
Rule Execution and Event Distribution Middleware for PROSEN-WSN

 Xiang Fei Evan Magill
Department of Computing Science and Mathematics,

University of Stirling, UK.
xf@cs.stir.ac.uk ehm@cs.stir.ac.uk

Abstract

This paper presents a prototype wireless sensor
network middleware REED (Rule Execution and Event
Distribution). This middleware supports both the
distribution of rules and the events that trigger them.
REED employs a rule-based paradigm to allow sensor
networks to be programmed at run time. This provides
a flexible environment where applications and users
can programme the sensor nodes to allow their
behaviour to be changed at run time. Such a rule-
based approach allows a number of services such as
Subscribe-Notify to be constructed. A prototype system
for PROSEN-WSN has been implemented which
demonstrates the REED middleware. The main
contribution of this paper is the ability to programme a
rule-based WSN at run time. However we also
illustrate the power of such rule-based programming
on a working prototype. Our focus is on supporting the
processing, filtering, and collating of data collected by
a WSN.

1 Introduction

This paper describes a rule-based middleware for
Wireless Sensor Networks (WSN) where the behaviour
can be programmed at runtime. The work has been
carried out in the setting of a wind farm. PROSEN[1.]
(PROactive SENsors) is a multi-university project
building the basis of a proactive wind farm condition
monitoring system. It is well known that a WSN
features a (large) number of (heterogeneous) embedded
sensor devices, each of which has constrained
processing power, memory and energy, and error-
prone wireless links over which the devices
communicate. This is a challenging environment for
software development. In PROSEN, emphasis is given
to a proactive approach to managing the collected data.
In particular the network acts to provide pertinent
filtered data. It also employs AI-based data analysis
and a proactive goal-driven policy server. However

this paper will focus on the programmability of WSNs.
The middleware provides application developers with a
suitable abstraction by employing a rule-based
paradigm. The introduction of such middleware can
provide a uniform programming environment to the
application developer yet shield them from the
complexities arising from a WSN.
The challenges from the WSN middleware are mainly
the high integration with the physical world, a high
degree of dynamics due to the environment and the
system itself, and the limited available resources[2.]. As
a result, the PROSEN WSN middleware is:
1. event triggered and light-weight, so that it can be

running on a node with limited CPU power,
memory and bandwidth;

2. programmable at run time, i.e. the system
behaviour can be programmed by applications at
run time so as to be adaptive to the applications'
goals, and the changing environment;

3. capable of event subscription and notification, and
hence only those requiring data will receive it.
This significantly saves bandwidth and energy;

4. supports energy-conservation; e.g.. operates with
different activity rates, i.e. sleep and work modes.

In this paper, we proposed a Rule Execution and
Event Distribution (REED) middleware for PROSEN-
WSN. This middleware supports both the distribution
of rules and the events that trigger them. REED
employs a rule-based paradigm to allow sensor
networks to be programmed at run time. This provides
a flexible environment where applications and users
can programme the sensor nodes to allow their
behaviour to be changed at run time. Such a rule-based
approach allows a number of services such as
Subscribe-Notify to be constructed. REED middleware
is also lightweight and energy-conservative. In Section
2, the REED middleware architecture is described,
followed by the definition of the formal language for
REED. The REED middleware is evaluated in section
3. The rule management is also discussed in this
section. A prototype implementation is described in
section 4 to demonstrate the REED middleware.

Related work is discussed in Section 5, followed by the
conclusion in section 6.

2 REED middleware architecture

2.1 General architecture

Policy
Store

User/
Operator

Policy

Policy
Server …

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule-Engine

SetEvent/
NtfEvent

Sensor …Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule-Engine

SetEvent/
NtfEvent

Sensor …Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

Processing Node

Processing Node

Figure 1. PROSEN system architecture

Figure 1 shows the system architecture for
PROSEN, which consists of a Policy Server (PS), a PN
(Processing Node) for each wind-turbine, and sensors
to measure parameters such as temperature, wind-
speed, wind-direction, battery-level, and gearbox
temperature. The PS interacts with users and operators
to obtain the goals for the system. Such goals might
describe a desirable power output or response to poor
weather conditions. The PS converts the goals to a set
of policies. These policies in turn are converted to low-
level rules. These rules describe the behaviour of
individual PNs. Hence the WSN distributes and
executes these low-level rules within each PN. It is
also possible to transfer these rules between PNs.

