
Technical Report CSM-125

August 1994

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email {Ana.Moreira || Robert.Clark}@compsci.stirling.ac.uk

|| Peter.Ladkin@loria.fr

Technical Report CSM-125

August 1994

Abstract

We define the denotational semantics of the concepts of Object-Oriented Analysis (OOA),

in order to provide a generic description of the transformation from OOA into a formal model.
We have developed the ROOA (Rigorous Object-Oriented Analysis) method, which builds on

an object model created by using OOA methods and refines into a formal model expressed in

LOTOS. We illustrate the semantics with ROOA-developed LOTOS specification.
Other semantics have focused on objects, and derived the meaning of classes and templates

from them. In contrast, to fit in with OOA as it is practised, we focus on the ROOA concept

of class template, and explain how the behaviour of objects in an implemented system is
constrained by the behaviour expression contained in the template.

The ROOA (Rigorous Object-Oriented Analysis) method has been developed to provide
a formal requirements specification at the analysis stage of object-oriented system development.
ROOA complements existing Object Oriented Analysis (OOA) methods (such as OMT [22], Coad
and Yourdon [3] or Shlaer-Mellor [23]), enabling precision and formality in development where
required, for example in safety-sensitive systems. ROOA starts from an object model built using
one of the analysis methods and derives a formal specification in LOTOS which integrates the
static, dynamic and functional properties of a system. A general explanation of the ROOA method
and its results along with simple examples of development can be found [19, 20], while a discussion
of how inheritance is handled may be found in [18].

The purpose of this paper is to specify the components of an object model and their relations
in such a way as to illuminate the formal syntactic transformations used in a ROOA-like method.
The results of ROOA are currently expressed in LOTOS, but the approach is general and could
be used with other specification languages. One goal is to provide a simple-as-possible denotation
of each concept so that practitioners of object-oriented analysis can get on with the hard job of
building models without, say, having to learn category theory, universal algebra or fixpoint theory;
requiring LOTOS is already enough! The actual formalisation of the concepts is thus of secondary
importance, accomplished where possible simply by listing components as tuples, functions or
relations by giving their denotational type (i.e. the domain and range sets). Nevertheless, there
are technical problems arising with even so straightforward an approach. Our main concern is
to identify and solve these problems. The main problem solved here is: how the behaviour of
objects (in the system) is derived from the expressions of generic behaviour contained in the class
templates in the model. The interpretation of inheritance is handled elsewhere [18]. We assume
some familiarity with the standard LOTOS language [10], as found for example in [2, 26], and also
with the Z notation [25].

Object-oriented system development views a system as a collection of interacting objects.
First, an object model is built in the OOA phase. The result of the analysis phase is a requirements
specification. The object model specifies the class templates, which include specification of the
attributes (properties) of, and the services offered by, objects in the class defined by the template.
Objects, which exist in the system proper and are not present in the object model, are instances
of some class template.

The ROOA object model also specifies which services are offered and used, and the generic
behaviour of objects using services. The services offered by objects are used by objects in a different
class. The channels corresponding to these uses of services are called message connections and are
specified statically in the object model using various devices such as an Object Communications
Diagram and Object Communication Table in ROOA. When modelling a system, we abstract from
its concrete objects, and describe it in terms of its class templates. A class template describes
the static and dynamic (behavioural) properties of objects of the same kind. Our main focus here
is to explain how the behaviour of objects at run-time is specified through the generic behaviour
description given in the class template.

1

Motivation For This Work. One motivation — precision — for a formalisation of object
modelling concepts and their expression has already been mentioned. We motivate the approach
taken in ROOA and its semantics by contrasting the goals of ROOA with those of other work.

Another motivation is enhanced expressive power. Object models suggested in the OOA liter-
ature are rendered less expressive by their dependence on particularly simple behavioural models
(e.g. finite automata [3, 22]) and particular notions of atomic action. The semantics of LOTOS,
used for ROOA, allows much richer expression of behaviour than these proposed models.

