
A G Hamilton
Department of Computing Science

University of Stirling
Stirling FK9 4LA

e-mail: agh@uk.ac.stir.cs

17th August 1994

Abstract

Constructive type theory (CTT) has potential as a framework for program synthesis. But
the basic theory provides only a minimal collection of mathematical structures which can
be used to represent data. Because of the uniform structure and the extensibility of CTT,
it is proposed that new structures can best be introduced directly, via additional rules,
rather than by representation in terms of basic structures. For arbitrary freely generated
structures, the necessary rules can be constructed, starting from a simple form of specifi-
cation. Further, it is shown how certain definitions can be made, and how theorems can
be generated and proved by uniform methods. In particular, closure, uniqueness, cancel-
lation and equality-decidability theorems are dealt with. All of the methods described
have been fully implemented, using PICT, a proof assistant for CTT which has been de-
veloped by the author. Additional rules are generated in PICT’s format, so that PICT
can use them without modification, and new theorems are proved by PICT automatically.
Examples are given.

Keywords: Constructive type theory, data structures, mechanized proof.

The constructive type theory (CTT) of Martin-Löf [M-L84], now described excellently in

the books by Nordström, Petersson and Smith [NPS90] and by Thompson [T91], provides

a basis for the specification and development of programs. It has a rich language, in which

some expressions (types) can represent specifications of programming tasks, some expressions

(objects) can represent data, and some expressions (functions) can represent programs. The

rules of the logic allow reasoning about these things, for example whether two objects are

equal, whether two specifications are equivalent, or whether a given function meets a given

specification. Martin-Löf’s set of rules, however, is, in a sense, minimal. They deal directly

with the standard logical connectives and quantifiers. The constructive interpretation of

the connectives and quantifiers allows them to be used to represent data (e.g. conjunction for

pairing, disjunction for disjoint union). But where data structures are concerned, the facilities

are limited. There are rules for pairs, disjoint unions, finite types, natural numbers and the

W type (Martin-Löf [M-L84], and that is all. It is a system for constructive mathematics.

The needs of program specification and development are different from those of mathe-

matics. In particular, there is a need to design and use data structures which are appropriate

to each situation. Now it is always the case that a programmer or specifier will be restricted

in this task by the language which is used, and must choose representations for data according

to the structures which are available. In the case of CTT, the structures available are basic

1



and mathematical, and considerable work is necessary if appropriate representations of data

are to be constructed.

There are two different approaches which might be taken over this in the context of

CTT. One is to extend the facilities provided by building new structures in terms of existing

ones. Indeed Martin-Löf’s W type is designed with just this in mind - it is a general type

construction which can be particularized to represent most recursive data structures, such as

lists and trees. Also, in a more elementary way, tuples of arbitrary length can be constructed

from a pair former. This approach was taken by Khamiss ([K86]), in relation to trees. It

has also been taken by Stevens in work related to NuPRL [S89]. The other approach is

to extend the system with new type formers and corresponding rules. Chisholm ([Ch87],

for his derivation of a parsing algorithm, introduced new structures and rules which were

appropriate for the task. Petersson [Pe82] also adopted this approach in his implementation

of CTT, in providing, over and above the basic types of CTT, a list type former and a set of

rules for lists. Experience with this implementation (and with subsequent ones developed by

the author [H85, H91, H92]) has led to the belief that the second approach is more convenient

in practice.

It is not only experience which has led us to this conclusion, however. One of the great

virtues of CTT is its uniform structure, both in the language and in the logic, but particularly

in the logic. This makes it possible to envisage the application of uniform methods when

considering proof construction. This is discussed by Backhouse ([B86]) and by Ireland [I89,

I91]. And when it comes to providing extensions to the basic theory the real benefits of

uniformity are found. Not only can new rules for new data structures be produced in standard

form, but standard existing methods of proof construction can then use these new rules

without modification. In this paper are described the development of such methods, their

implementation, and their use. The vehicle for implementation is PICT, a proof assistant for

CTT, developed by the author [H91].

The language of CTT is extremely simple. Its expressions are constants, abstractions and

applications. These are governed by basic λ-conversion rules. Among the constants are types

and type constructors, and objects and object constructors.

The rules of CTT are in natural deduction style. There are particular rules for special

purposes (e.g. variable introduction, substitution, equality). Apart from these, every type

constructor is dealt with in the same way:

1. A type constructor may have type arguments (or, in the case of the quantifiers, argu-

ments which are type abstractions). In certain cases there may be no arguments, as

with the type of Boolean values and the type of natural numbers.

2. Associated with a type constructor is a number of canonical object constructors. These

may be nullary, as are true and 0, or they may have arguments. If they have argu-

ments, these may be recursive arguments, as is x in succ(x), or non-recursive, as is h in

cons(h, t).

3. Associated with a type constructor also is a single non-canonical object constructor.

Examples are rec for natural numbers, cond for Booleans, and, less familiarly, split for

conjunctions (i.e. types of pairs).

2



4. A set of rules (in Martin-Löf’s terms) expresses the meanings of the type constructor

and the corresponding object expressions. Another way to regard this is that the set

of rules governs the behaviour of the expressions in question. These rules have uniform

structure:

two formation rules,

introduction rules (two for each canonical object constructor),

two elimination rules,

computation rules (one for each canonical object constructor).

The formation, introduction and elimination rules come in pairs, one of the pair dealing with

equality judgements.

This uniform structure has been remarked on by others. In particular, Backhouse [B86]

has presented a formalism for generating elimination and computation rules for a new type

constructor from given formation and introduction rules. A slightly different approach is

proposed here, namely to take a step further back, and to use as a starting point a specification

of a data type in a form which is completely independent of CTT. From such a specification,

appropriate rules and mechanisms for the type will be generated. The detail will be expanded

below, but what is meant here by ‘rules and mechanisms’ are the following:

Formation, introduction, elimination and computation rules for the new type.

Two additional universe-introduction rules, so that the new type can be proved to belong

to the universe.

Definitions of useful terms.

Basic ‘structural’ lemmas and theorems.

Now what must be contained in the specification which is to be the starting point? We

certainly need the following:

1. The name of the new type constructor, and its arity.

2. Details of the intended structures of canonical objects.

3. The name of the non-canonical object constructor.

In Section 7 more detail will be given about what exactly is required and how it is to be

represented.

These methods will deal uniformly with freely generated structures. They do not cope

with equational constraints. The structures may be recursive, however. This does allow quite

a broad range of structures, including, for example:

Tuples (cases where there is only one canonical constructor, with an argument for each

type parameter).