In addition to transferring the rules, the REED
middleware also transfers events between the system
components. It is these events that trigger the
individual rules.
Conceptually, a rule takes the form of <event,
condition, action> where:
• an event is received from any other component in

the system. This is often an event carrying data
values, but other events such as a timeout event, a
sleep or wake-up event can also occur.

• a condition is a Boolean expression that will be
evaluated when the event occurs.

• an action is executed if the above condition is true
when the event is received. The action may
manipulate or store data. It may also generate

another event to other components in the system,
such as an event to trigger other rules.

To implement REED, a rule-engine has been
designed and implemented. The functionality of the
rule-engine includes:
• managing a rule-base that stores the rules for the

middleware to allow the adding, removing, and
overriding of rules

• verifying rule consistency, and
• executing the rules in response to received events.

Figure 2 shows the general architecture of the
REED middleware. This echoes typical structures
given in the literature. The middleware must record
certain aspects of the state of the node and the events
that have occurred. These are recorded in the Fact-
Base. Here we borrow the terminology Fact from a
separate rule-based WSN approach[11.]. The Event-
Manager is responsible for receiving events, passing
them to the Rule-Engine, where the engine executes
any matching rules, and distributes any resulting
events. The Rule-Base stores all the rules used by the
engine.

Event
Manager

Rule
Engine

Application

Sensor Platform

Fact
Base

Rule
Base

Figure 2. REED architecture

The REED middleware actually has two levels of
rule-engine within a PN. Figure 1 illustrates the two-
level REED architecture for PROSEN, where the
sensor rule-engine is responsible for local sensor data
collecting and processing, while the PN REED
middleware is employed for wider event processing;
such as data event correlation between processing
nodes. In this paper we shall focus on the PN level
REED middleware and this is discussed further in
Section 3.

2.2 Language definition

In order to provide a clear description of the REED
middleware, we will use a formal notation. The
notation is explained in Table 1 and gives the core
definitions. Indeed this notation is used within our
implementation.

Table 1. Core language definition for REED
Property = <PropertyName “=” PropertyValue>
State = <StateID “;” Property | State “;” Property>
Event = < EventID “;” Property | Event “;” Property
>

FactID = < StateID | EventID >
Fact = <State | Event>
ComparisonOperatior = < “>>” | “<<”| “>=”| “<=”|
“= =”| “!=”>
Connector = < “&&”>
ExistOperator = < “∃” >
Condition = <EsistOperatpor “(” FactID “)”| FactID
“.” PropertyName ComparasionOperator Threshold |
FactID “.” PropertyName ComparasionOperator
FactID “.” PropertyName >
ConditionSet = <Condition | Condition Connector
Condition>
Action = < Store “(”Fact“)” | Send “(”Destination “,”
Event“)” | FunctionCall “(”Event “)” | …>
ActionetSet = < Action | Action “,” Action>
EventHandler = < “(” ConditionSet “;” ActionSet “;”
Priority “)” | EventHandler ; “(” ConditionSet “;”
ActionSet “;” Priority “)”>
Rule = <Event_ID “;”“[”EventHandler“]” >

3 Evaluation of REED

3.1 Programming at run-time

Rule-based middlewares, such as to FACTS[10.],
enable individual WSN nodes to be programmed. The
stored rules capture the expected behaviour resulting
from certain events, conditions or states. However the
rules do not change once they have been deployed and
stored. In contrast, for PROSEN the PS alters the low-
level rules after deployment so it is important to allow
the rules stored within the PN to be changed at any
point in time. In other words, it is required that the
system can be programmed at run time.

Another advantage of providing a dynamic rule-set
is the ability to easily apply REED to other
applications without the need to re-flash the static rule-
set within a PN. However to support dynamic updates
of the rule-base, rule management is required and
Section 3.3 will discuss this in more detail.

