
TOPO: Quick Reference
Front-End — version 3R6

José A. Mañas
Tomás de Miguel

Tomás Robles
Joaquı́n Salvachua

Gabriel Huecas
Marcelino Veiga

Dpt. Ingenierı́a Telemática
E.T.S.I. de Telecomunicación
Univ. Politécnica de Madrid

E-28040 Madrid, SPAIN

<topo@dit.upm.es>

18 January, 1995

Abstract

TOPO is a set of interoperating LOTOS tools grouped in several packages. This one is
basically the front-end, including the basic facilities (mainly syntax and semantic checking).

This paper is a quick reference guide for users.

1

Quick Reference – Front End 2

1 Getting Started � � �

TOPO is a set of interoperating LOTOS tools grouped in several packages. This one includes
mainly syntax and semantic checking, and it is a front-end for the other ones.

spec.lot� The LOTOS specification

There are basically two shell tools to drive the concrete components:
toposet: sets a compilation environment.
topo: coordinates compilation activities.

2 Environment

TOPO tools are accessed via a unique interface called topo, that is described in the next section.
There are some extra files that are needed at compile time. The paths are coded relative to the
value of a root directory that is fixed at installation time. However, the paths may be affected
by the settings of the following environment variables:

variable default used for
TOPO user root for topo tools
TOPOBIN $TOPO/bin binaries to be executed
TOPOINC $TOPO/lib files to be included
TOPOLIB $TOPO/lib libraries to be loaded
TOPOSTDLIB $TOPO/stdlib lotos libraries to be loaded

Variable TOPO is mandatory.

The other variables may be set only if needed. If these variables are not found in the environment,
topo sets sensible values for them and, only in the case of UNIX, puts them in the environment
for called tools to benefit from. UNIX version sets as well the PATH.

In MS-DOS, the user is expected to set environment as desired. topo will just read it for
internal purposes.

You may further influence the behaviour of concrete tools by setting environment variables.
There is one variable for most tools in the package. See the corresponding QuickReference
document.

These are the relevant ones for the frontend

Quick Reference – Front End 3

variable tool help example
TOPOF LFE lfe lfe -h setenv TOPOF LFE -c
TOPOF LSA lsa lsa -h setenv TOPOF LSA -f

3 Context

A number of compilation options may be specified in a context that is stored a a separate file
(spec.ctx). It is set by toposet and used by topo. It may be edited, but be very careful to
strictly respect the format, since there is no error checking at all!

toposet is expected to be used before topo. It stores the current context into SPEC.ctx.
If there is no such file, topo will use some default values. toposet, if executed without
options, sets a default context:

Library
Language C
BehaviourName lbc
DataName ldc
BehaviourPieces 1
DataPieces 1
GladLibrary
Makefile

Quick Reference – Front End 4

toposet spec[.lot] [options]

-help One line help
-context F Use file F.ctx as context

-make F use F as makefile
-list Print current context

-verbose Echo activity
-library L IS8807 defines only one library of predefined data types, THE Standard

Library. Nevertheless, TOPO permits to use a different library.
Users may use their own libraries (any LOTOS specification).

-nolibrary Don’t use any standard library
-tname N Root name for generated files (behaviour)

-tpieces N Number of pieces to break C files down
-dname N Root name for generated files (data)

-dpieces N Number of pieces to break C files down
-glad G GLAD is a tool to annotate data types, so that sensible code may be

generated from them. Its role may range from selecting the naming of
the LOTOS data objects when code is generated, to linking to external
data types.
The most basic use of GLAD allows to choose internal names for the
operations when code is generated (cryptic but solid)

toposet spec -glad $TOPOSTDLIB/internal.gld
or to use the lexical values (nicer, but risky):

toposet spec -glad $TOPOSTDLIB/lexical.gld
Users may specify their own annotation criteria.

-noglad do not use GLAD.
-language L Either C or Ada

The default is to use no standard library. The following standard libraries are available:

minimal� Only Booleans (default)
ditupm� improved and extended IS library

is� The standard library as in IS8807
is-neq� idem, but with no equation

mod-is� IS8807, modified by LotoSphere
mod-is-neq� idem, but with no equation

bool nat� Only Booleans and Naturals
<>� User defined at ./<>.lot

toposet plays an active role in removing intermediate compilation results that are no longer
valid or needed upon option changing. It revises as well the coherency of the standard library
(if any), and issues a warning if it is out of date and tries to regenerate it.

Quick Reference – Front End 5

More precisely, toposet tries to locate the desired library in the current directory. If it founds
“./LIB.lot”, it checks if file “./LIB.ls” exits and is newer, issuing a warning if fails and
trying to regenerate it. Otherwise, if there is a “./LIB.ls”, this is recorded as standard library
to use. Lastly, if the previous checks fail, toposet tries “TOPOSTDLIB/LIB.ls”; if it is
found, it is recorded as the standard library to use. If all the previous ones fail, toposet emits
an error.

Later on, topo will use the recorded library. If there would be a “./LIB.lot”, it will check
consistency in every compilation, to check for updates of the “standard” library.

4 Actions

topo is a collection of interoperating tools. All of them may be accessed via a single interface
that coordinates them for effective interworking. Command line flags are used to select the
intended functionality. This paragraph takes care of basic actions.

topo spec[.lot] [action]

-help On line help
-syntax Just checks syntax conformance.

-s Checks semantics conformance and builds user libraries of data types.
-listmake shows internal makefile to control tool interoperation

-clean Clean directory: intermediate files are removed.
-tidy More drastic cleaning: all the generated files are removed.

default -s

It is also possible to provide options to topo.

topo spec[.lot] [topo options] [action]

-context F Use file F.ctx as context
-verbose Echo activity

And even to actions.

topo spec[.lot] [topo options] [action [action options]]

