]

|:| DEPARTAMENTO DE INGENIERIA TELEMATICA
Universidad Politécnica de Madrid

U PM E.T.S.I. de Telecomunicacion

LOtos LAboratory

User Manual (version 3R6)

Code: LOLA/N5/V10
Date: February 6, 1995
Authors: S. Pavdn

D. Larrabeiti

G. Rabay
State: Final

Address: E.T.S.I. Telecomunicacién, Ciudad Universitaria s/n, 28040 Madrid
Telephone: 91 5495700, 91 5495762. Télex: 47430 LCT E. Fax: 91 5432077.

e-mail: spavon@dit.upm.es dlarra@dit.upm.es

Contents

1 LOLA: LOtos LAboratory.
1.1 An Overview oL e
1.2 Language e e
1.3 Using LOLA . . . 0. o0 e
1.4 Example o e e

2 Miscellaneous Operations
2.1 HELP . . . e
2.2 LOAD . . . o e
2.3 PRINT . . . o e
24 MOVE . . . o e
2.5 DATATABLE e
2.6 STATISTICS e
2.7 SET o o e
2.8 COMMAND e
2.9 QUIT . .. e

Simulation/Debugging

3.1 REWRITE
32 STEP

Expansion

4.1 EXPAND o
4.2 VAREXPAND 0.
4.3 FREEEXPAND
44 INTEREXPAND

Testing

5.1 TESTEXPAND
5.1.1 Basic Procedure
5.1.2 Debugging Options
5.1.3 Suspending Tests
5.1.4 Partial Exploration
5.1.5 Other considerations

5.2 ONEEXPAND

A Appendix: Non-LOTOS Operators

B Appendix: Preprocessing

13
13
13

17
17
19
20
21

22
24
24
25
26
26
26
27

28

28

C A timed prototype of LOLA 29

C.1 The Language L o 29
C.2 Example e 29
C.3 Restrictions L 31

C.4 Compilation Flags oo o 31

1 LOLA: LOtos LAboratory.

1.1 An Overview

LOLA (LOtos LAboratory) [QFM87, QPF89a, PL91] is a transformational and state explo-
ration tool. It supports the LOTOS based phases of the design cycle, by transformation,
execution and testing of LOTOS specifications.

LOTOS (Language of Temporal Ordering Specification [ISO89]) is a formal abstract description
language which allows to describe a system in a precise way, abstracting away realization details.
This is specially useful in the design and analysis of protocols and distributed systems, where
the interactions system-environment have often complex interdependencies. LOTOS is based
on several mathematical models, which makes possible to check the validity of the specification,
ensuring the correctness of the design. LOLA provides the user with a set of tools that help
to analyse the behaviour of a system before entering the realization phase.

The functionalities of LOLA are classified in four groups:

Simulation/Debugging: These operations allow to simulate LOTOS behaviours interactively
step by step, or to evaluate data value expressions.

O Step: simulates a behaviour step by step.

O Rewrite: evaluates data value expressions.

Testing: These calculate the response of a system specification to a test (must, may or reject)
according to the Testing Equivalence.

O TestExpand: Passes a test to the specification.

O OneExpand: Analyses a single random execution of the specification.

Expansion: The expansion transformations compute symbolically all the possible executions
of a LOTOS specification, i.e. they obtain its labelled transition system. There exist several
types of expansions.

0O Expand: computes the EFSM (Extended Finite State Machine) of a behaviour.
O VarExpand: computes the parameterized EFSM of a behaviour.
O FreeExpand: computes the behaviour tree (without detecting duplicate states).

O InterExpand: compute the interleaved expansion of a behaviour.

Miscellaneous operations: LOLA also has a set of operations to load and print the speci-
fication, to navigate throughout the behaviours, etc.

O Help: help about commands.

O Load: restore the original specification.

O Print: print the current specification.

O Move: move LOLA’s internal cursor.

O DataTable: show internal identifiers tables.

O Statistic: display memory and CPU time usage.
O Set: display/change LOLA configuration.

O Command: execute a LOLA command file.

O Quit: exit LOLA.

1.2 Language

LOLA accepts full LOTOS language (15-8807).

The internal language used in LOLA is flattened LOTOS. This means in outline that the
original specification is automatically transformed into an equivalent specification where the
overloading of identifiers is resolved and the nesting of processes and types definitions is flat-
tened.

LOTOS data types are treated operationally by interpreting equations as rewrite rules from
left to right. These rewrite rules should be confluent and terminating to achieve proper oper-
ation. Thus some type of Knuth-Bendix completion algorithm is necessary to make the data
type definition operational before working with LOLA. Data values or expressions containing
variables are always treated through their canonical forms during the transformations.

1.3 Using LOLA

To start up the LOLA environment with a specification, just enter:

topo <spec> -lola [-1 <1ib>]

where <spec> is the name of a LOTOS specification and <lib> is the name of a LOTOS types
library file.

There exists an X-window interface for LOLA, which can be invoked with option -xlola
instead of -1lola. This is specially suitable for interactive simulation - eg. selecting transitions
and moving around is easily done by clicking the mouse, etc -, but we strongly recommend the
textual version for batch test execution and expansion.

After invoking LOLA, the syntax and semantics analysis are done (any errors in the specifi-
cation or in the library are reported), and the prompt lola> appears on the screen waiting for
the user to input commands.

LOLA commands are referenced by their names (or their abbreviations) and delimited by a
carriage return. The following keys provide command line edition capabilities ! :

Key Action

Ctrl-A | move to beginning of line
Ctrl-E | move to end of line

Ctrl-F | move forward one character
Ctrl-B | move back one character
Ctrl-D | delete current character or EOF
DEL delete current character
Ctrl-H | delete left character

Ctrl-K | delete to end of line

Ctrl-P | previous history command
Ctrl-N | next history command
Ctrl-Q | first history command
Ctrl-W | last history command
Ctrl-L | redraw current line

Ctrl-R | redraw current line

LOLA has an internal cursor which always points to a sub-behaviour of the LOTOS specifica-

!Based on a line editing input package of Chris Thewalt. Copyright (C) 1991.

tions. Commands are applied to this active sub-behaviour. To see the current sub-behaviour
just print it.

1.4 Example

The following specification will be used to describe the commands of LOLA throughout this
document. This specification contains two processes, Client and Bank. The Client can borrow
money from the Bank with a credit of two units.

