannot make
a second symptom more likely.

Ø The disease set must be complete. This assumes that a patient will have a diagnostic
outcome that must be one of the diseases represented by the system.

Ø The diseases must be mutually exclusive. It assumes a patient can have one and only one
disease.

  A set of n hypothesis is said to be mutually exclusive with respect to I if

 ( ).0)|,( contentnInformatiobackgroundisIwherejiforIHHP ji ≠=

  Two models of independence are presented in this paper and are both evaluated using a
database describing records of patients suffering from AAP. The first is a simplification of
Bayes theorem, the second a new approach utilising Mutual Information Measure. Both build
a classifier from ‘extraction/learning’ data and subsequently use unseen test samples to assess
their individual performances.

4    BAYES THEOREM

THE Rev. Thomas Bayes was an 18th century mathematician who derived a special case of
this theorem [16]. The theorem was generalised by Laplace [17], and represents the basic
starting point for inference problems using probability theory as logic [18].
  Machine learning researchers are often interested in determining the best hypothesis from
some space H, given the observed training data D. One way to specify this best hypothesis is
to demand the most probable hypothesis, given the data D together with any initial knowledge
about the prior probabilities of the various hypothesis in H. Bayes theorem provides a direct
method for calculating such probabilities. More precisely, Bayes theorem provides a way to



Page 5

calculate the probability of a hypothesis based on its prior probability, the probabilities of
observing various data given the hypothesis, and the observed data itself.
  The Bayesian approach to classifying a new instance is to assign the most probable target
value Vmap (maximum a posteriori), given the attribute values ),,,( 21 naaa K  that describe the
instance.

                    
),,,(

)()|,,(
maxarg

21

21

n

jjn
map aaaP

VPVaaaP
V

K

K
=

                                VV j ∈

  Using Bayes theorem we can rewrite this as

                   
)()|,,(

maxarg 21 jjn
map

VPVaaaP
V

K
=   … … … … … … … … … …  (1)

                              VV j ∈
           

  Using the training data, we can estimate )( jvP  simply by converting the frequency with

which each target value jv  occurs in the training data. Estimating the different

)|,,,( 21 jn vaaaP K  terms in the same way is not however feasible without a great amount of
training data. Since the number of these terms is equal to the number of possible instances
times the number of possible target values, then we would need to see every instance in the
instance space many times in order to obtain reliable estimates.

4.1    Naive Bayes - Model I

The naive Bayes (NB) classifier is based on the simplifying assumption that the attribute
values are conditionally independent given the target value. That is, the assumption is that
given the target value of the instance, the probability of observing the conjunction

naaa ,,, 21 K  is just the product of the probabilities for the individual attributes :

                ( ) ( )∏=
i jijjn vaPvPvaaaP |)|,,,( 21 K

  If we substitute this into (1) we get :

               ( ) ( )∏=
i jijNB vaPvPV |maxarg … … … … … … …  (2)

                          VV j ∈

where )|( ji vaP   terms can be estimated from the training data and is just the number of

distinct attribute values times the number of distinct target values.  Thus )( jvP  and

)|( ji vaP  terms are estimated using their frequencies over the training data. Essentially, the
set of estimates corresponds to the ‘learnt’ hypothesis and is used to classify each new
instance by applying the rule of equation (2) above.
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  To classify AAP we require a model that can deal with observed patterns of symptoms, and
through the model determine the most probable disease or posterior probability.  If we let
P(H) denote the initial probability that hypothesis H holds, before we have observed the
training data. (prior probability). P(E) denote the prior probability that training data E
(evidence pattern) will be observed and P(E|H) denote the probability of observing data E
given some world in which hypothesis H holds then Bayes theorem provides a way to
calculate the posterior probability P(H|E).