Disjoint unions (where there is one canonical constructor for each type parameter, each

having a single argument).

Enumerated types (where the list of type parameters is empty, and all canonical con-

structors as nullary).

Recursive structures such as lists and trees.

3



For illustration, here are two cases. Below are rules for two type constructors which are

not included in the basic CTT. For reasons of space, the equality versions of the formation,

introduction and elimination rules have been omitted. The presentation here is informal:

the formalism for assumptions is not precise, and inessential assumptions have been omitted.

When the details are discussed below, the syntax of PICT will be used, with greater precision.

3.1 Three-way Conjunction

Here the name of the type constructor is And3, and it has three type parameters, (here A,

B and C). There is one canonical object constructor, triple, and the non-canonical object

constructor is split3. Note that the object s which appears in the rules as one of the arguments

to split3 is an abstraction.

A type B type C type
And3-form

And3(A,B, C) type

a : A b : B c : C
And3-intr

triple(a, b, c) : And3(A,B, C)

[q : And3(A,B, C)] [x : A, y : B, z : C]

t : And3(A,B, C) G(q) type s(x, y, z) : G(triple(x, y, z))
And3-elim

split3(t, s) : G(t)

[q : And3(A,B, C)] [x : A, y : B, z : C]

a : A b : B c : C G(q) type s(x, y, z) : G(triple(x, y, z))
And3-comp

split3(triple(a, b, c), s) = s(a, b, c) : G(triple(a, b, c))

3.2 Lists

Here the name of the type constructor is List, and it has one type parameter, (here A). There

are two canonical object constructors, nil and cons (which is here represented by the infix

‘::’), and the non-canonical object constructor is listrec. The object ind which appears as

one of the arguments to listrec is an abstraction.

A type
List-form

List(A) type

A type
List-intrnil

nil : List(A)

a : A l : List(A)
List-intrcons

a :: l : List(A)

4



[q : List(A)] [x : A, y : List(A), z : G(y)]

l : List(A) G(q) type b : G(nil) ind(x, y, z) : G(x :: y)
List-elim

listrec(l, b, ind) : G(l)

[q : List(A)] [x : A, y : List(A), z : G(y)]

A type G(q) type b : G(nil) ind(x, y, z) : G(x :: y)
List-compnil

listrec(nil, b, ind) = b : G(nil)

[q : List(A)] [x : A, y : List(A), z : G(y)]

a : A l : List(A) G(q) type b : G(nil) ind(x, y, z) : G(x :: y)
List-compcons

listrec(a :: l, b, ind) = ind(a, l, listrec(l, b, ind)) : G(a :: l)

A uniform method for constructing such sets of rules has been implemented. Care has been

taken to ensure that the structure of the rules is correct. Backhouse, Dyckhoff and others

have noted omissions from the lists of premisses of Martin-Löf’s rules (and from Petersson’s

implementations of them). Dyckhoff (personal communication) has shown exactly what is

required, and his conclusions have been the starting point for this work.

Because of the diversity of data structures which can be treated by these methods, the range

of generally useful defined terms is somewhat limited. But there are some. Three groups are

identified and treated here: recognisers, projectors and selectors. In all cases the terms being

defined are abstractions. In CTT there is an important distinction between abstractions and

functions. The former are a feature of the underlying theory of expressions, the latter are a

feature of the logic.

1. Recognisers recognise the nature of an object — for example, to recognise whether a

natural number is zero or is a successor. In the context of CTT such an operation

may be defined in two ways. First, following ‘propositions-as-types’, it may be a type

operation, evaluating to Null (the empty type) in one case and Unit (a type with one

member) in the other. And second, it may be a Boolean operation. Specifically, for

numbers, we could use either

(n)rec(n,Unit, (x, y)Null) or

(n)rec(n, true, (x, y)false)

There is no difficulty in general in introducing these as defined terms. Of course there

is a need for them only when there is more than one object constructor.

2. Where there is only one object constructor (as with And3 above), projectors which

evaluate to the various arguments are easily defined. For example

second = (t)split3(t, (x, y, z)y)

5



3. Where there are two or more object constructors, CTT has a serious problem with

selector operations. In the case of List, for example, it is the problem of defining

an operation which returns the head of a list. Specifically, what to do if the list is

empty? The formalism of CTT does not allow for partial operations (at least not

without incurring considerable inconvenience). Operations on a type must be applicable

to every member of the type. Where there is more than one object constructor, there

is no simple way to restrict a selector to apply only to objects of the appropriate form.

Here one way is described in which this problem can be partially circumvented.

A type expression can be constructed which embodies the statement ‘the head of list l

is equal to a’:

Head = (A, l, a)listrec(l,Null, (x, y, z)Eq(A,x, a))

(Note that Eq(A, x, a) is a type which embodies the statement ‘x is equal to a in type

A’. Because A occurs in this expression, it must be abstracted (in effect, a parameter

to Head). For particular values of A, l and a, Head(A, l, a) is a type. This type will be

uninhabited (regarded as a proposition it will be false) in two situations: when l is nil,

and when l is non-empty but a is not equal to the head of l. Use of this type provides

a means of selecting which is unencumbered by the need explicitly to distinguish the

empty and non-empty cases.

In general such terms can be constructed and given names automatically, for each

argument of each object constructor in the specification of a new type.

The term ‘structural theorem’ was used above to describe the kind of theorems which concern

us. The point is that we wish to prove, by uniform methods, analogous theorems for every

theory. This certainly constrains the range of theorems it is possible to consider. Four kinds

are dealt with here. These are listed below with examples, and details of the generation of

the proofs are given later.

1. Closure Theorem. Informally, every object in a type is equal to one whose outer

structure is canonical. For example:

(a) (for lists)

Eq(List(A), l, nil) (Σa : A)(Σt : List(A))Eq(List(A), l, a :: t)

(under an assumption l : List(A)).

(b) (for three-way conjunction)

(Σa : A, b : B, c : C)Eq(And3(A,B, C), t, triple(a, b, c))

(under an assumption that t : And3(A,B, C)).

Such closure properties may be expressed, in general, as disjunctions, where each dis-

junct corresponds to a distinct canonical object constructor. Generality is obtained by

covering an apparently free variable by an assumption, rather than by use of an explicit

universal quantifier. This makes the theorems easier to apply in practice. Implicitly,

the types A, B and C will also be covered by assumptions (that they belong to the

universe).

6



2. Uniqueness Theorems. These state that distinct canonical object constructors build

distinct object expressions. For example:

(a) (for lists)

Eq(List(A), nil, a :: l)

(b) (for disjoint union, i.e. constructive disjunction)

Eq(A B, inl(x), inr(y))

Again, a, l, x and y (and A and B) are to be covered by assumptions. In general, there

is a uniqueness theorem for each pair of canonical object constructors for the type.