SPECIFICATION Credit [bank, work, sleep] : NOEXIT
TYPE Boolean IS

SORTS bool
OPNS true,false : -> bool
not : bool -> bool

EQNS FORALL x,y : bool
OFSORT bool
not(not(x))=x; not(true)=false; not(false)=true;
ENDTYPE
TYPE Money IS Boolean
SORTS money

OPNS O : -> money
inc, dec : money -> money
_eq. : money, money -> bool
noi, nod : money -> bool

EQNS FORALL x,y : money
OFSORT money
inc(dec(x))=x; dec(inc(x))=x;
OFSORT bool

nod(0) = true; nod(inc(x)) = nod(x);

noi(0) = true; noi(dec(x)) = noi(x);

0 eq 0 = true;

inc(x) eq y = x eq dec(y); dec(x) eq y = x eq inc(y);

nod(x) => 0 eq inc(x) = false; noi(x) => 0 eq dec(x) = false;
ENDTYPE
TYPE BankOperation IS
SORTS BANKOP
OPNS borrow, pay : -> BankOp
ENDTYPE
BEHAVIQUR
Bank[bank,sleep] (inc(inc(0)),0) |[bank]| Client[bank,work]
WHERE
PROCESS Client [bank, work] : NOEXIT :=
bank !'borrow; Client[bank,work]

[bank !pay ; Client[bank,work]
[1 work ; Client[bank,work]
ENDPROC

PROCESS Bank [bank, sleep] (Max,debt:Money) : NOEXIT :=
bank !'borrow [not(debt eq Max)]; Bank[bank,sleep] (Max,inc(debt))
(1] bank !'pay [not(debt eq 0)] ; Bank[bank,sleep] (Max,dec(debt))
[1 sleep ; Bank[bank,sleep] (Max,debt)
ENDPROC
ENDSPEC

2 Miscellaneous Operations

The main applications of LOLA are Simulation, Testing and Frpansion. There is also a set of
miscellaneous commands such as help, print, etc. which are described in this section.

2.1 HELP

This command either displays the list of available commands or describes the funcionality of a
specified command and its options.

Syntax:

Help [<command name>]

<command name> is the name of a LOLA command. When this argument is present a
detailed description of the command is given; otherwise, the list of available commands is
displayed.

2.2 LOAD
|
This command restores the LOTOS specification.

Syntax:

Load

Since most LOLA commands modify the LOTOS specifications, it is sometimes necessary to
start again from the initial situation (or to update the changes made with an auxiliary editor)
without quitting, i.e. Load reads the specification file.

2.3 PRINT
e ___|

This command prints the LOTOS behaviour pointed by the internal cursor, up to a specified
depth, into a file or into the standard output.

Syntax:
Print [-p] [-t] [-a] [-c] [<depth>] [<output file>]
-p print definitions of the processes instantiated until <depth>.
-t print data type definitions.
-a print the whole specification, with processes and data type definitions.
<depth> printing depth (number of actions visible or invisible printed).
A negative depth means no boundary.
<output_file> | name of the output file. Default is standard output.

For example, the command print -p -1 prints completely the current behaviour and the pro-
cesses used within into the standard output. Options <depth>, -p or -t can be set as default
and omitted (see command Set). Initial default value for <depth> is 4.

2.4 MOVE

This command moves the internal cursor to another place in the specificacion.

Syntax:

Move [<position>] [<position>]

<Position> can be:

Position Movement to

<number> line <number> of the current behaviour.

A the root of the specification.

<process_name> | the process definition called <process_.name>.
<number>d down <number> LOTOS operators.

<number>u up <number> LOTOS operators.

<number>b <number>-th operand (branch) of the current operator.

In the XLOLA moving is as easy as clicking, but in the textual interface is a bit different.
There are two ways of moving. Let us illustrate the easiest one with an example. Imagine we
want to move the cursor to the last line of process Client, which is a self-instantiation. The
first thing we have to do is telling LOLA that we want to move :

lola> move

1 specification credit [bank,work,sleep] : noexit
2

3 behaviour

4

5 bank [bank,sleep] (inc(inc(0)),0)

6 | [bank] |

7 client [bank,work]

8

9 where

10 process bank [bank,sleep] (max_6:money, debt_7:money) : noexit
11 process client [bank,work] : noexit

12

13 endspec

LOLA expects you to move to one of the listed lines. Since we want to move to the process
definition client, which is at line 11 we type:

lola> move 11

Now we are placed in the process definition. We could see it by printing it or, as we have not
reached our destination yet, by mowving again :

lola> move

1 process client [bank,work] : noexit :=
2 bank ! borrow;
3 client [bank,work]
4 (]

5 bank ! pay;
6 client [bank,work]
7

8

9

(]

work;
client [bank,work]
10 endproc

lola> move 9

and we are done, ready to execute any command on this behaviour.

A second way to navigate is using tree-oriented movements. This way is faster but more difficult,
since the user needs to know about the syntactical structure of his/her specification. This is a
batch-oriented moving mechanism.

For example, to move the internal cursor to the last line of the process definition Client in a
tree-oriented way, you type in move client 1d 3b 1d. This causes the cursor to be positioned
in the process definition Client and then moved down onto the first operator of this process.
The third alternative of the choice operator is selected, and finally the cursor is placed below

the action prefir, on the process instantation Client.
N

N
move g}ient

~» PROCESS Client[bank , work] : NOEXIT :=

/

/ bank ! borrow
[move 1d . Client [bank , work]
PR bank ! pay
move'\3b ; Client [bank , work]
N
P = > work
move 1d _ . Client [bank , work]
ENDPROC

2.5 DATATABLE

|
This command shows the internal tables used in LOLA. Useful only for advanced LOLA

users willing to have a statistical view of the specification (e.g. to know the number of gates,
processes, operations, sorts or variables used) .

Syntax:

DataTable -s|vl|olplg [<lowlimit>] [<high limit>]

<low_limit> and <high_limit> are numbers which indicate the first and last table positions

to be printed. Options -s, -v, -0, -p and -g select the sort, variable, operation, process or gate
table, respectively. If the limits are not specified the entire table is displayed.

For example, to see positions 6 to 10 of the operation table, you should execute the following
command:

lola> datatable -o 6 10

TABLE OF OPERATIONS:

D
1}

0 : -> money (2)

7 = inc : money (2) -> money (2)
inc(dec(x_2)) = x_2 ;

8 = dec : money (2) -> money (2)
dec(inc(x_2)) = x_2 ;

9 = _eq_ : money (2), money (2) -> bool (3)
noi(x_2) = true => 0 eq dec(x_2) = false ;
nod(x_2) = true => 0 eq inc(x_2) = false ;
0 eq 0 = true ;
inc(x_2) eq y_3 = x_2 eq dec(y_3) ;
dec(x_2) eq y_3 = x_2 eq inc(y_3) ;

10 = noi : money (2) -> bool (3)

noi(0) = true ;

noi(dec(x_2)) = noi(x_2) ;

2.6 STATISTICS
|
This command reports memory and CPU time used by LOLA.

Syntax:

Statistics

Example :

lola> stat
statistics

Memory and time usage: 616 Kbytes. 0.14 sec.