That is

               ( ) ( ) ( )
( ) ( )3

|
| KKKKKK

EP
HPHEP

EHP =

now if E is described by factors such as symptom parameters giving (E1, E2, ..... En)
then

              ( ) ( ) ( ) ( ) ( )4,,|,|| 213121 KKKKKKHEEEPHEEPHEPEP ⋅⋅=
and

              ( ) ( ) ( ) ( ) ( )5,|| 213121 KKKKKKEEEPEEPEPEP ⋅⋅=
so

             ( ) ( ) ( )
( )

( )
( ) ( )6

|
,||

|
12

12

1

1 KKKKKK
EEP

HEEP
EP

HEP
HPEHP ⋅⋅=

 In the case of the naive Bayes classifier, we assume that the instance attribute E1 is
conditionally independent of the instance attribute E2 given the target value H.

Under this assumption equation (6) becomes simplified to :

           ( ) ( ) ( )
( )

( )
( )

( )
( ) ( )7

|||
|

3

3

2

2

1

1 KKKKKK
EP

HEP
EP

HEP
EP

HEP
HPEHP ⋅⋅⋅=

4.2    Application of Naive Bayes to CADA Database.

The ‘extraction/learning’ partition was used to construct the naive Bayes model and the
unseen test data used to validate it. The model in this particular case being the calculation of
the marginal and conditional probabilities using the information contained in the database,
Equation (7) now represents an equivalent discriminator accepting the test data as input and
producing nine probabilities as its output. In this case the highest probability, corresponding
to a diagnostic group, is taken to be the resulting classification in respect of a particular test
sample presented to the model. Table 2 displays the resulting classification for naive Bayes,
with the off-diagonals indicating the miss-classifications.
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   Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for
APP

283 3 5 82 0 1 2 1 8 385

Sample for
DIV

0 48 5 19 1 11 1 3 4 92

Sample for
PPU

0 0 41 0 5 2 7 0 1 56

Sample for
NSAP

130 44 8 1,348 23 70 4 69 68 1,764

Sample for
CHO

1 0 7 12 192 22 15 4 55 308

Sample for
INO

9 16 6 25 8 140 12 4 8 228

Sample for
PAN

1 2 8 3 7 5 23 2 21 72

Sample for
RCO

7 7 1 29 8 3 2 228 2 287

Sample for
DYS

2 9 7 30 20 16 20 1 408 513

Totals 433 129 88 1,548 264 270 86 312 575 3,705

Table 2. The Test Data  Set Results 73.17%

4.3    Discussion of Results.

The comparative model of independence, defined here by naive Bayes, can be seen to perform
extremely well. Its performance as a classifier shows it achieving 73.17% for the unseen test
sample. Clearly an indication that as model of 'independence' it can be very efficient,
particularly as many an expert would argue that a model of dependence should be a better
classifier, especially for medical data applications.
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5    A MUTUAL INFORMATION MEASURE MODEL

SHANNON’S information theory [19] has spawned many artificial intelligence applications
particularly those of the machine learning community. ID3 [20,21] designed for dealing with
problems where there are many attributes and the training set contains many objects, and
C4.5 [22] its direct descendant, are prominent examples of information measure utilisation.
CART [23] is another example of employing in its initial development the information
measure. This system was constructed to solve problems met by designers of some inductive
learning systems, with the objective of deriving efficient node splitting criteria. In fact the use
of mutual information has been found in the selection of features in supervised neural
network learning [24] and for discovering dependencies in DNA sequences [25].
  In this paper a new model of independence is presented which will use the mutual
information measure to extract the 'structure' of a 9 class group directly from the CADA
database. This is essentially an extension to work carried out on a subset of this database [26].

5.1    Learning Structure from Data

Network construction directly from empirical observations has been proposed by Pearl [27].
The basis of construction lies in first extracting the undirected tree using the Chow/Liu
algorithm [6] and then determining the corresponding branch parameters.
  Chow/Liu proposed that in order to determine the best tree dependent distribution that
approximates an estimated or measured distribution the Kullback-Leiber cross entropy
measure [28,29] could be chosen as a distance criterion between distributions. For the two
distributions P and P’:

                                      ( ) ( ) ( )
( ) ( )8log, '

' KKKKKK
xP
xP

xPPPD
x∑=

  That is, amongst all the spanning trees that one can draw on n variables, each yielding a
product Pt, the closest Pt to the measured or estimated P can be determined. The measure is
non-negative and attains a value 0 if and only if P’ coincides with P. The distance measure of
(8) can be minimised by projecting P on any maximum weight spanning tree (MWST), where
the weight on the branch (Xi , Xj) is defined by the mutual information measure :

