
GLAD: General Language to Annotate Data
Using TOPO — version 3R6

Marcelino Veiga

Dpt. Ingenierı́a Telemática
E.T.S.I. de Telecomunicación
Univ. Politécnica de Madrid

E-28040 Madrid, SPAIN

<topo@dit.upm.es>

10 October, 1994

Abstract

It is a language, with its associated tool, that permits external annotation of LOTOS
data. Rather than modifying the specification text, the required annotations are introduced
by TOPO after semantics analysis, following an external description of user desires.

1

A General Language to Annotate Data 2

Contents

1 Introduction 3

2 Why is GLAD needed? 3

3 Syntax 4

4 Semantics 10

4.1 Annotations � 10

4.2 Relationships � 12

4.3 Rules � 13

5 Examples 14

6 Limitations 15

A General Language to Annotate Data 3

1 Introduction

TOPO is able to compile abstract data types following the user equations by means of generating
a rewrite system specifically tailored to the specification subject to implementation. This may
be valid for early prototypes, but is usually inadequate for real applications.

Then, TOPO permits to annotate the data. It is a mechanism to associate LOTOS names to
external (user provided) objects that may be implemented much more efficiently.

Sometimes, describing a type by means of providing a set of equations is a boring activity that
users wish to skip. Then, rather than specifying equations, the sort and/or operation(s) are said
to be external, and the behavioral part will link to that externally provided data.

Other annotations permit user packages to refer to LOTOS data by providing name handles. It
would be nice if LOTOS identifiers could be mapped to external identifiers preserving the lexical
value; but it is usually infeasible due to both the rich set of characters that LOTOS accepts to
build operation identifiers, and to the facilities provided for overloading names.

TOPO has also a data interpreter, useful for symbolic evaluation of data expressions, mainly for
debugging purposes. In any case (compiler or interpreter), thinking in rewrite rules it is very
useful to provide information about what are constructors. It allows to debug large specification
much easier. So, TOPO also permit to annotation data for this purpose.

2 Why is GLAD needed?

The primitive mechanism to annotate LOTOS data consist on modifying the textual specification
and write special comments syntactically linked to sort and/or operation identifiers.

Several problems are a consequence of this:

1. The specification has to be edited, and it is frequently impossible to keep the new text
concentrated in a clearly distinguishable section. The annotations are poured all about the
user specification.

2. It is not possible to annotate data types brought from the library. The implementer is
forced provide those types needed in its specification, rather then bringing them from the
standard library. Alternatively, but equally uneasy, a private copy of the stdlib may be
edited by the user to annotate it.

3. Data operations as renaming and actualization manipulate sort and operation names. As
a side effect, annotations are propagated with no change, but there is no way to annotate
the resulting objects coming out from them, because it is unclear and perhaps too tricky.

A General Language to Annotate Data 4

4. It is cumbersome to do incremental annotations as the specification grows up. What does
it mean?

Owed to these problems it was necessary to invent an alternative mechanism to annotate data:
an annotation language.

3 Syntax

The syntax has been chosen deliberately close to LOTOS, to avoid the users have to pass long
time learning a new language.

The language allows to the user to write templates compound with several sets of rules.

rule
module ::= _template

rule
_template ::= [rule_set *]

These sets of rules are divided in four classes. The first and second ones represent the beginning
and the end of the LOTOS specification, and both ones consist on only one rule.

rule
rule_set ::= _initial_rule

rule
rule_set ::= _final_rule

And third and fourth classes correspond to sort and operation declarations, both of them com-
pound of one or more rules.

rule
rule_set ::= "sorts" _sort_rule_list

rule
_sort_rule_list ::= [_sort_rule +]

rule
rule_set ::= "opns" _operation_rule_list

A General Language to Annotate Data 5

rule
_operation_rule_list ::= [_operation_rule +]

Every rule consists of two parts: a pattern and an annotation list.

rule
_initial_rule ::= _initial_pattern

["=>" _initial_annotation_list]
’;’

rule
_final_rule ::= _final_pattern

["=>" _final_annotation_list]
’;’

rule
_sort_rule ::= _sort_pattern

["=>" _sort_annotation_list]
’;’

rule
_operation_rule ::= _operation_pattern

["=>" _operation_annotation_list]
’;’

Both for initial an final rules, the pattern is simple enough.

rule
_initial_pattern ::= "specification"

rule
_final_pattern ::= "endspec"

For sorts, the pattern is like a LOTOS sort declaration. Only one remark, there is a special sort
name, any, to represent any sort.

rule
_sort_pattern ::= _sort_descriptor

rule

A General Language to Annotate Data 6

_sort_descriptor ::= _any_sort

rule
_sort_descriptor ::= _sort_identifier

rule
_any_sort ::= "any"

rule
_sort_identifier ::= IDENTIFIER

And for operations, the pattern is also like a LOTOS operation declaration, with some extensions:
a special operation name, any, represents any operation; for arguments and result, the sort name
any is allowed too; and only for arguments the key word forall represents any kind and any
number of arguments.

