
Simon B Jones ∗

Abstract

CBS is a process Calculus for describing Broadcasting Systems. This

note describes a translation of CBS expressions and agent definitions

into LML expressions and function definitions. The resulting functions

execute under the control of a simple bus arbitrator to produce a trace

of the communications that will result from one of the computations

possible for the original CBS agents. Each CBS agent is translated to

an LML function which can be used to simulate its behaviour, and CBS

agent-forming operators are translated to higher order functions which

combine the functional translations of the component agents.

CBS is a process Calculus for describing communicating Broadcasting
Systems [1]. CBS is a formalism for both the description and analysis of
concurrent systems, and a (prototype) programming language for expressing
distributed algorithms.

A CBS program is a collection of agents (or processes) which communicate

signals (or messages) between themselves (and with the external world, though
this can be modelled as an agent too).

Agents may transmit signals and/or await signals (that satisfy some pred-
icate). In one simple hypothetical physical model for CBS these communica-
tions take place on a shared ethernet-like bus. This gives the desired behaviour:

each signal is broadcast, and all agents have the opportunity to accept or dis-
card the signal; the bus acts as an arbitrator to ensure that there is only one
signal on the bus at any time. An agent accepts a signal if it satisfies some
predicate, and discards a signal if it does not satisfy the predicate (this de-
scription does not capture the full subtlety of discards; see Prasad’s paper for

∗Department of Computing Science and Mathematics, University of Stirling, Scotland.
Email: The work reported here was carried out whilst on sabbatical
leave visiting the Programming Methodology Group, University of Göteborg and Chalmers
University of Technology, Göteborg, Sweden, March-July 1992.

1



details). CBS does not define the nature of the signals themselves; for this
purpose an application program must exploit the data definition capabilities
of some host language.

In practice it is instructive, and may be useful, to be able to observe the
behaviour of a CBS program. Thus implementing CBS becomes an issue.
In general, since agents may be the parallel compositions or sums of other
agents, any particular CBS program may give rise to many different behaviours
(patterns of communications). Arranging to observe all the possible behaviours

of a CBS program is tricky. If we decide to be content with being shown
just one possible behaviour, then the implementation problem is considerably
simplified. That is a restriction that we will accept here. Further we will not
address efficiency questions in this paper.

One approach to implementing CBS is to build an interpreter which accepts

a data structure representing a CBS program as input, and yields a trace
of inter-agent communications as output; Prasad and Jenny Petersson are
investigating this approach.

This note describes an alternative approach in which CBS expressions and
agent definitions are translated directly into LML expressions and function

definitions [4]. Each CBS agent is translated to an LML function which can
be used to simulate its behaviour, and CBS agent-forming operators are trans-
lated to higher order functions which combine the functional translations of
the component agents. The resulting functions execute under the control of
a simple “bus arbitrator” to produce a trace of the communications that will
result from one of the computations possible for the original CBS agents.

Section 2 describes the precise form of CBS being dealt with here, its trans-
lation into LML, and gives some examples.

Section 3 contains details of the implementation of the functions used in the
translation.

Section 4 suggests further work.

The reader is assumed to be familiar with LML.

In this implementation of CBS I decided to focus on the interesting problem of
organizing and synchronizing the communications between agents; some of the
CBS agent-forming operators have thus been omitted from the implementa-
tion. On the other hand, pure CBS does not define how data is to be handled
by agents: in this implementation agents may communicate any values com-

putable by LML expressions, and in this spirit signals will be called messages

2



in this customized form of CBS, and in its translation to LML. In reference to
the translated form, agents will often be called processes.

The customized form of CBS to be used in this paper, CBS LML is an

adaptation of that described in Prasad’s CAAP’91 paper. It is very close to
the form adopted in more recent work by Prasad [2, 3].

LML

The general principles of CBS remain. Some constructs are omitted, some
are altered or extended, and a conditional expression has been added. Agent
expressions have the following syntax:

E : : = X Arglist
∣∣∣ Nil

∣∣∣ LMLExp !E
∣∣∣ LMLPattern ?E

∣∣∣
E + E

∣∣∣ E E
∣∣∣ if LMLExp then E elseE

Arglist : : = LMLExp ∗

X is an agent name identifier. LMLExp and LMLPattern, for expressions
and patterns, are adopted directly from LML. ∗ indicates zero or more
repetitions of the enclosed items. There is a restriction on the form of sum
processes E + E; details below.