                           ( ) ( ) ( )
( ) ( )90

,

,
log,, ',

KKKKKK≥= ∑
ji

ji

XX jiji XXP

XXP
XXPXXI

ji

Similarly the mutual information between the two variables Xi and Xj can be represented by :

                          ( ) ( ) ( )
( ) ( )10

()
,

log,,
,

KKKKKK
ji

ji

XX jiji XPXP
XXP

XXPXXI
ji

∑=

Equation (10) will be the representation employed for the purpose of generating the model.
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5.2    Chow/Liu and Structure Extraction

With the assumption of symptom independence, discussed earlier, the mutual information
measure was calculated by applying (10) to all variable couples for a training data set of 7222
items. Initially both symptom and diagnostic groups are considered equally, resulting in 9 +
33 variables. (The symptom parameters are summed with respect to each symptom block).
For each diagnostic group the corresponding branch mutual information measures were
collected generating a single diagnostic tree structure as shown in figure 1.

                        

 Dn

S   S ...........S

MIM wts S-Sn = 1..9 1 33

1 2 33

Figure 1 – Individual Structure

Thus nine trees will be constructed, one for each of the diagnostic groups.
In each case only the non-negative values of information measure are used with negative
values being discarded as invalid.
     Figure 2 represents the constructed mutual information measure model.

Figure 2 – MIM Model Nine Group Structure

                   Output
layer

                       Input Layer

D(APP)     D(DIV)     D(PPU)
D(...)

S    S   S . . . . . . . . . . . . . . S
1 2 3 33

wts
(MIM)

    Diagnostic
   Groups

 Symptoms
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5.3    The MIM Model as a Classifier - Model II

In order to define a classifier, We propose to consider the MIM as a form of weight. With
respect to each branch connecting a symptom to a particular diagnostic group the calculated
value of non-negative information measure will represent the strength or weight for that
particular branch. Similarly for the other model branches. Since a model of independence is
assumed there will be no branch connections between symptoms or between diagnostic
groups.
  The tree(s) constructed optimise to obtain a structure such that the tree sum of the mutual
information is maximised. That is, for n significant pairs :

( ) ( )jiji
n

i
XXIwhereXXI ,,

1

∧

=

∧

∑ is the mutual information measure … … … … … … (11)

  In terms of classification, the algorithm maximises the likelihood function representing a
maximum likelihood estimator (MLE) for the dependence tree. To result in a classification,
the input data must match one of the trees describing the diagnostic groups. That is, define the
maximum likelihood estimation for a particular dependence tree.
  Thus multiplying each corresponding branch mutual information measure 'weight' by its
associated input value, results in the total depicted by (11). Subsequently an equivalent linear
discriminate function can be utilised as a means by which a decision can be made. This
represents a similar concept to that employed by Gallant [30,31] in his connectionist Expert
System.  That is :

                                    ( ) ( )12,
1

)(1
max

KKKKKKiji
n

iI XXI
I

S ∑ =

∧
=

where ( ))(max , ijiTree
XXII ∑=  for each particular diagnostic tree, and ( ))(, iji XXI  is

calculated from (10).

Since the diagnostic groups are not equal in sample size, the value Imax acts as a group
'balance' unifier.

Thus the resulting total depicted by (11) can achieved by multiplying (12) by the associated
input value :

                              ( ) ( )13,
1

)(1
max

KKKKKKinputXXI
I

S iji
n

iI ×= ∑ =

∧

where SI > 0 defines a TRUE outcome.

Clearly (13) has associated within its definition a strength or ordering. By taking the highest
positive value of 'S' amongst the four diagnostic groups, the most likely outcome can be
determined.
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  A direct comparison of (13) with Gallants' linear discriminant function suggests that a
substitution of the mutual information measure branch weights could be made for those
Gallant determined through use of the pocket algorithm [30].

