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Abstract

Object-oriented analysis (OOA) and design methods are used by the software engineering com-

munity, while formal description techniques (FDTs) are mainly used in a research environment.

The Rigorous Object-Oriented Analysis (ROOA) method combines OOA methods with the

ISO standard FDT LOTOS to produce a practical method which can be applied by software

engineers.

ROOA takes a set of informal requirements and an object model and produces a formal object-

oriented analysis model that acts as a requirements specification. The resulting formal model

integrates the static, dynamic and functional properties of a system in contrast to existing OOA

methods which are informal and produce three separate models that are difficult to integrate

and keep consistent.

The ROOA method provides a systematic development process, by proposing a set of rules to

be followed during the analysis phase. During the application of these rules, auxiliary structures

are created to help in tracing the requirements through to the final formal model.

An important part of the ROOA method is to give a formal interpretation in LOTOS of object-

oriented analysis constructs.

As LOTOS produces executable specifications, prototyping can be used to check the conformance

of the specification against the original requirements and to detect inconsistencies, omissions and

ambiguities early in the development process.

LOTOS is a wide-spectrum specification language and so the requirements specification can act

as the starting point for software development based on correctness preserving transformations.
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Introduction

Object-oriented approaches and formal methods have both been proposed as ways of alleviating

problems in the development and maintenance of reliable software systems. In the Rigorous

Object-Oriented Analysis (ROOA) method, described in this document, they are applied in

combination to the requirements analysis phase of the software life cycle.

The starting point in the use of formal methods in the software development process is a formal

requirements specification of what the proposed system is to achieve. Once a formal specification

has been produced, it is possible, at least in theory, to verify a design and eventual implementa-

tion with respect to that specification. Two important questions remain, however. How is the

initial formal requirements specification created from a set of informal requirements and how

can it be validated with respect to those requirements? It is clear that these cannot be formal

processes. We have been investigating how these tasks can be achieved within the context of

object-oriented analysis.

In the ROOA method, we specify the required behaviour of a system by constructing a model

using the formal description technique LOTOS [4, 5]. As LOTOS has a formal semantics, the

model has a precise meaning and can be used as a formal requirements specification of the

intended system behaviour.

Object-oriented analysis (OOA) methods such as [9, 15, 24, 25] lead to the creation of an informal

analysis model or set of models. The object model, which is based on an extension to entity-

relationship diagrams, describes the static properties of a system while the dynamic model,

which is normally expressed in terms of state transition diagrams, describes its behaviour. Some

methods [24, 25] also propose a functional model, which uses data flow diagrams to describe the

operations in the object model and the actions in the dynamic model. In most methods, the

object model is central with the dynamic and functional models being of lesser importance.

Entities in the real world exist concurrently. A major advantage of the object-oriented approach

is that it supports the direct modelling of real world entities as a set of autonomous objects

which communicate with one another by sending messages. An object-oriented analysis model

should therefore represent the requirements as a set of communicating concurrent objects even

when the eventual implementation is to be sequential. A formal language used to formalize the

analysis model should therefore support parallelism.

ROOA shows how LOTOS can be integrated with object-oriented analysis. LOTOS is composed

of a process algebra and abstract data types, but, as it was designed before the object-oriented

approach became widely accepted, it does not directly incorporate object-oriented constructs.

However, the language is suitable for writing specifications in an object-oriented style [22].
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It directly supports encapsulation, abstraction and information hiding. In LOTOS, concurrent

objects are modelled as process instances, composed by using the parallel operators, and message

passing is modelled as two processes synchronizing on an event. This straightforward mapping

makes LOTOS capable of representing a system as a set of communicating concurrent objects.

Producing an object model from a set of informal requirements is a complex process. OOA

methods propose strategies for the identification of objects and their attributes, services and

relationships so that a suitable object model can be created. The ROOA method builds on the

object model produced by one of the informal OOA methods. However, instead of producing

three separate models, the ROOA method uses a set of rules to systematically create a single

integrated object-oriented analysis model from the static properties captured in the object model

and the dynamic and functional properties given in the informal requirements. The model is

formal as it is expressed in a language which has a formal semantics. During the application

of the rules, auxiliary structures are created to help trace the requirements through to the final

formal model and to show when and why information from the informal requirements is added to

the formal model. This is important when modifications are made to the system requirements.

An important part of the ROOA method is to give a formal interpretation in LOTOS of object-

oriented analysis constructs.

ROOA uses a stepwise refinement approach for the development and for validation of the speci-

fication against the requirements. The development process is iterative and parts of the method

can be re-applied to subsystems. Different objects can be represented at different levels of

abstraction and the model can be refined incrementally.

As a LOTOS specification is executable, prototyping may be used to discover omissions, con-

tradictions, ambiguities or inconsistencies early in the development process and to demonstrate

to the clients that the specification meets their requirements. A set of tools (such as syntax and

semantic checkers, simulators) is available with LOTOS. The SMILE simulator [11] supports

value generation and allows symbolic execution of a specification where a set of possible values

is used rather than particular values. In the analysis phase, nondeterminism can be exploited

to model behaviour so that premature design decisions are not made.

Chapter 2 introduces the formal description technique LOTOS. Chapter 3 presents the most com-

mon object-oriented analysis concepts and discusses how to specify them in LOTOS. Chapter 4

focuses on the ROOA method, detailing each task and describing the intermediate structures

that we need to build in order to develop the final object-oriented analysis LOTOS model and

to help tracing through the original requirements to the LOTOS specification. Chapter 5 states

the conclusions of this work and discusses further development.
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LOTOS Overview

LOTOS is a formal description technique developed by ISO for the definition of Open Systems

Interconnection (OSI) standards, although it is also well suited to the specification of a wide

range of systems, including embedded systems [6]. It has two main components:

Process definition.

This component describes the behaviour of processes and the interactions between them.

The approach used is based on process algebra, using components from CCS [19] and

CSP [13] .

Abstract data types.

This component describes the data types and value expressions. It is based on the abstract

data type language ACT ONE [12].

A concurrent distributed system is described in LOTOS as a set of communicating processes. A

process is considered to be a black box and its externally observable behaviour is its interactions

with other processes. Specifying a process is defining the temporal relationships among such

interactions.

Process behaviour is described using behaviour expressions that consist of external, observable

events and internal, externally unobservable events. Processes are composed by using the parallel

operators and they interact with each other through synchronization on events. An event is

atomic and takes place at an event gate (or just gate). It appears in a process definition and is

composed of a gate name followed by a set of arguments in which the operator “!” is used in the

form !v where v is a value expression, and the operator “?” is used in the form ?x: s where x

is a variable of the sort s.

For example, in the event:

gate˙name !val ?x: Nat

the term !val indicates that the value val is to be transmitted and the term ?x: Nat indicates

that any value of the sort Nat can be accepted and assigned to x.
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There are restricted conditions in which events synchronize. The event:

gate name !val !num

would synchronize with the event above if !num is some value of sort Nat.

Table 2.1 summarizes the three types of synchronization [4].

Process A Process B Condition of Interaction Effect

Synchronization Type

g ! 1 g ! 2 value( 1) = value( 2) value matching synchronization

occurs

g ! 1 g ?x: s sort( 1) = s value passing after synchronization

x = value( 1)

g ?y: w g ?x: s w = s value generation after synchronization

y = x = v, where v is

some value of sort w

Table 2.1: Interaction Types

Value matching is used to ensure synchronization is achieved. Value passing is used to pass a

value to a variable. Value generation allows the introduction of uninstantiated variables.

A process definition has the following syntax:

process process name [list of gates](list of parameters) : functionality :=

(* behaviour expression *)

where

(* data type definitions *)

(* process definitions *)

endproc

The functionality can be: exit, meaning that the process may terminate successfully, noexit,

meaning that the process cannot terminate (perhaps because it recursively calls itself) and exit

(result), meaning that the process may terminate successfully and return a result. (“(*” begins

a comment and “*)” ends it.)

The body of the process defines its behaviour in terms of its process components (if any) and

the events in which it can take part. We can also define abstract data types within a process

definition.

Here is a simple example of a process that offers a value greater than the value received as a

parameter:

process GreaterValue[g](count: Nat) : noexit :=

g ?ncount: Nat [ncount gt count];

GreaterValue[g](ncount)

endproc

The process GreaterValue is defined recursively and uses gate g for synchronization with other

processes.

The behaviour expression:
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g ?ncount: Nat [ncount gt count];

offers a value of sort Nat for synchronization. The selection predicate [ncount gt count]

guarantees that only values greater than the value offered in the previous instantiation are

allowed.

LOTOS represents data as abstract data types (ADTs) using the language ACT ONE. An ADT

definition is rather lengthy and complex although this can be made easier by the provision of

an extensive library of predefined ADTs.

The structure used to define a type is always the same, with the sections in the following order

(some of these sections are optional):

type type name is

(* list of imported definitions *)

sorts sort name

opns

(* list of operations *)

eqns forall

(* list of variables *)

ofsort a sort name

(* list of equations *)

ofsort a sort name

(* list of equations *)

endtype

The type section gives the name of the definition (this is the name that should be used to

combine different definitions). A list of imported definitions can appear after the keyword is.

The sorts section gives the name of the data sorts. The opns section gives the signature of

the operations. An operation is a function with zero or more sorts as its domain and with only

one sort as its codomain. The eqns section specifies, in terms of equations, the constraints

the operations must satisfy. This section uses the keyword eqns forall after which we declare

the variables that are going to be used in the equations, and the keyword ofsort after which

we define the result sort of the equations and then the equations themselves. Because different

equations can have different result sorts, the latter keyword can appear repeatedly.

The next example defines a stack of natural numbers as a LOTOS ADT:

type Stack˙Type is NaturalNumber, Boolean

sorts Stack

opns EmptyStack : -> Stack

Push : Stack, Nat -> Stack

Pop : Stack -> Nat

IsEmpty : Stack -> Bool

eqns forall s: Stack, n1: Nat

ofsort Nat

Pop(Push(s, n1)) = n1;

Pop(EmptyStack) = 0;
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ofsort Bool

IsEmpty(EmptyStack) = true;

IsEmpty(Push(s, n1)) = false;

endproc

The operations Push and EmptyStack are constructors, i.e. they create a value of the ADT, and

they do not have any defining equations. The constant “0” has been defined to be of sort Nat

in type NaturalNumber. It is used here to indicate an error when the Pop operation is applied

to an empty stack. This is only an example, and should not be considered the best definition of

a stack.

A general LOTOS specification has the following structure:

specification specification name [list of gates](list of parameters) : functionality

(* data type definitions *)

library endlib

type endtype

type endtype

(* process definitions *)

behaviour

(* behaviour expression *)

where

process endproc

process endproc

endspec

In the library are defined the commonly used data types that can be used either directly or in

the construction of more complex data types. In the behaviour part it is possible to have both

abstract data type definitions and nested process definitions. However, the option of defining

ADTs inside a process is not much used, because ADT definitions are often long and it would

make the process more difficult to understand.

Table 2.2 summarizes the syntax of the most common behaviour expressions. These can be

combined to define complex behaviour expressions.
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Name Syntax

inaction stop

termination exit

termination with parameters exit(E 1,. . . ,En)

choice B1 [] B2

generalized-choice choice v:T [] B
choice g in [g 1, . . . , gn] [] B

action-prefix:
observable (external) g;B

observable with selection predicate g d 1 . . . dn[CE];B
unobservable (internal) i;B

parallel composition:
general case B 1 |[g1, . . . , gn]| B2

interleaving B 1 ||| B2

full synchronization B 1 || B2

hiding hide g 1,. . . ,gn in B

process instantiation P[g 1,. . . ,gn] (E1. . .En)

guarding [CE] -> B

disabling B 1 [> B2

enabling B 1 >> B2

enabling with variable passing B 1 >> accept v 1: T1,. . . ,vn: Tn in B2

local definition let v 1: T1 = E1,. . . ,vn: Tn = En in B

Legend:

B, B1, B2 : behaviour expressions T 1,. . . , Tn : sort identifiers

v1,. . . , vn : variable identifiers E 1,. . . , En : value expressions

g1,. . . , gn : gate identifiers CE : conditional expression

d1,. . . , dn : experiment offers P : process identifier

Table 2.2: Syntax of the most important LOTOS operators
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Modelling Basic Object-Oriented

Concepts in LOTOS

LOTOS was designed before object-oriented methods became established and therefore it does

not incorporate object-oriented constructs. However, the language directly supports the con-

cepts of encapsulation, abstraction and information hiding which provide a basis for writing

specifications in an object-oriented style [3, 8, 10, 16, 22]. In LOTOS, concurrent objects are

modelled as process instances, composed by using the parallel operators, and message passing

is modelled as two processes synchronizing on an event.

This chapter studies how the following object-oriented analysis concepts can be mapped into

LOTOS:

Class templates, classes, abstract classes and objects.

– Services, methods and attributes.

– Object identity.

– State, behaviour and environment of an object.

Message connections (communication).

– Events.

– Transformation of data and information passed.

Inheritance.

– Superclasses and subclasses.

– Extension and redefinition.

Associations.

– Binary and unary.

– With values.