The availability of this command depends on the system on which LOLA runs . The value
depends perceptibly on system load for multitask systems.

2.7 SET
e ___|

Set assigns a default value for command options and pre-expansion options. These default
options are stored in internal variables.

Syntax:

Set [<variable> [<value>]]

With no argument, Set displays the values of all these variables. With the <variable> argu-
ment alone, Set resets <variable> to the initial default value.

The following table shows the meaning of each variable and its initial default values:

Initial
Variable Range Value | Effect
divergence_check ON | OFF OFF | divergence analysis before first
expansion
unguarded_proc_check ON | OFF ON apply unguarded process detection
before first expansion
print_depth <integer> 4 default print command depth
print_types ON | OFF OFF | print types
print_proc ON | OFF OFF | print process definitions of
printed instantiations
verbose ON | OFF OFF | verbose mode
expand_i_removal ON | OFF OFF | weak bisimulation congruence
in expansion
exploration_depth <integer> -1 exploration depth in testing &
expansion commands
success_event <string> success event in testing commands
test_i_removal ON | OFF ON test equivalent reduction
in testexpand
quit_exploration_on_may_response ON | OFF oN abort testing as soon as
the test result is MAY
without further exploration
expected_response MUST|MAY |REJECT abort testing when the test
result does not match this value
quit_lola_on_unexpected_response ON | OFF OFF | abort testing and exit LOLA with
value 1 when the test result does not
match the expected response
memory_size <natural> size of buffer in Mbytes devoted
to heuristic exploration.
Turn on partial test expansion.

2.8 COMMAND
|
Command executes a LOLA command file.

Syntax:

Command <command file>

A LOLA command file is a text file that contains a succession of commands separated by
< ¢r >. Command impels LOLA to take this file as input of commands and execute the
commands just as if they were typed in from the command line.

An example of command file :

set divergence_check ON

set print_depth -1
set verbose ON
set success_event test_ok

testexpand testl
testexpand test2
testexpand test3

2.9 QUIT
|
This command quits LOLA.

Syntax:

Quit

3 Simulation/Debugging

These operations are used to debug and to simulate LOTOS behaviours and data type defini-
tions. The user can execute interactively any specification step by step assigning values to the
variables defined in the specification. Likewise, the canonical form of any data value expression
can be evaluated according to the rewrite rules defined in the specification.

3.1 REWRITE

Rewrite evaluates data value expressions, i.e. it calculates the normal form of an expression.

Syntax:

Rewrite <expression>

<Expression> is the data value expression to be evaluated according to the rewrite rules
specified in the LOTOS specification. The rewrite rules can be printed using both the print
or the DataTable commands.

For example, to evaluate the expression inc(inc(dec(0))) eq dec(0) :

lola> rewrite inc(inc(dec(0))) eq dec(0)

false

3.2 STEP
e ___|

Step executes the current behaviour (or the composition current behaviour - test, if a test
process is provided) interactively step by step.

All the transitions offered in the current state are presented in a menu from which the user has
to choose one to be executed. After the user has selected (i.e. executed) one transition, a new
menu is displayed , showing the transitions offered at the new state.

The user can assign expressions to the variable parameters of the process definitions, to the
variables in sum-expressions and to the variables defined in gates or ezit statements offers.
Whenever a variable value gets undefined during the simulation, the user is requested to enter
a value expression to be assigned to that variable. If no expression is provided then the variable
will remain unassigned and treated symbolically in the next states.

Syntax:

Step [<success_event> <test_process>]

It the parameters <success_event> and <test_proc> are specified, they are taken to re-
build the parallel composition that is created automatically with the commands TestExpand
and OneExpand. The simulation is performed over this composition. See section 5 for more
information.

When the command Step is invoked, you enter the Step environment and a new prompt appears
below the menu of transitions :

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?>

These are the commands available in Step mode

Print print the behaviour of the current state.

Syntax: Print [-p] [-t] [-al [<depth>] [<output_file>]
Menu display the menu of transitions offered at the current state.
Refused display the menu of unsuccessful synchronizations

(due to data value offering mismatch) at the current state.

The numbers printed in parenthesis are the line numbers of

the events involved in the unsuccessful synchronization.

Note that the menu labels are negative numbers.

Sync <n> [<proc>] | - for a transition <n> : show the events that produced it.

- for an unsuccessful synchronization <n> : show the events that
could not synchronize.

Each event is diplayed below the stack of processes instantiated

to produce it. If the name <proc> is specified then only the

instantiations of that process are displayed.

<n> execute the transition labelled <n> from the menu of transitions.
Undo undo the last simulation step (back to previous state).

Trace display the sequence of transitions that lead to the current state.
Exit quit simulation mode.

? help.

Step can be applied to any sub-behaviour of a specification by placing the internal cursor on
it previously(see Move command). Let us see an example of step-by-step simulation with the
specification Credit . The user inputs follow the Step mode prompt.

lola> step
[1] bank ! borrow;
[2] sleep;
[3] work;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 2
==> sleep;
[1] bank ! borrow;
[2] sleep;
[3] work;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 1

==> bank ! borrow;
[1] %bank ! borrow;
[2] bank ! pay;
[3] sleep;
[4] work;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 3

==> sleep;
[1] bank ! borrow;
[2] bank ! pay;
[3] sleep;
[4] work;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 1
==> bank ! borrow;

[1] bank ! pay;
[2] sleep;
[3] work;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit, ?> undo
Last simulation step undone.

We have executed four actions so far, and have undone one, so here is the current event history
and the actions offered.

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> trace
[2] - sleep;
[1] - bank ! borrow;
[3] - sleep;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> menu
[1] bank ! borrow;
[2] bank ! pay;
[3] sleep;
[4] work;

Now we might be wondering why bank ! pay is being offered (obviously we have borrowed
money once, so we have to return it). There are two ways to analyse this : 1) Sync traces
the history of process instantiations that have occurred in each part of the parallel to produce
bank ! pay; 2) Print just displays the current behaviour.