5.4 Application of MIM Classifier to CADA Database.

Applying the Chow/Liu algorithm [6] and assuming a model of independence, the extraction
data was successfully transformed into a single layer tree structure with MIM weights
attached to each individual branch. In fact nine trees were generated, each one representing
one of the nine diagnostic groups. Using this structure the unseen test data was inputted into
the model with the resulting classification achieved as shown in table 3, whilst table 4 the
results from the 'extraction' partition data.
  The level of success for the entire test data set was 69.96% and the 'extraction' data set
66.2% The shadowed diagonal represents the classification results that were correctly
identified, with the level of miss-classification indicated by the off-diagonal scores.

                                                   Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for
APP

286 0 9 79 0 0 4 2 5 385

Sample for
DIV

6 23 7 38 1 11 4 0 2 92

Sample for
PPU

2 0 42 2 4 1 3 0 2 56

Sample for
NSAP

125 22 14 1,418 18 63 11 50 43 1,764

Sample for
CHO

6 1 10 40 148 15 20 3 65 308

Sample for
INO

14 2 11 33 4 128 17 7 12 228

Sample for
PAN

3 1 12 5 3 2 18 2 26 72

Sample for
RCO

10 5 1 60 8 4 4 195 0 287

Sample for
DYS

6 5 7 102 14 13 23 9 334 513

Totals 458 59 113 1,777 200 237 104 268 489 3,705

Table 3. The Test Data Set Results 69.96%.
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   Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for
APP

590 0 22 141 2 3 2 3 7 770

Sample for
DIV

8 42 15 74 2 33  4 2 2 182

Sample for
PPU

4 2 75 11 4 1 5 1 9 112

Sample for
NSAP

511 44 30 2,416 36 104 34 79 90 3,344

Sample for
CHO

12 1 25 63 316 22 25 11 138 613

Sample for
INO

19 19 16 90 3 269 18 9 13 456

Sample for
PAN

5  1 18 11 15 8 37 4 45 144

Sample for
RCO

24 6 4 126 7 8 8 389 1 573

Sample for
DYS

11 4 15 194 45 19 76 18 643 1,025

Totals 1,184 119 220 3,126 430 467 209 516 848 7219*

Table 4. The 'Extraction' Data Set Results 66.2%.

* Note: Three patient records were found to have several missing symptoms which resulted in
NSAP and CHO failing to classify them into any of the nine groups, thus being lost.

5.5 Discussion of the Results

With the nine diagnostic groups defining the full CADA classifier, the poorly characterised
groups clearly have suffered in respect of the other groups. The overall classification for the
unseen test data was 69.96% which is lower than that achieved when only four of the groups
was first investigated [26]. PAN and DIV being particularly low.
  In the case of the extraction partition data set, the overall classification was 66.2% which is
less than the result obtained for the test sample. This perhaps suggests there is room for some
improvement through optimisation and that the influence of NSAP, that is its generalised
structure, is strong enough to steal many of the other group individual 'true' test samples.
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6    REDUCING THE MODEL COMPLEXITY

STUDIES and applications utilising contingency tables have long been a part of statistical
analysis. Kullback [28] in conjunction with the concepts of communication theory proposed
that the significance 2χ  [32, 33] could be approximated by the independence component

( )21 : HHI
∧

 multiplied by 2. H2 is the null hypothesis and H1 the alternative. That is :

               jiijjiij PPPHealternativtheHandPPPH ..11..2 :: ≠=
If we consider in particular the two - way table then we have

                   ( ) ( )14~:2 2
1 1

..

..
,

21 KKKKKKχ∑ ∑= =

∧ 
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j
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ji
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N
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N
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for (r-1)(c-1) degrees of  freedom.
   Where for N independent observations xij is the frequency of occurrence in the ith row and
jth column and :

                    ∑ ∑ ∑ ∑= = = ==== c
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Denoting probability by P with corresponding subscripts that is :
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Then equation (14) can be written as :

                                                ( ) ( )15log:2
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using (16), equation (10) can be rewritten as :

                   ( ) ( ) ( )
( ) ( )∑ ×

=
ji xx

ji

ji
jiji XPXP

XXP
XXPXXI

,

,
log,,  and so :