Composition and Decomposition.
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Aggregation.

Subsystems.

In Section 3.2 we describe each of these object-oriented concepts and in Section 3.3 we give an

interpretation of them in LOTOS.

The following definitions are based on the Open Distributed Processing Reference Model [14]

and on a general understanding of object-oriented analysis concepts.

3.2.1 Class Templates

A class template describes the common static and dynamic properties of objects of the same

kind (belonging to the same class).

Each box in the object model proposed by most of the OOA methods describes a class template,

as opposed to an object or a class.

3.2.2 Classes

A class is the set of all objects which share the common features specified by a class template.

This definition also includes the notion of subclass, since the set can be a subset of all objects

which possess the common features specified by a (super-)class template.

3.2.3 Abstract Classes

An abstract class is a class which cannot be instantiated, i.e. it cannot have objects. This

restriction does not apply to its descendents. An abstract class is used in the definition of

subclasses.

Some authors, such as [9], propose a special abstract class symbol to be used in the object model.

3.2.4 Objects

An object is a model of either a real world entity or a concept. It combines structure with

behaviour in a single encapsulated entity which can be characterized by name, state information

and services (or operations). The name gives identity to the object and is used to reference it.

The state information is given by the values of the data types (attributes) encapsulated by the

object. The services constitute the interface of the object.

An object has an internal and an external view. During the analysis phase we are mainly

concerned with the object’s external view. Only in the design and implementation phases is its

internal view studied.

The external view of an object corresponds to its interface and includes only those properties

which the client objects need to see. The internal view of an object corresponds to its implemen-

tation and it reveals the underlying structure of any stored data, the details of the algorithms

used to accomplish the services, and the underlying layers of abstraction used to implement it.
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The designer of the object knows both the internal and the external views. The users of an

object only know its external view.

An object is a member of a class and is created by instantiating the class template.

3.2.5 Services

We distinguish between offered services and required services. An offered service is a capability

that an object exports and which can be used (called) by other objects in the model or by

the actors of the system. A required service is a service that an object requires from another

object. This service is defined in the second object as an offered service. The services are the

only mechanism other objects (inside or outside the system) can use to change or to query an

object’s state. Therefore, an object interacts (communicates) with other objects via services.

It is common in the object-oriented community to classify the services offered by an object into

three categories: constructors, modifiers, and selectors. A constructor creates an object, and

usually initializes its state. A modifier has the ability to change the state of the object in which

it is encapsulated. A selector returns state information about the object, but cannot change the

state.

3.2.6 Methods

We differentiate between services and methods. A service is contained in the interface of an

object (or class) and advertises an object’s capability. A method is internal to an object (or

class) and is the actual mechanism by which the service is accomplished.

3.2.7 Attributes

An attribute defines a static property of a class template, describing a data value held by each

object of the class. The attribute values give the object’s state information. Each attribute

name is unique in a class, but attributes in different classes can have the same name.

3.2.8 Object Identity

Each object is distinct from any other object. Two objects can have the same attribute values

and offer the same services, but they will still be different from each other. In [24] identity is

defined as:

a distinguishing characteristic of an object that denotes a separate existence of the

object even though the object may have the same data values as another object.

This distinguishing characteristic is referred to as the object identifier.

3.2.9 State (of an Object)

The state of an object, at a given time, is given by the values of its attributes and by the

conditions that determine the events in which the object can take part. The values of the

attributes are related to the static aspect of the object, while the conditions control the possible

state transitions and therefore are related to the dynamic aspect of the object.

10



3.2.10 Behaviour (of an Object)

The behaviour of an object describes the dynamic conduct of the object during its life time. It

is described in terms of the interactions the object can have with other objects, the order in

which these interactions may occur and the way the state information of that object changes.

3.2.11 Environment (of an Object)

The environment of an object is formed by all the other objects which constitute the system;

i.e. it is the part of the model which is not part of that specific object.

3.2.12 External Objects

An external object is an object which does not belong to the system being analysed, i.e. it is

an object outside the problem domain. The set of external objects provides the environment for

the entire system.

3.2.13 Events

An event is something that happens instantaneously at a point in time. An event has no

duration, compared with the time granularity in which we are interested.

In general, the order of two events may, or may not, be related. One event may logically precede

or follow another, two events may occur simultaneously, or they may be completely independent.

3.2.14 Message Connections

Objects interact (communicate) with each other by sending messages. Some OOA methods

use the term message connection to mean communication between two objects. A message

connection reflects a dynamic processing dependency between an object and the other parts of

the system. Message connections are represented in the object model as arrows. If a message

connection is defined from object A to object B, it means that object A requires operations from

B to accomplish its behaviour and the arrow points to B.

The mechanism objects actually use to communicate between each other depends upon the

language used. In a sequential language, such as Smalltalk, objects communicate via message

passing while in concurrent languages, such as Ada, communication is achieved by entry calls,

equivalent to remote procedure calls.

3.2.15 Inheritance

Generalization/specialization relationships, is-a relationships, and subtyping/supertyping rela-

tionships are some of the terms used to denote an inheritance-like concept.

There are two main definitions of inheritance [14]: behavioural inheritance and incremental

inheritance. Behavioural inheritance is related to the typing concept. According to [14] a type

is a predicate. An object is of a type if it satisfies the predicate. According to [23] every type

generates an associated class, i.e. subtyping and subclassing go hand to hand. So, if there are

two types T1 and T2 there must be the associated classes C1 and C2.
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We define a superclass to be the existing class and subclass to be the newly defined class which

inherits all the services and attributes of the superclass and, in addition, can redefine inherited

services and add new attributes and new services to the inherited ones.

In behavioural inheritance, objects of a subclass inherit all the services and attributes defined

in their superclass and can be used wherever an object of the superclass is expected. Objects of

a subclass can extend the inherited properties by defining new services. Redefinition of services

is also allowed, but only if the signature of the redefined service conforms to the signature of

the service in the superclass. A signature conforms to another if the number and the type of

the parameters of those services are the same, and also if the returned results, if any, are of the

same type. According to [1] the redefinition of services must also obey two extra conditions:

1. The redefined service must return the same value as the original service in the superclass

would when applied to the base part of the subclass object. (The base part of the subclass

is the part of the subclass, attributes and services, which is also defined in the superclass.)

2. Let b be a superclass object with the same initial state as the base part of a subclass

object d. Redefinition must change the state of the base part of d in the same way as the

superclass service changes the state of b.

Incremental inheritance provides the capability to allow objects to be specialized from existing

ones. It is based on the idea of incrementally modifying existing class implementations. It

mainly supports the concept of reusability and software engineers use it to define new classes

from existing ones, even when no subtyping relationship is intended. Incremental inheritance

is therefore used as a mechanism to share code and the services offered by the newly defined

class do not have to guarantee the conformance of the signatures and the two above conditions

imposed by behavioural inheritance.

As we are in the analysis phase, we are concerned with the sharing of properties, not the sharing

of code, even if we can use incremental inheritance to implement behavioural inheritance. There-

fore, we believe that, in a specification, it is most useful if the distinction between behavioural

and incremental inheritance hierarchies is dropped. Some object-oriented languages, such as

Object Pascal, only allow the redefinition of a service, and therefore the use of the same service

name, if the new service has exactly the same list of parameters and the same type of result (if

the service is implemented as a function).

The discussion above can be extended to include the ability of a subclass to inherit properties

from several superclasses. This is called multiple inheritance.

3.2.16 Conceptual Relationships

There is an open-ended requirement for conceptual relationships (associations). They are the

most common type of relationships and are application dependent, describing the role that one

object plays with respect to another. For example, in a banking problem, we could define

the relationship “has a” between the object “account” and the object “card”, meaning that an

“account has a card”. These relationships are characterized by their names and their cardinality.

The cardinality is defined in terms of an upper bound which can be 1:1 (to be read one-to-one),

1:N (one-to-many), and N:M (many-to-many) and a lower bound. The lower bound specifies

the minimum number of mappings between objects, and so it can define whether a relationship

is optional or mandatory.
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Some authors prefer to consider conceptual relationships to be defined implicitly in both direc-

tions, i.e. bidirectional [24], but others suggest that it is better to define each association in a

single direction, i.e. unidirectional [15]. An association between two objects, where each one

belongs to a different class (a binary association), means that one object knows about the other

or, if it is bidirectional, they know about each other. We can have a unary association, if the

two objects involved in the relationship belong to the same class, and a complex association, if

more than two objects (from different classes) are related. Complex associations can always be

transformed into a collection of binary associations by creating another object to which each of

the existing objects would relate.

Different associations between the same objects can coexist in the same model. In this case we

should keep them separated and model them independently in order to give the right semantics

to the model.

An association gives a potential for communication to the objects involved.

Binary Relationships

A binary relationship is defined between two objects, each one belonging to a different class. In

mathematical terms, a binary relationship R between the two sets 1 and 2 is called 1:1 when

each element of 1 is related to zero or one elements of 2 and the same condition holds for the

inverse relation −1; it is called 1:N when each element of 2 is related to zero or one elements

of 1 by the inverse relation and each element of 1 can be related to zero or more elements of

2; and any relation can be called M:N, i.e. there is no restriction and therefore each element of

1 can be related to zero or more elements of 2, and in the −1 relation, each element of 2

can be related to zero or more elements of 1. Therefore, every 1:1 relation is a 1:N relation and

every 1:N relation is a M:N relation. What is important is to determine the most constrained

group to which the relation belongs.

Unary Relationships

Unary relationships involve two objects of the same class. This type of relationship can be

sometimes seen as an inheritance relationship.

Note that, unary relationships give us the potential to define communication between two objects

of the same class. This is important, since message connections used by the object models

produced by [9, 15], for example, only define communication between objects of different classes.

Relationships with Values

There are situations in which a specific piece of information does not belong to any of the objects

involved in the relation, but it only exists because those objects are related; i.e. it belongs to the

relationship itself. In such a situation we say that a relationship holds values. This relationship

may be binary or unary.

3.2.17 Composition and Decomposition

An object-oriented system can be regarded as a collection of interacting objects each of which is

a member of a class. The concepts of class, inheritance and aggregation are very helpful in man-

aging software complexity, but they are not enough. If we are constructing a large and complex
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system then, in order to control complexity, it is necessary to group objects into subsystems.

Whether this is frequent depends upon the style of the original requirements document. The

description of the system may be mainly “flat”, i.e. without hierarchical structure, in which case

grouping the objects into subsystems is important in understanding and structuring the overall

system [17, 18, 20].

There are two particularly important structuring techniques that we can apply to collections of

objects:

Composition, which combines objects to form larger objects;

Decomposition, which refines larger objects into component objects.

A bottom up development makes heavy use of composition and a top down development makes

heavy use of decomposition. Which technique is most useful for a particular development de-

pends on the size and complexity of the problem, but also, in a first iteration, on the style of

the requirements. We can use a mixture of both. We can first use decomposition to divide the

system into subsystems and later use composition to build subsystems or composite objects from

simpler (perhaps already existing) objects; for example, objects reused from another context.

3.2.18 Aggregation

Aggregation is a special form of relationship, and not an independent concept. It is a part of

relationship in which the aggregate (composite object) is made of parts (object components).

An aggregate is, in any case, an object with identity.

We can distinguish two situations when dealing with aggregation: (i) the object components

are shared by other objects in the system, having associations and/or message connections with

those objects; (ii) the object components are only known by the aggregate and therefore no

associations or message connections are defined with the other objects of the system.

In the first case, where the object components are shared, the aggregation relationship should

be seen as a regular conceptual relationship, where each object component is related to the

composite object. In this situation, the aggregate and each object components have their own

identity.

In the second case, where the object components are not shared, the object components are

hidden from the rest of the system and they will belong exclusively to the aggregate. Therefore,

the interface with the rest of the system is made via the composite object and we may even

decide to not give identity to each object component.

3.2.19 Subsystems

A subsystem is merely a grouping of objects and it should not be seen as an object since it has

no identity.

Objects are grouped to form subsystems by following the concepts of coupling and cohesion.

Coupling measures the “strength of interconnection” among subsystems and cohesion measures

how tightly bound or related the components of a subsystem are to one another. Ideally, we

want loosely coupled subsystems so that we may treat each subsystem relatively independently

of the others, and strongly cohesive subsystems so that the components of a given subsystem

are functionally and logically dependent.
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As LOTOS contains two distinguishable parts, processes and abstract data types, a choice must

be made as to which part is better suited to model an object, a class template and a class. In

ROOA, a class template is specified either as:

A process and one or more ADTs: the process describes dynamic behaviour and the ADTs,

given as parameters of the process, describe state information.

A single ADT: when an object only plays the role of attribute of another object, it is

modelled simply as an ADT.

In the following sections we present the LOTOS interpretation of the object-oriented concepts

described in Section 3.2, by means of a running example.

3.3.1 Automated Banking System Example

The example we have chosen is an automated banking system. A brief outline of the problem

is given here.

Clients may take money from their accounts, deposit money or ask for their current

balance. All these operations are accomplished using either automatic teller machines

or counter tellers. Transactions on an account may be done by cheque, standing

order, or using the teller machine and card. There are two kinds of accounts: savings

accounts and cheque accounts. Saving accounts give interest and cannot be accessed

by the automatic tellers.