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> sync 2

bank [bank,sleep] (inc(inc(0)),0) (* line 32 *)

bank [bank,sleep] (inc(inc(0)),0) (* line 44 *)

bank [bank,sleep] (inc(inc(0)),inc(0)) (* line 42 *)

bank [bank,sleep] (inc(inc(0)),inc(0)) (* line 44 *)
bank ! pay (* line 43 *);

| [bank] |

client [bank,work] (* line 34 *)

client [bank,work] (* line 37 *)

bank ! pay (* line 38 *);

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> print
(Let max_6:money=inc(inc(0)),debt_7:money=inc(0) in
bank [bank,sleep] (max_6, debt_7)

)
| [bank] |
bank ! borrow;
[J bank ! pay;
[l work;

We may also wish to know what is failing to synchronize due to offers mismatch. This is the
menu of refused synchronizations :

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> refused
[-1] bank (at lines 42,38)
[-2] bank (at lines 43,37

Again we can analyse any of these synchronizations with Sync:

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> sync -2

bank [bank,sleep] (inc(inc(0)),0) (* line 32 *)

bank [bank,sleep] (inc(inc(0)),0) (* line 44 *)

bank [bank,sleep] (inc(inc(0)),inc(0)) (* line 42 *)

bank [bank,sleep] (inc(inc(0)),inc(0)) (* line 44 *)
bank ! pay (* line 43 *);

| [bank] |

client [bank,work] (* line 34 *)

client [bank,work] (* line 37 *)

bank ! borrow (* line 37 *);

and we check that everything has evolved as expected and bank !'pay and bank !borrow must
be offered in each process but cannot synchronize.

Warning : Line numbers displayed with sync may be lost if any expansion or testing operation
is performed before invoking step.

4 Expansion

The expansion transformations produce a compressed version of the transition system generated
by a LOTOS specification, that represents its EFSM (Extended Finite State Machine), as an
equivalent LOTOS behaviour. These transformations apply a generalized version of the so-
called Expansion Theorem (see IS8807). The effect of an expansion is the removal of the most
complex LOTOS operators (parallel, disabling, enabling,...) from the specification, producing
an equivalent specification in terms of action prefix, behaviour choice, guards and data value
choice. This transformation can be used for state exploration, deadlock detection, deriving
efficient implementations, input graph for model checking, etc.

The expansion commands are Expand, VarExpand, FreeExpand and InterExpand. All of them
can be applied to any sub-behaviour of the LOTOS specifications.

4.1 EXPAND
-

Expand transforms the current behaviour into an equivalent LOTOS behaviour, which contains
only wvisible and invisible actions, action prefizes, sum-expressions, choices, exits, stops, quards
and processes. This transformed behaviour is strong/weak? bisimulation equivalent to the
original.

Syntax:

Expand [<depth>] [-v] [-i]

<depth> is an integer number. It limits the maximum depth of the expansion measured in
number of actions (visible or invisible) generated from the root of the expansion. A negative
<depth> means no bound. Default argument is infinite depth.

This expansion performs reduced state explorations of the state space of the specification be-
cause 1t looks for duplicate states, so that the exploration backtracks when a duplication is
detected. Two states are detected as duplicate when their behaviours are identical.

The expansion is a tree like exploration of the transition system with backtracks when one of
the following conditions is found: an exit or a stop statements is found, the specified <depth>
is reached, or a duplicate state is found. For the termination of this expansion only finite sorts
of data values and bounded dynamic creation of processes are allowed. Therefore behaviour
expressions that can produce infinite transitions can not be expanded completely.

Option -v is used to work in verbose mode. In this mode, during the expansion, the depth of the
exploration is displayed like a list with the format a-b/c-d. The term a-b/c-d means that there is
a sequence of actions which begins at depth « and ends at depth b, and which has an alternative
sequence of actions beginning at depth ¢ and ending at depth d. The number of states explored
and the number of transitions generated are also displayed during the exploration.

Option -i causes the removal of some internal actions from the behaviour (preserving the
observational congruence), so that the number of states to explore is reduced. For instance, the
behaviour a; (¢; B1|||Bz) is transformed into a; (B]||Bz), which has less states and executions
to explore 2 .

2The type of equivalence is selected in all expansion commands by means of the -i option.

3When weak bisimulation equivalence is selected in an expansion, the information relative to which hidden
gate the internal action comes from (which normally appears inside comment brackets (#*)) is deleted from
the resultant specification. The reason for that is to avoid apparent transition gaps due to the removal of

After the expansion some statistics about the transitions, states, deadlocks and duplicate states
generated are printed.

For example, the EFSM of the Credit specification is calculated and printed below:

lola> expand -1 -v

Exploration Tree |Transits| States
0- 3/ 2- 3/ 2- 3/ 1- 2/ 1- 2/ | 101 3
1- 2/ 0- 1/ 0- 1/.
Analysed states =3
Generated transitions = 10
Duplicated states =8
Deadlocks =0

lola> print -p -1

specification credit [bank,work,sleep] : noexit
behaviour
duplicate2 [bank,work,sleep]
where
process duplicate2 [bank,work,sleep] : noexit
bank ! borrow;
duplicate0 [bank,work,sleep]
[1 sleep;
duplicate2 [bank,work,sleep]
[l work;
duplicate2 [bank,work,sleep]
endproc
process duplicate0 [bank,work,sleep] : noexit
bank ! borrow;

duplicatel [bank,work,sleep]
[] bank ! pay;
duplicate2 [bank,work,sleep]

[1 sleep;
duplicate0 [bank,work,sleep]
[l work;
duplicate0 [bank,work,sleep]
endproc
process duplicatel [bank,work,sleep] : noexit :=
bank ! pay;
duplicate0 [bank,work,sleep]
[1 sleep;
duplicatel [bank,work,sleep]
[l work;
duplicatel [bank,work,sleep]
endproc
endspec

Usually, Expand and VarExpand computation time is shortened by expanding all the process
definitions before expanding the main behaviour, in a bottom-up fashion (from the innermost
instantiated to the outermost). Bottom-up expansions increase expansion performance mainly
in behaviours with very frequently instantiated processes.

internal actions that may confuse the user.

4.2 VAREXPAND

VarExpand performs the parameterized expansion [QPF89b]. It expands the behaviours like
Expand, but keeping variables symbolic and detecting parameterized duplicate states (without
evaluation of value expressions). Hence, it produces a more compressed representation of the
transition system and reduces the state exploration with respect to the Expand transformation
because the value expressions are always handled symbolically. Here, the duplicate states are
detected when behaviours are equal except for some data values, which may be different. The
transformed behaviour is also strong/weak bisimulation equivalent to the original.

Syntax:

VarExpand [<depth>] [-v] [-i]

Options <depth>, -v and -1i have the same meaning that in Expand.

With VarExpand the exploration backtracks when an exit or a stop statement is found, the
specified <depth> is reached, or a parameterized duplicate state is found. The conditions for
the termination of the expansion are now different, because infinite sorts are allowed (data
expressions are treated in a parameterized way). However, unbounded dynamic creation of
processes can produce divergence. This expansion stops much more quickly than Expand and
produces less states.

The parameterized EFSM of the Credit specification is presented below:

lola> varexpand -1 -v

Exploration Tree |Transits.| States

0- 1/ 0- 1/ 0- 1/ 0- 1/.