Other approaches to giving formal structure to OO concepts have started with objects as
fundamental and derived other concepts from these. They are mainly concerned with object
oriented programming or with object-oriented design (OOD [4, 22, 24]), not with OOA. Examples
include a formalisation [1] using Lamport’s TLA logic [14], and formalisations using universal
algebra and category theory [6, 7, 8]. These approaches are as powerful as LOTOS for describing
the behaviour of objects. However, the analysis stage of development gives primacy to class
templates and their meaning, and objects are simply not around. Hence these approaches do not
appear to explain the concepts of OOA in practical methods such as OMT as ROOA does, in a
way understandable by practitioners without advanced mathematical experience.

Furthermore, these other approaches do not separate static from dynamic structure — archi-
tecture from behaviour — in the way emphasised by a well-built object model [22], or by some
approaches to Open Distributed Processing [9]. For example, technical problems of distributed
actions such as recovery from failure (e.g. [17]) are not properly solved in the analysis stage. The
philosophy of OOA suggests that they should be addressed at the design stage, using methodolo-
gies developed for this purpose. According to this philosophy, such classes of problems should be
separated from the architecture of the system as expressed by the static model, as in ROOA. It
is not clear to us how one can achieve this separation easily with approaches such as [1, 6, 7, 8]
which are focused on objects.

Other approaches to development of formal system specifications in an object-oriented manner
may be found in [5, 12, 16]. These approaches introduce new methodology in order to obtain
formal specifications, and it is not clear that they build on practical approaches such as [11, 22],
as in ROOA. The goal of [5] is to integrate OO concepts into LOTOS specifications (rather than
the other way around, as in ROOA), and “the immediate area of application . . . is the development
of international standards for . . .Open Distributed Processing (ODP) systems”. A similar goal
with respect to VDM-style development underlies the work of [16]. Finally, [12] is concerned with
a formal notation for object-oriented programming and design, not with OOA. Because of their
goals, these approaches focus on the specification of objects rather than the concepts of OOA, and
do not strictly adhere to the division between analysis and design recommended by [3, 11, 22, 23]
and employed in ROOA.

First we define the set set of values of all possible sets of values of data types. The extension of
any data type is in set of values. We also define an infinite set of variables. Specification languages
have various ways to handle data typing, some extensional (data types are identical if their sets
of possible values are identical, no matter what the names) or intensional (not extensional). We
only need to use data values (i.e. extensional data typing) for this work, but a language such
as LOTOS does not have fully extensional data typing. We must therefore be flexible enough
in what we do to cohere with the data typing principles we might encounter in this and other
languages. We define as the set containing all data values, and data types as the set of data
types (whatever they may be). We define a separate naming function extension which associates a
data type with a set of values, and do not say (because we do not need to) what the properties of
this function are, or how identities between data types are handled. Our development ensures that
the sets class templates, objects, attributes, services, data types, message types are all disjoint.

2

We further require that the two sets

set of values = v v =
variables = x i i

are disjoint from each other and from everything else in sight. We define a naming relation

named by : STRING (variables data types class templates objects
attributes services message types object generators)

which assigns names to everything in sight. We also have a mapping

extension : data types set of values

which gives the extension of each data type. Finally the set

variable type pairs = x , d x variables, d data types

allows binding of variables in a particular context with data types.
The justification for these definitions is as follows. We accumulate all possible set-of-values

values in , and therefore a specific data type will have an extension which is a specific subset
of the values of . We need an infinite set of variables for standard syntactic reasons. Variables
in a particular use are generally bound to data types: we want to be able to select a variable x
of specific type real , say, in a given application. Therefore we need a set of variable-to-data-type
bindings.

We define the various concepts class template, attribute and service in the static structure. We
may define from these concepts the derivative notions of object, and class which are not in the
object model, but in the implemented system. An object is an instance of a class template, which
is to say that it has the attributes specified in the template, the services provided therein, and
the behaviour defined therein. The notion of embodiment is thus quite simple: since everything is
defined in the template except the identity of particular objects (although their sort is defined),
an object is defined by assigning an identifier, and assigning behaviour by instantiating a free
variable in the class template to the object identifier. A class is defined as the set of all objects
instantiated from a given class template. In ROOA we define the instantiation of objects from
class templates by means of a artifact we call an object generator.