This problem has been analysed using OMT [24]. Part of the final object model is depicted in

Figure 3.1.

3.3.2 Class Template

A class template (or template for short) embodies the common characteristics of objects of the

same kind. It specifies what constitutes a typical object, without individual identity.

A template is defined in LOTOS by specifying a process definition. The process definition may

have formal parameters which are part of the common features of that kind of object. These

parameters, which are ADTs, define the state of the object. In general, we use one or more

ADTs to specify the state information of an object. An object defined by a template can move,

non-deterministically, from one state to another by events defined in the body of the process

definition which correspond to the services in the object model. Thus, the process definition

together with its formal parameters specify the services (with their methods implemented as

operations in the ADTs) and the attributes of the corresponding class template.

The Process Definition

The process defining a class template, called a process template, can use any combination of the

LOTOS operators to specify the behaviour required (see Table 2.2). The state information is
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Figure 3.1: Part of the final object model

given by one or more ADTs which specify the operations required to support the services offered

by the template.

An example of a process template using the choice operator, “[]”, is as follows:

process Template[g](state: State˙Template) : noexit :=

( g !selector˙1 !Get˙Id(state) ...;

...

exit(state)

[]

g !modifier˙1 !Get˙Id(state) ...;

...

exit(F1(state))

[]

...

) >> accept update˙state: State˙Template in Template[g](update˙state)

endproc

The process Template is defined recursively and uses gate g for synchronization with other

processes. It communicates with other objects in the system through structured events.

The event

g !selector_1 !Get_Id(state) ...;

is a structured event where g is a gate, selector 1 is the name of an offered service, and

Get Object Id(state) is an operation defined in the ADT State Template and which gives
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the object identifier. This operation is required when we group the object identifier with other

attributes in the same ADT.

A structured event is composed of:

a gate name for communication;

a service name which plays the role of message name;

the identifier of the object being called;

a list of optional parameters.

The operator [] is the non-deterministic choice operator and >> is the enable operator. The

behaviour expression A>>B means that on successful completion of process A we start execution

of process B. The operator accept ... in is used to pass values as we exit from one process

and enable another.

The above template is offering a selector, given by the message name selector 1, and a modifier,

given by the message name modifier 1. As a selector does not change the state of the object,

exit returns the initial state given as a parameter of the process. On the other hand, as the

modifier changes the state of the object, exit returns the initial state affected by the operation

F1. The operation F1 is defined in the ADT State Template.

Using the running example, let us consider the object model represented in Figure 3.1. The

template Account could be defined as:

process Account[g](this˙account: State˙Account) : noexit :=

( g !deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

g !get˙balance !Get˙Account˙Number(this˙account) !Get˙Balance(this˙account);

exit(this˙account)

[]

g !withdraw !Get˙Account˙Number(this˙account) ?m: Money;

( choice if˙money: Bool []

[if˙money] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !true;

exit(Debit˙Account(this˙account, m))

[]

[not (if˙money)] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !false;

exit(this˙account)

)

[]

...

) >> accept update˙account: State˙Account in Account[g](update˙account)

endproc

Notice that g !deposit !Get_Account_Number(this_account) ?m: Money; is the first action

prefix expression in the behaviour expression

g !deposit !Get Account Number (this Account) ?m: Money;

exit(Credit Account(this account, m))

and it denotes the offered service deposit. There are no required services from other objects in

that behaviour expression, but if there were to be, they would appear after that action prefix.
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The functions Get Account Number, Credit Account and Get Balance are defined in the ADT

in which sort State Account is defined. The parameter this account represents the object

state information and is updated by the recursive call.

The generalized choice operator choice, used to specify the service withdraw, allows the intro-

duction of non-determinism. Notice that by using this operator we can specify the two possible

situations with account (account has funds and account has no funds) without querying the

account’s balance and without doing any calculations.

Offering services as the alternative events of a choice expression is the most common LOTOS

representation of a class template. It is not however necessary for all templates to look like

Account. The structure and the operators depend on the behaviour we want to specify.

As a rule, we propose that the name given to a process template is the one used by the corre-

sponding class template in the object model, with an initial upper case letter.

3.3.3 Symbolic ADTs

The arguments of a process are defined as ADTs. ADT definitions in LOTOS are usually long.

Each operation is defined by one or more algebraic equations. Since we are in the analysis

phase, it would be preferable to use ADTs where only a small number of simple equations are

required. This can be achieved by using symbolic ADTs. A symbolic ADT contains only the

necessary information to allow the specification to be prototyped with state information and

values to be passed during the communication, but without giving too much detail about how

each operation is performed internally. We are interested in the kind of information that is to be

transferred between objects rather than the details of the algorithm by which the information

is to be calculated within an object.

A symbolic ADT is built in the following way:

1. Leave the modifiers without equations. This treats them as constructors of the ADT and

gives a record of the history of the events that have changed the object’s state information.

2. Define dummy equations for selectors when a particular result does not need to be returned.

More detail will be added in the design phase. A dummy equation does not query the state

of the ADT and always returns the same constant value. It therefore adds no information

that was not already in the signature. An equation must be given as otherwise a new

constructor on the result sort would have been defined.

The dummy equations are used in conjunction with non-determinism introduced in the

process part, and it is there that the different possible situations are covered.

3. Define equations for selectors that need to return a particular value. The selector must be

defined using an equation for each constructor.

The ADT that defines the sort State Account could be as follows:

type Account˙Type is Account˙Number˙Set˙Type, Money˙Type, Balance˙Type

sorts State˙Account

opns Make˙Account : Account˙Number, Balance -> State˙Account

Credit˙Account : State˙Account, Money -> State˙Account

Debit˙Account : State˙Account, Money -> State˙Account

Get˙Balance : State˙Account -> Balance
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Get˙Account˙Number : State˙Account -> Account˙Number

...

eqns forall a: State˙Account, n: Account˙Number, m: Money

ofsort Balance

Get˙Balance(a) = Some˙Balance;

ofsort Account˙Number

Get˙Account˙Number(Make˙Account(n,m)) = n;

Get˙Account˙Number(Credit˙Account(a,m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Debit˙Account(a,m)) = Get˙Account˙Number(a);

endtype

In Account Type there is one constructor (Make Account which creates an account from its

components), two modifiers (Credit Account which credits the account, and Debit Account

which debits the account), and two selectors (Get Balance which returns an account balance

and Get Account Number which returns an account number). For the constructors and the

modifiers we give their signature and no equations. The selector Get Balance does not need

to return a particular value of balance (it is not important for us) and so it is defined with a

dummy equation, always returning the value Some Balance. Some Balance is a constant defined

in the abstract data type Balance Type.

Since we use non-determinism in the process part, the use of dummy equations in the ADT

does not exclude the study of the different possible situations. For example, we use the non-

deterministic choice operator in process Account and, along with that, we explore the two

possible situations which can happen: either there is enough money in an account or there is

not enough money in an account.

Get Account Number, however, has to return a particular account number and so it is defined

with an equation for each constructor.

The number of ADTs we define as parameters of the class template can vary. We would like to

be able to incorporate all the attributes of an object in a single ADT. However, as we will see,

inheritance of attributes and associations are better modelled as separate ADTs. We can also

decide to model some attributes separately for reasons of reusability.

As a rule, we propose to name an ADT by using the template name followed by Type, and let

the sort name be the name of the template preceded by State . The operations of the ADT

can be named differently from the operations in the object model, or else with the same name

followed by ADT. The sort of auxiliary ADTs, such as Balance and Account Number, can be

named without the term State . The constructor is always named with the template name

preceded by Make and the name of the operation that gives the object identifier always start

with Get and follows with the identifier name.

3.3.4 Services

The term service is used to denote an operation offered by both an object in an object model

and a process. We reserve the term operation to denote the operations defined in an ADT. Also,

we use the term basic constructor to denote a constructor in LOTOS that creates a value of an

ADT from its components. Make Account is an example of a basic constructor.

A service in the object model appears as a message name in a LOTOS structured event in the

process that defines the template. The method of a service is defined as a LOTOS behaviour

expression and may include one or more operations in the ADTs given as arguments of the

process template. The operations in the ADT usually have a different name from the service
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name.

For example, consider the behaviour expression defined in template Account:

g !withdraw !Get˙Account˙Number(this˙account) ?m: Money;

( choice if˙money: Bool []

[if˙money] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !true;

exit(Debit˙Account(this˙account, m))

[]

[not (if˙money)] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !false;

exit(this˙account)

)

withdraw is the message name (it has the same name as the service in the object model) and

Debit Account is the name of the corresponding operation in the ADT State Account.

The (first) action prefix g !withdraw !Get_Account_Number(this_account) ?m: Money; de-

notes the offered service withdraw. In order to perform an withdrawal, Account has to inves-

tigate whether or not the amount to be debited is less than (or equal to) the existing balance.

The choice operator is non-deterministic and allows us to choose between the situation where

there is enough money to debit the account (given by the guard [if_money]) and the situation

where there is not enough money and therefore the debit is not allowed (given by the guard

[not (if_money)]). Non-determinism is a very useful mechanism in the analysis phase since it

allows us not to compromise the decisions which may only be correctly made during the design

phase. Following the guards, Account offers another event for synchronization which returns

information about whether or not the service was successful.

The message names are defined as constructor operations in a specific ADT called Op Names, as

follows:

type Op˙Names is

sorts Op˙Name

opns

deposit, withdraw, get˙balance, create, remove, ... : -> Op˙Name

endtype

This discussion has referred only to the services an object offers to its environment, but in order

to accomplish them it may need to refer to other object’s services. The call to such a required

service appears after the action prefix that defines the offered one. For example, Counter Teller

offers in gate t the service deposit cash. In order to accomplish a deposit, Counter Teller

must call the service deposit defined in Account, using gate g for synchronization. The appro-

priate part of the process definition of Counter Teller is:

t !deposit˙cash !id ?n: Account˙Number ?m: Money;

(* deposit˙cash being on offer to the users *)

g !deposit !n !m;

(* call deposit operation defined in Account *)

3.3.5 Attributes

As noted earlier, the state information of the object is modelled in LOTOS as ADTs which

appear as arguments in a template. It would be possible to model each attribute as a separate
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ADT and then give all of them as parameters of the template. However, we prefer to put all

the attributes together in a single ADT and then use it as the parameter of the process (just as

we did for Account). This is not, however, always possible. If a subclass extends the attributes

inherited from its superclass, the new attributes will be modelled as ADTs and given as extra

parameters of the process template that defines the subclass. Similarly, an association between

objects will be modelled as an attribute defined as an ADT and given as a parameter of the

process defining the class template.

The basic constructor in an ADT shows the components of a data value. The elements in its

domain correspond to the attributes of the object. In the example given above, Make Account

is the basic constructor which shows that an account has two attributes, Account Number and

Balance. These two attributes are defined as two separate ADTs. A basic constructor will not

always have all the attributes in its domain as some may be implicit.

3.3.6 Classes

A class is modelled in LOTOS as an object generator. An object generator is built from a

template and it allows the creation of objects that share the same set of features.

Consider the following process definition of a simple object generator:

process Object˙Generator[a] : noexit :=

Template [a] ——— i; Object˙Generator [a]

where

process Template[a] : noexit :=

(* some behaviour *)

endproc

endproc

The interleaving operator ||| indicates that the processes Object Generator and Template are

composed in parallel, but do not interact with one another.

The internal event i is used to control the recursive instantiation of Object Generator so that it

is easier to follow the simulation using LITE (it is not necessary in the definition of the process).

In most real situations an object needs to be initialized when it is created and the initialization

operation should only be offered once for each object. We could do that inside this template as

follows [6]:

process Object˙Generator[a] : noexit :=

Template[a] ——— i; Object˙Generator[a]

where

process Template[a] : noexit :=

a !create; Template˙1[a]

where

process Template˙1[a] : noexit :=

(* some behaviour *)

endproc

endproc

endproc

An alternative solution, which eliminates the need for the internal event and only uses two

processes, is:
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process Object˙Generator[a] : noexit :=

a !create; (Template[a] ——— Object˙Generator[a])

where

process Template[a] : noexit :=

(* some behaviour *)

endproc

endproc

Here, Template does not encapsulate the service create, letting it be offered by the class. This

is the way in which create should be regarded. Adopting this view, the definition of the class

template is much simpler.

In the initialization we can pass values that are then used to build the state information of

an object. We adopt the rule that one of the values in the initialization event is always the

object identifier. For each class of objects, we can define a set of identifiers given as a formal

parameter of the corresponding object generator. The template’s process definition includes a

parameter giving the state of the object which is updated by a recursive call. Consider the

following definition:

process Object˙Generator[a](ids: Id˙Set) : noexit :=

a !create ?id˙counter: Id ?init˙val1: Value˙Sort1 ... [id˙counter notin ids];

( Template[a] (Make˙State(id˙counter,init˙val1, ...))