Note that recursive agent expressions have been omitted; instead we will
write agent definitions with the syntax:

Def : : = X LMLPattern
def
= E ∗

where X is the agent’s name, and several equations may be given to define its
behaviour for different argument patterns. Recursion must be guarded.

A CBSLML program will consist of one or more agent definitions; they will
usually be mutually recursive.

LML

These comments apply to the specific characteristics of the CBS LML form of
CBS, and do not provide a complete description of the semantics of CBS.

An agent definition X LMLPattern
def
= E ∗ is a schema for the be-

haviour of an agent named X . When X is invoked argument values will
be supplied; these will be matched against the patterns. The first pat-
tern that matches determines the equation to be used, and any variables
in the pattern are bound to the corresponding values in the arguments.
These variables are in scope in any LMLExps in E, although they may

be masked by receive actions within E (see next).

3



An agent specified by LMLPattern ?E awaits a message that matches the
pattern (in the usual LML sense). It accepts the first matching message,
subsequently behaving as specified by E. Any variables in the pattern

are bound to the corresponding values in the message. These variables
are in scope in any LMLExps in E, unless masked by another receive
action.

An agent specified by X Arglist invokes a behaviour as given by the
definition of agent X with actual arguments being the values of the
expressions in Arglist.

An agent specified by LMLExp !E transmits the value of the LML ex-
pression.

In an agent expression E + E each alternative must be either a receive
or a transmit action. (This hopefully does not seriously restrict the
expressiveness of the language, but it does facilitate implementation.)

The agent expression if LMLExp thenE elseE is obvious.

Agent names must not be used in LMLExps. (This is just to keep us
in a familiar “first order” CBS world, in particular in a world in which
agents cannot be exchanged in messages. In the LML implementation
which follows this restriction could be lifted, leading all sorts of exotic
possibilities . . . .)

The form of argument lists means that agents may be curried or uncur-
ried. However, if the previous restriction is adhered to then there will
never be any opportunity to partially apply a curried agent.

LML

In the following tables E stands for “the translated form of E”, where E is a
CBSLML agent expression. Some notes on the translation follow the tables.

4



CBSLML agent expression LML translation

1 Arglist Arglist

2 Nil stop

3 LMLExp ! xmit LMLExp

4 LMLPattern ? recv pred LMLPattern

cont LMLPattern

5 LMLPattern 1 ? 1 + LMLPattern 2 ? 2 altrr pred LMLPattern 1

cont LMLPattern 1 1

pred LMLPattern 2

cont LMLPattern 2 2

6 LMLPattern ? 1 + LMLExp ! 2

or

LMLExp ! 2 + LMLPattern ? 1

altrx pred LMLPattern

cont LMLPattern 1

LMLExp 2

7 LMLExp 1 ! 1 + LMLExp 2 ! 2 altxx LMLExp 1 1

LMLExp 2 2

8 1 | 2 par 1 2

9 if LMLExp then 1 else 2 if LMLExp then 1 else 2

CBSLML agent definition LML translation

10 { LMLPattern
def
= }∗ { LMLPattern = } ∗

equations separated by ||

X , Arglist, LMLExp and LMLPattern are already valid LML and do not
need translating.

Additional parentheses may be necessary to ensure correct structure.

Variable identifiers and data constructor identifiers may need renaming

to avoid clashes with LML reserved words, etc.

The agent constructors stop, xmit, recv, altrr, altrx, altxx and par

are predefined functions (described in detail in Section 3).

In rule 1 function application is used to invoke a named process.

Rules 5, 6 and 7 cover the only cases that are allowed for agent sums.
Note that each of the functions altrr, altrx and altxx has four argu-

ments.

5



Receive actions are specified by a pattern that a message must match
and a continuation agent. However, in LML a pattern cannot be passed
as an argument to a function, so recv, altrr and altrx cannot be de-

pend directly on a pattern extracted from the CBS LML . The pattern has
two rôles: it determines whether a message is accepted or discarded, and
it extracts data values from an accepted message and binds these values
to variables. In the translation these two rôles are played by a predicate,
constructed from the pattern, which indicates whether a message is to

be accepted or discarded (returning true and false respectively), and
a continuation function, constructed from the pattern and the continua-
tion process, which extracts data from a message and then executes the
continuation process. These are represented in the translation rules by
< pred LMLPattern > and < cont LMLPattern E > and are defined as

follows:

translates to

pred LMLPattern (\m.case m in LMLPattern : true || _ : false end)

cont LMLPattern (\LMLPattern. )

[This mechanism is quite powerful: the use of a predicate rather than

just a pattern to select messages allows arbitrary properties to be tested
(such as that two data fields are equal).]