                   ( )172 2 KKKKKKχ≈×× NI   for df (r-1)(c-1)

By applying equation (17) to the mutual information measure model, the input variables that
were found to be independent, in respect of each diagnostic group could be removed. That is,
the mutual information I( Xi , Xj ) between attribute and class can be used to judge if the
attribute could, of itself, contribute usefully to a classification scheme thereby offering a
measure of irrelevance. Non-significant or irrelevant branches were identified using five
different 2

cχ  levels of confidence (c = .9, .95, .955, .99, .995). Each of these modified models
were again tested with the unseen test data samples. The resulting classifiers for both
thresholding and non-thresholding did not appear to be significantly different. However, the
models after thresholding did have a reduction of the number of input variables, although



Page 14

only visible at the individual structure levels, and thus an overall reduction in model
complexity.
  The tables in Appendix A illustrate the levels of misclassification (off - diagonals) for each
of the threshold in respect of the 3705 test samples.

6.1    Discussion of Results

In general the application of kullback thresholding to the MIM model did not improve the
overall classification results dramatically. The best or optimal obtained was 70.04% for 2

99.χ .
However, what kullback did achieve was a reduction in the model complexity and thus a
reduction in the redundancy with out loss of performance.
  It was clearly indicated that for all levels of confidence applied to the 'extraction' partition,
symptoms 2, 3 ,4, 26 and 32 were found to be significant for all of the nine diagnostic groups.
These particular symptoms will have very high values of mutual information measure in
respect of their coupling with the nine groups, and thus will have very significant branch
weights.

7    THE DOCTORS ‘INITIAL’ CLASSIFICATION - THE EXPERTS

WHEN a patient is examined by a Doctor, a record of the symptom parameters together with
the Doctors' initial diagnosis is recorded and stored in the Hospital CADA database. This can
be considered as the Experts classification results and can be used as a comparitor for the
MIM and naive Bayes resulting classifications. Table 5 displays the level of success for the
test partition sample data.
  In the doctors case, the resulting classification output groups are not restricted to the nine
AAP ones selected to do this research (i.e. the CADA database). The data set represents a
sample with known resulting diagnostic group assignments as recorded on a patients
discharge from hospital. That is, the actual disease attributed to a particular set of symptoms
for a particular patients is already known as a fact.
  When a doctor however, examines a patient, no restrictions are imposed to force a decision
to fall into these nine categories during the 'initial' diagnostic assignment. Those that do fall
outside the nine groups are considered still considered as miss-classifications, and the table of
results thus shows a total sample size less than the actual test size of 3705.
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Classification Output Result
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for
APP

308 3 3 42 3 2 2 2 2 367

Sample for
DIV

1 47 6 11 3 13 0 1 1 83

Sample for
PPU

0 0 41 1 5 2 1 0 4 54

Sample for
NSAP

211 23 5 1,169 17 44 6 42 31 1,548

Sample for
CHO

3 2 8 10 212 10 14 3 34 296

Sample for
INO

7  3 2 14 2 174  3 1 7 213

Sample for
PAN

0 2 6 5 4 4 45 1  3 70

Sample for
RCO

5 1 1  7 5 3 1 240 2 265

Sample for
DYS

3 4 10 44 27  7 19 0 386 500

Totals 538  85 82 1,303 278    91 259 290 470 3396*

Table 5. The Test Data Set Results 70.77%.

 *Note: 309 items have been miss-classified into groups outside the nine used.

7.1    Discussion of Results

For the randomly selected test partition used within this paper table 5 displays the level of
classification that the Doctors achieved on their initial estimate of the patients disease group.
At 70.77% this is a representative level compared to the MIM, but less than naive Bayes.
What is particularly interesting is the PAN and DIV individual levels of classification
success. DIV is essentially as high as that in naive Bayes but PAN is considerably better than
either the MIM or naive Bayes classifiers. Clearly since the database does not define PAN
fully, the Doctors must be using heuristics for these diagnosis, as they would not have had the
opportunity to do blood tests prior to their initial input to the CADA database record.
  It should also be noted that the Doctors are not restricted to the nine groups that have been
selected for Acute Abdominal Pain, that is this database subset. Female patients have other
categories for which many patients can be assigned. Therefore in the case of the Doctors
classification totals of 3396 it indicates that 309 patients may have been classified outside the
nine groups and thus falling short of the 3705 test partition.