———

Object˙Generator[a](Insert(id˙counter, ids))

)

where

process Template[a](state: State˙Template) : noexit :=

(

(* behaviour expressions with exit functionality *)

) >> accept state˙modified: State˙Template in Template[a](state˙modified)

endproc

endproc

The object generator holds the set of identifiers already allocated, ids. The selection predicate:

[(id counter notin ids)]

guarantees that the new object identifier is different from all existing ones.

When Object Generator is instantiated it offers synchronization with the event:

a !create ?id˙counter: Id ?init˙val1: Value˙Sort1 ... [id˙counter notin ids];

When an object is required, another object has to offer an event such as

a !create ?object˙id: Id !val1 ... ;

Synchronization takes place and Template is instantiated causing an object to be created with

some state information. Note that while the values val1, ... are passed into Object Generator,

the object identifier is created using value generation. There is also the situation where there is

an upper limit to the number of objects. In this case, the object generator can hold the set of

identifiers not yet allocated and the selection predicate guarantees that the new object identifier

is one of these.

In the banking system, the object generator for Account would be:

process Accounts[g](accs: Account˙Number˙Set) : noexit :=
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g !create ?acc˙counter: Account˙Number [(acc˙counter notin accs)];

( Account[g](Make˙Account(acc˙counter,0))

———

Accounts[g](Insert(acc˙counter,accs))

)

endproc

While the templates are named by using the name (in the singular) of the corresponding class

template in the object model, object generators are named with the plural of the template’s

name.

By using object generators we are able to create, through the behaviour of the object generator,

an infinite number of objects. There are however situations where we know the exact number

of objects we need. If we only need one object of a given class during the system’s life an object

generator is not required. Also, there are situations with composite objects where we may need

to impose a fixed number of components. In this situation the instantiation of the template

process would be done by explicitly calling that template’s name. For example, if only one

object in our application was required, the object would be created by:

Template[a](Make State(id1,...))

where id1 is a specific identifier we give to the object.

3.3.7 Object Identity

In LOTOS, when we instantiate a process we must give a unique identity to each new object

created. This is the purpose of an object identifier.

Object-oriented analysis methods propose that only attributes known from the real world should

appear in the object model. In many situations object identifiers do not have a meaning in the

real world and so, according to the above proposition, they should be added to the model in

a later phase. This is a common procedure when dealing with informal and non-executable

specifications, but it cannot be followed for formal executable specifications such as those in

LOTOS, where objects are created dynamically during prototyping.

In the analysis phase, we are interested in defining simple object identifiers which can be used

indistinguishably by any class of objects. This is achieved by defining a standard ADT and by

adding it to the LOTOS library. Thus, we have defined the “standard” ADT Id Type with the

following specification:

type Id˙Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3, id4, id5, id6, id7, id8, id9, id10, id11,

id12, id13, id14, id15, id16, id17, id18, id19, id20 : -> Id

First˙Set, Second˙Set, Third˙Set, Fourth˙Set : Id -> Bool

h : Id -> Nat

˙eq˙, ˙ne˙, ˙lt˙ : Id, Id -> Bool

eqns

...

endtype

We have defined 20 different identifiers, but we can define as many as we want. We also define

the operations First Set, Second Set, Third Set and Fourth Set in order to allow different
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classes of objects to share the same sort of identifiers. This is required to specify subclasses (see

Section 3.3.11).

As noted earlier, the object generator in its extended form requires a set of identifiers. Therefore,

Set Id Type has also been added to the library:

type Set˙Id˙Type is Set actualizedby Id˙Type using

sortnames Id for Element

Bool for FBool

endtype

The standard LOTOS library includes the parameterized ADT Set for sets. Set has two formal

parameters, Element, which is actualized with Id, and FBool which is actualized with Bool.

(Bool is a predefined ADT for booleans.)

Whenever object identifiers are needed for a given class, Set Id Type is instantiated. For ex-

ample, for the class of objects Account, we instantiate as follows:

type Account˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Account˙Number for Id

Account˙Number˙Set for Set

endtype

Account Number is the sort name of the object identifiers id1, id2, ..., id20 of an account.

Recalling the template Account:

process Account[g](this˙account: State˙Account) : noexit :=

g !deposit !Get˙Account˙Number(this˙account) ...

[]

...

endproc

Get Account Number, defined in the ADT Account Type, returns the appropriate account iden-

tifier.

Generating Identifiers

Whenever a new object is created we have to “produce” an identifier. The ODP standard

model [14] suggests four different ways to generate or allocate names (identifiers) for objects:

1. Allow the object to chose its own name, and ensure that it is suitably unambiguous.

2. Elect to use some information already known to identify the object unambiguously.

3. Allocate unique identifiers (e.g. numbers) to the objects, perhaps in the order in which

they come into existence.

4. Some hybrid of the above.

For its simplicity, we choose the option 3, together with value generation which allows the

introduction of uninstantiated variables.

For example, as presented in Section 3.3.6, an account number would be generated when the

object generator Accounts offers for synchronization:
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g !create !cheque ?acc˙counter: Account˙Number [(acc˙counter notin accs)];

and some other object, perhaps an interface object, offers:

g !create ?acc˙number: Account˙Number;

When these two events synchronize, the same symbol (not a value) of the sort Account Number

is ascribed to both acc number and acc counter. This symbol is constrained such that it is

not already in the set accs. This technique is called value generation and it avoids defining an

algorithm to generate the account number.

Value generation is available with the SMILE simulator [11]. The SMILE simulator is part of

the Lite toolset produced as part of the Lotosphere ESPRIT Project. It allows us to simulate

using a set of possible values rather than a particular value of the identifier.

3.3.8 Abstract Classes

A process defining an abstract class template does not have any instances and is only used in

the definition of processes which define subclass templates.

3.3.9 Objects

An object encapsulates its state and the algorithms which accomplish its behaviour. Any change

in an object’s state is only possible by means of interaction through a well defined interface with

the environment of that object.

An object is a member of a class and is created by instantiating a process template.

Creation (of an Object)

In cases where the operation that creates an object is offered to the environment, the operation

create appears in the object model. This happens with Account, where a client can ask to

open an account. In other cases, the creation operation does not appear in the object model.

In our method, the operation create is not defined in the process template, but in the object

generator. An object is created by instantiating the process which defines the class template.

This can happen in two different ways:

1. If an unknown number of objects is required, the instantiation occurs indirectly by sending

a create message to an object generator.

2. If the number of necessary objects is fixed, the template is instantiated directly.

In the banking example, as an unknown number of chequing accounts are needed, a new

cheque account is created by means of the object generator Cheque Accounts. Therefore

Cheque Accounts offers:

g !create !cheque ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

and an instance of Counter Teller would offer:

g !create !cheque ?acc˙number: Account˙Number;
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in order to open an account. If only a single instance (or a small number) of account objects

had been required, then we would not have defined the generator Cheque Accounts and each

cheque account object would be created by calling the template Cheque Account directly, for

example, Cheque_Account[g](Make_Account(id1,0)).

Deletion (of an Object)

A deletion operation may or may not appear in the object model. There are situations where

we may want an object to “live forever”, but there are others where we require explicitly that

an object should be removed. For this, we define a remove service in the template that defines

the object. In situations where inheritance is involved, this service is best defined in the process

defining the subclass template.

The termination of an object is accomplished by terminating its LOTOS process. Termination

of a LOTOS process is achieved by two LOTOS behaviour expressions: exit, representing the

sucessful termination of the process; and stop, representing the abnormal termination of the

process. Therefore we use stop.

To delete an object, the operation remove in the object model is modelled as follows:

process Account[g](this˙account: State˙Account) : noexit :=

( ...

[]

g !remove !Get˙Account˙Number(this˙account);

stop

) >> accept update˙account: State˙Account in Account[g](update˙account)

endproc

Note that we are defining the remove operation in the template Account because we are ignoring

the fact that an account is an abstract superclass. If we were taking this into consideration, this

operation would be defined for each subclass.

State (of an Object)

The state of an object is given by the values of the parameters defined in the process template

and by the events currently being offered by the object.

Behaviour (of an Object)

A behaviour describes the order in which the events of that object can occur and the changes

in the object’s state. Behaviours are required to define sequencing rules, the possible choice of

events allowed at given time, and, for more complex behaviours, concurrency rules [14]. The

state of an object can restrict the events that can occur within the object at a given time as

events can have guards.

The behaviour of an object is given in LOTOS by the externally visible behaviour and by the

internally invisible behaviour. The externally visible behaviour is specified by events which

occur when the object synchronizes with other objects in the system. The internal, invisible

behaviour is specified by events only defined internally to the object and so are invisible to the

object’s environment.
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In summary, the behaviour of an object is given by a collection of events with a set of constraints

on the order in which they may occur.

3.3.10 Message Connections

In LOTOS two or more processes communicate via event synchronization, by using gates. How-

ever, as message passing in the object-oriented paradigm involves two objects, we restrict com-

munication in LOTOS to be defined between two process instances which synchronize at a

common gate on an externally visible event.

An object can behave as a client, as a server, or both. Client objects send messages to server

objects which may or may not return an answer. A server normally offers all its services at a

single gate. If it also acts as a client, then it uses a separate gate to communicate with each of

its servers.

Communication is achieved by synchronizing on a structured event of the form:

gate name message name object identifier optional parameters

For example, a Counter Teller can send a message to Account asking for a deposit:

g !deposit !acc˙number !amount;

and an instance of Account synchronizes with this event by offering:

g !deposit !Get˙Account˙Number(this˙Account) ?m: Money;

Value matching of acc number and Get Account Number(this account) is used to ensure cor-

rect synchronization. Value passing is used to pass the value amount to the variable m. Although

a client must know the identity of the server, a server can service many clients without knowing

their identity.

The client gives the service (message) name, the server object identifier and, optionally, some

parameters. In order to give an answer, the server can either accomplish one of its methods, send

a message to another object, or both. Sometimes the request and the answer can be specified in

LOTOS as a single behaviour expression in each object (as happened above). In this case, the

entire communication is an atomic event. Another example is when a Counter Teller sends a

message to Cheque Account asking for an account balance:

g !get balance !acc number ?balance: Money;

and an instance of Cheque Account synchronizes with this event by offering:

g !get balance !Get Account Number (this account) !Get Balance(this account);

In general, the server may not be able to give the result immediately in which case the client

must offer a second synchronization event to receive the server’s result. These events form a

non-atomic action which can be interpreted as a form of remote procedure call. In this situation,

the second synchronization should not be understood as if the server object was now behaving

as a client of the initial client object. Neither the “call event” nor the “return event” include

the identifier of the object which initiated the communication.

An example is when Counter Teller sends a message to withdraw money. This requires a call

and a return event.

g !withdraw !acc˙number !amount;

g !withdraw˙ok !acc˙number ?ok: Bool;
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Both events use the value of the account number (i.e. the identity of the server) to ensure correct

synchronization. Account “accepts” the call and receives the parameter amount. Then it carries

out the method withdraw and then returns the result to the client Counter Teller in one of

two alternative events:

g !withdraw !Get˙Account˙Number(this˙account) ?m: Money;

( choice if˙money: Bool []

[if˙money] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !true;

exit(Debit˙Account(this˙account, m))

[]

[not (if˙money)] -> g !withdraw˙ok !Get˙Account˙Number(this˙account) !false;

exit(this˙account)

The discussion presented above shows how two objects which belong to different classes commu-

nicate. These two objects are connected by a message connection in the object model. Usually,

as we have seen, if an object wants to initiate a communication then it has to receive, from its

environment or the external world, the object identifier of the object with which it wants to

communicate.

However, it is possible that two objects belonging to the same class need to communicate. We

discussed in Section 3.2.16 how unary associations give the capability of communication between

two objects of the same class. In LOTOS, the only way to specify such a communication is by

creating a channel of communication. This channel is defined as a process, which synchronizes

with the process which defines the class template in question (see Figure 3.2).

  Object A
(of Class C)

  Object B
(of Class C)

Communication
   Channel

Figure 3.2: Two objects of the same class communicate via a channel

3.3.11 Specifying Inheritance with LOTOS

As LOTOS was developed before object-oriented techniques became widely accepted, inheri-

tance is not directly supported. However, by using the standard LOTOS constructs, incremen-

tal inheritance can be represented in a straightforward way. This document only deals with

incremental inheritance, leaving for a future paper the discussion of both multiple inheritance

and behavioural inheritance and on how the conditions given in Section 3.2 must be verified in

a LOTOS specification. Pure extension, where there is no redefinition or deletion of services,

does provide behavioural inheritance.

To be able to specify inheritance in LOTOS (extension and redefinition of operations and exten-

sion of attributes), the superclass has to be defined with exit functionality. Considering Fn(x)

to be any function involving x and defined as an operation in the ADT which defines the sort

of x, the superclass would take the form:

process Superclass[g](state: State˙Sort) : exit(State˙Sort) :=

g !selector˙1 !Get˙Id(state) ... ;

...
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exit(state)

[]

g !modifier˙1 !Get˙Id(state) ... ;

...

exit(F1(state))

[]

g !modifier˙2 !Get˙Id(state) ... ;

...

exit(F2(state))

endproc

We can create the subclass Extended Class based on that Superclass which is extended to

offer more services:

process Extended˙Class[a](state: State˙Sort) : noexit :=

( Superclass[a](state) >> accept update˙state: State˙Sort in exit(update˙state)

[]

a !modifier˙3 !Get˙Id(state) ... ;

...

exit(F3(state))

) >> accept update˙state: State˙Sort in Extended˙Class[a](update˙state)

endproc

Note that the subclass Extended Class could also be extended in the number of gates, if this

was necessary to define the new services.