rule
_operation_pattern ::= _operation_descriptor

’:’ [_argument_descriptor]
"->" _result_descriptor

rule
_operation_descriptor ::= _any_operation

rule
_operation_descriptor ::= _operation_identifier

rule
_operation_descriptor ::= ’_’ _operation_identifier ’_’

rule
_any_operation ::= "any"

rule
_operation_identifier ::= IDENTIFIER

rule
_operation_identifier ::= SPECIAL

rule
_argument_descriptor ::= _any_argument_list

rule

A General Language to Annotate Data 7

_argument_descriptor ::= _argument_list

rule
_any_argument_list ::= "forall"

rule
_argument_list ::= [argument + ’,’]

rule
argument ::= _any_sort

rule
argument ::= _sort_identifier

rule
_result_descriptor ::= _any_sort

rule
_result_descriptor ::= _sort_identifier

And here they are the annotations. For initial rules,

rule
_initial_annotation_list ::= [initial_annotation +]

rule
initial_annotation ::= _ldc_annotation

rule
initial_annotation ::= _ldcinit_annotation

For final rules,

rule
_final_annotation_list ::= [final_annotation +]

rule
final_annotation ::= _ldc_annotation

For sort rules,

A General Language to Annotate Data 8

rule
_sort_annotation_list ::= [sort_annotation +]

rule
sort_annotation ::= _name_annotation

rule
sort_annotation ::= _lexical_annotation

rule
sort_annotation ::= _extern_annotation

rule
sort_annotation ::= _free_annotation

rule
sort_annotation ::= _nofree_annotation

rule
sort_annotation ::= _equal_annotation

rule
sort_annotation ::= _draw_annotation

rule
sort_annotation ::= _nodraw_annotation

rule
sort_annotation ::= _parse_annotation

rule
sort_annotation ::= _noparse_annotation

And for operation rules,

rule
_operation_annotation_list ::= [operation_annotation +]

rule
operation_annotation ::= _using_annotation

rule
operation_annotation ::= _usingsort_annotation

A General Language to Annotate Data 9

rule
operation_annotation ::= _name_annotation

rule
operation_annotation ::= _lexical_annotation

rule
operation_annotation ::= _lexicalifpossible_annotation

rule
operation_annotation ::= _internal_annotation

rule
operation_annotation ::= _extern_annotation

rule
operation_annotation ::= _call_annotation

rule
operation_annotation ::= _partial_annotation

rule
operation_annotation ::= _constructor_annotation

rule
operation_annotation ::= _nonconstructor_annotation

The format of all annotations is the same as in LOTOS specifications.

rule
_annotation ::= "(*|" annot_name annot_size "|*)"

And even their size, of course.

A General Language to Annotate Data 10

Name Size
ldc text
ldcinit text
using word
usingsort –
name word
lexical –
lexicalifpossible –
internal –
extern –
free word

Name Size
nofree –
equal word
draw word
nodraw –
parse word
noparse –
call text
partial text
constructor –
nonconstructor –

Besides, there are comments like in LOTOS, than can be nested.

rule
comment ::= "(*" comm_text "*)"

4 Semantics

4.1 Annotations

At the beginning of the specification:

ldc.- It is a piece of code to be included verbatim in the generated code, and is devoted to insert
links to external provisions.

ldcinit.- It is also a piece of code, and is to be invoked during start up of data run-time support.
It is typically used to initialize some structures of hand coded data.

At the end of the specification:

ldc.- It is like the same one at the very beginning, but is devoted to insert some definitions to
be used in data part of the specification.

For sorts we have the following annotations:

name.- Use the given name rather than a name generated by TOPO.

A General Language to Annotate Data 11

lexical.- Use the lexical value to refer to the sort.

It is the default option to generate sort names.

extern.- This sort is externally implemented.

free.- The user provides a function to deallocate memory.

nofree.- The user does not provide a function to deallocate memory, so data of such a sort do
not need to deallocate memory.

It is the default, but it avoids a warning.

equal.- The user provides a function to decide equality, overtaking the one provided by the
initial model of the algebra.

draw.- The user provides a function to draw values of this sort, rather than using system
provided pretty–printing.

nodraw.- The user does not provide a function to draw values of this sort, so data of such a sort
are not printable.

It is the default, but it avoids a warning.

parse.- The user provides a parsing function a string to get a value of this sort. It is used instead
of the internal one.

noparse.- The user does not provide any parsing function, so this sort is not parseable.

It is the default, but it avoids a warning.

And for operations:

using.- The user provides a prefix for the operation name. Provided that operation is the
name decided for the operation, the full name of the operation will beprefix_operation.

This is very handy when there is plenty of overloading, either explicit or implied by
renaming and/or actualizing.

usingsort.- Similar to previous one, but the prefix is the name decided for the sort.

name.- Use the given name rather than a name generated by TOPO.

lexical.- Use the lexical value to refer to the operation.

lexicalifpossible.- The lexical value is used if the target language accepts it, otherwise the
internal value is used.

internal.- Use an internal name to refer to the operation.

It is the default option to generate names.