In cases where there is only one canonical constructor, there will be no uniqueness

theorems. Such is the case with three-way conjunction, for example.

3. Cancellation Theorems. These express the fact that if two objects formed by ap-

plication of the same canonical constructor are equal then their component parts must

(separately) be equal. For example:

(a) (for lists)

Eq(List(A), h1 :: t1, h2 :: t2) Eq(A, h1, h2)

(b) (for three-way conjunction)

Eq(And3(A,B, C), triple(a1, b1, c2), triple(a2, b2, c2)) Eq(B, b1, b2)

(with the appropriate assumptions). In general, there is a cancellation theorem for each

argument of each canonical object constructor.

4. Decidability of Equality. For us, equality is Martin-Löf’s extensional equality. Of

course, this is not decidable in general. And, of course, this undecidability stems from

the way that function types are dealt with. Some types (for example, the type of natural

numbers) do have decidable equalities, and some type constructors have the property

that if their argument types have decidable equalities, then so do the constructed types.

Examples of this are conjunction, disjunction and list formation. It is this conditional

decidability that can be proved in general for new type constructors (provided that they

may be specified as described above).

The decidability of equality for type A is expressed in CTT by:

(Πx : A)(Πy : A)(Eq(A, x, y) Eq(A, x, y))

If this is abbreviated to Eqdec(A), then we may express the conditional decidability

from above, for example, as:

(a) (for lists)

Eqdec(A) Eqdec(List(A))

(b) (for three-way conjunction)

[Eqdec(A), Eqdec(B), Eqdec(C)] Eqdec(And3(A,B, C))

7



Only a brief summary of PICT and its facilities can be given here. For further details, see the

PICT Guide [H92]. The name PICT is an acronym, abbreviating ‘Programs and Proofs in

Constructive Type Theory’. It is the name of a program, written by the author, the purpose of

which is to assist with the process of program synthesis within the formalism of CTT. More

specifically, its purpose is to facilitate the construction of a proof object (i.e. program) P,

given a type (i.e. specification) S, at the same time generating a proof of the CTT judgement

that P belongs to (i.e. meets) S. The logic is that of Martin-Löf [M-L82, M-L84], following

the implementation by Petersson [Pe82], with modifications suggested by Dyckhoff. All four

judgement forms of Martin-Löf’s formalism are included. The rules include versions of all

of Petersson’s rules except those for finite sets (and consequently includes additionally rules

for the types Null, Unit and Boolean). They do not include rules for subset types or for

quotient types. The rules, naturally, are grouped into formation, introduction, elimination

and computation rules. Only small types (i.e. members of the first universe) are included, on

the grounds that a great deal can be done at this level without incurring the extra complication

that a hierarchy of universes brings. The equality type embodies extensional equality. The

actual proof system comes from the same mould which produced Edinburgh LCF [GMW79],

NuPRL [Co86] and Isabelle [Pa86]. But PICT has been designed specifically for CTT, and,

further, specifically with the process of program synthesis in mind. It is not a general (far

less generic) theorem prover.

6.1 Mode of Operation of PICT

The following list illustrates both the nature of PICT and the criteria which guided its design.

The system is portable and does not require excessive time or space. It is written in

Prolog, and has been successfully run on a number of different machines.

It is an interactive system, and is simple to use. Input from from the user, when

necessary, should be through use of a mouse or a minimum of keystrokes.

Proofs are constructed in a goal-directed manner. The system maintains a proof tree

and all the associated information. Housekeeping is all automatic and invisible, and

information about the current state of a proof is readily obtainable.

A toolkit is provided which allows the user to work above the level of the logical rules,

and to build a proof tree in large chunks.

The system carries out trivial steps by itself, and at appropriate points asks the user

for guidance. The meaning of ‘appropriate’ is quite subtle. Ideally, user input should

be restricted to those points in the proof where critical decisions have to be made.

Sometimes this means not carrying out automatically an apparently obvious trivial

step.

Changes of mind or recovery from errors are as easy as possible, and involve only minimal

disruption of the proof.

There are facilities to extend the system, through making and saving definitions and

through saving and applying theorems.

8



Details of the operation of PICT are given below, as necessary for the later descriptions

of the mechanisms for generating new theories.

Extension of the proof tree (strictly, until it is complete it is merely a goal tree) is by

matching a goal with the conclusion of a rule, and inserting the premisses (appropriately

instantiated) into the tree as subgoals. Here a ‘goal’ is a CTT judgement, not merely a type.

Goals may contain scheme variables, i.e. metavariables which stand for CTT expressions and

which will subsequently become instantiated. Indeed the program synthesis process consists

of instantiating an initial scheme variable to a value which is a member of the initially given

type. The system manages these instantiations, most of which occur as a result of the tree

extension process, though they can also be explicitly entered by the user. The matching

process used is based on Prolog’s unification. There is no higher-order unification.

6.2 Language of PICT

The use of Prolog as the implementation language has impinged on the design. First, as noted

above, use is made of Prolog’s unification process. Second, use is made of Prolog’s lexical

analyser. Input of CTT expressions is as Prolog terms, not as text. This is for efficiency

reasons. And not much needs to be compromised as a result. But the following must be

noted in order to understand the syntax used below.

CTT syntax includes constants, abstractions and applications. Constants can be Prolog

atoms. Less obviously, the other two must have an explicit Prolog operator as functor,

so x@expr represents an abstraction, and a^arg represents an application. The functor

in an abstraction is @, and the functor in an application is ^.

Atoms in Prolog must have an initial lower-case letter. It is customary (and useful) to

distinguish the object level from the type level by use of lower- and upper-case initial

letters, but that is disallowed by Prolog. Consequently, PICT uses names like nAT, eQ,

pI and lIS for types and type constructors. And, for example, the defined term which

was referred to above as Eqdec, in PICT is called eQdec.

This syntax is PICT’s external syntax. PICT has also an internal syntax which reflects

more effectively the actual language structure, the details of which need not be mentioned

here.

To illustrate both the syntax and the structure of the rules, the rules for aND are shown in

an appendix at the end of the paper. They are shown in external syntax, in a readable format,

although they are actually stored in internal syntax. The rules contain Prolog variables

(upper-case letters), enabling unification with the conclusion to instantiate the premisses.

The appendix also contains the same rules in standard notation, to assist comprehension.