Rudkin presents a rigorous approach to how inheritance can be introduced in LOTOS, and

describes the problems with self referencing (when the superclass has noexit functionality) [22].

If a redefinition of one or more services is required, the idea is to “eliminate” them first and then

create them with the necessary differences. To accomplish this it is necessary to have an auxil-

iary superclass where the services that are going to be directly inherited are defined. Supposing

that we wanted to redefine the service modifier 2, we specify auxiliary class Inherited Class

with the services we want to keep and use it as follows in the definition of the new class

Redefined Class:

process Inherited˙Class[a](state: State˙Sort) : exit(State˙Sort) :=

a !selector˙1 !Get˙Id(state) ... ;

...

exit(state)

[]

a !modifier˙1 !Get˙Id(state) ... ;

...

exit(F1(state))

endproc

process Redefined˙Class[a](state: State˙Sort) : noexit :=

( ( Superclass[a](state)

—[a]—

Inherited˙Class[a](state)

)

>> accept update˙state: State˙Sort in Redefined˙Class[a](update˙state)

[]

a !new˙modifier˙2 !Get˙Id(state) ... ;
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...

exit(F2a(state))

[]

a !modifier˙3 !Get˙Id(state) ... ;

...

exit(F3(state))

) >> accept update˙state: State˙Sort in Redefined˙Class[a](update˙state)

endproc

As before, modifier 3 is an added service.

So far, we have been discussing extension and redefinition of services. But, how can we create

a subclass which extends the state information of its superclass? As the attributes are defined

in the abstract data type part, it seems that incremental modifications in the attributes of the

object should be done there. There are however some complications. We can use the ACT-ONE

language to extend (and combine, and rename) abstract data types, but only in what concerns

the operations defined in the ADT. If we want to extend the number of components, then the

functions defined in the initial abstract data type cannot be inherited, since the constructor

operations need to “know” about all the data components of the structure. The solution is to

add more ADTs as parameters of the class template that defines the subclass, although this

gives us a broken structure for the state information of the object.

Taking Superclass defined above, and supposing we want to define a subclass which extends the

superclass state and redefines the service modifier 2, the process template Inherited Class

would take the form:

process Inherited˙Class[a](state: State˙Sort) : exit(State˙Sort) :=

a !selector˙1 !Get˙Id(state) ... ;

...

exit(any State˙Sort)

[]

a !modifier˙1 !Get˙Id(state) ... ;

...

exit(any State˙Sort)

endproc

(Note that any is a LOTOS key word and can be used with any type, predefined or not).

And Redefined Class would be defined as follows:

process Redefined˙Class[a, b]

(state: State˙Sort, ext˙state: Ext˙State˙sort) : noexit :=

( ( Superclass[a](state)

—[a]—

Inherited˙Class[a](state)

)

>> accept update˙state: State˙Sort in exit(update˙state, ext˙state)

[]

a !new˙modifier˙2 !Get˙Id(state) ... ;

...

exit(F2a(state), F2b(ext˙state))

[]

b !modifier˙3 !Get˙Id(state) ... ;

...
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exit(F3a(state), F3b(ext˙state))

) >> accept update˙state: State˙Sort, ext˙update˙state: Ext˙State˙Sort in

Redefined˙Class[a, b](update˙state, ext˙update˙state)

endproc

Now,the state information of objects of the class Redefined Class is a pair of ADTs (state,

ext state).

In the object model represented in Figure 3.1, Cheque Account and Savings Account are iden-

tified as subclasses of the superclass Account. In Section 3.3.2 Account was defined with noexit

functionality, but because it is a superclass its functionality has to be changed to exit:

process Account[g](this˙account: State˙Account) : exit(Account) :=

g !deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

g !get˙balance !Get˙Account˙Number(this˙account) !Get˙Balance(this˙account);

exit(this˙account)

[]

...

endproc

The superclass can then be extended to create a Cheque Account subclass. The new class tem-

plate inherits the properties of the superclass and defines the new operation print mini statement.

process Cheque˙Account[g](this˙account: State˙Account) : noexit :=

( Account[g](this˙account)

>> accept this˙account: State˙Account in exit(this˙account)

[]

g !print˙mini˙statement !Get˙Account˙Number(this˙account) !this˙account;

exit(this˙account)

) >> accept this˙account: State˙Account in Cheque˙Account[g](this˙account)

endproc

The object generator of this template would be:

process Cheque˙Accounts[g](accs: Account˙Number˙Set) : noexit :=

g !create !cheque ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

( Cheque˙Account[g](Make˙Account(acc˙counter, 0))

———

Cheque˙Accounts[g](Insert(acc˙counter,accs))

)

endproc

As both kinds of account share the same Account Number sort, !cheque specifies the type of

account we want to create. The object generator holds the set of identifiers already allocated

and the selection predicate:

[(acc counter notin accs) and Is Cheque Acc(acc counter)];

imposes the condition that the new object identifier is different from all existing ones and

Is Cheque Acc(acc counter) guarantees that the new object identifier belongs to the correct

subrange of Account Number.
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As we can see in the object model, the superclass does not have any specific instances, and so it

does not need an object generator. If we however we change the requirements in order to allow

the creation of objects of the superclass Account, a new process would have to be created:

process Accounts[g](this˙account: State˙Account) : noexit :=

( Account[g](this˙account)

>> accept this˙account: State˙Account in Accounts[g](this˙account)

)

endproc

3.3.12 Conceptual Relationships

We represent conceptual relationships (associations) in LOTOS as arguments in the process

defining the class template. These arguments are ADTs which represent either the identifier of

an object or a set of identifiers, depending on the cardinality of the association. Since we are

in the analysis phase, we do not want to decide how certain properties of the system should

be designed and then implemented. If we are creating executable specifications, we have to say

something about how to model associations in order to be able to simulate the results, but it

does not mean that we have to make final decisions at this stage. Later, in the design, we will

decide the best way to implement an association. It may well be that we may represent this

association as a new object.

Any relationship involving a superclass will be inherited by the objects of its subclasses. There-

fore such relationships can be modelled in the template that defines the superclass.

Binary Associations

One-To-One

A one-to-one association is modelled in each object as an attribute which is the required object

identifier. If the minimum of the cardinality is zero we can use a set of identifiers, instead of the

identifier itself. The empty set gives us a simple way of dealing with optional relationships.

In the following examples we only show the relationship being modelled in one of the objects.

To model it in both objects a similar technique should be applied to the second object.

Suppose there is an optional 1:1 relationship between a cheque account and a card. The template

Cheque Account would be:

process Cheque˙Account[g](this˙account: State˙Account,

cards: Card˙Number˙Set) : noexit :=

( Account[g](this˙account)

>> accept this˙account: State˙Account in exit(this˙account, cards)

[]

g !print˙mini˙statement !Get˙Account˙Number(this˙account) !this˙account;

exit(this˙account, cards)

[]

...

) >> accept this˙account: State˙Account, cards: Card˙Number˙Set

in Cheque˙Account[g](this˙account, cards)

endproc
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and the object generator must be changed to initialize the parameter cards of the template

Cheque Account:

process Cheque˙Accounts[g](accs: Account˙Number˙Set): noexit :=

g !create !cheque ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

( Cheque˙Account[g](Make˙Account(acc˙counter, 0), –˝ of Card˙Number˙Set)

———

Cheque˙Accounts[g](Insert(acc˙counter,accs))

)

endproc

{} of Card_Number_Set represents the empty set.

If the relationship was mandatory, rather than optional, it would mean that for each account

there must be one card. Therefore, instead of the empty set {} of Card_Number_Set, one card

identifier of the sort Card_Number is needed. In the above example, by initializing the object

with an empty set, we can create an account and later on create a card, if necessary. However,

if the association is mandatory, then at the time we create an account, we must create the

corresponding card. Thus:

process Cheque˙Accounts[g](accs: Account˙Number˙Set) : noexit :=

hide cd in

( g !create !cheque ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

cd !create ?card˙nr: Card˙Number !acc˙counter;

( Cheque˙Account[g](Make˙Account(acc˙counter, 0), card˙nr)

———

Cheque˙Accounts[g](Insert(acc˙counter,accs))

)

)

endproc

The gate cd is used to communicate with the Card object generator. The value acc counter

would only be passed if the association was bidirectional.

One-To-Many

A one-to-many association is modelled as an attribute that has the value of the object identifier

in the many side (contained object) and as an attribute that is a set of object identifiers in

the other side (container object). Again, optional relationships are modelled by using a set of

identifiers instead of a single identifier.

In the object model depicted in Figure 3.1, cheque account has a one-to-many association with

card. This case would be dealt with using a set of cards in the same way as the optional 1:1

association we studied above.

Many-To-Many

A many-to-many association can be transformed into two one-to-many associations by creating

a third object and using it to relate the other two objects. However, for simplicity, at this stage,

we model it as an attribute that is a set of object identifiers in each object.
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In the example, Cheque Account has a many-to-many relationship with Standing Order. We

must add to Cheque Account a parameter sos of sort SO Number Set. The value of sos is the set

of standing order numbers associated with that account. Any time a standing order is created,

its identifier should be given to the corresponding account. (This is supposing that accounts

know about standing orders. It could be that only standing orders had to know about accounts.)

The template Cheque Account with the extra argument sos is given below:

process Cheque˙Account[g](this˙account: State˙Account,

cards: Card˙Number˙Set, sos: SO˙Number˙Set) : noexit :=

( Account[g](this˙account)

>> accept update˙account: State˙Account in exit(update˙account, cards, sos)

[]

...

) >> accept update˙account: State˙Account, cards: Card˙Number˙Set, sos: SO˙Number˙Set

in Cheque˙Account[g](update˙account, cards, sos)

endproc

The object generator now has to instantiate the process template with one more parameter:

process Cheque˙Accounts[g](accs: Account˙Number˙Set) : noexit :=

...

( Cheque˙Account[g](Make˙Account(acc˙counter, 0),

–˝ of Card˙Number˙Set, –˝ of SO˙Number˙Set)

———

Cheque˙Accounts[g] ...

)

endproc

In this case, a standing order knows about two accounts (the one which is going to be credited

and the one which is going to be debited). Because we know the cardinality of the association

in standing order/cheque account direction and also the accounts involved in the association,

when a standing order is created, we can use the two account identifiers separately, instead of

giving a set with the two identifiers as elements of that set:

process Standing˙Orders[a, g](sos: SO˙Number˙Set) : noexit :=

a !so˙create ?n1: Account˙Number ?n2: Account˙Number ?bk: Bank˙Name

?m: Money ?so˙counter: SO˙Number [so˙counter notin sos];

( Standing˙Order[a, g](Make˙SO(so˙counter, n1, n2, bk, m))

———

Standing˙Orders[a, g](Insert(so˙counter, sos))

)

endproc

Unary Associations

Unary associations are modelled as an identifier (or set of identifiers) in the process template.

There are, however, situations where they can be seen as is-a (generalization/specialization)

associations. In object-oriented development, inheritance is an important concept which usually

comes to light early in the development process. However, there are situations where this concept

does not show up clearly. Consider the example of a company with its employees. It could be
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useful to define a relationship manager in the Employee object that relates an employee with

his/her manager. If there is a significant difference in terms of behaviour or in terms of structure

between the concept “employee” and the concept “manager”, we should create a superclass

Person and the two subclasses Employee and Manager. Otherwise, we add to Employee an

attribute that gives the identifier of the manager who is also an employee. This would be done

by adding to the template another argument which gives the manager object identifier.

Relationships with Values

Relationships can hold values. We could define a pair (or set of pairs) where the first component

is the identifier of one of the objects and the second is the value and then give this information

to one (or both) of the objects. However, a simple solution is to create a new object which holds

the value and also the identifiers of the objects involved in the association.

For example, suppose an application deals with a stock of products and that we have to keep

information about the suppliers of the products. Now, let us define the relationship is supplied

between Product and Supplier in which a supplier supplies many products and a product is

supplied by a single supplier. Moreover, a client needs to know the quantity of a given product

that a supplier supplied. The quantity attribute does not belong either to Product or Supplier

individually, but to both, i.e. to the relationship. We then create a new object, called Supply

which would be defined as following:

process Supply[g](this˙quantity: Quantity˙Sort,

obj1˙id: Object1˙Id, obj2˙id: Object2˙Id) : noexit :=

...

endproc

Alternatively the parameters this quantity, obj1 id and obj2 id could have been defined as

part of a single ADT.

Notice that we are supposing that the identifier of an object of this template is the pair obj id1,

obj id2.

3.3.13 Composition and Decomposition

Objects are combined to form composite objects by using the LOTOS enabling, interleaving

and parallel operators.

The characteristics of a composite object are determined by (a) the objects that are combined;

and (b) the way they are combined.