LML program transformation rules may be applied to the result of trans-

lation: the introduction of let blocks, for example. It may also occasion-
ally be expedient to exploit other features of LML: guarded equations in
function definitions, for example.

The predefined functions (and types) are held in a separate module. To
form a complete LML program the translated process definitions must be

packaged in the usual way as a main program, with the inclusion of:

Appropriate import details for the CBS LML module. Usually a state-
ment of the form #include "cbs.t";

(If necessary) A type definition for the messages to be communicated by
processes.

(If necessary) The definition of a show function for the message type.

6



A main expression specifying the execution required. This should have
the form:

go show fn extern program

where show fn is a suitable show function for the messages exchanged
by the processes, extern is a process expression describing the external
world’s behaviour, and program is an process expression for the program
to be executed. The distinction between extern and program is perhaps
artificial; go executes them in parallel using the par operator, and so

there is no additional functionality. The distinction is sometimes useful,
but either extern or program can be replaced with stop (both are treated
the same way). The output from go show fn extern program is a trace
of the communications that occur up to the point when the “bus” first
becomes quiet (no further messages will be sent after this point 1).

2.4.1 Counting and echoing

Here are some CBS LML agents:

from n
def
= n ! from (n + 1) Count up from n

fromto m n
def
= if m > n Count up a range

then Nil

else m ! fromto (m + 1)n

echoinc
def
= x ? (x + 1) ! echoinc Echo incremented values

echoincrange m n
def
= x ? if m <= x & x <= n

then (x + 1) ! echoincrange m n

else echoincrange m n

Only if in a range

1 This is a consequence of the discrete time model of CBS LML realized by the imple-
mentation: all processes are always either awaiting or attempting to transmit; if there is a
quiet “slot” on the bus then no processes (if there are any) were ready to transmit, all are
only able to receive; therefore none made progress, and this state will persist indefinitely.

7



And here is a complete LML file containing the translated forms, and a
request to execute the CBS LML expression fromto 1 10 echoincrange 4 8 :

#include "cbs.t";

let

rec from n = xmit n (from (n+1))

and fromto m n = if m>n then stop

else xmit m (fromto (m+1) n)

and echoinc = recv (\x.true) (\x.xmit (x+1) echoinc)

and echoincrange m n = recv (\x.m<=x & x<=n)

(\x.xmit (x+1) (echoincrange m n))

in go show_int (fromto 1 10) (echoincrange 4 8)

echoinc receives unconditionally; this is encoded as the predicate
(\x.true), which is a trivial simplification after application of the gen-
eral rule, which would have produced

(\m.case m in x : true || _ : false end)

The translated form of echoincrange has taken advantage of the power of
using a predicate for message selection: the test rejects messages which
are “out of range”, whereas the original CBS LML used explicit recursion.

The messages are just integers, so the show function used is the standard
show_int.

The behaviour of the CBS LML expression fromto 1 10 echoincrange 4 8 is

that the agent fromto transmits the integers 1 . . . 10, which are thus observable
on the bus, and the agent echoincrange receives those integers in the range
4 . . . 8 and retransmits each incremented by 1. Thus the output from this
example program, the observable bus traffic, is

[1; 2; 3; 4; 5; 5; 6; 6; 7; 7; 8; 8; 9; 9; 10]

2.4.2 Broadcast sorting

The following description and CBS program are taken from Prasad’s paper

(with minor modifications):

Consider first the simpler case where all the numbers input by
the user are distinct.

Broadcast sort is a parallelised insertion sort. The input so far

is held in a sorted list, maintained by cells each holding a number

8



u and a “link” l, the next lower number. The correct place for
the next number thus always splits exactly one cell. Let and

be sentinel values, respectively less than and greater than all

numbers. At all times, there is exactly one cell with l = , and
exactly one with u = . Output is done by the first of these two
transmitting u, the head of the sorted list. Each cell (l, u) changes
to ( , u) when it hears l, thus giving the tail of the list.

sorter
def
= in ( , ) Out?

in (l, u)
def
= Go? out (l, u) + In (n) ? if l < n & n < u

then in (l, n) in (n, u)

else in (l, u)

out ( , )
def
= in ( , )

out ( , u)
def
= Out (u) ! Nil

out (l, u)
def
= Out (l) ? out ( , u)