Page 16

8    COMPARISON OF THE MODELS/EXPERTS CLASSIFICATIONS

TABLE 6 displays the classification results for all tests carried out within this paper. The
clear winner is naive Bayes, with the remainder close behind averaging 70%.
In table 7 the three classifiers, one being the human expert, are compared in respect of the
individual nine groups.
  As already discussed Pancreatitis (PAN) is generally diagnosed when patients with
gallstones, or those who are suspected alcoholics, are given blood tests. Since these
symptoms and tests are not recorded in the database the resulting poor success rate is easily
explained. However, this is only true for the two statistical models as the experts were able to
apply heuristics and perform considerably better. The statistical classifiers failing due to the
lack of data.
  In table 7 the group classification for NSAP is particularly high for the MIM and closely
followed by naive Bayes. In the case of the experts this is not so high. It would appear that the
Doctors are reluctant to assign NSAP to patients but would rather suggest one of the other
eight groups. Statistically this is not the case and the two models which depend upon data are
thus performing better here.

Doctor Test Data Extract. Data Test
2
95.χ

Test
2
9.χ

Test
2
97.χ

Test
2
99.χ

Test
2
995.χ

naive Bayes

70.77% 69.96% 66.20% 69.9% 69.7% 70.1% 70.04% 70.1% 73.17%

Table 6. The Overall Test Data Set Results.

Group MIM (%) 2
99.χ  Doctor (%) naive Bayes (%)  Sample Size

APP 74 80 73.5 385
DIV 27.2 51.1 52.2 92
PPU 75 73.2 73.2 56

NSAP 80.8 66.3 76.4 1,764
CHO 47.7 68.8 62.3 308
INO 54.8 76.3 61.4 228
PAN 25 62.5 31.9 72
RCO 68.3 83.6 79.4 287
DYS 64.5 75.2 79.5 513

Overall (%) 70.04 70.77 73.17 3,705

Table 7. The Test Data Set Results - Three classifiers.

  The MIM has not performed quite as well as naive Bayes but does match that of the experts.
In general all models are in the 70% area for the unseen test data. Where the doctors clearly
out perform both statistical systems in the group PAN, however, it would appear that the
experts have not relied on the data alone but used heuristics which cannot be considered a
comparable factor in this case.
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9    FURTHER WORK

THE group NSAP not only contains the largest distribution of data samples but is generally
the group into which many of the test samples are assigned. This is true for both correctly
identified and many miss-classified group samples.
  NSAP is a generalised group which is used to describe many AAP characteristics, such as
stress, constipation and other non-specific areas. It is essentially a catch all category and used
when a patients symptoms and examination results are such that the doctor cannot assign one
of the eight true groups normally attributed to AAP.
  The current MIM classifier treats NSAP as a real group, however, it is possible to model the
classifier in a similar manor to the methodology adopted by the experts. That is, we only
consider eight groups as the output diagnostic groups and attempt to identify the NSAP test
samples from within each of these eight groups. This can be approached by assuming that the
Chow & Liu extraction, together with Kullback thresholding, extracts the structure of each
diagnostic group with relatively distinct features. Thus NSAP samples should be easily
identified as not belonging to any of the true eight structures. Research into exactly how to
recognise the NSAP samples within the eight diagnostic groups will be the principal focus for
further work.