3.3.14 Aggregation

In cases where the object components are shared with other objects in the system, aggregation

is treated in the same way as conceptual relationships.

The case where the object components are not shared needs further development.

3.3.15 Subsystems

A subsystem is a collection of objects and is only created to structure the system, helping us

manage complexity. The difference between an aggregate and a subsystem is that an aggregate
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is an object while a subsystem is not and therefore it has no identifier.

We can use the LOTOS interleaving and parallel operators to form a subsystem.

In our banking system, we create the subsystem Complex Operations, built from the classes

Cheque and Standing Order:

process Complex˙Operations[ob, cs, ba] : noexit :=

( Cheques[ob, cs, ba]

———

Standing˙Orders[ob, cs, ba](–˝ of SO˙Number˙Set)

)

endproc

where Cheques and Standing Orders are object generators.
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The Rigorous Object-Oriented

Analysis Method

The Rigorous Object-Oriented Analysis (ROOA) method takes the static properties of a system

captured in an object model and the dynamic and functional properties described in the original

set of requirements and produces a formal object-oriented analysis model. The object model

can be built by any of the existing OOA methods.

The formal object-oriented analysis model:

1. Formalizes the object model describing each class template and relationships in a mathe-

matical manner.

2. Adds state information and behaviour to each object and describes the order in which the

events occur.

3. Shows the message connections between objects and the information passed during com-

munication.

4. Defines the behaviour of the whole system by putting together its classes.

5. Is formal and executable, and therefore rapid prototyping can be used to check the confor-

mance of the specification against the original requirements and to detect inconsistencies,

omissions and ambiguities in the original requirements.

The formalization of the object model can be done semi-automatically, i.e. it requires some

decisions, but most of the work is fairly straightforward and similar for each class template.

However, identifying the behaviour of each class template, the events and their order and the

information passed during message communication, is not trivial. Standard OOA methods

propose two extra models (see Figure 4.1) to capture the behaviour of a system (the dynamic

model) and the transformations of the data (the functional model). They then end up with three

models, each of which shows different aspects of the system and which are difficult to integrate

and keep consistent. Furthermore, the dynamic model is difficult to understand since it does

not give an integrated view of the behaviour of the system. It is usually composed of a set of

state transition diagrams, one for each class template.
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Figure 4.1: The models built by many object-oriented analysis methods

ROOA gives us an integrated view of the system, showing at the same time its static and dy-

namic properties, and the information exchanged during communication. The formal description

technique (FDT) we have chosen is LOTOS. As LOTOS has a precise syntax and mathematical

semantics, the resulting model is formal and unambiguous. Moreover, as LOTOS is executable,

the model is executable, and so prototyping can be used to give immediate feedback to the

clients who can check if the prototype exhibits the intended behaviour.

ROOA uses a stepwise refinement approach for the development and for validation of the spec-

ification against the requirements. The development process is iterative. Different objects may

be represented at different levels of abstraction and the model refined incrementally.

ROOA involves three tasks:

1. Build an object model.

The construction of the object model is performed by applying any of the existing object-

oriented analysis methods, such as [9, 15, 24].

2. Refine the object model.

We refine the object model by guaranteeing that it includes interface objects, attributes,

services, static relationships and message connections, and by identifying subsystems.

3. Build the formal LOTOS OOA model.

The LOTOS formal model specifies the object model, gives the dynamic behaviour of each

object and of the whole system, shows the message communications between objects in

the system and also models the information passed when objects communicate.

ROOA acts as the central part of the analysis phase, but it interacts with requirements capture

and can provide the starting point of the design phase. Figure 4.2 illustrates ROOA in the

context of the software development life cycle and shows how the various tasks are connected.

The object model construction is, of necessity, informal. It is performed by reading through the

requirements document, interviewing the clients (or the users), etc., finding the objects of the

system and the relationships between them. We use the part of an OOA method that builds

the object model to perform it. The application of the next two tasks of ROOA may lead us
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Figure 4.2: Context of ROOA in the development life cycle

to change the object model, and if we find any omissions or inconsistencies we also change the

requirements document where the problem we are analysing is stated. We can use ROOA with

prototyping to analyse the system incrementally. We can also adopt a trajectory where the

resulting requirements specification is transformed into a design specification with prototyping

being used to ensure that the two specifications conform to one another.

Figure 4.3 gives a view of the two main tasks of ROOA, Refine Object Model and Build Formal

LOTOS OOA Model, showing their composition.
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Figure 4.3: Core of ROOA

The main goal of ROOA is to produce a formal LOTOS object-oriented analysis model. To

accomplish this, ROOA has to refine the object model produced by one of the OOA methods

and formalize it. It then has to identify the dynamic properties of each object and of the

overall system in the original requirements and formally specify them. Finally, it has to identify

the information passed during communication, also in the original requirements, and formally

specify it. However, if the starting point is the result of a separate team’s application of one of

the OOA methods, dynamic and functional models may already have been produced. In this

situation, ROOA would integrate the information spread among the three models and give a
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formal and executable specification of the system. Given the existing dynamic and functional

models, the application of the ROOA tasks would be much faster.

Analysts know how important it is to involve the clients (or the users) of the system in the

development process. Some can argue that FDTs should not be used so early in the software

development life cycle, since they are not easily understood by most clients. That may be true,

but there are other advantages of using FDTs as early as possible to develop software, especially

if the resulting specification is executable. Apart from the advantages already mentioned (such as

having a formal description of the system and using prototyping to find inconsistencies, omissions

and ambiguities early) there is also the advantage of increasing the analyst’s confidence in the

system. This is due to two main reasons:

By using FDTs, analysts have to understand every “corner” of a problem in order to

specify it. The use of informal techniques allows them to be vague in the description and

so may unintentionally avoid certain characteristics of the system that they do not fully

understand. By the time they finish the analysis using FDTs they will know much more

about the system than what they would know if they were using informal techniques. This

knowledge helps them to present their idea of the system to the clients and understand

their explanations.

If the analysts use an FDT which produces executable specifications they can also use

rapid prototyping for checking the specification against the requirements. The possibility

of using prototyping gives them confidence in the specification they are developing. By

using ROOA, they also have the possibility of developing the system incrementally, using

components which have already been verified.

These advantages more than compensate for the difficulty the clients may have in reading the

specification. The simulation tools can be used to show the system to the clients. For our

method we suggest the analysts use the simulator SMILE [11] for their work, since it gives value

generation and has a lot of other very useful characteristics. However, this tool is perhaps too

complicated to be used to show the system to the client. The simulator SEDOS [26] does not

offer so many possibilities to check the specification, but it has a much simpler interface and so

we advise it to be used when the specification is to be shown to the client.

An object model shows class templates and concentrates on the static relationships between ob-

jects. The integrated analysis model produced by ROOA specifies a system’s dynamic behaviour

as well as the static relationships and typically involves many instances of each class template.

So that we do not become overwhelmed with detail, in the first iteration of ROOA, only a single

instance of each class template is considered, i.e. we focus on the concept of a single typical

object of a class. For this reason, the names given to the documents and diagrams use the term

object (e.g. object model, object communication table and object communication diagram) and

the discussion in the following sections is in terms of objects rather than classes.

In later iterations, the model is generalized so that we deal with classes rather than objects.

However, the term object is kept for the diagrams and documents, even though, by the end of

the last iteration, they reflect the more general concept of class template and class.
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Task 1: Build an Object Model

An object model shows the class templates that compose the system and the relationships

between their objects. The objects can be found by looking for physical entities and concepts

in the problem domain. Not all the objects are explicit in the system requirements document,

some are implicit to the problem domain or the general knowledge of the real world. In general

it is not difficult to identify objects, but it is difficult to select which of them are relevant to

the system. Our goal is to identify the objects which are essential throughout the system’s life

cycle.

The construction of the object model can be considered as a separate task from the other ROOA

tasks, and it can be accomplished by a different team. During application of our method, the

object model may be modified. The advantage of starting with an object model produced by

any object-oriented analysis method is that we can build on the work which has already been

done to identify objects.

An example of an object model for the problem described in Section 3.3 and which was built by

using OMT [24] is depicted in Figure 4.4.
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Figure 4.4: Object model produced by the OMT method

Task 2: Refine the Object Model

The object model gives the static view of a problem. The kind of object which is described and

the information it includes depend upon the method used.

Many OOA methods are mainly concerned with the identification of entity objects. Entity

objects correspond to those objects that support the information that the system must keep

and maintain. According to [15], there are however other kinds of objects: interface objects

and control objects. Interface objects are the objects that the actors use to communicate with,

ask for services and receive answers from, the system. (Actors are the external objects, clients
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or users, that interact with the system.) They transfer the actors’ actions into system events

and the system’s answers into something that the actor can read and understand. The control

objects deal with the functionality that does not fit into any of the entity or interface objects.

The entity objects will exist in the initial object model, but the interface objects may not. (The

control objects may be dealt with in a later stage.)

In object models created using some OOA methods, the objects are defined only by name and

a list of attributes, in others we also have services. We propose that an object can only be

fully understood if it is defined by a name, a list of attributes and a list of services offered by

that object. Moreover, in our object model the objects are related by static relationships and

message connections. This is achieved by normalizing the object model.

During this task, we also start structuring the system. There are OOA methods that pro-

pose subjects [9], subsystems [15], or modules [24] to group the objects in the object model.

These groupings are often found by minimizing the static relationships between objects. We

wish to identify subsystems by taking into consideration message connections as well as static

relationships.

Task 2.1: Add Interface Objects and Define Interface Scenarios

An interface object models behaviour and information that is part of the system interface with

the system’s environment. Thus, everything in the system that is concerned with an interface

is placed in interface objects. An example of an interface object is Automatic Teller.

Interface scenarios model the interaction of a system with its environment, i.e. they show a

series of services (requests and responses) that the actors (clients or users) can require from the

system. Each one, modelling different parts of the functionality of the system, can be seen as a

list of calls to the services offered by the interface objects together with the expected responses.

By using interface scenarios together with the object model, we can understand the system’s

functionality and dynamic behaviour.

Notice that interface objects belong to the system, but interface scenarios do not.

Task: Add interface objects to the object model and define interface scenarios.

Task 2.2: Normalize the Object Model

Before we start producing the LOTOS formal model, we want our object model to reflect the

static properties and the dynamic dependency between objects. This is achieved by normalizing

the object model, i.e. by guaranteeing that it incorporates the following set of properties:

1. Static relationships between objects.

2. Attributes and services in each object.

3. Message connections between objects.

Task 2.2.1: Static Relationships

A static relationship between two (or more) objects means that one object “knows about” the

other (or, if the relationship is bidirectional, they “know about” each other). There are three

kinds of static relationships:
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1. Aggregates.

2. Inheritance.

3. Conceptual relationships.

Relationships are present in most object models given by OOA methods. However, the EVB

method [2] puts the objects together in the object model by showing the visibility between

objects (which correspond to message connections), without defining relationships. Also, some

relationships in OMT turn out to be message connections.

Task: If static relationships are not already in the object model, identify them and add them

to it.

Task 2.2.2: Attributes and Services

Attributes can be viewed as the components (elementary or not) which make up the state of

an object, although it is possible for an object not to have attributes. The services offered by

an object constitute the mechanism that allows other objects (the environment of the object)

to change or query that object’s state information. Some authors argue that as services will

change during the design phase, it is not relevant to add them to the objects in the analysis

phase [15, 24]. We believe that most of the services identified during this phase will be retained

with few changes during the design. Hence, we propose that for an object to be fully understood,

its definition should include its attributes, if any, and its services.

During this task, we start building the Object Communication Table (OCT) which will be

completed in Task 3.1. Eventually, this table will be composed of five columns, but now we are

only building the first two columns. In the first column we list the objects that form the object

model and in the second column we list the services offered by each object. If the services are

given in the object model, column one and column two can be filled in directly (see Table 4.1).

To identify the services offered by each object, we can follow two steps. First, place ourselves

inside each object and, according to the original requirements of the system, identify the ser-

vices each of the objects has to offer to its environment so that the object’s attributes can

be interrogated and updated. Further services may be identified when we deal with message

connections.

Methods such as [9] define objects with attributes and services.

Task: Add attributes or services, as appropriate, to the objects in the object model. Fill

columns one and two of the OCT.

Task 2.2.3: Message Connections

A message connection shows a processing (dynamic) dependency between a client object and

its server. Message connections are defined as single arrows, not double arrows. Therefore, if

object Obj A needs object Obj B and object Obj B needs object Obj A, we draw two arrows, as

shown in Figure 4.5.

During this task we fill the third and fourth columns of the OCT. In the third column (Required

Services) we list, for each service offered by an object in column one, the services that that object

requires from other objects to accomplish that particular service. The notation object.service

is used to refer to the required service defined in object. In the fourth column (Clients) we list,
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Figure 4.5: Message connections between objects A and B

for each service offered in column one, the objects (clients) which require that service. For each

offered service we may have a list of clients. Note that the clients of the interface objects are

the interface scenarios.

To help us to identify the required services we use interface scenarios. Starting with an interface

scenario event, we can follow complete paths of functionality in the system, filling the table and

creating corresponding message connections as we trace the objects in the object model. As we

trace through the object model “simulating” threads of its functionality, new services may be

identified which should be added to the appropriate object and inserted in the second column of

the table. Notice that by performing this step we are also checking the necessity for each service

in the object model.