Suppose the item item is the name of an element of a tuple (or sequence or record) defining
concept . We shall in general write concept .item to refer to the value of this item in concept , as
one normally does for records.

3.1 Class Template

A class template is defined by a name, a finite set of attributes Σ A, a finite set of services Σ S and
a behaviour description which apply to all objects instantiating this template. Thus, we define:

class template = name,Σ A , obj id ,Σ S , ,

where name dom(named by class templates) is the name of the class template 1. There is a
distinguished attribute obj id Σ A, known as the object-identifier attribute. Values of obj id are
the possible identifiers of the different objects instantiated from . The function : ct ΣS ,
describes the services that are available for each given state of an instantiated object, i.e. the

1For definition of the domain and range restriction operators and , as well as the domain and range selectors
dom and ran , see [25, pages 96, 98]

3

interface of an object at a given state. This function is explained in Section 3.3. describes
the typical behaviour of objects instantiated from the class template, and is defined by means
of LOTOS constructs. We thus commit ourselves here to a specific form for . It is, however,
important that no matter what language is formulated in, it has certain properties which may be
expressed using concepts from the syntax of logic. (The function of is explained in Section 3.2.)
The purpose of this requirement is that a class template c t defines the behaviour of arbitrary
objects instantiating c t , and mentions no specific object by name. It may also refer to objects
instantiating other templates, including the services they offer, again without mentioning specific
objects by name. This is accomplished in logical syntax simply by using free variables.

The syntactic details of how this is accomplished in particular behaviour description languages
such as LOTOS, SDL, Manna-Pnueli temporal logic, or TLA, are dependent on these particular
languages. Therefore we explain such syntactic restrictions here generically, but illustrate with the
ROOA derivation in LOTOS. Individual languages will require that the restrictions are translated
into the syntactic restrictions that make sense for these languages.

3.2 The Generic Behaviour Description c t .B

The behavioural description c t . contained in a definition of c t may have different forms, depending
on the description language chosen. In ROOA, it is part of a LOTOS specification, usually a
LOTOS process definition. But a semantic explanation of c t . should also explain its function if
expressed in another description method such as SDL or TLA. We explain it here and in Section 4.3.

The behavioural description c t . is generic, in that it should provide a schema for describing
the behaviour of an arbitrary object instantiated from c t . We describe features we require of
ct . , so that it may be transformed into a description of the behaviour of an individual object
instantiated from c t . The procedure for transformation itself is described in Section 4.3.

We describe the structure of c t . in general syntactic terms taken from logic, using the notions
of (logical) individual variable 2, and substitution, because these have been well worked out and
understood for a century. We need to interpret these notions in a given target language (LOTOS,
SDL, TLA, etc.). We illustrate with a LOTOS example in ROOA.

Since c t . is intended to be a generic behaviour expression, it must contain terms which are
not constant, but which take different values when used to describe the behaviour of a particular
object. (In logic, these terms are said to range over their collection of values.) To obtain generality
of reference over individuals 3, logic employs individual variables ranging over individuals of a
given sort. There is no a priori bound on the number of objects instantiated in a system from
the class templates in the object model. We require a set Y of individual variables ranging
over values of the attribute obj id (that is, over the set dom(named by objects)). We also
use the set of terms C referring to the class templates. There is a fixed set of class templates
in the model, namely, the set ran(named by class templates), and the set of their names is
C = dom(named by class templates).

When a variable y Y is used in the behaviour expression c t . to refer generically to an
object, it must range over objects instantiated from a particular class template c. We denote this
binding by c.y . We also require a distinguished individual variable ι, used in c t . in the form c t .ι.
When c t . is used to describe the behaviour of a particular object the value of whose obj id
is oid , the term c t .ι will be replaced by oid (see Section 4.3). Thus c t .ι is used to refer to the
‘currently instantiated object’. This corresponds to the concept called ‘self ’ in Smalltalk, or ‘this’
in C++. See Section 4.1 for definition of the concept object, and Section 4.3 for an explanation of
how the behaviour of the object is obtained from the expression c t . .