Analysed states =1

Generated transitions = 4

Duplicated states =4

Deadlocks =0
lola> print -p -1

specification credit [bank,work,sleep] : noexit
behaviour
duplicate0 [bank,work,sleep] (0, inc(inc(0)))

where

process duplicate0 [bank,work,sleep](debt_9:money, max_8:money) :noexit :=
bank ! borrow [not(debt_9 eq max_8) = truel];
duplicate0 [bank,work,sleep] (inc(debt_9), max_8)
[] bank ! pay [not(debt_9 eq 0) = truel;
duplicate0 [bank,work,sleep] (dec(debt_9), max_8)

[1 sleep;
duplicate0 [bank,work,sleep] (debt_9, max_8)
[l work;
duplicate0 [bank,work,sleep] (debt_9, max_8)
endproc

endspec

4.3 FREEEXPAND
-

FreeExpand expands the behaviours like Expand, but it does not detect duplicate states. The
transformed behaviour is also strong/weak bisimulation equivalent to the original.

Syntax:

FreeExpand [<depth>] [-v] [-i]

Options <depth>, -v and -1i have the same meaning that in Expand.

The exploration of the transition system only backtracks when an exit or a stop statement is
found, or the specified <depth> is reached. Therefore, behaviours that can produce infinite
lenght sequences of transitions can not be expanded completely, i.e. unbounded <depths>
should not be given with never terminating behaviours. FreeExpand is faster than Expand and
VarExpand.

For example, to obtain all the transitions produced by Credit until a depth of two actions the
following command must be executed:

lola> free 2 -v

Exploration Tree |Transits| States
0- 2/ 1- 2/ 1- 2/ 1- 2/ 0- 2/ | 101 3
1- 2/ 1- 2/ 0- 2/ 1- 2/ 1- 2/ .| 13] 4
Analysed states =4
Generated transitions = 13
Duplicated states =0
Deadlocks =0

lola> print 2

specification credit [bank,work,sleep] : noexit

behaviour
bank ! borrow;
(bank ! borrow;
[] bank ! pay;
(] sleep;
[l work;
)
[1 sleep;
(bank ! borrow;
(] sleep;
[l work;
)
[1 work;
(bank ! borrow;
(] sleep;
[l work;
)

endspec

4.4 INTEREXPAND
|
This command computes the Interleaved Expansion [QLP93] of the current behaviour .

Syntax:

InterExpand [<depth>] [-dl-p] [-v]

Option -d is used to perform reduced state explorations, looking for duplicate states.
Option -p forces parameterized duplicate state detection.

Option -v causes the interleaved expansion to work in verbose mode. Unlike section 4.1 de-
scription of option -v, the depth of exploration is given in terms of synchronizations instead of
in number of transitions.

InterExpand produces a non-LOTOS specification. This transformation introduces three new
statements: the IT operator, the termination and the continuation set. These statements
represent the transition system of a LOTOS specification in a different way:

IT(B1,Ucec < ¢ > B.). The intuition of this expression is the following. The [T operator
has a behaviour B; which evolves as any LOTOS behaviour containing action prefix, inaction,
choice and pure interleaving. By has especial events tagged by integers, called terminations,
which label some of their states. These terminations are indexes of a set of labelled behaviours
Ueec < ¢ > B, (the continuation set) such that B. is enabled when Bj is in a state that offers
the set of termination labels composing < ¢ >. For instance, the interleaved expansion with
duplicate behaviour detection of the specification of a 2-element buffer :

specification buffer2 [input,m,output] : noexit
type data is sorts data endtype
behaviour
hide m in bl [input,m] |[m]| bl [m,output]
where

process bl [input,output] : noexit :=
input ?x:data; output !x; bl [input,output]
endproc
endspec

is the following:

IT(input 7 x_8:data; duplicateO [input,output] (x_8)
<1(x_10:data) ,2> duplicateO [input,output] (x_10)
)
where
process duplicateO [input,output] (x_8:data) : noexit :=
i; (*xm ! x_8 %)
(input 7 x_10:data; 1(x_10)
11
output ! x_8; 2
)

endproc

All the synchronizations of the specification are computed and the cardinality of each syn-
chronization is reflected in the number of terminations that label its continuation. Note that
terminations have parameters like processes do.

5 Testing

LOLA follows the definition of Testing Fquivalence of de Nicola and Hennessy [dNH84]: Tests
are passed by specifying a test process and obliging it to synchronize with the behaviour under
test. The results of the test are classified into three classes: Reject, Must Pass and May pass .

LOLA implements this testing methodology using only LOTOS:

1. Each test is represented as a LOTOS process which must contain a special termination
event which indicates the successtul termination of the test. This termination event
cannot appear in the behaviour under test.

2. Each test is composed in parallel with the behaviour under test, synchronizing in the
union of the gate sets of both (behaviour and test), except for the termination event.
This composition is represented below in two cases, which need to be differentiated due
to the syntactic constraints imposed by the language. Tests with and without the exit
statement will be dealt differently because LOTOS does not allow any event to be added
after an exit statement. The second composition is necessary only for the case where the
termination behaviour exit is tested.

o Test does not contain exit:

(BehaviourUnderTest [<events>]
| [Kevents>] |
Test [<events>, SuccessEvent]

)

o Test contains exit:

(BehaviourUnderTest [<events>]
| [Kevents>] |
Test [<events>, SuccessEvent]
) >> SuccessEvent; STOP

Theses compositions behaviour-test are made by LOLA automatically.

The successful termination of a test in a given execution consists in reaching a state where the
termination event (SuccessEvent) is offered. A test does not terminate in a given execution if
it reaches a deadlock situation.

The Testing Fquivalence differentiates two types of tests, must and may.

Definition: May test. Given a specification L and a test T', T' is a may test of L if
it terminates for at least one execution of the system when applied to L.

Definition: Must test. Given a specification L and a test T', T' is a must test of L if
it terminates for every execution of the system when applied to L.

A reject test is a test which is neither may nor must, i.e. no execution terminates successfully.

LOLA determines the response of a behaviour to a test by a state exploration of the composition
behaviour—test. It analyzes the test terminations for all the possible evolutions. There are two
commands to pass a test: TestExpand and OneExpand. TestExpand makes a complete state
exploration and calculates the type of response. It determines must, may and reject responses.
OneExpand explores only one randomly selected execution of the composition. Thus, it can
be used only for determining may responses. It is specially useful when testing a specification
produces state explosion and an exhaustive exploration with TestExpand might take too long.

Different types of tests may be used. Two of them are the acceptance and the rejection tests.
An acceptance test determines if the specification accepts a given set of interactions (traces).
A rejection test determines if a specification rejects a set of events in a given state, i.e. after a
given trace.