Here is its translation into LML, with a final expression requesting that the
integers 5, 1, 3, -9 and 7 be sorted into order:

#include "cbs.t";

let

rec type Message = In Int + Go + Out Int -- message contents

and show_Message :: Message -> String

and show_Message (In n) = "In(" @ show_int n @ ")"

|| show_Message Go = "Go"

|| show_Message (Out n) = "Out(" @ show_int n @ ")"

and inject :: List Int -> Process Message

-- to be the "external world"

and inject [] = xmit Go stop

|| inject (x.xs) = xmit (In x) (inject xs)

and smallnum = -1000000 -- to be the lower and

and bignum = 1000000 -- upper sentinels

and sorter :: Process Message -- CBS agent "sorter"

and sorter = inp smallnum bignum

9



and inp :: Int -> Int -> Process Message -- CBS agent "in"

and inp l u = altrr (\m.m=Go) (\m.outp l u)

(\m.case m in In n : true || _ : false end)

(\(In n). if l<n & n<u

then par (inp l n) (inp n u)

else inp l u)

and outp :: Int -> Int -> Process Message -- CBS agent "out"

and outp l u & (l=smallnum & u=bignum) = inp smallnum bignum

|| outp l u & (l=smallnum) = xmit (Out u) stop

|| outp l u = recv (\m.case m in Out n & (n=l) : true

|| _ : false end)

(\(Out n).outp smallnum u)

in go show_Message (inject [5;1;3;-9;7]) sorter

Messages exchanged on the bus are of the form In n, Go and Out n.
Hence the type definition for Message and the definition of the function

show_Message.

A simple agent, inject, has been added to act as the external world in

triggering the sorter.

There are no predefined constants to be used as and in LMLPatterns.
They have been translated into the global identifiers smallnum and bignum,

and guards have been added to the first two equations of outp. (This
inelegance could be overcome by suitable use of a new datatype.)

In the third equation for out the pattern for receiving, Out(l), is not
in fact a correct LML pattern since it contains an identifier which has
already been bound to a value. In the translation an unbound identi-
fier has been substituted, and an equality test added as a guard in the
predicate.

The output from this program is:

[In(5); In(1); In(3); In(-9); In(7); Go;

Out(-9); Out(1); Out(3); Out(5); Out(7)]

We see the sequence of In messages followed by Go produced by inject,
followed by the Out messages as the sorter produces its result.

10



The implementation of the CBS LML functions is directly based on the ethernet-
like bus model mentioned in the Introduction. All CBS LML processes wishing
to transmit messages compete for access to the bus: one will be selected and
the others must re-try (this is implicit in the CBS LML semantics). CBS LML

processes awaiting signals consume the next available message which matches
the pattern specified; and every message is available for reception by every
process.

Although the semantics of CBS LML does not deal with time, in this im-
plementation it was necessary to introduce a notion of discrete time intervals.

Time is divided into notional intervals by organizing the bus as a series of
slots, each of which either contains a message or is null.

This discretization of time induces an “execution cycle” as follows:

1. At the start of a slot each process nominates zero or more messages
for transmission on the bus: zero since the process may only be able
to receive; one or more since a process may be the parallel or choice
composition (recursively) of more than one process.

2. The “bus arbitrator” selects one message from all those nominated.

3. Each process is informed (via “Success” or “Failure” Grants) which of
the messages that it nominated, if any, was selected (so that non-selected
processes can re-try).

4. The bus slot is filled with the selected message, and all processes are
able to either accept it or discard it.

5. The cycle starts again.

Note that processes which are the composition of other processes must collect
together the transmission requests of each component process at each time

slot, must return the selection grants from the bus to the correct component
processes 2 , and must inform all components of the actual contents of the bus
slots. Thus each composite process has exactly the same interface as a simple
process, and much of the complexity of the organization of the implementa-
tion is distributed amongst the process forming functions xmit, recv, altrr,

altrx, altxx and par; the bus arbitrator (go) essentially deals with one pro-
cess, the internal details of which it is unaware of.

2Note that there is no simplification in making the selection locally in composite pro-
cesses, since the selection is not valid until confirmed globally by the bus arbitrator.