For the object model in Figure 4.4, and considering each object with its services, the first four

columns of the OCT would be filled as shown in Table 4.1 and the information added to the

object model, as shown in Figure 4.6.

While we construct this table we may identify information that we are not yet able to describe.

In general, if a service requires more than one service from other objects, there is an order in

which the required services occur. If this order is sequential, it can be given by the order in which

we fill column three. There are, however, situations where the services required are alternatives.

For example, the object Cheque offers deposit. If the cheque is drawn on our bank, then we

can withdraw the amount from the account where it is drawn and credit the payee’s account.

However, if the cheque is drawn on another bank, before we credit it to our client’s account, we

must query Other Bank to know whether or not funds are available to cover the cheque. This

information will be given later on by LOTOS, but we could use message sequence charts to

describe it and then use them as a guideline to build the LOTOS specification.

The message connections are drawn in the object model according to the OCT. If one object

requires services defined in more than one object (server), then there is an arrow starting from

the first object reaching each of the servers. Only one message connection is drawn from one

particular object to another object, independently of the number of services the first object

needs from the second.

Task: Complete columns three and four of the OCT and add, if necessary, message connections

to the object model.

Task 2.3: Identify Groupings of Objects

Grouping objects into subsystems or into composite objects is necessary when we are dealing

with large complex systems.

This task is difficult to accomplish and so we cannot expect to do it completely and correctly

in the first iteration. The low level objects in the object model often remain almost unchanged

during the development, but the high level structure is less stable. Our suggestion is to do only

what is obvious to begin with, and then come back to it as our knowledge about each individual

object increases.
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Offered Required Clients

Objects Services Services (of each offered
(by the server) (from another object) service)

Entry Station (ES) withdraw cash Account.withdraw Interface Scenario

Counter Teller (CT) open account Account.create Interface Scenario

close account Account.remove Interface Scenario
deposit cash Account.deposit Interface Scenario
give balance Account.get balance Interface Scenario
deposit cheque Cheque.deposit Interface Scenario
ask transfer Account.withdraw Interface Scenario

Account.deposit
OB.send transfer

set standing order SO.create Interface Scenario
cancel standing order SO.cancel Interface Scenario

Automatic Teller (AT) mini statement Cheque Account.print mini stat Interface Scenario

Other Bank (OB) receive transfer Account.deposit Interface Scenario
send transfer CT, SO
cheque withdraw Cheque
remote withdraw Account.withdraw Interface Scenario

Standing Order (SO) create CT
cancel CT

debit Account.withdraw internal
Account.deposit
OB.send transfer

Cheque withdraw Account.withdraw CT
deposit Account.withdraw CT

Account.deposit
OB.cheque withdraw

Account (A) create CT
remove CT

deposit CT, Cheque, OB, SO
withdraw CT, ES, Cheque, OB, SO
get balance CT

Cheque Account (CA) print mini stat. AT

Savings Account (SA) credit interest internal
update date internal

Table 4.1: OCT with objects, services offered, services required and clients

During the first iteration, only obvious groupings are identified. Suitable candidates are:

1. Objects that participate in an aggregate relationship. They form a composite object.

2. Objects that participate in an inheritance relationship. They form a subsystem.

The objects that compose a subsystem or a composite object are known as object components

(or class components). Grouping other objects should be left until later iterations (rules are

given in Task 3.5.3).

We show groupings in the object model by surrounding the objects by a rectangle with dotted

lines. The OCT should also be changed to encode this information. The changes include using

the name of the subsystem or composite object in the first column of the table, instead of the

object component’s name, and using the name of the subsystem or composite object followed by

the name of the object component between brackets in any other place where that object compo-

nent is mentioned. For example, instead of considering Counter Teller, Automatic Teller and

Entry Station independently, we should only deal with with Teller. (The same can be said

about Account, Savings Account and Cheque Account.) These changes are shown in columns

one to four in Table 4.2.

Figure 4.6 represents the refined object model first shown in Figure 4.4.
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Figure 4.6: Refined object model

The advantage of building a LOTOS formal model is that we end up with a single model which:

Models the static, dynamic and functional aspects of the system.

Has a formal semantics.

Is executable.

The resulting model acts as a formal requirements specification. Since a LOTOS specification

is executable, rapid prototyping can be used to discover and correct inconsistencies, omissions,

contradictions and ambiguities while we are still doing analysis. Moreover, the resulting model

incorporates the characteristics of object-oriented systems, since it considers a system as a set

of concurrent objects where message passing is modelled by objects synchronizing on an event

during which information may be passed.

We start by building an object communication diagram, which shows the system as a set of

communicating objects. It gives the structure of the LOTOS specification. Then, we model

each class template in the object model in LOTOS and we add to it its behaviour. Next, by

following the structure of the object communication diagram, we compose the objects (instances

of the class templates) by using parallel operators and we prototype the specification. Finally,

we refine the specification.
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Task 3.1: Create an Object Communication Diagram (OCD)

The OCD is a graph where, in the first iteration, each node represents an object and each arc

connecting two objects represents a gate of communication between them. In later iterations,

the diagram is generalised to deal with multiple instances of the same class template. In the

beginning, some of the objects may not be connected by arcs to the rest of the diagram. As the

method is applied, these objects will either disappear or be connected to the others, and new

groupings may appear, refining the diagram. The OCD is an intermediary model between the

object model and the LOTOS specification and it reflects the exact structure of the LOTOS

formal model.

During this task we also complete the OCT that we started building in Task 2.2.2, by adding

to it the column Gates. This column will give the name of the gates that the objects in column

one and column four use to communicate between each other. The fifth column of the OCT is

then used to label the arcs in the OCD.

The following algorithm shows how to construct the OCD from the OCT and the object model:

1. Draw the nodes.

In the first iteration, take an instance of each class template in column one of the OCT and

for each one draw a node in the OCD. For each object grouping already identified, proceed

in a similar way, considering the composite object or subsystem as a node and showing

each object component as an inner node of the first. Again, each inner node corresponds

to an instance of each component class template.

2. Connect nodes by arcs.

For each message connection between two objects in the object model, draw an arc between

the two corresponding nodes in the OCD. If a message connection to a component of a

composite object or subsystem is defined, draw the arc in the OCD to the higher level

node. At the end of the first iteration, some nodes may be unconnected to the rest of the

diagram.

3. Label arcs.

Repeat this step for each class template in the first column of the OCT.

(a) Complete column five in the table.

Looking at the second (Offered Services) and fourth (Clients) columns:

Give the same gate name for the object communications which require the same

set, or subset, of services; i.e. where there is an overlap between the set of services

required by different clients.

Give different gate names for object communications which require a different

set of services, i.e., where there is no overlap between the set of services required

by each client.

Table 4.2 shows the gate names for the banking example.

(b) Give gate names to the arcs in the OCD as follows:

For each object in column one of the OCT, identify the arc in the OCD that connects

this object to each of the clients in column four. The name of the arc is the name of

the gate given in column five to the corresponding server and client pair.

The initial OCD built by following the above rules is depicted in Figure 4.7.
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4. Deal with superclasses.

In general, we do not require instances of the superclass. If this is the case remove the

corresponding node from the OCD. (Coad and Yourdon have different notations for classes

without instances, i.e. abstract classes, and classes with instances, but others do not [9].)

5. Add more arcs.

During the specification of each individual object we may identify new message connec-

tions, which will require more arcs in the OCD. If this happens, proceed according to steps

2 and 3.

Offered Required Clients
Objects Services Services (of each offered Gates

(by the server) (from another object) service)

Teller open account(CT) BA.create Interface Scenario t
[ES + CT + AT ] close account(CT) BA.remove Interface Scenario t

deposit cash(CT) BA.deposit Interface Scenario t
withdraw cash(ES) BA.withdraw Interface Scenario t

give balance(CT) BA.get balance Interface Scenario t
deposit cheque(CT) Cheque.deposit Interface Scenario t
mini statement(AT) BA.print mini stat Interface Scenario t
ask transfer(CT) BA.withdraw Interface Scenario t

BA.deposit

OB.send transfer
set standing order(CT) SO.create Interface Scenario t

cancel standing order(CT) SO.cancel Interface Scenario t

Other Bank (OB) receive transfer BA.deposit Interface Scenario ob1
send transfer Teller(CT), SO ob2
cheque withdraw Cheque ob3
remote withdraw BA.withdraw Interface Scenario ob1

Standing Order (SO) create Teller(CT) so

cancel Teller(CT) so
debit BA.withdraw internal

BA.deposit

OB.send transfer

Cheque withdraw BA.withdraw Teller(CT) c
deposit BA.withdraw Teller(CT) c

BA.deposit
OB.cheque withdraw

Bank Account (BA) create(A) Teller(CT) ba

[A + CA + SA] remove(A) Teller(CT) ba
deposit(A) Teller(CT), Cheque, OB, SO ba

withdraw(A) Teller(ES,CT), Cheque, OB, SO ba
get balance(A) Teller(CT) ba
print mini stat(CA). Teller(AT) ba
credit interest(SA) internal
update date(SA) internal

Table 4.2: OCT with gates

In the later iterations object generators and new groupings are added to the model. This requires

the following changes in the diagram:

6. Introduce object generators.

In later iterations, object generators are introduced. After this, each node represents

multiple objects, i.e., a class of objects. We use names in the singular for the class templates

in the object model and for the nodes in the initial OCD, but we use names in the plural

for object generators. Hence each node corresponding to a class template with a generator

(not all the class templates need a generator) has a plural form of name.
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Figure 4.7: Initial object communication diagram

7. Introduce new groupings of objects.

New grouping of objects may lead us to merge some arcs. If two or more objects are

grouped, we can decide to use the same communication arc for the services the compo-

nent objects offer, i.e., all the services offered (not required) by the composite object or

subsystem would be offered at the same gate. The idea is to treat the higher level object

as one object, instead of dealing with each object component separately. When we create

groupings, name clashes can occur in the OCT. To avoid this problem, we put the name

of the object component between brackets after the name of the service in column two

(see Tables 4.2 and 4.3.) Notice, however, that name clashes do not occur in the LOTOS

model as the services will be distinguished by the object identifier of the object offering

the service. Therefore, using the object name between brackets is a precaution we only

have to take during the construction of the object communication table.

After this we have to change column one of the OCT to deal with the groupings and change

column four to replace the name of an object component with the name of its subsystem

or composite object. Next, we re-apply again the rules in step 3 of Task 3.1 to all the cases

where the groupings or their components are referred. This can cause some of the gates

to be amalgamated.

In Table 4.3 we show the final OCT dealing with Complex Service which was built from Cheque

and Standing Order.

The final OCD, which is based on Table 4.3 and corresponds to the refined object model pre-

sented in Figure 4.6, is given in Figure 4.8.

Task 3.2: Specify Individual Objects and Classes

As our goal is to produce a formal model in LOTOS, we should not spend too much time in

Tasks 2.3 and 3.1 during the first iteration. Although producing a hierarchical architecture

is fundamental to the understandability of a system, and a behaviour expression with a large

number of processes may not be easily understood, we start building the formal model by

modelling individual objects in LOTOS, before we have defined much hierarchy in the system.

By specifying objects in LOTOS we gain more knowledge about the system and this will help

in later iterations to find suitable groupings.
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Offered Required Clients

Objects Service Service (of each offered Gates
(by the server) (from another object) service)

Teller open account(CT) BA.create Interface Scenario t
...

Other Bank (OB) receive transfer BA.deposit Interface Scenario ob1
send transfer Teller(CT), CO(SO) ob2
cheque withdraw CO(Cheque) ob2
remote withdraw BA.withdraw Interface Scenario ob1

Complex Operation create(SO) Teller(CT) cs

(CO) cancel(SO) Teller(CT) cs
[ SO + Cheque ] debit(SO) BA.withdraw internal

BA.deposit

OB.send transfer
withdraw(Cheque) BA.withdraw Teller(CT) cs
deposit(Cheque) BA.withdraw Teller(CT) cs

BA.deposit

OB.cheque withdraw

Bank Account (BA) create Teller(CT) ba
remove Teller(CT) ba

deposit Teller(AT,CT), OB, CO(Cheque, SO) ba
withdraw Teller(ES,CT), OB, CO(Cheque, SO) ba
get balance Teller(CT) ba
...

Table 4.3: Final OCT
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Figure 4.8: Final object communication diagram

In Chapter 3 we discussed how to model objects, class templates and classes in LOTOS. We

now start specifying the more complex objects. The behaviour of an object is specified by a

class template and its state information by one or more symbolic ADTs given as parameters of

the template. And so, for each individual object, we:

1. Specify the class template by a LOTOS process definition.

2. Specify symbolic ADTs using ACT ONE.

A process definition with its ADTs fully specifies an object, i.e. defines the class template. It

defines the static and dynamic aspects of an object. The object model defines each object by

its name, a list of services and a list of attributes. An ADT alone could define and formalize the

information. The behaviour of each object is not, however, given by the object model. The OOA

methods give it in a separate model, the dynamic model. A process, together with ADTs, is

required formally to specify the behaviour of each individual object. The transformation of data

and information exchanged during message passing is given by another separate model by the

OOA methods, the functional model. Here, with processes and ADTs we specify the information

50



passed during synchronization and specify the transformations which cause an object’s state to

change. We also model each static relationship in the object model. Finally, we compose the

processes into behaviour expressions, defining in this way the behaviour of the whole system.