When c t . mentions a service of an object instantiated from a different class template c, we
write the occurrence as c.y .service.name, where c C , y Y , and service c.Σ S (the set of
services offered by template c). Similarly, when an attribute of an object instantiated from c t is
referred to (only attributes of objects instantiating the current class template may be referred to

2This notion should of course be distinguished from the notion of program variable, or variable as used in
LOTOS.

3We also employ the term individual for a given ‘thing’, to avoid confusion with the technical term object.

4

— all values of attributes of objects instantiating other templates must be accessed by services
offered by those objects) then a term of the form c t .y .attribute.name is used.

In order to explain how the generic behaviour expression c t . is used to generate an expression
describing the behaviour of a particular object in the system with identifier oid , we must identify
the terms of the form c t .ι, c.y , c.y .service.name and c t .y .attribute.name and all occurrences of
them in c t . .

3.3 The Visibility Function I

Objects have ‘state’ [22]. We define the value of an object at any point to be the collection of
values of the attributes of the object. We identify the state of the object at a given time with
its value. In any particular state, not all of the services may be offered by the object. is the
visibility function, that for each state of an object tells which services are visible in that state. In
the banking system problem in Section 3.4, for example, in an account object, a withdraw service
may not be offered if the value of balance is 0. With each state of the object we may associate the
set of services which are offered in that state. However, which services are offered in a particular
state is (a) dependent on properties of the state of that object alone; and (b) invariant over all
objects instantiating the same template. For example, the fact that withdraw is not offered in a
state in which balance is 0 is a generic constraint on all objects of type account. Thus, visibility is
statically determined: the collection of all such constraints, the visibility function, is a feature of
the class template. Where ct is the set of states (defined below), has the type : ct ΣS .

Since a state of an object is its value, the set of attribute-value pairs of the object at a particular
time, we require that the set of states ct is the collection of all possible combinations of values of
all attributes. But not all of these sets of attribute-value pairs may be attained by some object in
some run of some system, in other words, these potential states may not be reachable. However, it
is often combinatorially intractable to determine which states are reachable [21]. Furthermore, it
is evident from reachability analyses that the distinction between those states which are reachable
or not is properly a logical consequence of the behavioural description of the system, and thus
of logical properties of the behavioural descriptions c. for all class templates c. Therefore the
distinction between reachable and non-reachable states should not be made in the denotational
description of the class template. Thus, we may define ct to be the collection of all assignments of
values of the right type to attributes in Σ A , where a.value set is the value domain of the attribute
(see 3.5):

ct = f f : ΣA a ΣA f (a) a.value set

where value set data types.

3.4 Class Template in LOTOS

Consider a banking system where accounts can be debited, credited and queried for their current
balance. These operations can either be performed by the counter tellers or by a customer using
a card in the automatic teller machines.

ROOA derives a LOTOS process definition for a class template from an analysis of
an object model involving a banking system as follows. This example is a modified version of one
in [20], and is explained below:

5

We explain how to identify the various syntactic components of the object definition in the
LOTOS expression informally. It should be clear that the identifications have syntactic definitions,
but it would be merely tedious to write these definitions formally.

The name of the class template is ; the set of attributes Σ A , including the obj id ,
are given in the ADT where the sort is defined; the set Σ S of services offered
are defined as the first action denotations [26] of the choice operator ‘[]’. Specifically, the three
services offered are defined by the expressions:

where is an operation specified in the ADT where the sort

is defined, returning the object identifier of an object instantiated from the class
template . It corresponds to the individual variable c t .ι reserved for the ‘current object’.
ΣS is the set of services whose names are , and . Specifically,

ΣS = ran(, , named by)

Given these bindings of syntactic parts of the LOTOS expression to the formal parts of the
class-template tuple and the identification of expressions of the form c t .ι, c.y , c.y .service.name
and ct .y .attribute.name, the behaviour description is given by the body of the process definition.

The interface function is defined in LOTOS by identifying guarded expressions in the be-
haviour description. Consider, for example, the expression:

This ensures that a client may only use the service if the balance is not zero. As ROOA
deals with the analysis phase, a reference to the state of an object may be a symbolic reference.
Therefore, in process we use the generalised LOTOS choice operator to cover the
two possible situations expressed by the two guards and , whose
values depend on the state of the object when the guard is evaluated at run time (see [19, 20] for
details).