11



A CBSLML process is thus implemented as a stream processing function,
where the stream elements are synchronized with the bus slots:

type Process *a == Stream (List Grant) -> Stream (Slot *a)

-> Stream (List (Request *a))

One output stream: each element is a list of the messages requesting
transmission in the current slot.

The first input stream is structurally identical to the output stream: it
carries the grants indicating the success or failure of each of the trans-
mission requests.

The second input stream carries the actual contents of the bus slots.

LML

The entire CBS LML module is given next. Sections of the LML code are
followed by explanatory comments.

12



module

export Process, Message, Pattern,

-- required for typechecking applications

recv, xmit, par, go, stop, -- for use in applications

altrr, altrx, altxx;

Process, Message and Pattern need never be used by the applications
programmer, but they need to be exported otherwise applications pro-
grams cannot be typechecked.

rec

type Message *a == *a

-- message data *a determined by the application

and type Slot *a = Null + Data (Message *a) -- Bus slots

and type Grant = Success + Failure

and type Request *a == Message *a -- Transmission requests

and type Stream *a == List *a

and type Process *a == Stream (List Grant) -> Stream (Slot *a)

-> Stream (List (Request *a))

and type Pattern *a == Message *a -> Bool

Process is the key type: two input streams and one output stream as
described above.

Pattern is the type of the predicates used for message selection by receive
actions.

and show_Message :: (*a -> String) -> Message *a -> String

and show_Message f = f

and show_Slot :: (*a -> String) -> Slot *a -> String

and show_Slot f Null = "Null"

|| show_Slot f (Data x) = show_Message f x

and show_Stream :: (*a -> String) -> Stream *a -> String

and show_Stream = show_list

The show functions are not very exciting.

13



and go :: (*a->String) -> Process *a -> Process *a -> String

and go show_data extern prog =

((show_Stream (show_Slot show_data) live_bus) @ "\n"

where rec live_bus = fst (take ((~=) Null) bus)

-- system dies at first Null

/**/ and reqs = par extern prog sigs bus

/**/ and (sigs,bus) = select 0 reqs

-- pick one from each collection

-- of requested transmissions

and select :: Int -> Stream (List (Request *a))

-> ((Stream (List Grant))#(Stream (Slot *a)))

and select n [] = ([],[])

|| select n ([].reqs) =

(([].sigs,Null.bus)

where (sigs,bus) = select n reqs )

|| select n (reqlist.reqs) =

((siglist.sigs,Data msg.bus)

where rec numreqs = length reqlist

and n’ = (n+1)%numreqs

and msg = reqlist??n’ -- pick n’ th req

and siglist =

for 0 (numreqs-1)

(\i.if i=n’ then Success

else Failure)

and (sigs,bus) = select n’ reqs ) )

go is the main function — it is the bus arbitrator: it selects between

transmission requests and formats the bus traffic for output.

The key lines are labelled /**/; these depend crucially on lazy evaluation:
extern and prog are executed in parallel to obtain the stream of requests
for each bus slot. A selection is made from each list of requests, producing

a stream of selection grant lists and the actual bus contents. The grants
and bus are conveyed to extern and prog to determine their subsequent
behaviour 3.

select makes the slot-by-slot selection; it has an integer argument which
is used in a very rough and ready way to give a degree of randomness
to the message selection by cycling through the request lists (it could be
replaced by any number of other mechanisms).

The bus is formatted for output up to, but not including, the first null
slot (see footnote on page 7 which explains this truncation) using the
show function for the message data supplied by the user.

3The mutual dependence of these two equations may look like magic, but it works.

14



and stop :: Process *a -- no further transmissions

and stop sigs bus = []

and recv :: Pattern *a -> (Message *a -> Process *a) -> Process *a

and recv patok p sigs bus =

[] . -- no transmission requests

case (sigs,bus) in -- just listen for message

(_.sigs’,Null.bus’) : recv patok p sigs’ bus’

|| (_.sigs’,Data m.bus’) & (patok m) : p m sigs’ bus’

|| (_.sigs’,Data m.bus’) : recv patok p sigs’ bus’

end

and xmit :: Message *a -> Process *a -> Process *a

and xmit m p sigs bus =

[m] . -- request transmission of m

case (sigs,bus) in -- and see if successful

([Success].sigs’,_.bus’) : p sigs’ bus’

|| ([Failure].sigs’,_.bus’) : xmit m p sigs’ bus’

end

These are the three basic process forming operators.

stop simply produces no further request lists (this allows par to discard
such processes).

recv outputs an empty request list 4 (reasonable!) and tests the next slot

on the bus for an acceptable message. If the slot is empty or contains
an unacceptable message then the receive action is repeated with the
subsequent bus slot(s), otherwise the continuation process is executed.
In each case, since no transmission has been requested, the returned
grant list is ignored.

xmit requests the transmission of a single message, and then either con-
tinues or repeats depending on the selection grant returned. Note how
the structure of the selection grant list exactly matches the structure of
the request list.