In addition to the advantages enumerated above, we end up with an executable specification

where we can use rapid prototyping.

During the whole process we may find objects which we decide to specify as a single ADT. These

objects usually play a secondary role in the system, acting only as attributes of other objects.

However, they can be promoted, to be specified with a process, if we change their importance

in the problem.

Task 3.2.1: Specify Dynamic Behaviour

To specify the dynamic behaviour of an object we take as a starting point columns two and

three of the OCT. Column two gives the services offered by the object and column three gives

the services required by that object, from another object. Then, we have to find out the order in

which the calls to the required services occur. For that, we should imagine ourselves inside the

object and act as if it was the centre of the system. The offered services are often represented

in the process as the alternatives in a choice expression. The required services usually come in

sequence after the offered services in a behaviour expression. In LOTOS, objects communicate

via event synchronization which takes place through gates. The arcs in the OCD correspond to

gates through which the objects communicate.

The events are modelled in LOTOS as structured events, as discussed in Section 3.3.10.

Specifying an object as a process, we show the events and their order, we show message passing

with information being passed during synchronization, and we give it a precise meaning. The

ADTs given as parameters of the process give the object’s state information. It is important

to define the signature of the services and to describe the object in terms of its attributes.

Comparing the object defined with a process and ADTs with the object as it appears in the

object model we can appreciate how much more new information we now have. Some of this

information, such as dynamic behaviour, is described by the OOA methods in supplementary

models (dynamic and functional). Here, we have a single integrated model that defines the static

and dynamic properties, and the information passed in a formal manner.

In order to specify a process incrementally, only a subset of events may be dealt with in the first

iteration.

Task 3.2.2: Specify Symbolic ADTs

A symbolic ADT defines the necessary equations to allow the objects to be prototyped with

state information and values to be passed during the communication, but without giving too

much detail about how each service is performed internally. The ADT describes the attributes

of an object and the operations which deal with those attributes.

As with a process, an ADT can be specified incrementally. We can start by specifying only some

of the attributes and services and add more detail in later iterations.

The order in which we specify processes and ADTs (Tasks 3.2.1 and 3.2.2) is not fixed. We can

start with a process and then move to the corresponding ADTs, or we can start with the ADTs

and then move to the process. We may decide to start specifying a group of processes and then

specify the ADTs, or vice-versa. Also, part of the system may be fully dealt with, ignoring the
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rest.

Notice that the application of this task (Task 3.2) may require application of Task 2.2, i.e. if

further relationships, attributes, services and message connections are identified, they must be

added to the normalized object model. Task 3.1 must also be applied if new message connections

are identified.

Task 3.3: Compose the Objects into a Behaviour Expression

Following the structure of the OCD, we compose the objects defined in Task 3.2 into a LOTOS

behaviour expression by using the parallel operators. The algorithm in [7] describes how this can

be done for an OCD of arbitrary complexity and identifies situations in which an OCD cannot

be represented in LOTOS. The main point of this algorithm is that a server cannot be grouped

with a subset of its clients.

Notice that, since in the first iteration each node in the OCD represents a single object, the

composed behaviour expression is built of single objects. For example, the objects that form

the OCD in Figure 4.7 would be composed as follows:

( Other˙Bank[ob1, ob2, ob3, ba](Make˙Bank(...))

—[ob2, ob3]—

( Teller[t, ob2, c, so, ba]

—[c, so]—

( Cheque[ob3, c, ba](Make˙Cheque(...))

———

Standing˙Order[ob2, so, ba](Make˙SO(...))

)

)

)

—[ba]—

Bank˙Account[ba]

In later iterations, when object generators are introduced to deal with multiple instances, the

composed behaviour expression is refined and built of a combination of object generators and

of single objects (in cases where generators are not required).

We may decide to deal only with part of the system and then, in further iterations, add more

objects until the whole system is considered.

Task 3.4: Prototype the Specification

We use interface scenarios and rapid prototyping to check services and message connections.

The syntax and static semantics of the LOTOS specification are checked by the LOTOS tools

and the specification can be prototyped by using SMILE or some other LOTOS simulator. Any

errors, omissions or inconsistencies found during the simulation will lead us to iterate Tasks 2.2,

3.1, 3.2 and 3.3 and to update the original requirements document, the object model, the OCT

and the OCD.

In the first iteration, as the emphasis is on ensuring that the individual class templates have

been correctly specified, a behaviour expression consisting of single instances of class templates is

prototyped. In later iterations, multiple instances are dealt with and we check that the complete

system has been properly specified.
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Task 3.5: Refine the Specification

We refine the specification by re-applying Tasks 2.3, 3.1, 3.2, 3.3 and 3.4. During successive

refinements we may:

1. Model static relationships.

2. Introduce object generators.

3. Identify new higher level objects.

4. Demote an object to be specified only as an ADT.

5. Promote an object from an ADT to a process and an ADT.

6. Refine processes and ADTs by introducing more detail.

Task 3.5.1: Model Static Relationships

The first action we have to take in the second iteration is to model conceptual relationships.

Notice that at this stage we are still dealing with a single instance of each class template defined

in the object model.

Depending on its cardinality, a static relationship is either modelled as an attribute, or as a

set of attributes, in one of the objects involved in the relation (or both if the relationship is

bidirectional).

This task involves Tasks 3.2, 3.3 and 3.4.

Task 3.5.2: Introduce Object Generators

During a first iteration we deal only with objects. This simplifies the problem and allows us to

prototype with a specific number of objects. However, in general, several instances of the same

class may be required. This is achieved by defining an object generator for a class template.

When dealing with subsystems, we can decide to define an object generator for each object

component, or else define the object generator for a composite object. Which is to be preferred

depends on each particular situation.

This task affects Tasks 3.1, 3.2, 3.3 and 3.4.

Task 3.5.3: Identify new Higher Level Objects

The identification of new higher level objects (subsystems or composite objects) leads us to

change both the initial OCD and the OCT in order to incorporate the new objects. Therefore

we should apply again Tasks 3.1, 3.3 and 3.4.

In the banking example, we grouped Cheques with Standing Orders to form the subsystem

Complex Operations. These changes can be seen in the OCT represented in Table 4.3 and in

the OCD in Figure 4.8. The composition of the objects in the OCT would now take the form:

( Other˙Banks[ob1, ob2, ba](Insert(This˙Bank, –˝ of Bank˙Name˙Set))

—[ob2]—

( Tellers[t, ob2, cs, ba]
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—[cs]—

Complex˙Operations[ob2, cs, ba]

)

)

—[ba]—

Bank˙Accounts[ba]

Task 3.5.4: Demote an Object to be Specified only as an ADT

If an object plays a secondary role in the system, i.e. it only acts as an attribute of other objects,

it should be specified as a single ADT.

In this case, delete that object from the OCD. This affects Task 3.1, 3.2, 3.3 and 3.4. Note that

in Task 3.2 we only need to delete the process corresponding to that object.

Task 3.5.5: Promote an Object to be Specified as a Process

An object that we considered to have a secondary role in the system may rise in importance

when we add more detail to the specification. Because we allow processes and ADTs to be

specified incrementally, new information can have this effect on the formal model.

This task affects Task 3.1, 3.2, 3.3 and 3.4.

Task 3.5.6: Refine Processes and ADTs

The complete definition of a process or an ADT can be done incrementally. In each refinement

we can add more detail to the specification. When more information is added to the formal

model, more static relationships, attributes, services, and message connections can be identified.

In this case, add them all to the object model and apply again Tasks 2.3 and 3.

There is not a clear boundary between analysis and design; there never was. Therefore the

old question “when does analysis finish and design start?” is still an open question. However,

before we move to the design, we have to ensure that the requirements specification is internally

consistent and deals with all the essential objects identified from the original requirements. For a

specification to be internally consistent, we have to guarantee that, for every message connection,

there are appropriate events in the calling and the called objects, for every static relationship

there are all the objects involved in the relationship and a complete trace through the system

can be made for every interface scenario.

The most useful form of describing a process is in terms of work products [21]. ROOA is not

only a process of developing software. It also produces documentation as the process is applied.

In Figure 4.9 we show the products built by ROOA.

The object model is produced by Task 1 and the information it contains depends on the object-

oriented analysis method used. The refined object model is produced by Task 2 and it includes

an object model where the objects are described with a list of attributes and a list of services.

This object model also describes the static and dynamic relationships between objects and the

interface objects (when necessary). During Task 2 we also define interface scenarios to model the
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Figure 4.9: Documents produced during the application of ROOA

interaction of the system with its environment. The OCT (object communication table) is a table

developed during Tasks 2.2.2, 2.2.3 and 3.1. It helps to define the services offered and required by

each object, the message connections between objects and the points of synchronization between

the objects. The OCD (object communication diagram) is a graph that represents the dynamic

structure of the final LOTOS specification. Finally, the LOTOS specification is developed from

Task 3.2 to Task 3.5.6.

55



Conclusions and Prospects

We have presented the ROOA (Rigorous Object-Oriented Analysis) method. It enables a formal

object-oriented analysis model to be devised from informal requirements, and results in a formal

requirements specification expressed in the formal description technique LOTOS. ROOA inte-

grates, in a single formal model, the object, dynamic and functional models usually proposed

by the standard object-oriented analysis methods. As LOTOS has a precise mathematical se-

mantics, the resulting model is formal and unambiguous. Moreover, as LOTOS is executable,

the model is executable, and so prototyping can be used to give immediate feedback to clients.

We have described the representation of standard object-oriented analysis concepts in LOTOS.

This includes the representation of objects as LOTOS processes with symbolic ADTs. The LO-

TOS process specifies the dynamic behaviour of the object and the ADTs, given as parameters

of the process, specify its state information. If the object merely plays the role of an attribute of

another object, it is specified as a single ADT. A symbolic ADT contains only the equations nec-

essary to allow the objects to be prototyped with state information and values to be exchanged

during communication.

Two different definitions of a class occur in the literature. We distinguish between: (a) a class

template, used to represent common features of objects of the same kind; and (b) a class, used to

represent a collection of objects. A class template is represented as a LOTOS process definition,

and a class is represented as an object generator. An object is a member of a class and is

created by instantiating a class template. It is referenced by using an object identifier. An

object identifier is defined by a LOTOS ADT, which we have added to the LOTOS library.

Each time an object is created, we use value generation to “produce” a new identifier for that

object.

Interactions between objects (message connections) are represented by LOTOS process commu-

nication constructs. The primitive LOTOS communication construct is event synchronization,

in which two processes synchronize on a gate, and may exchange data, represented by values.

Complex object interactions may be built out of simpler interactions, by using the LOTOS

composition operators.

To define inheritance in the LOTOS framework we use technical features of LOTOS, namely

superclasses with exit functionality. We model conceptual relationships by means of attributes,

which can be an object identifier or a set of object identifiers. The associations with values are

modelled as new objects. We have mentioned two techniques for grouping objects: composition
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and decomposition. We have shown how composition may be achieved using the LOTOS parallel

composition operators.

ROOA consists of three main tasks: building an object model, refining the object model, and

building the formal LOTOS OOA model. Each of these tasks involves multiple passes through

subtasks. The three tasks are not necessarily sequential in that part of the model may be built

through to the LOTOS specification before other parts of the model are analysed.

The first task, building the object model may be accomplished in the first pass by using any

of the standard object-oriented analysis methods. The object model is refined in the second

task by passing through three subtasks: adding the interface objects and defining interface

scenarios, normalizing the object model and identifying object groupings. The formal LOTOS

OOA model is built by integrating the dynamic and functional properties of the system into

the refined object model, and consists of five subtasks: creating the object communication

diagram (OCD); specifying the objects and classes as LOTOS processes and ADTs; composing

objects; prototyping the object model by executing the LOTOS specification; and refining the

specification according to the results of this rapid-prototyping.

We have illustrated this method on a small running example, representing a simple automated

banking system.

The development of ROOA is not complete. In particular, we need to devise rules for group-

ing objects to form subsystems and develop the concept of communication between objects of

the same class. More work is also required on aggregates and on multiple and behavioural

inheritance.

The specification of conceptual relationships as parameters of the class templates involved in

the relationship seems to go against the idea of reusable objects. There are situations in which

two objects exist in the real world with a specific relationship, but in general, an object exists

independently of its relationships. In this document, the modelling of relationships blurs the

definition of class template, making it of no use as a reusable component. This problem needs to

be dealt with, and a strategy to create a library of reusable components has to be investigated.

Finally, we have not yet investigated the optimization of the various techniques within ROOA.

For example, we do not yet have an algorithm for minimizing the number of gates in the object

communication diagram. These issues are subjects for further research work.

We would like to thank Charles Rattray and Peter Ladkin for their helpful comments on an

earlier draft of this report.
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