3.2 Support for subscription-notification

Programming a PN with REED low-level rules
allows a broad and flexible approach. For example an
application may want to provide an event subscribe-
notify service as part of its solution. Here we show that
this can be constructed using our low level rules. In
effect the sending of a rule acts as a subscription, and
the triggering of the rule acts as a publication. Of
course the rule action must send the event back to the
source of the rule; i.e. the subscriber. (To do so is the
choice of the source of the rule; our approach does not
require that any generated event returns to the rule

source.) Consider an example; a PS subscribes to a PN
REED middleware by sending a rule to a particular PN
as follows:

Rule = <max_wind_speed;
[(max_wind_speed.value >> 60; send (PS,
maxWindSpeed))]>
(For simplicity, the Priority field is not included in

the EventHandler thereafter.)
Later on, the REED receives an event from its

sensor rule-engine as follows:
maxWindSpeed = < max_wind_speed; Value = 67;
Time = 23:14:12; Date = 01-02-08>

This event will trigger the execution of the rule
above, and as a consequence, this event will be notified
to the PS. There can of course be more than one
subscriber; i.e. an event results in a number of
notifications.

3.3 Rule-base management

In REED middleware, the rule-base is used to store
the rules for the rule-engine, and as such, the rule-base
management is a major task of the rule-engine. In
addition to the adding, removing, or overriding rule
functions, the rule-engine should be able to maintain
the consistency of the rule-base, and allow rules to be
merged and filtered. This is because the rule-engine
may receive the rules set from various sources. In
PROSEN, the PN level REED middleware may receive
the rule set from the authorised policy server, its own
application entities, or from its authorised peers.

3.3.1 Rule-base consistency. To maintain the
consistency of the rule-base, the rule-engine should
detect and resolve any conflicting rules. These
conflicts arise as an event may trigger more than two
rules and generate conflicting actions, e.g. one rule
setting a sensor on and another rule setting the same
sensor off. Normally, the way to resolve this is to set
different priorities so only the rule with the highest
priority will be triggered. In PROSEN, the control
related rules from the PS are given priority over event
rules from other sources. As the PS uses meta-policies
to maintain consistency, we avoid any inconsistency
within a PN. We will develop a stronger mechanism
for the PN in the future.

3.3.2 Rule merge and filtering. In PROSEN, the PN-
level REED middleware accepts rules, and forwards
any sensor-level rules to the sensor rule-engine. As the
sensor rule-engine runs on a more resource-limited
processor, the forwarded rules should be filtered and
merged to remove any redundancy. For example, the
REED on a PN receives a rule from the PS indicating:

< max_wind_speed; [(>> 70; send(PS,
maxWindSpeed))] >,

and also receives a rule from another PN (denoted as
PNx) saying:

< max_wind_speed; [(>> 50; send(PNx,
maxWindSpeed))]>.

Instead of sending two corresponding rules to the
sensor rule-engine, the REED sends only one rule

<max_wind_speed; [(>> 50; send(REED,
maxWindSpeed))]>

to the sensor rule-engine. When a maxWindSpeed
event is sent from the sensor rule-engine to the REED,
the REED rule-engine will, based on the real wind
speed reading, first check whether the wind speed is
greater than 50 mph, and then check whether the wind
speed is greater than 70 mph, to determine where to
send the notification; to the PN only if the reading is
between 50 and 70, or to both the PS and the PN if the
reading is over 70.