The gate is used to represent the channel of communication between and
.

The argument defines the state of objects of class template , that is,
it defines Σ A and the collection of values at any time. In ROOA, this is defined by an ADT, as
follows:

6

There is in each such ADT a distinguished operation always prefixed with the term which
has ΣA as domain type and returns the sort of the object. It is used by the object generator
(Section 3.7) to instantiate objects. The object generator is an artifact of ROOA. Σ A may be
read directly off the domain expression in the LOTOS-type of the whatever operation. The
ADT shows the attributes in Σ A as and . The operations
defined in are components of the methods used to perform the services offered (see
Section 3.6).

3.5 Attributes

We define an attribute as a tuple

attribute = name, value set

where name dom(named by attributes) and value set set of values is the set of all values
that the attribute may have.

In ROOA, an attribute is defined in a LOTOS ADT. In the banking example, we saw that
the class template has two attributes: and . These attributes
appear as arguments of the operation .

3.6 Services

A service s i ct .ΣS is offered by all objects instantiating a given class template c t . It is used by
other objects to query or change the state of the object which offers it. Objects which are instances
of the same class template may not directly use each others’ services. (If an object A uses a service
of object B , we say that objects A and B communicate. The communication channels between
objects are determined statically, in the model, and correspond to the mysterious gate in the
previous example.) Each service is defined by a unique name and by one or more methods. We
define its type as follows:

service = signature method1...method n

signature = name, obj id , in parameters, out parameters
in parameters attributes n variable type pairs m D

where is the concatenation operator on sequences, D data types p is a p-tuple of specific data
types; and

out parameters Q

where Q data types q ; also name dom(named by services).

7

We distinguish here the static structure of a method (simply its signature with its input and
output parameters) from the description of how the method is used or how the value returned
in the output parameters is calculated. The use of a method properly belongs to the dynamic
description, as does the description of how the value is calculated, and must be described in .
(TLA [13] actions correspond to our methods.) Therefore, these features belong to the LOTOS
description of the behaviour of the service. A method is defined by a LOTOS behaviour expression
such as

method i = α; exit(ADT op(...))

where α is a collection of action denotations which can include invocation of services defined in
other objects, for example. The exit construct indicates successful termination. This construct
may have arguments, which we use, in this case, to change the value of one or more attributes of
the object, by invoking an operation defined in an ADT. This operation has the form:

ADT op : state sort , variable type pairs r state sort

where state sort represents the sort of the states of an object, e.g. in the ADT
above.

The behaviour of the method which specifies the service in the banking system, is
given by the two following behaviour expressions:

where the ADT op is . Each one of these two behaviour expressions define one
method, each of which is used as an alternative of the other. Notice that there are methods
which change the state of an object (called modifiers) and others which do not (called selectors).
The selectors only return the value of one or more attributes, as happens with .
In any case the exit construct always returns the state of the object, whether updated (as in

) or not (as in).

3.7 Object Generator

In ROOA, an object is instantiated from the class template by a special mechanism called an object
generator. Although an object generator knows about the objects (identifiers) already created, it
is mainly used to instantiate a class template.

object generator = name, c t , create obj c t , object id set , β

An object generator has a name, name dom(named by object generators), and instantiates
objects from the template by offering the service create obj c t in a manner described by the
behaviour β. It also contains a distinguished name object id set for the set of identifiers of
objects already instantiated from c t .

When an object is instantiated by a call to object generator .create obj c t , it has an initial
state. The initial state is defined in the behavioural description β. A behavioural description
without a specified initial state is an invalid description. Most behavioural specification languages
such as LOTOS, SDL and TLA either include or require such an initial state definition.

An object generator for class template looks as follows:

8

where is the name of the object generator and is the set of identifiers of objects
already instantiated from class template . The service

corresponds to create obj c t and it uses value generation to generate an object identifier of sort
which is then used to instantiate the class template by executing

The operation is defined in the ADT and it creates a value of
the sort . The initial state of the object account created is the result given by

.
The behaviour β is given by the body of the process definition. The object generator is defined

recursively so that we can continue to create objects.

