
Are Ours Really Smaller Than Theirs?

Simon P Booth

Simon B Jones

Technical Report CSM-141

November 1996



Are Ours Really Smaller Than Theirs?

Simon P Booth

Simon B Jones

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email s.p.booth@stir.ac.uk, sbj@cs.stir.ac.uk

Technical Report CSM-141

November 1996



Abstract

The claim is often made that functional programs are “more” expressive than their imperative
counterparts. This paper examines this claim using a particular measure of (i) program length
and (ii) programming language “level” (a measure of expressive power) both from the work of
Halstead on software metrics.

This paper was presented at the 1996 Glasgow Functional Programming Workshop, held in Ul-
lapool, July 1996. It has been accepted for publication in the proceedings (forthcoming).

i



1 Introduction

Halstead derived a number of measures of programs and other predictive statistics [10]. The two
measures we will examine most closely in this paper are the program length and language level
(both of these measures will be defined in section 2).

Although Halstead’s measures use nice concrete features of programs (number of operators,
number of operands, etc) they do not represent precise science and are the subject of some contro-
versy [4] but these measures provide a more robust test of the “expressive” claim than the often
quoted measure of number of lines [5], although Turner does give sound reasons to justify why
functional programs are shorter. Hudak and Jones [11] also found that a prototype for a Geomet-
ric Region Server written in Haskell was considerably more succinct than equivalents written in
traditional languages.

Most of Halstead’s claims can only be verified experimentally. What gives us the confidence
to proceed is that many experiments have been performed [3], [2], [7], [9], [6] and these confirm
the claims made by Halstead. Halstead [10] summarizes the mean language level for a number of
well known languages:

Language Mean(λ)

English Prose 2.16

PL/1 1.53

ALGOL/68 1.21

FORTRAN 1.14

Assembler 0.88

This table above (apart from the English Prose entry) is drawn from the work of Zweben [12]
which examines the same set of algorithms implemented by the same individual in each quoted
language.

Halstead’s claim is that the higher the mean language level the more powerful the language
is. We prefer instead to say ‘more expressive’ by which we mean that the same algorithm can be
expressed more economically.

We intend in this paper to examine these values for the functional language Haskell [8]. Before
proceeding to the results we give a little background to the work of Halstead and details of how
we counted operands and operators.

2 Background

Before defining the program length and level we should note the following definitions that apply
to a given program (or fragment) being analysed:

η1 = the number of distinct operators that appear in the program (1)

η2 = the number of distinct operands that appear in the program (2)

N1 = the total number of operators (3)

N2 = the total number of operands (4)

N = N1 + N2 (5)

Operators are defined as the arithmetic operators, begin..end, case..of, if..then, etc; that is as
syntactic program constructors. Operands are the variables the operators act on. See section 3
for the exact definitions we used.

The two values that we will examine in this paper have the following definitions:

A prediction of the total program length from the number of distinct operators and operands

N̂ = η1logη1 + η2logη2 (6)

1



and the Language Level (λ) of the language as used in the program:

λ = L̂2V (7)

where the program level

L̂ =
2

η1

η2

N2
(8)

and the program volume
V = Nlog(η 1 + η2) (9)

The program length may not seem a particularly important measure: it is easy to count the
tokens, and to predict the total token count from the number of operators and operands may not
seem particularly useful but Halstead makes a startling claim:

N = N̂ (10)

and therefore that any programming language will exhibit the following relationship between the
number of distinct operators and operands, and the number of actual operators and operands.

N1 + N2 = η1logη1 + η2logη2 (11)

This equality has been verified by many experiments for the imperative languages Fortran,
PL1 [10] and Pascal [6].

We are interested in this measure because we suspect that the “clean” syntax of Haskell, and
the power of its operators, will provide shorter programs (measured by number of tokens) than
imperative ones (all the previous work in the area that we are aware of is for imperative programs).

3 How We Counted

Haskell is a language that supports separate compilation and therefore a program would normally
be broken down into a number of modules. Each module will consist of collections of function
definitions or algorithms. To make our work as comparable as possible we use each individual
function definition to represent an algorithm and do the counting at that level. We have also made
the following assumptions:

• Type and data declarations are irrelevant, so are removed before counting

• Function type signatures are similarly removed before counting

• if. . .then, let. . .in and case. . . of are counted as single operators

• All function names are treated as operators. This is to be consistent with previous work. We
believe that functions are operands for an implicit apply operator but previous work (with
imperative languages) has dealt with subprogram names in calls as operators.