Note that in recv and xmit, and in subsequent function definitions

– the grants and bus streams are not pattern matched on the left hand
side of the equation; doing so would introduce extra, and impossible
to satisfy, eagerness to the evaluation 5 , and would cause (in process
synchronization terms) a form of deadlock;

4A list because, in general, a process may nominate any number of messages for the next
bus slot.

5It would undo the magic in the definition of alluded to earlier.

15



– the grants and bus streams are both decomposed by the case ex-
pression, although, on occasions, it appears that one or other of the
streams could be omitted from the case and tl could be applied

to the stream instead; this is to avoid very expensive space leaks 6.

6Which I had to track down most meticulously when they arose in an early version of
the code.

16



and par :: Process *a -> Process *a -> Process *a

and par p1 p2 sigs bus =

/**/ (combine p1reqs p2reqs

/**/ where rec p1reqs = p1 p1sigs bus

/**/ and p2reqs = p2 p2sigs bus

/**/ and (p1sigs,p2sigs) = splitsigs sigs p1reqs p2reqs

and combine :: Stream (List (Request *a))

-> Stream (List (Request *a))

-> Stream (List (Request *a))

and combine [] p2reqs = p2reqs

|| combine p1reqs [] = p1reqs

|| combine (p1.p1reqs) (p2.p2reqs) =

(p1@p2) . combine p1reqs p2reqs

and splitsigs :: Stream (List Grant)

-> Stream (List (Request *a))

-> Stream (List (Request *a))

-> ((Stream (List Grant))

#(Stream (List Grant)))

and splitsigs sigs [] p2reqs = ([],sigs)

|| splitsigs sigs p1reqs [] = (sigs,[])

|| splitsigs (ls.sigs) (l1.p1reqs) (l2.p2reqs) =

(head (length l1) ls . p1sigs,

tail (length l1) ls . p2sigs)

where (p1sigs,p2sigs) =

splitsigs sigs p1reqs p2reqs

)

par builds a composite process which behaves as two component pro-
cesses executed in parallel. The key lines are labelled with /**/. The
request streams, p1reqs and p2reqs, from the two components are com-
bined to produce the request stream from the composite process: in each
slot the list of requests is the concatenation of the separate request lists.
The selection grants returned by the bus arbitrator are split up to match

the request lists, giving p1sigs and p2sigs. These grants and the bus
contents are conveyed to the component processes.

If either of the component processes stops then its request stream ends,
and par discards the stopped process; subsequent processing is carried
out by the remaining process.

17



and altrr :: Pattern *a -> (Message *a -> Process *a)

-> Pattern *a -> (Message *a -> Process *a) -> Process *a

and altrr pat1ok p1 pat2ok p2 sigs bus =

[] . -- no transmission requests

case (sigs,bus) in -- just listen to the messages

(_.sigs’,Null.bus’) : altrr pat1ok p1 pat2ok p2 sigs’ bus’

|| (_.sigs’,Data m.bus’) & (pat1ok m) : p1 m sigs’ bus’

|| (_.sigs’,Data m.bus’) & (pat2ok m) : p2 m sigs’ bus’

|| (_.sigs’,Data m.bus’) : altrr pat1ok p1 pat2ok p2 sigs’ bus’

end

and altrx :: Pattern *a -> (Message *a -> Process *a)