6.3 PICT Facilities

In PICT, the mechanism for a single proof tree extension step is the tactic. A tactic applies

a single rule, in reverse, to generate subgoals. But a particular tactic may itself select which

rule to use. For example, there are form, intr, elim and comp tactics, which will select from

the appropriate category of rules, according to the form of the goal. These can cope without

modification with additional rules for new data types.

9



PICT also contains the means to build strategies from individual tactics. These use

standard strategy formers, like or, thenl, repeat, etc. Several strategies are built-in, to

enable the user to work, much of the time, above the level of the basic rules and tactics.

Because of the uniform way that the tactics work, the built-in strategies can also make use

of additional rules for new data types.

In PICT, the user can make and store definitions, and there are mechanisms for unfolding

and folding, with reference to the collection of stored definitions. Again, several are built-in.

Proved theorems can be saved. In order to be generally applicable, theorems are converted

before being stored, this process substituting Prolog variables consistently for parameters

which appear in the theorem. (This is not a generalization process, merely a renaming.)

The primary intention for PICT is program synthesis, in which case the initial input is

an assumption list (in effect a list of declarations of parameters and their types) and a goal

type. The task is then to synthesize a member of this goal type. But PICT can also be

used as a verifier, i.e. to construct a proof of an explicit CTT judgement. In this case, no

instantiations are found at the top level (but instantiations may still have to be managed

during the construction of the proof).

At the heart of PICT is its autostrat. This is a strategy which carries out simple or

obvious proof steps automatically. It consists of ten strategies, which are tried as alternatives,

in a set order. The choice of the component strategies, and the order in which they are tried

critically affects the performance of the system, and the present autostrat is the result of

much experience. Automation is desirable, but the system should not be too eager, or it will

too often take wrong turnings. Also the user must be able to control the essential structure of

the proof, so that the outcome (the synthesized program) is a sensible and useful one. PICT

works by applying autostrat if it can, then applying autostrat to the subgoals (depth-first,

right-to-left). Whenever autostrat cannot be successfully applied, PICT asks the user for

guidance. After, this guidance has been acted on, autostrat is again applied in the manner

described above. On average, the system carries out roughly nine out of every ten proof

extension steps automatically, and seeks guidance from the user for the tenth. This is very

variable, however.

Although it is designed to be interactive, PICT can quite simply be made to work with a

predetermined sequence of inputs which have been stored in a file. In this case the mode of

operation is as described above, except that, when autostrat fails and guidance is required,

that guidance is taken from the file (the next item in the file), and not from the user at

the keyboard. This facility is used for the proofs described later in this paper, which are all

carried out without user intervention, by working with pre-computed input scripts (called

guidance sequences). The details are given below.

Last, PICT has mechanisms which allow recovery from error. At one extreme, a proof can

be restarted from the beginning. At the other extreme, the single most recent proof extension

step can be undone. And (most useful in practice) the proof can be undone as far as the

point where the previous user intervention was made. There are also facilities to inspect the

tree and the instantiations made so far, at any point during a proof.

10



7.1 Specification of a New Type

The description given above is expanded here. The methods can deal with free structures

only — so no equational constraints are allowed. The structures can be recursively defined,

however, but mutually recursive types are beyond the scope of this work. The following are

sufficient to specify a new type (examples are given for the case of the list type constructor):

1. The name of the new type constructor (List).

2. A list of names of (formal) type parameters ([A]).

3. A list of specifications of the forms of canonical objects. Each of these may be atomic (for

nullary constructors), or may be a structure. In such a structure, the object constructor

is the functor, and each argument is either the name of the new type (for recursive argu-

ments) or one of the type parameters (for non-recursive arguments). At least one canon-

ical object form must be nullary or have no recursive arguments. ([nil, cons(A, List)])

4. The name of the non-canonical object constructor (listrec).

The four items above are represented in Prolog as arguments to a predicate newtype. The

Prolog goal which will cause the details of the new theory to be generated and stored has the

form

?- newtype(Former,Paramlist,Conspeclist,Rec).

The example given before was that of lists. In this case the Prolog goal would be

?- newtype(lIST,[a],[nil,cons(a,lIST)],listrec).

The name of the new type constructor is chosen as lIST (with initial lower-case letter, so

that it is a Prolog atom), there is one type parameter, here represented by the atom a (it

must be an atom, but the choice of name is not significant), nil is a nullary canonical object

constructor, cons is a canonical object constructor with the specified argument types, and

listrec is the name chosen for the non-canonical object constructor.

For the case of three-way conjunction as discussed above, the Prolog goal could be

?- newtype(aND3,[a,b,c],[triple(a,b,c)],split3).

For the case of strictly binary trees with data items held at terminal nodes, it might be

?- newtype(sBT,[a],[leaf(a),branch(sBT,sBT)],sbtrec).

For the case of an enumerated type, it might be

?- newtype(lEVS,[],[hi,med,lo],levcase).

11



7.2 Generating New Constants and Rules

The operation of PICT requires that the basic constants be ‘declared’ in Prolog facts. These

simply hold basic information in a standard form, and there is no difficulty in constructing and

asserting appropriate ones, given the information in a newtype goal. The only complication

is computing the arity of the non-canonical object constructor. For example, in the case of

sBT, the new facts would be

tconst(sBT,0->0).

const(leaf,0->0,can,sBT).

const(branch,0->0->0,can,sBT).

const(sbtrec,0->(0->0)->(0->0->0->0->0)->0,noncan,sBT).

The non-canonical constructor is an abstraction. Its first abstracted variable stands for a

member of the constructed type. It has other abstracted variables, one for each canonical

object constructor: if the constructor is nullary, this variable has arity 0; if it is not nullary,

this variable itself stands for an abstraction, with number of abstracted variables dependent

on the number and type of the arguments to the non-canonical constructor in question. A

recursive argument yields two, and a non-recursive argument yields one.

The rules for the new type must be constructed and asserted as facts in the standard form

of the basic PICT rules. Besides the four categories of rules for the new type, also required

(as noted above) are new universe-introduction rules. In detail, every PICT rule is a Prolog

fact of the following form:

ttrule(Num,Cat,Former,Vlist,Evlist,Tlist,Conclusion,Premlist).

In the appendix at the end of this paper, the PICT rules for aND are given in full, as an

illustration. Here, Num stands for a number, for reference purposes, Cat is form, intr, elim

or comp, and Former is the name of the type constructor. Also Conclusion and Premlist

are respectively the conclusion of the rule and the list of premisses of the rule. The other

three arguments do not have significance in terms of the logic. Their sole purpose to assist

Prolog’s unification — to pass parameters in the course of operation. It is not necessary here

to explain in detail what these are, but inspection of the rules in the appendix should give an

indication.