• A notional end-of-statement operator (;) is included for each statement although often in
Haskell this is implicit (again, this is for consistency).

4 Preliminary Results

The results presented in this section are derived from the Happy [1] parser generator included as
part of the nofib suite of programs [14] . Each function is treated as a separate “program” and
N1, N2, η1 and η2 are calculated for each function. Only the modules genutils.lhs, lalr.lhs,
main.lhs, and producecode.lhs have been analysed so far.

2



4.1 Program Length

Reexpressing equation (6) to incorporate a constant of proportionality α:

N1 + N2 = α (η1logη1 + η2logη2) (12)

previous experimental work has verified Halstead’s prediction, that α = 1, for most imperative
languages. However, in our experiments with Haskell, the values we have observed for α are
in the range 0.5-0.75. This indicates that the number of tokens is usually rather less than the
number expected given the values of η 1 and η2. So, on average, a Haskell program is rather shorter
(measured by tokens) than an “equivalent” (i.e. same number of distinct operators and operands)
imperative program. In fact, the number of tokens we actually need to write to construct a Haskell
program may be as low as 50% of the imperative equivalent. One benefit is that there are less
opportunities to make errors!

Why should this be? There may be both syntactic and semantic reasons.
Syntactically, one obvious difference occurs with function application. As noted earlier, the

work with Pascal would count the following code fragment

f (x);

as the three operators f, (), ; and the one operand x. Note that we can consider the () as
representing apply. In Haskell we would almost certainly write this as

f x

which, under our counting scheme, is two operators f, ; and one operand x. We do not count the
apply as there is no symbol representing it. Artificially including an apply operator increases α but
does not make it equal to 1. Indeed if we also choose not to include the implicit end-of-statement
operator the value of α is even smaller.

On the semantic front, rephrasing (12), α will be small if the number of actual uses of each op-
erator/operand is small relative to the number of distinct operators/operands used. In particular,
this will be the case if the number of occurrences of each parameter and ‘where-defined’ identifier
is low. We hypothesize that this is the case, as the semantic operators used in Haskell embody
more computation than is expected in traditional imperative languages (i.e. they give more ‘bang’
per occurrence); however, we have not been able to quantify this yet. A further possibility is that
the effect is due to the practice of introducing new identifiers quite freely, rather than ‘re-using’
old ones (since assignment is not possible).

4.2 Language Level

The table below summarises the results from the modules examined so far, with the language level
λ being calculated for each function definition:

Mean (λ) 2.63

Stan. Dev 5.13

Max (λ) 43.58

Sample Size 88

The maximum λ (43.58) is something of a outlier, the next largest λ is 19.22, but what is
worth noting is the type of function that generates this very large value. We should also note that
this value is also making the standard deviation quite large. The function that generates the λ of
43.58 is the function argFns in the main module. It is reproduced below:

argFns ”-infile” = flag DumpInFile

argFns ”-lex” = flag DumpLex

argFns ”-parse” = flag DumpParse

3



argFns ”-mangle” = flag DumpMangle

argFns ”-lr0” = flag DumpLR0

argFns ”-action” = flag DumpAction

argFns ”-goto” = flag DumpGoto

argFns ”i” = flagWithOptArg OptInfoFile

argFns ”-info” = flagWithOptArg OptInfoFile

argFns ”-template” = flagWithArg OptTemplate

argFns ”-magic-name” = flagWithArg OptMagicName

argFns ”v” = flag DumpVerbose

argFns ”-verbose” = flag DumpVerbose

argFns ”-lookaheads” = flag DumpLA

argFns ”g” = flag OptGhcTarget

argFns ”-ghc” = flag OptGhcTarget

argFns ”a” = flag OptArrayTarget

argFns ”-array” = flag OptArrayTarget

argFns ”o” = flagWithArg OptOutputFile

argFns ”-outfile” = flagWithArg OptOutputFile

argFns ˙ = const Nothing

This is essentially a case statement that handles the command line options when Happy is
started. (The function that generates the λ of 19.22 is of a similar type). argFns has 7 operators:
argFns, flag, flagWithOptArg, flagWithArg, const, =, ; that are used on 84 occasions
and 37 operands which occur 42 times. This gives values for V and L̂ of 687.89 and 0.25. So
we have a relatively large program (as measured by volume) with a high L̂. L̂ is high because
of the ratio of η 2 and N2: each operand occurs at most twice and most only occur once giving a
very efficient use of operands and consequent high language level. It should be noted that when
measures of program complexity are examined ([13]—see section 5) case statements cause the
measures to overestimate the complexity; case structures are clearly a very particular programming
construct.