For space considerations we simply give a brief
description of the rule merge and filtering algorithm
for PROSEN in Table 2, and suppose the ConditionSet
contains one Condition.
Table 2 Algorithm for rule merge and filtering
Definition 1: Given a Condition1 and a Condition2,
∀ event, if in meeting Condition1 means it also
meets Condition2, then we say Condition1 is covered
by Condition2, denoted as Condition1 ⊆ Condition2
Definition 2: Given
rule1 = <eventID, [(Condition1, ActionSet1)]> and
rule2 = <eventID, [(Condition2, ActionSet2)]>,
if Condition1 ⊆ Conditiont2, then we say rule1 is
covered by rule2, denoted by rule1 ⊆ rule2, which
means that if rule1 is triggered by event, the rule2
must be triggered too.
Suppose the PN REED rule-engine receives a rule
<event_ID, [(Condition1, ActionSet1)]>, denoted by
R1, where event, with its identifier being event_ID,
can be generated from the sensor rule-engine and
there is no other rule in the current rule-base that has
coverage relationship with R1, the REED will save
this rule to the rule-base, construct a rule < event_ID,
[(Condition1, send(REED, event))]> and forward
this rule to the sensor rule-engine. Later on, the rule-
engine receives another rule <event_ID,
[(Conditions2, ActionSet2)]>, denoted by R2,
• If R2 is covered by R1, the rule-engine is not

going to forward this rule to the sensor rule-
engine, instead, it changes the R1 originally
saved in the rule-base to <event_ID,
(Condition1, ActionSet1) → (Condition2,
ActionSet2) >, where the symbol “→” means a
coverage link with (Condition1, ActionSet1)
being the head and (Condition2, ActionSet2)

being the tail of the link. In addition, each node
in this coverage link will be accompanied by a
counter with the initial value being 1. So if the
same rule is received, the rule-engine simply
increases the counter for that node by 1.

• If R2 covers R1, the rule-engine will change the
R1 originally saved in the rule-base to
<event_ID, (Condition2, ActionSet2) →
(Condition1, ActionSet1) >, construct a new rule
< event_ID, [(Condition2, send(REED, event)
)]>, and forward this rule to the sensor rule-
engine to replace the original one.

When the rule-engine later on receives a rule
<event_ID, [(Condition3, ActionSet3)]>, denoted by
R3, and the current coverage link for event is
(Condition1, ActionSet1) → (Condition2,
ActionSet2), then the (Condition3, ActionSet3) will
be inserted into this coverage link, and then updates
the rule to the sensor rule-engine if it becomes the
new head of this coverage link.
When a Remove(R1) is received, the rule-engine will
check whether (Condition1, ActionSet1), is at the
head of the covering link.
• If it is not at the head, the rule-engine firstly

decrements the counter for (Condition1,
ActionSet1) by 1, and if the result reaches 0, this
node will be deleted from the link.

• If it is at the head, and its counter had the value
1, the covering link will be updated by deleting
(Condition1, ActionSet1) and check whether it
has a child node.
o If it has no child node, the rule-engine will

send a command to the sensor rule-engine
to delete the rule <event_ID, [(Condition1,
send(REED, event))]>.

o If, say (ConditionSet2, ActionSet2), is the
child node, this node will become the head
of the coverage link. The rule-engine then
construct a new rule < event_ID,
[(Condition2, send(REED, event))]>, and
forward this rule to the sensor rule-engine
to replace the original one.

3.4 A light-weight middleware

REED is lightweight in terms of the energy and
memory consumption. This is because first of all, it is
event triggered instead of continuously polling and this
saves wireless bandwidth and energy. Secondly, unlike
JESS[14.] where all the facts are stored in its working
memory before the execution of their rules, REED
filterers the received data events using its rules and
only those needing further processing will be saved to
the fact-base. This makes the overhead for memory

consumption much lower. Thirdly, the subscribe-notify
service (or indeed any rules only generating a data
anomaly) ensure that data events only go to those
components that require them. This is in contrast to
LIME[5.] and TinyLIME[6.] middleware which are
Tuple Space-based where the data sharing and
synchronization across the network is both bandwidth
and CPU consuming.

For real applications, some rules can be set as
default rules and are put to the REED rule-base locally
during the initiation. The rules are updated at run time
only when necessary. This will further save the power
for rule distribution and rule management.