The construction of the new rules required for a new data structure is complicated, but

not difficult. The structures (both of PICT and of CTT) are sufficiently uniform, as observed

above, to allow individual algorithms to construct arbitrary formation, introduction, elimina-

tion and computation rules. In each case the starting point is the given type specification —

the elimination and computation rules are not based on the formation an introduction rules

directly. Also note that what were type parameters in the specification must become Prolog

variables in these rules.

7.3 Generating Closure Theorems

The type which embodies a closure property is a disjunction. There is one disjunct for each

canonical object constructor. This disjunct is an equality if the constructor is nullary, and is

an existentially quantified equality otherwise. Constructing the closure type is not difficult.

Nor indeed is constructing an object which inhabits the closure type. In the example case of

lists, they are, respectively

12



oR^(eQ^(lIST^tA,l,nil),

sIG^(tA,(x)@sIG^(lIST^tA,(y)@eQ^(lIST^tA,l,cons^(x,y)))))

listrec^(l,inl^eq,(x,y,z)@inr^(pr^(x,pr^(y,eq))))

As noted in Section 5.2, the variables which are apparently free here are implicitly covered

by appropriate assumptions. (Note that eq is the canonical object in an equality type.)

But of course it is not sufficient merely to construct these — it is necessary to prove that

the object inhabits the type. PICT can do this, operating in its normal fashion, without

modification and without guidance. For this proof PICT in its verification mode may be

used, giving as initial input the full explicit judgement, including necessary assumptions, for

example in the case of lists above that l belongs to lIST^tA and that tA inhabits the (first)

universe. PICT’s autostrat will complete the proof in every case. It would not be able to

do this if PICT were being used in synthesis mode, because then the structure of the object

would not be available to help in determining the steps in the proof. PICT generates the

proof tree, and saves the theorem, with a name generated by the system (the name of the

type constructor with "cl" appended. This proof tree can be substantial — in the case of

oR4 (four-way disjunction) it has 1018 nodes.

7.4 Generating Uniqueness Theorems

What are referred to here as uniqueness theorems are characteristic of freely generated struc-

tures. An object whose outer structure is an application of one canonical constructor cannot

be equal to an object whose outer structure is an application of a different canonical con-

structor. The first observation that can be made is that if there is only one canonical object

constructor then there are no uniqueness theorems. If there are n canonical constructors then

there are n (n 1)/2 uniqueness theorems.

The type which embodies a uniqueness property is a negated equality. In CTT, of course,

negation is not primitive, and T means T Null (or, in PICT notation: fUN^(T,nULL)).

Objects which inhabit negated types do not have useful computational content (beyond being

functions), and correspondingly do not have structure which can assist a verification process,

as the object in the closure type did. Consequently, for the proofs of uniqueness theorems,

PICT is used in synthesis mode — PICT is given the type, and it constructs the object.

This time, however, autostrat is not up to the task, and these proofs require guidance.

Nevertheless, the proofs are carried out automatically. In order for this to happen, a script

of inputs (a guidance sequence) for each proof is constructed in advance, and is fed to PICT

while the proof is being carried out.

The structure of all uniqueness proofs is the same, and can be illustrated by that for

natural numbers. Here the uniqueness type is fUN^(eQ^(nAT,0,s^x),nULL) (x is covered by

an assumption). From the equality of 0 and s^x we can deduce the equality of iSzero^0 and

iSzero^(s^x). Presuming that iSzero is the recogniser which evaluates to uNIT or nULL,

we can deduce the equality of uNIT and nULL, and hence construct a member of nULL. Note

that one of the newly-defined recognisers is used. This proof outline determines the guidance

sequence which is necessary. To illustrate, here is the guidance sequence which the system

constructs in order to generate this proof:

[i,inst,unit,eqtype,uNIT,v2,iSzero^0,iSzero^(s^x),u,u]

13



As described in Section 6, PICT’s autostrat generates the proof tree, but sometimes pauses

to ask for guidance. The members of this sequence are the individual items of guidance. It

is important to realise that autostrat may well construct substantial portions of the proof

tree in between using these guidance items. Of course this sequence is never visible to the

user. Nevertheless, we should note its structure. It is not necessary here to give the details of

PICT commands, but briefly: i, inst and eqtype are PICT tactics, v2 is a PICT strategy,

and u is a request to unfold defined terms. The proof tree in this case actually has 68

nodes. The essential point is that in all other cases the guidance sequences for the proofs

of uniqueness theorems are exactly the same, except for the two entries which involve the

expression containing the recogniser. The proofs are not large in general — for the example

of oR4, there are 213 nodes.

The system stores these theorems after they have been proved, with names generated

internally. For two constructors called con1 and con2, the corresponding uniqueness theorem

is called con1_con2. These theorems are used in the course of subsequent proofs.

7.5 Generating Cancellation Theorems

Cancellation theorems are assertions of the following form: two equal objects formed by ap-

plication of the same canonical constructor have equal corresponding subobjects. Again, for

each type there will be a set of cancellation theorems. For each canonical object construc-

tor associated with the type there will be a cancellation theorem for each of its arguments.

The type which embodies a cancellation property is a type of functions from one equality to

another. The object which is to inhabit such a type again has neither useful computational

content nor useful structure to help a proof. So here again PICT is used in synthesis mode.

And here too PICT requires guidance via a prepared script. The situation is more compli-

cated, however. There is a uniformity to the structure of all proofs of cancellation theorems,

but this uniformity depends not only on definitions (as with the uniqueness proofs), but also

on lemmas. The definitions which are needed here are the ‘selectors’ mentioned in Section 4.

The lemmas express certain properties of these defined terms.

Let us illustrate again with the example of lists. Corresponding to the constructor cons

there will be two cancellation theorems. There are two selectors: sCONS1 and sCONS2. (The

upper-case characters indicate that these are type abstractions.)

sCONS1^(tA,l,h) means ‘h is equal to the head of list l in lIST^tA’

sCONS2^(tA,l,t) means ‘t is equal to the tail of list l in lIST^tA’

Four lemmas are required in this case (in general, two for each defined selector, i.e. two for

each argument to the canonical object constructor in question). These lemmas are (only the

types involved are given):

1. sCONS1^(tA,cons^(h,t),h)

2. sCONS2^(tA,cons^(h,t),t)

3. fUN^(sCONS1^(tA,cons^(h,t),x),eQ^(tA,x,h))

4. fUN^(sCONS2^(tA,cons^(h,t),x),eQ^(lIST^tA,x,t))

14



These are referred to as selection lemmas (the first two) and selection-uniqueness lemmas (the

last two).