10    CONCLUDING REMARKS

THIS paper described two classifiers that were modelled on the assumption of independence.
Both classifiers were generated directly from the domain database describing Acute
Abdominal Pain, and subsequently evaluated in order to determine their diagnostic capability.
The results were compared with those obtained from the experts themselves and found to be
of a similar order of success. The MIM proposed classifier like the naive Bayes classifier
have each illustrated that the assumption of independence can be effectively used to represent
a classifier for the domain AAP. In addition the proposed MIM classifier has demonstrated a
successful addition to the family of classifiers, and offers a promising mechanism for semi-
automated expert system construction.
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A    Results From Applying Different Levels of Threshold

 Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for APP 284 0  9  81 0 0 4 2 5 385
Sample for DIV 6 23  7 38 1 11  4 0 2  92
Sample for PPU 2 0 42  2 4 1 3 0 2  56
Sample for NSAP 124 24 12 1,422 18  62 14 46 42 1,764
Sample for CHO  6 1  9 39 150 14 22  3  64 308
Sample for INO 14  2 11 36 4 125 18 6 12 228
Sample for PAN 2  1 10  5  3 2 20 3 26  72
Sample for RCO 10 7 1  61 8 4 5 191 0 287
Sample for DYS  6 5 5 104 14 13 28  5 333  513
Totals  454  63 106 1,788 203 232 118 256 486 3,705

Table A-1. The  2
9.χ Test Data Set Results 69.9%.

 Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for APP 284 0  9  81 0 0 4 2 5 385
Sample for DIV 6 22  7 39 1 11  4 0 2  92
Sample for PPU 2 0 42  2 4 1 3 0 2  56
Sample for NSAP 124 22 12 1,422 19  63 13 46 43 1,764
Sample for CHO  6 1  9 39 149 14 25  3  62 308
Sample for INO 14  3 11 36 4 124 18 6 12 228
Sample for PAN 2  1 12  5  3 2 18 3 26  72
Sample for RCO 10 7 1  58 8 4 6 193 0 287
Sample for DYS  6 6 6  104 14 13 30  5 329  513
Totals  454  62 109 1,786 202 232 121 258 481 3,705

Table A-2. The 2
95.χ Test Data Set Results 69.7%.

 Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for APP 2,854 0  9  80 0 0 4 2 5 385
Sample for DIV 6 25  7 37 1 10  4 0 2  92
Sample for PPU 2 0 42  2 4 1 3 0 2  56
Sample for NSAP 120 21 13 1,426 19  61 13 49 42 1,764
Sample for CHO  6 1  9 42 148 14 24  3  61 308
Sample for INO 14  2 11 36 4 125 18 6 12 228
Sample for PAN 2  1 11  7  3 2 18 3 26  72
Sample for RCO 11 8 1  54 8 4 5 196 0 287
Sample for DYS  6 6 6  105 14 11 29  5 331  513
Totals  452  64 109 1,789 201 228 118 263 481 3,705

Table A-3. The 2
975.χ Test Data Set Results 70.1%.
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 Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for APP 285 0  9  80 0 0 4 2 5 385
Sample for DIV 5 25  7 37 1  9  6 0 2  92
Sample for PPU 2 0 42  2 4 1 3 0 2  56
Sample for NSAP 119 21 16 1,428 17  59 14 49 41 1,764
Sample for CHO  6 1  9 42 149 14 23  3  61 308
Sample for INO 14  3 11 37 4 121 21 6 11 228
Sample for PAN 2  1 10  7  3 2 20 2 25  72
Sample for RCO 11 8 1  54 8 4 5 196 0 287
Sample for DYS  6 6 5  105 14 11 31  4 331  513
Totals  450  65 110 1,792 200 221 127 262 478 3,705

Table A-4. The 2
995.χ Test Data Set Results 70.1%.

 Classification Output Results
Disease Group APP DIV PPU NSAP CHO INO PAN RCO DYS Totals
Input Vector
Sample for APP 285 0  9  80 0 0 4 2 5 385
Sample for DIV 6 25  7 37 1 10  4 0 2  92
Sample for PPU 2 0 42  2 4 1 3 0 2  56
Sample for NSAP 119 21 13 1,426 19  62 13 49 42 1,764
Sample for CHO  6 1  10 42 147 14 24  3  61 308
Sample for INO 14  2 11 36 4 125 18 6 12 228
Sample for PAN 2  1 11  7  4 2 18 2 25  72
Sample for RCO 11 8 1  54 8 4 5 196 0 287
Sample for DYS  6 6 6  105 14 11 29  5 331  513
Totals  451  64 110 1,789 201 229 118 263 480 3,705