As REED is event based, it can go into a sleep state
in order to save the battery energy when there is no
event for processing. It returns to the work state either
by a scheduled timeout or a triggered event from a
lower level source. In PROSEN, the signals for sleep
and wake-up are triggered by the sensor rule-engine
which is always in a working state. When the sleep
event is received, the REED writes the unsaved rules
and necessary facts to the flash memory before it exits.
When the REED is initiated as the result of the wake-
up event, it will, before processing any event, restore
those rules and facts back from the flash memory.

4 Prototype implementation

4.1 Prototype implementation

architecture

VHF

UCM

REED
Midware

Gumstix

sensor
rule-engine

App

Sensors

Policy
Server

TCP/IP

PS Gateway

TCP/IP UCM VHF

Figure 3: Prototype implementation

architecture
Figure 3 shows the prototype implementation

architecture. The software structure for REED
middleware is illustrated in Figure 4. REED sends and
receives external messages via the interfaces provided
by the UCM. The UCM (Unified Communications
Manager), developed by other partners in the PROSEN
project, provides a platform to communicate via
wireless links such as VHF channels. The Event
Constructor constructs events with the received
messages. It classifies them either as SetEvents, (rules),
or as NtfEvents (e.g. data events), and then puts them
onto their corresponding queues. These two queues
may have different priorities. When any event is to be

distributed, the Msg Constructor will transform it to
the corresponding message format before delivering it
to the UCM.

REED is running on a GumstixTM[12.] GS400K-XM,
which is a tiny full function Linux motherboard based
on low power Intel XScale® technology. (Later we
plan to port this to a specialised processor supporting a
JVM.) GS400K-XM has 16MB flash memory which
can accommodate JamVM[13.], which is a compact
JVM (Java Virtual Machine), and so REED is
developed using Java.

At the time of writing, the core functionality of
REED has been implemented; that is, functions for
adding and updating rules, executing rules triggered by
events, merging and filtering rules based on one
condition, and rule-base and fact-base store/recovery
for sleep and wake-up events. Although a sensor rule-
engine has been built, here we employed a simple
event generator to emulate the sensor rule-engine.
Rules and events such as those shown in section 3 have
been used to test the rule management, and test the rule
execution. A distributed sensor data aggregation
algorithm has also been implemented using REED.
This work will be described in another paper.

UCM

Event
Manager Rule Engine

SetEvent

SetEvent

…
NtfEvent

…
NtfEvent

AnyEvent

AnyEvent
…

Event
Constructor

Msg
Constructor

RcvdMsg SntMsg

Rule
Base

Fact
Base

Figure 4 REED Software Structure

5 Related work

[3.] and [4.] provided surveys across a broad array
of WSNs and middleware. Among those available
mechanisms, we found the LIME [5.] (Linda in a
Mobile Environment) and TinyLIME [6.] based
solutions attractive. LIME and TinyLIME provide a
Tuple Space based middleware. However, LIME is
heavy-weight in that mobility management and data
synchronisation are bandwidth and CPU consuming.
TinyLIME is the extension of LIME, but it cannot be
employed directly on currently available sensor
processing nodes such as Tmote. A special interface

has to be provided to bridge TinyLIME running on the
base station and applications running on sensor nodes.

[8.] proposed an event-based distributed
middleware architecture, Hermes, that follows a type-
and attribute-based publish-subscribe model. In [7.],
SIENA, an event notification service consisting of
notification selection service and notification delivery
service has been presented. SIENA exhibit both
expressiveness and scalability. However, both Hermes
and SIENA are for IP based Internet.

[9.] proposes an ECA (Event, Condition and
Action) rules based middleware model for WSN.
However, no evaluation or prototype implementation is
described. In [10.], a rule-based middleware
architecture for WSN, called FACTS, was proposed,
and [11.] described its programming primitives and
implementation using the Haskell programming
language. Compared to FACTS, our proposal is
distinctive in the following ways: first, the rule set in
FACTS is static while the rule-base in REED is
dynamic as the rules for REED middleware can be
updated at run time. Furthermore, the REED prototype
has been implemented, which demonstrates not only
the functionality but also the usability of REED.