Certain concepts of OO methods are not properly part of the object model, as described for exam-
ple in [22], but are part of the system design that derives from a given object model. Most attempts
to define the semantics of OO systems concentrate on objects, classes, inheritance and aggrega-
tion, and are properly part of the system design, not the model. We believe our approach fits
more closely the ontology of object-oriented models, and it coheres with the powerful behavioural
description methods in LOTOS.

4.1 Object

An object in the design represents what ‘runs’ in the implemented system. A class template is a
definition which is used to create objects. An object is an instantiation of a class template. The
class template includes the description of the generic behaviour of an object, as well as defining
all attributes which the object may have. In order to know all about an object it is sufficient to
know about only which template c t it was instantiated from, and its identifier (the value of the
attribute c t .obj id). The object’s behaviour must be derived from c t . . Hence we define

object = ident , class template.name

where ident dom(named by objects).

4.2 Behavioural Constraints vs. Behavioural History

In the definition of object in Section 4.1, the object itself is rather bare. Objects have a history of
behaviour, which may be different for each object, and furthermore is not derivable from the class
template. Where, one may ask, is this behavioural history in the definition of object?

The answer is that the history of behaviour of an object, no matter how important for the
operation of the object in the system, is not properly part of a semantic account of class template,
object, and their relation. In contrast, an account of how the constraints on an object’s possible
behaviour are obtained is properly part of the semantics. c t . is a constraint expression, with

9

lots of free variables. We describe in Section 4.3 how the behavioural constraints on an object are
obtained from the constraint expression in the template.

This position may be compared with that of semantics of programs. Compare objects with
programs. A specification includes the constraints on a program’s behaviour. An actual behaviour
of the program, or a partial behaviour (a history) is described by a (partial) trace. The specification
describes the set of all possible traces. Each individual partial trace that satisfies the specification,
and which may or may not occur during the lifetime of the system, is not considered part of
semantics. It is up to the program whether it wants to keep around such information about its
previous behaviour. In many object-oriented systems, this may be important for auditing, just
as in previous designs in the before object-orientation era, keeping history variables around for
the same purposes was also considered important. But it is not part of semantics. It is part of
programming.

4.3 Deriving the Behaviour of an Object from the Class Template

Let be the ‘current object’ and let its identifier .ident be oid for notational simplicity. The
behaviour of can be described by [c t .ι/oid]. Where [c t .ι/oid] is the expression obtained by
substituting oid for every occurrence of the distinguished individual variable c t .ι in . [c t .ι/oid]
still contains individual variables, say for example simply c.y , for other objects whose services
may use. Since the expression still has an unbound individual variable c.y , it does not yet describe
concrete behaviour. The description is supposed to say what behaviour is allowed between and
other objects instantiated from c.

Suppose that 1 and 2 are precisely the instantiated objects from template c, with identi-
fiers 1.ident and 2.ident respectively, which we denote c.oid 1 and c.oid 2 for simplicity. The
required description of ’s interaction with one specific other object is obtained when any value
of another object identifier instantiating a template c is substituted for the variable c.y appearing
in [ct .ι/oid]. The object may engage in its c-object interactions with 1, and also with 2.
Thus the two expressions [c t .ι/oid][c.y/c.oid 1] and [c t .ι/oid][c.y/c.oid 2] describe the interac-
tions in which can engage.

(Note that this is like substitutional quantification in logic, which is equivalent to normal
quantification over a finite range, here over the finitely many objects in a system, but is not the
same over, for example, an uncountable range when the language is countable.)

A combination of these behaviour expressions expresses the behaviour of in terms of all the
other c-objects 1 and 2. The combination of expression [c t .ι/oid][c.y/c.oid 1] with expression

[ct .ι/oid][c.y/c.oid 2] may take different forms according to the specific language in which is
written. In LOTOS, the combinator is ‘[]’ 4, and the combined expression is

[ct .ι/oid][c.y/c.oid 1] [] [c t .ι/oid][c.y/c.oid 2]

If a logical language is used, then the combination is logical disjunction, yielding

[ct .ι/oid][c.y/c.oid 1] [ct .ι/oid][c.y/c.oid 2]

This states that can engage in behaviour with either 1 or 2. Finally, if the expression
language is a finite automaton description language, then the combination operator is the disjoint
sum of two automata, but with shared start states (normally only one, but a predicate-action
diagram may have more than a single start state [15]).