-> Message *a -> Process *a -> Process *a

and altrx patok p1 m p2 sigs bus =

[m] . -- request to transmit m

case (sigs,bus) in -- and see if successful

([Success].sigs’,_.bus’) : p2 sigs’ bus’

|| ([Failure].sigs’,_) : -- No, so listen to message on bus

case bus in

Null.bus’ : altrx patok p1 m p2 sigs’ bus’

|| Data m.bus’ & (patok m) : p1 m sigs’ bus’

|| Data m.bus’ : altrx patok p1 m p2 sigs’ bus’

end

end

and altxx :: Message *a -> Process *a

-> Message *a -> Process *a -> Process *a

and altxx m1 p1 m2 p2 sigs bus =

[m1;m2] . -- request transmission of m1 and m2

case (sigs,bus) in -- and see if either is successful

([Failure;Failure].sigs’,_.bus’) :

altxx m1 p1 m2 p2 sigs’ bus’

|| ([Success;Failure].sigs’,_.bus’) : p1 sigs’ bus’

|| ([Failure;Success].sigs’,_.bus’) : p2 sigs’ bus’

end

end

These three functions implement the restricted forms of the agent sum
operation. The first is a choice between two receive actions, and so
requests no transmissions. The second is a choice between a transmit
and a receive, and so one transmission request is output. The third
is a choice between two transmit actions, and so two transmissions are

requested.

18



The subsequent action is determined by inspection of the selection grants
returned and the bus contents; in each case the decision is a combination
of the mechanisms in recv and xmit, above.

There is, almost inevitably, some bias in the choice: altrr prefers the
first alternative if both are prepared to accept the next message; altrx

seems to give priority to a transmit attempt 7; altxx exhibits no bias,
since it is not possible for both transmit requests to be successful (any
bias would come from the bus arbitrator).

The types Message, Request and Stream do not achieve anything spe-
cial; it is just nice to have mnemonic type names as “wrappers”.

The implementation depends crucially on being evaluated lazily. This is
evident from the key equations in the definition of go, in which streams
have mutually recursive definitions.

The functions do not contain pattern matching for streams on their left
hand sides. This is to avoid the introduction of undesirable degrees
of eagerness, which would cause failure of the mutually recursive key
equations in the definition of go 8.

case expressions are used to decompose streams into their head and
tail, even when simple hd and tl would seem adequate. This is to
avoid expensive space leaks; these would arise if argument expressions in

recursive function calls used hd or tl but were not immediately forced.
An early version of the implementation suffered from this problem rather
badly (though the severity depended on the application program).

7Though whether this is the case is arguable: if the transmit is unsuccessful (“quite
likely”) then the receive has the option of accepting whatever message succeeded in occupy-
ing the bus slot; the only circumstance under which both can succeed is if the transmitted
message is acceptable to the receiving pattern (a strange program?). There is no genuine
bias if the bus arbitrator is reasonably fair. It is a subtle issue. It was the implementation
of this particular case of process choice that necessitated the restriction of agent sums; it
was hard to see how it could be any other way.

8Giving a run time error which may or may not be reported.

19



As far as it goes, the implementation of CBS LML described in this note is quite
effective and is an interesting approach. However, some perhaps arbitrary
decisions were made, and there are some questions to be asked and some loose
ends to be tidied up:

Can the restriction on the forms of agent sum be removed? It would be
nice to have just one alt function with type

Process *a -> Process *a -> Process *a

and a translation rule:

E1 + E2 alt E 1 E2

(I found no way to make the sum of two agents translate to the general

composition of two processes: the composition needed to know something
about their internal workings, viz. their first receive or transmit action.
Perhaps I was just not seeing clearly.)

The omitted feature of CBS needs adding: morphism.

All the processes are obliged to run in synchrony with the bus slots: if

any process performs a lengthy computation before determining whether
it will transmit or receive at the next step (for example evaluating the
boolean expression in an if then else), then the entire system must
wait. Can this restriction be removed whilst remaining with this style of
implementation?

Can the implementation be extended to display all possible computa-
tions?

Perhaps the simple strategy in the bus arbitrator go for “randomizing”
the selection of the next message can be improved? There are probably
pathological cases for which the current strategy is wildly unsuitable.

Is the implementation a correct implementation of CBS LML? (The ques-
tion needs formalizing and then answering.) Is it any easier or harder to
prove this implementation correct than those described by Prasad and

Petersson?

There’s plenty for someone to do . . .

20



[1] K. V. S. Prasad. A calculus of broadcasting systems. In Volume I:
CAAP’91. Springer Verlag LNCS 493. April 1991.

[2] K. V. S. Prasad. A Calculus of Value Broadcasts. Technical Report. De-
partment of Computer Science, Chalmers University of Technology. 1992.

[3] K. V. S. Prasad. Programming with Broadcasts. Technical Report. De-
partment of Computer Science, Chalmers University of Technology. 1993.

[4] L. Augustsson and T. Johnsson. Lazy ML Users’ Manual. Department of
Computer Science, Chalmers University of Technology.

21