These lemmas require to be proved and stored before the cancellation theorem can be

proved. However, the proof structures are sufficiently uniform for the same form of guidance

sequence to be used for all of them. For the selection lemmas the sequence contains only

three inputs, and for the selection-uniqueness lemmas the number is four. The proof trees for

these four lemmas (for lists) contain respectively 34, 38, 69 and 81 nodes. The lemmas are

proved and stored, with names chosen by the system (by appending "1_sel", "2_sel", etc.

and "1_selu", "2_selu", etc. to the name of the object constructor).

These lemmas are certainly very obvious and trivial, but their exact forms have been

carefully chosen so that not only do their own proofs have uniform structure which enable au-

tomatic proofs, but also so that their use fits into a uniform proof structure for the cancellation

theorems in all cases.

To show the form of the guidance sequences for the cancellation theorems, here is one

which is generated in the case of lists, for the cancellation theorem for cons (for its first

argument) mentioned in Section 5:

[i,hyp,Ityp,thm,cons1_selu,seeq,Obj,thm,cons1_sel]

For convenience here Ityp stands for sCONS1^(tA,cons^(h1,t1),h2) and Obj stands for

cons^(h1,t1). Note that an entry thm in such a sequence is a call to the theorem (lemma)

whose name is the next entry in the sequence. Also, hyp is a PICT tactic, and seeq is a

strategy. The proof tree constructed by this guidance sequence has 98 nodes. In the general

case the sequence is the same, except that the values of Ityp and Obj will vary, and the names

of the lemmas used will be different.

The cancellation theorems are proved and stored. The system constructs names for them

by appending "1_canc", "2_canc", etc. on the name of the object constructor. They are

used in the decidability proofs described next.

7.6 Generating Equality-Decidability Theorems

Equality is decidable on new types formed in the way that has been described, provided that

equality is decidable on all the type parameters involved. This result again has a uniformity

which can be exploited in order to build an algorithm which will prove it in all cases. This

time, however, the uniformity is rather harder to find. As above, it is necessary to construct

intermediate lemmas (described below), but this time the PICT guidance sequence has to be

constructed by a more complicated process. The proof tree does not have the same structure

in all cases. Instead, the proof trees are all built up from similarly formed branches, but

arranged differently for the different proofs. To form the guidance sequence, it is necessary

to form individual parts corresponding to the different branches of the proof tree, compose

them into a tree structure, and then flatten them into a list.

But first let us examine the necessary lemmas, called here constructor-decidability lemmas.

There is one of these for each canonical object constructor. Again, their exact forms have

been chosen to bring out the uniformity of the proofs in which they are used. They take

different forms in the cases where the constructor is nullary and when it is not. Using lIST

again to illustrate:

eQdec2^(lIST^tA,nil,l)

15



[eQdec2^(tA,h1,h2),eQdec2^(lIST^tA,t1,t2)] /-

eQdec2^(lIST^tA,cons(h1,t1),cons(h2,t2))

Here yet another abbreviatory definition (which is known to PICT) has been used. eQdec2

is an abstraction with three abstracted variables, and

eQdec2^(A,X,Y) means oR^(eQ^(A,X,Y),nOT^(eQ^(A,X,Y)))

The lemmas have names, formed by appending "_dec" on the name of the object constructor.

The proofs of these lemmas for nullary constructors are very straightforward, and always have

the same structure, appealing to an appropriate uniqueness theorem. The guidance sequence

for nil_dec is:

[1,il,ir,negthm,nil_cons]

The number 1 is PICT’s way of calling the elim tactic used in conjunction with the first

assumption. The il and ir are the intr tactic (for oR, introducing into the left disjunct and

right disjuncts, respectively), and negthm appeals to a (named) theorem which happens to

be a negated equality. (The effect of negthm is that it can use the named theorem directly if

appropriate, or can first do the necessary manipulation if the goal is nOT^(eQ^(A,X,Y)) and

the theorem is nOT^(eQ^(A,Y,X)).)

In the case of non-nullary constructors, the generation of the proof tree starts with as

many applications of the oR-elimination rule as there are arguments to the constructor. The

leftmost subgoal then is the only case when the two terms are equal, and in all the others

they are unequal, so the required object is an injection into the right (negated) disjunct.

These require appeals to cancellation theorems. Given below are the guidance sequences for

succ_dec, cons_dec and tree_dec, to show the varying forms:

[1,il,i,ir,hsthm,num1_canc]

[2,2,il,i,ir,hsthm,list1_canc,

ir,hsthm,list2_canc]

[3,3,3,il,i,ir,hsthm,tree1_canc,

ir,hsthm,tree2_canc,

ir,hsthm,tree3_canc]

A number which appears in these sequences indicates a call to the elim tactic, in conjunc-

tion with the assumption with the given position in the (then) current assumption list. Other-

wise the only PICT feature appearing here which has not figured before is the strategy hsthm.

This is for convenient use of theorems which are implications. (The prefix "hs" stands for ‘hy-

pothetical syllogism’). When the goal has the form (schematically) fUN^(B,C) /- fUN^(A,C)

and the theorem has the form /- fUN^(A,B), this strategy will do the work. This is applicable

particularly if C is nULL, i.e. when the goal has form nOT^B /- nOT^A.

These lemmas can have substantial proofs (the proof tree for tree_dec has 1001 nodes).

Now the final proof can be carried out, that of the equality-decidability theorem. Here

again, the varying structure of the proof tree must be reflected in the constructed guidance

sequence. Essentially, there are two applications of the elimination tactic for the new con-

structor. Amongst the subgoals generated by each of these will be one subgoal for each of the

16



canonical object constructors. These must be treated differently, depending on whether the

constructor is nullary or not, and, at the second level, whether the constructor is the same

one as on the same branch of the proof tree at the previous level. The decidability lemmas

are used, as are the uniqueness theorems. Here are example guidance sequences, generated

by the system, for natural numbers, lists and trees, again:

[u,i,1,i,thm,zero_dec,i,1,ir,negthm,zero_succ,thm,succ_dec,4]

[u,i,1,i,thm,nil_dec,i,1,ir,negthm,nil_cons,thm,cons_dec,5]

[u,i,1,i,thm,empty_dec,i,1,ir,negthm,empty_tree,

thm,tree_dec,u1,eQdec2,7,u1,eQdec2,9,u1,eQdec2,pi2]

The numbers indicate the elim tactic as described before (the position of the correct assump-

tion to use is computed in advance). The entry u1 is a request to unfold the definition whose

definiendum is the next entry in the script. And pi2 is a PICT strategy.