The following example shows an acceptance test. It tests if it is possible to borrow two units
of money from the bank, and return them after working. Success is the termination event that
indicates when the executions of the test are successful. If a must response is obtained, then
all the executions reach the successful termination event, i. e. all the traces in the test are
accepted. A may response indicates that there are executions that do not reach the termination
event, and a reject response indicates that all the executions are unsuccesstul.

process accept_test_1 [bank,work,success] : noexit :=
bank ! borrow ;
bank ! borrow ;
work ;
bank ! pay ;
bank ! pay ;
success ;
stop
endproc

If a system is nondeterministic, an acceptance test may have a may response. It is convenient to
insert, in such cases, choices in the states where a nondeterministic behaviour exists, to cover
all variants so that the response becomes must.

The next example is a rejection test. It tests that some events are rejected in a given state.
After the initial sequence of events, the set of events that must be rejected are offered in a
choice followed by stop. The last alternative in the choice is an internal action followed by the
successful termination event. If the initial sequence of events can be observed and all the events
in the alternative are rejected, the response will be must. There is only one path which leads to
the successful termination event by executing the internal action. However, if any of the events
in the choice can be observed, then the response will be may; or if the initial sequence cannot
be observed, the response will be reject. Therefore a must termination indicates that the events
are rejected. This example tests that the Client can borrow money consecutively only twice:

process reject_test_1 [bank,work,success] : noexit :=
bank ! borrow ;
bank ! borrow ;
(bank ! borrow ;
stop
i
success ;
stop
)

endproc

Sets of acceptance and rejection tests should be produced to assess what the system must accept
and reject.

5.1 TESTEXPAND
e

TestExpand analyzes the response of a specification to a given test. TestExpand has been
conceived to perform a state exploration of the composition of the BehaviourUnderTest with
a Test, analyzing only the relevant aspects for test termination. The output of TestExpand is
the type of termination found: must, may or reject.

Syntax:

TestExpand [<depth>] <success_ event> [<test proc>] [-v [<states>]]
[-al [-d] [-e]l[-s][-1][-y]
[-x <expected_response> [-q]]
[-p <percent> [<seed>]] [-b <msize>]

5.1.1 Basic Procedure

The primary usage of this command is the execution in batch of a series of tests, obtaining the
test reponse as soon as possible. This can be achieved using the following parameters :

<depth> is an integer number. It limits the maximum depth of the exploration measured in
number of actions (visible or invisible) analysed. A negative depth means no bound.

<success_event> is the name of the successful termination event. This event can only appear
in the test process and not in the behaviour under test. Otherwise, an error message is displayed
and the test is not passed.

<test_proc> is the name of the LOTOS process to be composed in parallel with the behaviour
under test. This parallel composition is made automatically by LOLA as described above, but
the set of test processes to be passed must be in the specification file itself. When <test_proc>
is not specified the analysis is done over the current sub-behaviour, which is supposed to be a
hand-made test composition (in this case LOLA does not compose anything with the current
sub-behaviour).

Option -v is used to work in verbose mode (see Expand command). If a number of <states>
is given, then LOLA will display a provisional report about the exploration being carried out
every <states> states explored. Regardless of this option, after the analysis, the test result and
two different blocks of statistics are printed. The first block is similar to the other expansion
statistics. The second provides information about the test result: the number of traces that
reach stop, exit, <success_event> and <depth> is displayed.

For example, the result of testing the example specification with the test accept_test_1 is:

lola> test -1 success accept_test_1 -v
Composing behaviour and test :

accept_test_1 [bank,work,success]
| [bank,work,sleep] |
bank [bank,sleep] (inc(inc(0)), 0)
| [bank] |
client [bank,work]

Exploration Tree |Transits| States
0- 6/.

Analysed states =6

1}
D

Generated transitions
Duplicated states
Deadlocks =0

1}
(@]

Process Test accept_test_1

MUST PASS.

Test result

successes =
stops =
exits =

O O O =

cuts by depth =

The result of this test is MUST pass, so that every single execution of our system - test behaviour
goes through a state where success is offered. No deadlock was found (stops = 0 and only
one trace is possible.

5.1.2 Debugging Options

Options -a, -d, -e and -s should be used only to analyse errors (unexpected test responses).
When any of these options is given then the current behaviour is replaced with a new behaviour
where only the selected executions are left.

Option -a selects traces leading to the success_event (the behaviour after the success_event is
replaced with stop).

Option -d selects traces that reach the specified <depth>.

Option -e selects traces leading to exit.

Option -s selects traces leading to stop.

Note that, since the original behaviour is replaced by the selected traces, after any of this
options has been used it is necessary to load again the specification before applying a new test
or command. On the contrary, if these options are not used, then the behaviour is not modified,
so that successive TestExpand commands can be applied in sequence and you needn’t load
between tests. Another important practical issue is that TestExpand performs test response
analysis with a low fixed memory amount. This feature can be spoilt by debugging options (
-a, -d, -e, -s) that forces LOLA to record the selected exploration traces.

Option -1 is used to preserve all the internal actions on the behaviour under test. Without this
option, TestExpand removes the internal actions that do not alter the result of the exploration
and that reduce the number of states to explore, improving the performance of the analysis.
For instance, the behaviour a; (¢; B1||| Bz) is transformed into a; (Bi|||Bs), which has less states
and executions to explore. When removing an internal action is not going to improve the
performance of the analysis they are kept. Option -1 disables this feature, so that the internal
actions are NOT removed. This option should be used only to analyse errors in the specification,
combined with options -a, -d, -e or -s. Moreover, this option enables LOLA to show the
original gate names and offers of the internal actions inside comments e.g. i;(x g '0 *).

TestExpand explores only the executions necessary to determine whether the response to a
test is must, may or reject. So, if a test response is may it is not necessary to explore all the
possible executions, because when at least one successful and one unsuccessful executions have
been explored, the test result will not change, regardless of the termination of the unexplored
executions. Option -y modifies that and forces LOLA to explore all the possible executions,
in spite of the fact that the test result might be known without exploring all of them. This
option should be used only to analyse errors in the specification.

5.1.3 Suspending Tests

As stated above, LOLA testing features are intended to work in batch. The following options
facilitates the integration of LOLA in testing platforms.

Option -x forces LOLA to stop the test as soon as the test response is known to be different to
the <expected_response >. This parameter can be either MUST, MAY or REJECT. Option
-q makes LOLA exit with a 1 value if this condition is met.

5.1.4 Partial Exploration

For really huge state spaces, it may not be practical to perform exhaustive state explorations,
in spite of LOLA’s facilities to simplify the exploration (testing equivalent minimization, early
test response, ...). LOLA provides some facilities to test partially a specification, i.e. not
trying every possible execution of the system. This means that the test coverage is not 100 %
like in previous sections.

The following options enable non-exhaustive test passing:

Option -p forces LOLA to explore only a percentage of the transitions offered in each state.
The selection is made randomly using <seed>. Note that n percent explored does not im-
ply n percent out of the total state space analysed . <percent> ranges from 0 (one trace
exploration) to 100 (exhaustive exploration).