Before we discuss these results in relation to imperative languages we should investigate what
effect the size of the program (as measured by N) has on the language level. We wish to do this
to eliminate any potential bias caused by small functions like (this is only done in an attempt to
make comparsions with imperative programs more meaningful: we would not expect to find such
small functions in the imperative domain):

startRule = singletonSet (0,0)

Exactly where to choose the cut off is somewhat arbitrary and we present the relevant values for
a range of N. (In each column we exclude programs smaller than the specified N.)

Program Size N>0 N>10 N>20 N>30 N>40

Mean (λ) 2.63 2.82 2.45 2.65 2.95

Stan. Dev 5.13 5.68 6.36 7.07 7.99

Max (λ) 43.58 43.58 43.58 43.58 43.58

Sample Size 88 71 46 37 29

As N increases it is quite clear that the outlying value for λ (argFns) is dominating the results.
There are two ways to deal with this: increase the sample size or eliminate it from the results
(classifying it as an outlier that is causing a bias in the results). The table below summarises the
same results with the large λ removed:

Program Size N>0 N>10 N>20 N>30 N>40

Mean (λ) 2.16 2.24 1.53 1.52 1.50

Stan. Dev 2.62 2.89 1.42 1.51 0.44

Max (λ) 19.22 19.22 7.83 7.83 7.83

Sample Size 87 70 45 36 28

4



We can see that the large λ was dominating the results from N>20 and upwards. To justify
any claims that Haskell has a higher language level than the imperative it would appear that we
“need” to include only the results for functions with ten or more tokens, giving a language level
of 2.24. It is equally clear that as N increases that the language’s level falls! This is due to the
decision to treat functions as operators, as, in (7), the number of distinct operators appears as η 1

in the denominator and logη 1 in the numerator. Not surprising in a functional language we would
expect there to be a preponderance of function calls! For comparative purposes we present the
calculations for the above table but counting functions as operands

Program Size N>0 N>10 N>20 N>30 N>40

Mean (λ) 7.27 7.34 7.25 8.20 9.52

Stan. Dev 17.68 20.31 24.95 27.80 31.37

Max (λ) 171.97 171.97 171.97 171.97 171.97

Sample Size 94 71 46 37 22

(The sample size has grown because some functions previously had no operands and therefore
could not be analysed but changing the counting scheme means that they now have operands and
so λ can be calculated.) argFns is still the outlying value and now generates a considerably larger
λ value. The main point to notice is the large values for the means of λ (again as N increases
argFns is dominating the results); on this occasion its removal changes the language level to 5.50
(with stan.dev 4.25). Whilst treating the functions as operators may not agree with previous work
in the functional domain this seems an entirely natural way to deal with functions—they are, after
all, operands to the implicit operator apply.

5 Further Work

At present we have only analysed work done by two programmers [1] and to draw more general
conclusions it would seem wise to analyse rather more of the nofib suite of programs (particularly
those programs in the Real Set). This will also have the benefit of enlarging the sample size.
At present we cannot emphasize too strongly that the numbers produced in the last section are
preliminary and will be amended when more Haskell programs have been analysed.

Comparisons between various functional languages would seem to be an interesting area of
study as we can control the counting scheme and consistency is assured. Whether we can use the

mean λ to compare between different types of languages is an open question—certainly one must
be careful to compare like with like.

There are other well-known metrics for programs. Perhaps the most widely quoted is McCabe’s
metric [13]. This metric attempts to describe an imperative program in terms of its cyclomatic
complexity. The underlying theory is drawn from graph-theory but the resulting value for the
cyclomatic complexity appears to be very useful—essentially the value derived represents the
number of different paths through the program (called the basis path set). The different paths
through the program can be considered to provide a useful set of tests of the program. The question
that we would like to investigate is whether this measure is lower for functional programs (some
early work we have done would appear to suggest this is the case—implying that the program are
less complex and therefore easier to test and maintain).