Finally, perhaps it should be emphasised again that a PICT guidance sequence contains

the inputs needed to guide a proof, so the sequence is a flattened tree of inputs, the tree

representing the critical or non-trivial structure of the whole proof tree. In the case of binary

trees above, the guidance sequence for the equality-decidability theorem contains 22 entries.

These entries are guidance given to PICT at 16 of the 429 nodes which make up this particular

proof tree. The proof extension steps at the other nodes are carried out by autostrat. The

structure of the proof tree can be represented, therefore, by the tree shown in Figure 1.

The nodes omitted (403 of them) from this tree are the ones at which guidance is not

necessary. Experience suggests that they are also nodes which are not significant in terms

of understanding the structure of the proof. It has been argued elsewhere (in particular by

Backhouse) that proofs can provide documentation for the proof process. Full proofs, with

all their detail, cannot be useful except in very simple cases, because of their scale. However,

a record of a sequence of inputs to PICT, together with information about the positions in

the tree where they were required, and about the goals held in the tree at those positions,

does have potential to be useful in this way. Indeed PICT produces as an output at the end

of a proof just such a record, intended specifically as documentation.

8.1 Inputs

Listed below are some examples which have been successfully tried. The last one is exactly the

‘parse tree’ data structure which Chisholm used for his parsing algorithm derivation ([Ch87]).

Note that the first seven are basic structures which are part of the PICT implementation of

CTT in any case. That these can be treated by the system is no surprise, as it is the uniformity

of the rules for the basic structures which leads to the possibility of extensions as described

in this paper. But it is reassuring to know that the general process does in fact generate rules

which are identical to the existing ones in such cases. Of course in practice duplication of

rules (or of identifiers used as type or object constructors) cannot be allowed, so when the

extension process is used on such basic structures, the names chosen for the constructors must

be different from existing ones. This check (amongst others) is incorporated into newtype.

17



u

i

1

i

thm,
empty dec

i

1

ir

negthm,
empty tree

thm,
tree dec

u1,
eQdec2

7

u1,
eQdec2

9

u1,
eQdec2

pi2

Figure 1: Skeleton proof tree

18



newtype(eMPTY,[],[],negcase).

newtype(tRUE,[],[u],tcase).

newtype(bOOLEAN,[],[true,false],if).

newtype(aND2,[a,b],[pair(a,b)],split2).

newtype(oR2,[a,b],[i(a),j(b)],wh2).

newtype(nUM,[],[zero,succ(nUM)],numrec).

newtype(lIST,[a],[nill,list(a,lIST)],listrec).

newtype(dAYS,[],[mon,tue,wed,thu,fri],daycase).

newtype(lEVS,[],[hi,mid,lo],levcase).

newtype(aND3,[a,b,c],[triple(a,b,c)],split3).

newtype(oR3,[a,b,c],[i3(a),j3(b),k3(c)],wh3).

newtype(oR4,[a,b,c,d],[i4(a),j4(b),k4(c),l4(d)],wh4).

newtype(sBT,[a],[leaf(a),branch(sBT,sBT)],sbtrec).

newtype(tREE,[a],[empty,tree(a,tREE,tREE)],treerec).

newtype(pT,[t,o1,o2],[tip(t),n1(o1,pT),n2(o2,pT,pT)],prec).

8.2 Outputs

Here is a list of all the data produced by newtype in the case of the type constructor sBT

(which forms strictly binary trees with data items at the leaf nodes):

1. Constants. Facts declaring sBT, leaf, branch and sbtrec.

2. Rules. Two formation rules, four introduction rules, two elimination rules and two

computation rules. Also two universe-introduction rules are constructed.

3. Definitions. These are:

iSleaf, iSbranch (type-valued recognisers),

isleaf, isbranch (Boolean-valued recognisers),

sLEAF1, sBRANCH1, sBRANCH2 (selectors).

4. Theorems. These are:

19



sBTcl (closure theorem)

leaf_branch (uniqueness theorem)

leaf1_sel (selection lemma)

branch1_sel (selection lemma)

branch2_sel (selection lemma)

leaf1_selu (selection-uniqueness lemma)

branch1_selu (selection-uniqueness lemma)

branch2_selu (selection-uniqueness lemma)

leaf1_canc (cancellation theorem)

branch1_canc (cancellation theorem)

branch2_canc (cancellation theorem)

leaf_dec (constructor-decidability lemma)

branch_dec (constructor-decidability lemma)

eqdecsBT (eq-decidability theorem)

The operation of newtype has been timed, using the C Prolog interpreter on a Hewlett-

Packard 9000/375 workstation. The run detailed above, for sBT, including proofs of fourteen

lemmas and theorems, takes 196 CPU seconds. The total number of proof steps involved in

this is 2419. The most substantial example which has been done is the parse tree example,

which included constructing proofs of twenty six separate lemmas and theorems, involving a

total of 9959 proof steps, and took 27.5 minutes of CPU time.

Using the opportunity provided by the clean and uniform structure of the language and

logic of CTT and its reflection in the proof system PICT, a tool has been constructed which

enables a user very quickly and easily to extend the basic CTT by adding theories for new

data structures. Such new data structures can then be used in specifications which are the

starting points for the program synthesis process, just as though they had been present in the

basic theory, since the language structures, rules, lemmas and theorems have been constructed

which can form the basis for reasoning with them.

It may prove possible to extend this provision, by constructing further useful definitions,

lemmas and theorems (and perhaps strategies), but these are likely to be more particular,

applicable only to structures of certain forms. This is because, as observed earlier, the number

of useful theorems which are absolutely general is quite limited. It may also be possible to

extend the work by considering the addition of new mutually recursive types and of new type

structures which are not freely generated.

With regard to definitions in particular, the generation of new definitions would be assisted

further by provision of a facility to construct a definiens, given a definiendum and an implicit

(equational, possibly recursive) specification of its properties.

The ideas on which this work is based have been common knowledge for some little time.

I am grateful to Roland Backhouse for his substantial efforts in clarifying them. And I am

20



particularly grateful to Andrew Ireland for numerous discussions about what may be possible

in practice. The work described here is a realisation of some of our joint ideas.