A General Language to Annotate Data 12

extern.- This operation is externally provided.

call.- It is like a macro to be called instead of generating code for the operation.

partial.- A predicate is applied to function arguments in run-time, every time the operation is
instantiated. It raises an exception if the predicate does not hold.

constructor.- This operation may be a constructor, and if every pattern for rewriting fails, it is
legal to build a term using this operation.

This is the default option.

nonconstructor.- This operation cannot be a constructor: the patterns for rewriting should
consider every case, and provide adequate rewriting. If all those fail, an exception is
raised in run-time.

Everyone of these annotations will be available both via GLAD, or via direct association to
operations in the source text.

4.2 Relationships

The next table an initial classification of annotations.

Name Class Group
ldc external –
ldcinit external –
using external using
usingsort external using
name external name
lexical external name
lexicalifpossible external name
internal external name
extern external extern
free external free

Name Class Group
nofree external free
equal external equal
draw external draw
nodraw external draw
parse external parse
noparse external parse
call external call
partial external partial
constructor symbolic constructor
nonconstructor symbolic constructor

As you can see, there are two classes of annotations: symbolic and external ones. First class
correspond specially (but not only) to annotations for symbolic tools, i.e., there is nothing out of
LOTOS (e.g. a data interpreter); and second class, only to annotations for non-symbolic tools,
i.e., LOTOS specification can be enriched with some code in another language (e.g. a code
generator). In other words, symbolic tools only can use symbolic annotation, but non-symbolic
tools can use both symbolic and external annotations.

A General Language to Annotate Data 13

Besides, the annotations are divided in several groups. All the annotations in the same group
have a similar function, so they are mutually exclusive. And even more, an annotation that
belong to any group cannot be repeated. Only annotation belonging to no group are compatible
to any other one, even itself.

Apart of this relationships, there are several ones more:

1. If a sort is extern, it is mandatory to provide an equal annotation, otherwise an error
is issued. And it is convenient to provide free, draw and parse annotations (or their
counterpart nofree, nodraw and noparse), otherwise a warning is issued. Moreover, if a
parse is provided, a draw annotation is also needed.

2. If a sort is not extern, it is unusual to provide free, nofree, equal, draw, nodraw, parse and
noparse annotations. A warning is issued if any of them is present.

3. If a sort is extern, every constructor operation returning a value of that sort is expected to
be extern too. An error is issued otherwise.

4. If a sort is not extern, every constructor operation returning a value of that sort is expected
to be not extern too. An error is issued otherwise.

5. If a sort is extern and there one or more operations of such sort, one of them must be
extern at least.

6. If a sort is not extern and there one or more operations of such sort, one of them must be
a constructor at least.

7. Pattern matching may fail on values of external sorts. In general, the rewrite system may
not make any assumption on the structure of values of external sorts. In these cases, an
error will be issued in a later phase.

8. For extern operations, it is needed either a known name or a call annotation.

9. For extern operations, the partial annotation does not make sense.

10. For not extern operations, the call annotation does not make sense.

4.3 Rules

GLAD applies on the output of the semantics analysis, where overloading has been sorted out,
and there is a unique (and flat) canonical data type.

The rules of a GLAD specification are applied sequentially. The system tries to apply rule N to
every object in the canonical data type; and it is applied as many times as the pattern applies;
when no other application is possible, rule N � 1 gets its opportunity.

A General Language to Annotate Data 14

This mechanism permits to provide general rules (with generic patterns) at the beginning, and
later on, more specific ones to refine the annotations.

But there is one exception to this mechanism: the annotations in LOTOS specifications have
priority. In other words, no annotation in a GLAD specification can override another one in the
LOTOS specification. It avoids surprises to the users, and allows to use GLAD only to change
default annotations.

5 Examples

Let’s show a few examples of GLAD use.

1. Default generation of operation names corresponds to a simple specification:

opns
any: forall -> any => (*| internal |*) ;

2. It is useful to generate lexical names for debugging:

opns
any: forall -> any => (*| lexical |*) ;

3. But LOTOS names for operations are not always identifiers in the target language, so it is
better to generate lexical names only when possible:

opns
any: forall -> any => (*| lexicalifpossible |*) ;

4. It is very usual that a check for constructors is required. The following specification
provides a means of annotating NaturalNumbers:

opns
any: forall -> nat => (*| nonconstructor |*) ;
0 : -> nat => (*| constructor |*) ;
s : nat -> nat => (*| constructor |*) ;

A General Language to Annotate Data 15

5. And even more general, all the operations can be marked as non-constructors, to specify
the constructors later on:

any: forall -> any => (*| nonconstructor |*) ;

6. When an data is renamed, plenty of overloading is usually introduced. It may be com-
pletely dealt with by qualifying every object of the resulting sort:

any: forall -> SetOfNats => (*| usingsort |*)
(*| lexicalifpossible |*) ;

6 Limitations

Although the approach proposed above is much more powerful than the current approach, still
it has some limits.

The most notorious one is that it works on the canonical data type, what means that no scope
information is available to distinguish data specified in different contexts.

This limitation seems to be rarely applicable in actual practice: most specifiers concentrate all
the data in a single scope, the outmost one. This seems to be a good specification style, although
resource oriented specifications might be more interested on local definitions of data.