Although this operation has been expressed with one template and two instantiated objects for
simplicity, it generalises directly to multiple class templates and instantiated objects. Whatever
its specific form, this syntactic operation of substitution + combination yields the behavioural
description of object at any state of the system. As other objects are created, a similar
operation must be performed: say 3 is newly instantiated with identifier 3.ident , denoted
c.oid3 for simplicity. The expression [c t .ι/oid][c.y/c.oid 3] must be formed and combined with

4but see the comment about [] and in Section 3.4.

10

the other behaviour expressions to yield the behavioural description of object in the new
environment.

Note that the expressions described here need not actually be formed. It suffices that a
procedure exists to obtain a precise description of the behaviour of an object in its run-time
environment from the behaviour expression c t . in the class template c t . We have given such a
procedure.

To illustrate the procedure in LOTOS, we introduce part of a process definition which specifies
the class template :

Objects of the class template invoke services of objects of the class template
. Let be the class template c t , the value be the object identifier

of the current object, while the LOTOS-variable corresponds to the
individual variable c.y .

An expression describing the behaviour of an object instantiated from , having,
say, identifier , i.e. the expression corresponding to [Counter Teller .ι/], is

Counter teller number can communicate with any object instantiated from the class template
. Suppose we create precisely two accounts with identifiers 35467 and 35468. The complete

behaviour of counter teller when communicating with any of the two accounts, asking for any
service, is given by the combination of the services offered by . We substitute
35467 and 35468 for the expression , and combine with the choice operator [] to obtain

[Counter Teller .ι/][acc nr/35467] [] [Counter Teller .ι/][acc nr/35468]

Notice that the behaviour of Counter Teller changes with time, according to the services
executed. Suppose we created the two accounts, one subsequently to the other. When communicat-
ing with account number 35467, before account 34568 was created, Counter Teller ’s behaviour
is described by: [Counter Teller .ι/][acc nr/35467]. After account 35468 is created, the be-
haviour expression changes to include in the combination the expression [Counter Teller .ι/]
[acc nr/35468].

This informal description has illustrated how a description of the behaviour of an object in a
specific system may be obtained by purely syntactic means from the behaviour description in
the class template. The description has been given in a generic way and the particular syntactic
operations needed to effect this for the given behavioural specification language LOTOS have been
used as illustration. This shows how the behaviour of object instantiated from template c t is
determined by the behavioural description c t . . A formal definition of needs to specify no
extra behavioural component beyond that contained in c t . .

4.4 Is instance, Classes and Other Concepts

The is instance relation is a binary relation between objects and the class templates of which
they are instances. When an object is created, according to the semantics it is a pair of names

= identifier , class template.name . The image of under the named by relation [25, page
123] (named by), is thus the pair consisting of the object along with the class template it

11

was instantiated from. This pair is an element of is instance. If one requires this relation for
any purpose, it is necessary to require of the object-generator that when it creates an object

, it also adds (named by) to is Instance (which is defined to have value when no
objects have yet been created). One may then straightforwardly define the class generated by c t ,
class(c t) = dom(is instance c t).

An account of the concepts of an OO system will also include a semantics for message-passing
and for inheritance, which require some more detailed attention than the rather simple definition
of class and is instance above. Since our focus in this paper is on the basic concepts of analysis,
not on design or programming, we refer the reader to [18] for a treatment of some of these other
concepts.

In this paper, we have given a simple denotational semantics for the concepts of object-oriented
analysis (OOA), which include class template, service, attribute, behaviour, object generator and
visibility. We described the form required of a behaviour expression in a class template, so that
the behaviour of any object instantiated from that template is precisely specified. We employed
the notions of individual variable and substitution from the syntax of logic to explain in general
terms how this behavioural description was transformed. We illustrated this transformation with
ROOA templates and behaviour expressions written in LOTOS.