1. Prolog Forms

Here are the rules for And, to give an indication of the nature and structure of the rules of

CTT generally, and of the way that they represented in PICT. Each of the following is a

Prolog fact. In each case the last two arguments are respectively the conclusion of the rule

and the list of premisses. Here these have been written with a commented line of dashes

between them to indicate the structure. Note that identifiers which are, or which start with,

upper-case letters are Prolog variables. Note also that because the rules are applied backwards,

the assumption list (L) in the conclusion is carried into all of the premisses. In PICT, the

non-canonical constant split is abbreviated to spl.

ttrule(108,form,aND,[],[],[],

L /- typ(aNDˆ(A,B)),

/*-----------------*/

[L /- typ(A),

L /- typ(B)]).

ttrule(109,form,aND,[],[],[],

L /- eqtyp(aNDˆ(A,B),aNDˆ(C,D)),

/*-----------------------------*/

[L /- eqtyp(A,C),

L /- eqtyp(B,D)]).

ttrule(213,intr,aND,[˙],[],[],

L /- elem(prˆ(X,Y),aNDˆ(A,B)),

/*---------------------------*/

[L /- elem(X,A),

L /- elem(Y,B)]).

ttrule(214,intr,aND,[˙],[],[],

L /- eqelem(prˆ(X1,Y1),prˆ(X2,Y2),aNDˆ(A,B)),

/*------------------------------------------*/

[L /- eqelem(X1,X2,A),

L /- eqelem(Y1,Y2,B)]).

21



ttrule(315,elim,aND,[Q],[Cx,Cy],[A,B],

L /- elem(splˆ(P,B),GˆP),

/*-----------------------------------------------------------*/

[L /- elem(P,aNDˆ(A,B)),

[elem(Q,aNDˆ(A,B))—L] /- typ(GˆQ),

[elem(Cx,A),elem(Cy,B)—L] /- elem(Bˆ(Cx,Cy),Cˆ(prˆ(Cx,Cy)))]).

ttrule(316,elim,aND,[Q],[Cx,Cy],[A,B],

L /- eqelem(splˆ(P1,B1),splˆ(P2,B2),GˆP1),

/*-----------------------------------------------------------*/

[L /- eqelem(P1,P2,aNDˆ(A,B)),

[elem(Q,aNDˆ(A,B))—L] /- typ(GˆQ),

[elem(Cx,A),elem(Cy,B)—L]

/- eqelem(B1ˆ(Cx,Cy),B2ˆ(Cx,Cy),Cˆ(prˆ(Cx,Cy)))]).

ttrule(410,comp,aND,[Q],[Cx,Cy],[A,B],

L /- eqelem(splˆ(prˆ(X,Y),D),Dˆ(X,Y),Gˆ(prˆ(X,Y))),

/*-----------------------------------------------------------*/

[L /- elem(X,A),

L /- elem(Y,B),

[elem(Q,aNDˆ(A,B))—L] /- typ(Gˆ(Q)),

[elem(Cx,A),elem(Cy,B)—L] /- elem(Dˆ(Cx,Cy),Cˆ(prˆ(Cx,Cy)))]).

2. Standard Notation

Now, for comparison, here are the same rules, expressed in a more normal format and notation.

(Note that ++ stands for list concatenation.)

L A type

L B type

And-form

L And(A,B) type

L A = C

L B = D

And-formeq

L And(A,B) = And(B,D)

L x : A

L y : B

And-intr

L pr(x, y) : And(A,B)

22



L x1 = x2 : A

L y1 = y2 : B

And-intreq

L pr(x1, y1) = pr(x2, y2) : And(A,B)

L p : And(A,B)

[q : And(A,B)] ++L G(q) type

[cx : A, cy : B] ++L b(cx, cy) : G(pr(cx, cy))

And-elim

L spl(p, b) : G(p)

L p1 = p2 : And(A,B)

[q : And(A,B)] ++L G(q) type

[cx : A, cy : B] ++L b1(cx, cy) = b2(cx, cy) : G(pr(cx, cy))

And-elimeq

L spl(p1, b1) = spl(p2, b2) : G(p)

L x : A

L y : B

[q : And(A,B)] ++L G(q) type

[cx : A, cy : B] ++L d(cx, cy) : G(pr(cx, cy))

And-comp

L spl(pr(x, y), d) = d(x, y) : G(pr(x, y))

[B86] R.C. Backhouse. On the Meaning and Construction of the Rules in Martin-Löf’s

Theory of Types. Computing Science Notes CS8606, Department of Mathematics

and Computing Science, University of Groningen, 1986.

[Ch87] P. Chisholm. Derivation of a Parsing Algorithm in Martin-Löf’s Theory of Types.

Science of Computer Programmimg 8, pp 1-42, 1987.

[Co86] R.L. Constable et al. Implementing Mathematics with the NuPRL Proof Develop-

ment System. Prentice Hall, 1986.

[GMW79] M.J.C. Gordon, R. Milner, C. Wadsworth. Edinburgh LCF. Springer-Verlag, LNCS

78, 1979.

[H85] A.G. Hamilton. Program Construction in Martin-Löf Type Theory. Technical Re-

port TR24, Department of Computing Science, University of Stirling, 1985.

[H92] A.G. Hamilton. The PICT Guide, Technical Report TR99, Department of Com-

puting Science, University of Stirling, 1992.

[H91] A.G. Hamilton. The PICT System. In C. Rattray and R.G. Clark, editors, The

Unified Computation Laboratory. Proceedings of the IMA Conference, Stirling,

1990, pp 437-448. Oxford University Press, 1991.

23



[I89] A. Ireland. Mechanization of Program Construction in Martin-Löf’s Theory of

Types. Ph.D. thesis, University of Stirling, 1989.

[K86] A.M.A. Khamiss. Program Construction in Martin-Löf’s Theory of Types. Ph.D.

thesis, University of Essex, 1986.

[I91] A. Ireland. On Exploiting the Structure of Martin-Löf’s Theory of Types. Proceed-

ings of the Seventh Austrian Conference on Artificial Intelligence, Vienna, 1991,

pp 126-136. Springer-Verlag, Informatik-Fachberichte 287, 1991.

[M-L82] P. Martin-Löf. Constructive Mathematics and Computer Programming. In L.J.

Cohen, J. Los, H. Pfeiffer and K-P. Podewski, editors, Logic, Methodology and

Philosophy of Science VI, pp 153-175, North-Holland, 1982.

[M-L84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[NPS90] B. Nordström, K. Petersson, J. Smith. Programming in Martin-Löf ’s Type Theory.

Oxford University Press, 1990.

[Pa86] L.C. Paulson. Natural Deduction as Higher-Order Resolution. Journal of Logic

Programming 3, pp 237-258, 1986.

[Pe82] K. Petersson. A Programming System for Type Theory. LPM Memo 21, Depart-

ment of Computer Science, Chalmers University of Technology, Göteborg, 1982.

[S89] A. Stevens. An Improved Method for the Mechanisation of Inductive Proof. Ph.D.

thesis, University of Edinburgh, 1989.

[T91] S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

24