Table A-5. The 2
99.χ Test Data Set Results 70.04%.
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B    Diagnostic and Symptom Codes for CADA Database

Symptom Value

1 SEX male(1/0), female(1/1)
2 AGE 0-9(2/0), 10-19(2/1), 20-29(2/2), 30-39(2/3), 40-49(2/4), 50-59(2/5), 60-69(2/6), 70 +(2/7)
3 Pain-site Onset right upper quadrant(3/0), left upper quadrant(3/1), right lower quadrant(3/2),left lower quadrant(3/3),

upper half(3/4), lower half(3/5), right half(3/6), left half(3/7), central(3/8), general(3/9), right loin(3/10),
left loin(3/11), epigastric(3/12)

4 Pain-site Present right upper quadrant(4/0), left upper quadrant(4/1), right lower quadrant(4/2),left lower quadrant(4/3),
upper half(4/4), lower half(4/5), right half(4/6), left half(4/7), central(4/8), general(4/9), right loin(4/10),
left loin(4/11), epigastric(4/12)

5 Aggravating Factors movement(5/0), coughing(5/1), inspiration(5/2), food(5/3), other(5/4), nil(5/5)
6 Relieving Factors lying still(6/0), vomiting(6/1), antacids(6/2), milk/food(6/3), other(6/4), nil(6/5)
7 Progress of Pain getting better(7/0), no change(7/1), getting worse(7/2)
8 Duration of Pain under 12 hours(8/0), 12-24 hours(8/1), 24-48 hours(8/2), over 48 hours(8/3)
9 Type of Pain steady(9/0), intermittent(9/1), colicky(9/2), sharp(9/3)

10 Severity of Pain moderate(10/0), severe(10/1)
11 Nausea nausea present(11/0), no nausea(11/1)
12 Vomiting present(12/0), no vomiting(12/1)
13 Anorexia present(13/0), normal appetite(13/1)
14 Indigestion history of dyspepsia(14/0), no history of dyspepsia(14/1)
15 Jaundice history of jaundice(15/0), no history of jaundice(15/1)
16 Bowel habit no change(16/0), constipated(16/1), diarrhoea(16/2), blood(16/3), mucus(16/4)
17 Micturition normal(17/0), frequent(17/1), dysuria(17/2), haematuria(17/3), dark urine(17/4)
18 Previous Pain similar pain before(18/0), no similar pain before(18/1)
19 Previous surgery yes(19/0), none(19/1)
20 Drugs being taken(20/1), not being taken(20/1)
21 Mood normal(21/0), distressed(21/1), anxious(21/2)
22 Colour normal(22/0), pale(22/1), flushed(22/2), jaundiced(22/3), cyanosed(22/4)
23 Abdominal Movement normal(23/0), poor/nil(23/1), visible peristalsis(23/2)
24 Abdominal scar present(24/0), absent(24/1)
25 Abdominal Distension present(25/0), absent(25/1)
26 Site of Tenderness right upper quadrant(26/0), left upper quadrant(26/1), right lower quadrant(26/2),left lower

quadrant(26/3), upper half(26/4), lower half(26/5), right half(26/6), left half(26/7), central(26/8),
general(26/9), right loin(26/10), left loin(26/11), epigastric(26/12), none(26/13)

27 Rebound present(27/0), absent(27/1)
28 Guarding present(28/0), absent(28/1)
29 Rigidity present(29/0), absent(29/1)
30 Abdominal Masses present(30/0), absent(30/1)
31 Murphy's  test positive(31/0), negative(31/1)
32 Bowel  sounds normal(32/0), decreased/absent(32/1), increased(32/2)
33 Rectal Examination tender left side(33/0), tender right side(33/1), generally tender(33/2), mass felt(33/3), normal(33/4)

Diagnostic Groups

Disease Value

34 APP Appendicitis
35 DIV Diverticulitis
36 PPU Perforated Peptic Ulcer
37 NSAP Non Specific Abdominal Pain
38 CHO Cholecystititis
39 INO Intestinal Obstruction
40 PAN Pancreatitis
41 RCO Renal Colic
42 DYS Dyspepsia