Option -b performs a variant of the bit state hashing algorithm [Hol91], using <msize>
MBytes. The total memory used is given by the sum of <msize> and the currently used
memory (see 2.6 Stat command).

Both options can be used in conjunction.

5.1.5 Other considerations

One condition needed to assure that the result of the test expansion is reliable, is that no
variables remain without any value assigned within guards or selection predicates during the
exploration. Note that a potentially (hidden) deadlock may exist if there are unbounded vari-
ables in guards or in selection predicates. Two types of variable definition cases may lead to
such a situation. The first one is in value acceptances of event denotations. This can be avoided
by using tests which have only value offerings in their action denotations. The second case is
with choice statements (choice .. x:T .. [1 B). This could be resolved automatically by
exploring the state space of B for all the possible values of type T (this is not supported). After
the exploration a warning message will be displayed if any guards or selection predicates have
not been resolved during the test exploration.

5.2 ONEEXPAND
-

This command is used to execute random traces of the current behaviour, or to compose it in
parallel (like with TestExpand) with a test process to analize only single executions.

Syntax:

OneExpand <depth> [<success_ event> <test_process>] [<seed> [execs]] [-v][-i]

When neither the <success_event> nor the <test process> are given, LOLA produces any
sequence of events that can be generated by the current behaviour. It they are specified, then
OneExpand works like TestExpand but it only explores one random trace.

<depth> is an integer number. It limits the maximum depth of the exploration measured in
number of actions (visible or invisible) generated. A negative depth means no bound.

<success_event> is the name of the termination event. See command TestExpand.

<test_process> is the name of the test process to be composed in parallel with the behaviour
under test. See command TestExpand.

<seed> is an integer number used as the initial value for a random number generator. The
analized trace is selected randomly depending on the given <seed>, but it is always fixed for
the same behaviour and <seed>.

<execs> is the number of random traces to be executed taking as seed the previous random
number generator status.

Option -v enables verbose mode (see Expand command).

Option -1 is used to preserve the internal actions on the behaviour under test and show their
original gate names and offers. See command TestExpand.

OneExpand finishes when either stop, exit or the <success_event> are found, or the specified
<depth> is reached.

This expansion is recommended for testing specifications with a huge number of states in which
TestExpand may spend a long time even with partial exploration options. After the exploration
some statistics are printed, and the executed trace is classified as Rejected or Successful execu-
tion.

A Appendix: Non-LOTOS Operators

Most LOLA commands transform LOTOS specifications into other LOTOS specifications (IS-
8807 compatible LOTOS). In order to achieve this, it has been necessary to give a special
treatment to the Relabelling operation and to the composition of premises in selection predi-
cates and guards. The Relabelling operator, which is created when a proccess is instantiated,
is transformed into a choice operator. Nevertheless, a comment with the associated Relabel
operator is kept.

Relabelling [a/b,c/d] in B & choice b in [a], din[c][] B

To solve the problem of the composition of premises in selection predicates and guards, those
premises are printed as a succession of guards with single premises. However, all the commands
treat this sequence of operators as a unique operator; for instace, move cannot place the internal
cursor in the middle of the sequence

a et [f(x)=cl]; stop || a Ty:t [g(y) = c2] ; stop

CHOICE ?z:t [] [f(z)=cl]-> [g(z)=c2]-> a 'z ; stop

B Appendix: Preprocessing

After the semantical analysis phase and before doing any transformation, the LOTOS specifi-
cation is preprocessed. All data value expressions are internally rewritten, and the processes
are analized to detect unguarded process instantiations.

The name of the processes are displayed as their value expressions are being rewritten.

Rewriting expressions in the specification.

1 = credit
2 = bank
3 = client

Rewriting done.

Then, the LOTOS specification gets its expandability checked. All the processes within the
specification are submitted to a static analysis to determine if they are not guarded. The
user is warned when any potential recursion problem is detected, and a list with the process
instantiations involved is printed.

Un example of unguarded behaviour is given by the following process:

process ungla] :noexit:=
unglal ||| a; stop
endproc

In this case, the divergence analysis step produces the following output :

Analysing unguarded conditions.
2 = ung
WARNING : Unguarded behaviour.
See path: ung, ung
Analysis done.

These checkings can be enabled/disabled by means of the Set command.

C A timed prototype of LOLA

A preliminary experimental timed version of LOLA based on a Time Extended LOTOS is
available for trial in this package. This modelisin line with the LOTOS timed model considered
in ISO within the E-LOTOS work item (Annex A of [LLFT94]). Some papers that have
contributed to the model are [QF87], [QAF90],[Led92], [L.193],[MFV93],[QAF93]. The main

features of the model are:

e the use of a time dense domain

e urgency for internal actions

Currently no front end tool supports Time Extended LOTOS. Hence, LOLA accepts only
standard LOTOS syntax as input and therefore a trick is used for the representation of time
attributes which by internal pre-processing translates them into the Timed Extended LOTOS
syntax.

This feature is enabled by compiling LOLA with options ‘—DTIME -DASAP ‘ LOLA is not
distributed with these options by default. The user should be aware that this timed version of

LOLA is still a beta version and we strongly appreciate any feedback or error reports. From
now on when mentioning LOLA we refer to the timed prototype of LOLA.

C.1 The Language

Time Extended LOTOS introduces timed constructions to action prefix and exit and defines
a prefix delay operator as shown in Table 1. As mentioned before LOLA accepts as input
standard LOTOS so we have adopted an ad hoc solution to introduce time constraints. It
consists of a three-step procedure:

1. Introduce a special gate named time in all gate lists of the specification (specification and
processes declarations/instantiations).

2. Prefix every time constrained action with the special gate tzme and an offer list that will
be translated into the time constraints of that action. The offer list may contain 3 offers:
a variable of sort time , the interval lower and upper bound. Part of the offer list and
even the gate fime can be omitted according to the necessity as we will see latter on in
an example.

3. Use the data type time_nat as defined in the distributed file time.lot.

After pre-processing the standard LOTOS input specification (with the elements we have de-
scribed above) LOLA generates the equivalent ET-LOTOS one. The user may elaborate scripts
in order to facilitate the generation of the input specification.

C.2 Example

In this section we will show how to describe timed LOTOS specifications in such a way that

LOLA accepts them.

Let us use a timed version of the Client example process as described before in Section 1.4.
This client can pay his debts after 2 time units and no latter than 10 time units after the last
event. No assumption is made about the time units. Let it be, for instance, months.

Name

ET-LOTOS syntax

LOLA syntax

Internal Action Prefix

Observable Action Prefix

Wait

Process Def.

Process Inst.