6 Conclusions

We started out in this investigation of the area, that is sometimes called “Software Science”, to see
how well it worked with functional languages. In particular, whether it provides any evidence that
programs written in functional languages are shorter (in terms of token count) and more expressive
(as measured by language level) than imperative languages. The motivation for the latter part of
investigation is the table presented in the introduction—it appears to provide evidence that PL/1
is more expressive than Algol 68 which in turn is more expressive than Fortran, and that Fortran

5



is more expresive than assembler—results that would confirm one’s intuition about imperative
languages. Although as we noted in the introduction the whole area of “software science” is the
subject of some controversy.

The initial results appear to confirm that functional languages are shorter than their imperative
equivalents. Whether they are “more expressive” remains an unanswered question.

We must recall that we are using a “science” developed with imperative languages, and that all
the confirming results (as to the accuracy of the proposed measures) are drawn from that domain.
In the functional domain the measures of “software science” appear to break down. In section
4.1 we noted that equation 6 is incorrect for the Haskell programs we have examined. Whilst
this indicates that the operator and operand count should not be be used in Haskell to predict
program length using Halstead’s formula. It does, nevertheless, indicate that the token counts are
lower than would be expected in the imperative domain.

The results for language level (the measure of expressiveness) are rather more difficult to
interpret and appear to add weight to the non-applicability of “software science” in the functional
domain (whatever one’s opinion for the imperative). It might improve matters if we increased the
sample size and included the work of a wider range of programmers but these initial results are
not encouraging.

Also, as already stated, two different counting schemes appear have been used to compare
imperative languages (whole programs and algorithms) and procedure calls are treated as operands
which, in effect, get counted twice if the language uses the “standard” f (x); syntax whereas in
the functional domain we only count f x once unless we deliberately count the implied apply.
More importantly there is the question of how we treat functions themselves: as operators or
operands. Our view is that they are operands to the implicit apply.

Whilst “software science” might provide useful comparators between functional languages,
it does not appear to provide any useful way of comparing functional and imperative languages
(apart from the token count as this is such a striaght-forward measure and as a measure is superior
measure than number of lines as it is unlikely to be influenced by different layout styles). Currently
it is not our intention to extend this investigation but we hope to examine other forms of software
metrics to see if any useful measures of program complexity and size are available in the functional
domain.

Overall, though, it would appear that function programs are shorter (in terms of tokens) than
imperative given the same number of operators and operands. Of course, it may well also be
the case that functional programs also require less operators and operands to express the same
algorithm and, if this is the case, the token count will be even lower—for an ”equivalent” program.
Overall, though, we must conclude that “software science” appears to offer little when used to
provide metrics in the functional domain.

References

[1] Gill A and Marlow S. Happy—the parser generator for Haskell .
http://www.dcs.gla.ac.uk/fp/software/happy/.

[2] Feuer AR and Fowlkes EG. Relating computer program maintainability to software measures.
In Proceeding of the 1979 National Computer Conference, 1979.

[3] Feuer AR and Fowlkes EG. Some results from an empirical study of computer software. In
4th International Conference on Software Enginnering, September 1979.

[4] Levitin AV. How to measure software size, and how not to. In 10th International Computer
Science and Application Conference, October 1986.

[5] Turner DA. Recursion equations as a programming language. In Henderson P Darlington J
and Turner DA, editors, Functional Programming and its Applications, pages 1–28. Cambridge
University Press, 1982.

6



[6] Johnston DB and Lister AM. An experiment in software science. In Tobias JM, editor,
Language Design and Programming Methodology, number 79 in LNCS. Springer-Verlag, 1980.

[7] Fitos GP. Vocabulary effects in software science. In 4th International Conference on Computer
Software and its Applications, October 1980.

[8] Peyton Jones S Hudak P and Wadler P et al. Report on the Programming Language Haskell,
March 1992.

[9] Lipow M. Comments on “estimating the number of faults in code” and two corrections to
published data. IEEE Trans. Software Engineering, 12(4):584–585, 1986.

[10] Halstead MH. Elements of Software Science. Elsevier, 1977.

[11] Hudak P and Jones MP. Haskell vs. Ada vs. C++ vs. awk. ... an experiment in software
prototyping productivity. Department of Computer Science, Yale University, July 1994.

[12] Zweben SH. The Internal Structure of Algorithms. PhD thesis, Purdue University, 1974.

[13] McCabe T. A software complexity measure. IEEE Trans. Software Engineering, 2(6):308–320,
1976.

[14] Partain W. The nofib benchmarks suite of Haskell programs .
http://www.dcs.gla.ac.uk/fp/software/ghc/nofib.html.

7