[1] J.P. Bahsoun, S. Merz, and C. Servieres. A framework for programming and formalizing
concurrent objects. In Proceedings of the First ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering: ACM Software Engineering Notes, 18(5):126-137. ACM Press,
December 1993.

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[3] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon Press, Prentice-Hall, 2nd edition,
1991.

[4] P. Coad and E. Yourdon. Object-Oriented Design. Yourdon Press, Prentice-Hall, 1991.

[5] E. Cusack and M. Lai. Object-oriented Specification in LOTOS and Z or, my Cat Really is
Object-Oriented! In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundations
of Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 179–
202. Springer-Verlag, 1991.

[6] H.-D. Ehrich, M. Gogolla, and A. Sernadas. Objects and Their Specification. In M. Bidoit
and C. Choppy, editors, Recent Trends in Data Type Specification, volume 655 of Lecture
Notes in Computer Science, pages 40–65. Springer-Verlag, 1993.

[7] H.-D. Ehrich, J.A. Goguen, and A. Sernadas. A Categorial Theory of Objects as Observed
Processes. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 203–228.
Springer-Verlag, 1991.

[8] H.-D. Ehrich, A. Sernadas, and C. Sernadas. Objects, Object Types, and Object Identifica-
tion. In H. Ehrig, H. Herrlich, H.-J. Kreowski, and G. Preuß, editors, Categorical Methods
in Computer Science, volume 393 of Lecture Notes in Computer Science, pages 142–156.
Springer-Verlag, 1989.

12

[9] R. Gotzhein. Open Distributed Systems. Vieweg Verlag, Wiesbaden, 1993.

[10] ISO. Information Processing Systems – Open Systems Interconnection – LOTOS : A Formal
Description Technique Based on the Temporal Ordering of Observational Behavior, Interna-
tional Standard 8807. ISO, 1988.

[11] I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven Approach. Addison-
Wesley, 1992.

[12] C.B. Jones. A Pi-Calculus Semantics for an Object-Based Design Notation. In E. Best, editor,
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 158–172. Springer-
Verlag, 1993.

[13] L. Lamport. The Temporal Logic of Actions. Technical Report 79, Digital Equipment Cor-
poration, Systems Research Center, November 1993.

[14] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems, 1994. To appear.

[15] L. Lamport. TLA in Pictures. January 1994. Preprint.

[16] A. Laorakpong and M. Saeki. Object-Oriented Formal Specification Using VDM. In S. Hishio
and A. Yonezawa, editors, Object Technologies for Advanced Software, volume 742 of Lecture
Notes in Computer Science, pages 529–543. Springer-Verlag, 1993.

[17] B. Liskov and R. Scheifler. Guardians and Actions: Linguistic Support for Robust, Distributed
Programs. ACM Transactions on Programming Languages and Systems, 5(3):381–404, July
1983.

[18] A.M.D. Moreira and R.G. Clark. LOTOS in the Object-Oriented Analysis Process. In BCS-
FACS Workshop on Formal Aspects of Object-Oriented Systems, Imperial College, London,
December 1993. BCS-FACS (British Computer Society – Formal Aspects of Computing Sci-
ence).

[19] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Analysis. Technical
Report CSM-109, Department of Computing Science and Mathematics, University of Stirling,
Scotland, October 1993.

[20] A.M.D. Moreira and R.G. Clark. Combining Object-Oriented Analysis and Formal Descrip-
tion Techniques. In M. Tokoro and R. Pareschi, editors, ECOOP’94, volume 821 of Lecture
Notes in Computer Science, pages 344–364. Springer-Verlag, 1994.

[21] J. Reif and S.A. Smolka. The Complexity of Reachability in Distributed Communicating
Processes. Acta Informatica, 25:333–354, 1988.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Mod-
elling and Design. Prentice-Hall, 1991.

[23] S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Analysis. ACM Software
Engineering Notes, 14(5):66–77, July 1989.

[24] S. Shlaer and S.J. Mellor. Object Lifecycles — Modeling the World in States. Prentice-Hall,
1992.

[25] J.M. Spivey. The Z Notation. Prentice-Hall International, 1989.

[26] K.J. Turner, editor. Using Formal Description Techniques. John Wiley & Sons, 1993.

13