JESS is a rule-engine written entirely in Sun's Java
language[14.]. It is for general purpose and not dedicated
for WSN environment. As a consequence, the memory
usage is not optimized[10.] for running on sensor nodes.
In addition, in JESS, all the facts are stored in its
working memory before executing the rules while in
REED, any received data event will be filtered by rules
first and only those needing further processing will be
saved to the fact-base. As a result, the overhead for
memory consumption is much lower than using JESS.

6 Conclusion

In this paper, the REED middleware is described. It
supports both the distribution of rules and the events
that trigger them. REED employs a rule-based
paradigm to allow sensor networks to be programmed
at run time, so that applications and users can
programme the sensor nodes to allow their behaviour
to be changed at run time. Such a rule-based approach
allows Subscribe-Notify service to be constructed. To
support this programmability, the rule management is
also discussed. The prototype implementation
demonstrates the REED middleware. So far, the
integration of REED middleware with the PS and the
UCM has been performed. Currently the complete
PROSEN system integration and deployment is being
carried out. In the future, more domain knowledge will
be collected and expressed via rules for REED to
support processing, filtering and collating data within
the wind farm setting.

7 Acknowledgements

The authors would like to thank EPSRC
(Engineering and Physical Sciences Research Council)
for the funding the PROSEN project. We are also
indebted to our PROSEN research colleagues for their
support.

8 Reference

[1.] PROSEN: http://www.prosen.org.uk/
[2.] K. Römer, O. Kasten, and F. Mattern, “Middleware
Challenges for Wireless Sensor Networks, Mobile
Computing and Communications Review”, Vol. 6, No. 2,
2002
[3.] M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen,
“A Survey of Application Distribution in Wireless Sensor
Networks”, Journal on Wireless Communications and
Networking 2005:5, 774–788
[4.] E. Yoneki, and J. Bacon, “A Survey of Wireless Sensor
Network Technologies: research trends and middleware’s
role”, Technical Report www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-646.html , 2005
[5.] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin
Roman, LIME: A coordination model and middleware
supporting mobility of hosts and agents: Vol 15 , Issue 3, pp:
279 – 328, July 2006
[6.] A. L. Murphy and G. P. Picco. “TinyLIME: Bridging
Mobile and Sensor Networks through Middleware”,
PERCOM (Proceedings of the Third IEEE International
Conference on Pervasive Computing and Communications),
pp: 61 – 72, 2005
[7.] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,
“Design and Evaluation of a Wide-Area Event Notication
Service”, ACM Trans. on Computer Systems, 19(3):332-383,
Aug. 2001.
[8.] P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed
Event-Based Middleware Architecture”, In Proc. of the 1st
Int. Workshop on Distributed Event-Based Systems
(DEBS'02), pages 611-618, Vienna, Austria, July 2002.
[9.] C. Zhang, M. Li and Q. Pan, “An ECA Rules Based
Middleware Architecture for Wireless Sensor Networks”,
Proceedings of the Sixth International Conference on Parallel
and Distributed Computing Applications and Technologies
(PDCAT), Pages: 586 – 588, 2005
[10.] K. Terfloth, G. Wittenburg; and J.Schiller, “FACTS -
A Rule-Based Middleware Architecture for Wireless Sensor
Networks”, First IEEE International Conference on
Communication System Software and Middleware
(COMSWARE 2006), New Delhi, India, January 2006
[11.] K. Terfloth, G. Wittenburg; and J.Schiller, “Rule-
oriented Programming for Wireless Sensor Networks”,
International Conference on Distributed Computing in Sensor
Networks (DCOSS) / EAWMS Workshop, San Francisco,
USA, June 2006
[12.] Gumstix: http://gumstix.com/
[13.] JamVM: http://jamvm.sourceforge.net/
[14.] JESS, the Rule-Engine for the Java platform,
http://www.jessrules.com/jess/index.shtml

	Introduction
	REED middleware architecture
	General architecture
	Language definition

	Evaluation of REED
	Programming at run-time
	Support for subscription-notification
	Rule-base management
	A light-weight middleware

	Prototype implementation
	Prototype implementation architecture

	Related work
	Conclusion
	Acknowledgements
	Reference