Wait(t); B

P[glv"vgn]

(X1 81,0, 01 8y) =B
P[glv"vgn](ylv”vyn)

temelt : timelt g0, B

temelt ity 0, B

timelty; iy B

timelt : timelty!y; gdy...d,[SP]; B
timelty!ty; gdy...d,[SP]; B

timelty; gdy...d,[SP); B

not supported

Plg1, .., gn, time]

(181,00, 0 :8,) =B

Plg1, .., gn, time](y1, .., yn)

Termination

e:z;it(El, ceey En){tltg}
e:z;it(El, ceey En){tl}

timelty\ty; exit(Fn, ..., E,)
timelty; exit(By, ..., Ey)

Table 1: Timed LOTOS and LOLA equivalent syntax

PROCESS Client [bank, work] : NOEXIT :=
bank !'borrow {0..inf}; Client[bank,work]

(1] bank !'pay {2..10}; Client[bank,work]
[1 work {0..inf}; Client[bank,work]
ENDPROC

That is what we get inside LOLA. The corresponding LOTOS specification which should be
input to LOLA 1is:

PROCESS Client [bank, work,time] : NOEXIT :=
bank 'borrow ; Client[bank,work,time]

[1 time !2'10;

bank !pay ; Client[bank,work,time]
[1 work ; Client[bank,work,time]
ENDPROC

As events bank! borrow and work have no time constraints then the preceding gate time can
be omitted. By default absence of time action prefix means no time constraint, i.e. 0..inf. The
time constraints of bank! pay are described in time /2!/10.

Now let us complicate our description a bit. In this version we introduce time variables. Now
the instant when the client can borrow money depends on the instant he has payed the bank
last time. The latter that instant (between 2 and 10) then more time it will take to receive
more credit next time. Time variable current records the instant of time when the client pays

the bank.

PROCESS Client [bank, work](last:time) : NOEXIT :=
bank !'borrow {last-2..inf}; Client[bank,work] (last)
[bank !pay dcurrent in 2..10}; Client[bank,work] (current)
[1 work {0..inf}; Client[bank,work] (last)
ENDPROC

The corresponding LOTOS specification which should be input to LOLA 1is:

PROCESS Client [bank, work,time](last:time) : NOEXIT :=
time !'last-2!'inf;
bank !'borrow ; Client[bank,work,time] (last)
[1 time 7actual:time!2'10;

bank !pay ; Client[bank,work,time] (actual)
[1 work ; Client[bank,work,time] (last)
ENDPROC

C.3 Restrictions

The main restriction of LOLA is not accepting ET-LOTOS syntax. Auxiliary time gates have
to be introduced instead. Other restrictions are:

1. The prefix delay operator Wazt is not supported. This is not an important restriction as
far as we have observed that this facility is seldom used in most timed specifications and
usually can be translated into the explicit event-interval construction.

2. Dense time description is not supported. The current version works with a discrete time
domain based on the natural numbers as defined in the type library file time.lot with
all the limitations of LOTOS data types. No narrowing is performed with the data types.

3. Interleaved Expansion (see section 4.4) is not supported.

C.4 Compilation Flags

In order to compile the timed LOLA prototype the flags TIMFE and ASAP must be included
in the list of C FFLAGS in the makefile

CFLAGS = -DTIME -DASAP -0

References

[ANH84] R. de Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical
Computer Science, 34(1,2):83-133, Nov 1984.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[ISO89] ISO. Information Processing Systems — Open Systems Interconnection — LOTOS
- A Formal Description Technique Based on the Temporal Ordering of Observa-
tional Behaviour. 1S-8807. International Standards Organization, 1989. [published
15/feb/1989].

[PLI1] Santiago Pavon and Martin Llamas. The Testing Functionalities of LOLA. In
Juan Quemada, José A. Manas, and Enrique Vazquez, editors, Formal Descrip-
tion Techniques, I1I, pages 559-562, Madrid (ES), 1991. IFIP, Elsevier Science B.V.
(North-Holland). Proceedings FORTE’90, 5-8 November, 1990.

[QFMST]

[QLP93]

[QPF89a]

[QPF89b)]

[DGY3]

[Led92]

[L1.93]

[LLF+94]

[MFV93]

[QAF90]

[QAF93]

[QFST]

Juan Quemada, Angel Fernandez, and José A. Manas. LOLA: Design and Verifi-
cation of Protocols Using LOTOS. In IBERIAN Conference on Data Communica-
tions, Lisbon, May 1987. Also in Computer Communication Systems A. Cerveira

(ed) North-Holland (1988).

J. Quemada, D. Larrabeiti, and S. Pavén. Compressed State Space Representation
of LOTOS Specifications. In Ken J. Turner, editor, Formal Description Techniques,
VI, pages 19 — 34, Boston, Massachussetts, EEUU, 1993. IFIP, North-Holland. Pro-
ceedings FORTE93, 26-29 October, 1993.

Juan Quemada, Santiago Pavon, and Angel Fernandez. State Exploration by Trans-
formation with LOLA. In Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, June 1989.

Juan Quemada, Santiago Pavén, and Angel Fernandez. Transforming LOTOS Spec-
ifications with LOLA: The Parameterized Expansion. In Ken J. Turner, editor,
Formal Description Techniques, I, pages 45-54, Stirling, Scotland, UK, 1989. IFIP,
North-Holland. Proceedings FORTE’88, 69 September, 1988.

M. Diaz and R. Groz, editors. Formal Description Techniques V. North-Holland,
1993.

G. Leduc. An Upward Compatible Timed Extension to LOTOS. In K.R. Parker
and G.A. Rose, editors, Formal Description Techniques IV, pages 217-232. North-
Holland, 1992.

G. Leduc and L. Léonard. A Timed LOTOS Supporting a Dense Time Domain and
Including new Timed Operators . In Diaz and Groz [DG93], pages 87-102.

G. Leduc, L. Léonard, D.de Frutos, L. Llana, C. Miguel, J. Quemada, and G. Rabay.
Belgian-Spanish Proposal for a Time Extended LOTOS. In J.Quemada, editor,
Working Draft on Enhancements to LOTOS, ISO/IEC JTC1/SC21/WG1, October
1994.

C. Miguel, A. Fernandez, and L. Vidaller. Extending LOTOS Towards Performance
Evaluation. In Diaz and Groz [DG93].

J. Quemada, A. Azcorra, and D. Frutos. A Timed Calculus for LOTOS. In S. T.
Vuong, editor, Formal Description Techniques [I. North-Holland, 1990.

J. Quemada, A. Azcorra, and D. Frutos. TIC: A Tlmed Calculus. Formal Aspects
of Computing, (5:224-252), June 1993.

J. Quemada and A. Fernandez. Introduction of Quantitative Relative Time into
Lotos. In Workshop on Protocol Specification, Testing and Verification: VII, Zurich,
May 1987. IFIP.

