
Gavin A. Campbell and Kenneth J. Turner. Policy Conflict Filtering for Call Control,
in L. du Bousquet and J.-L. Richier, editors,
Proc. 9th. Int. Conf. on Feature Interactions in Software and Communication Systems,
IOS Press, Amsterdam, September 2007.

Policy Conflict Filtering for Call Control

Gavin A. Campbell and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

gca | kjt @cs.stir.ac.uk

Abstract. Policies exhibit conflicts much as features exhibit interaction. Since

policies are defined by end users, the combinatorial problems involved in de-

tecting conflicts are substantially worse than for detecting feature interactions.

A new, ontology-driven method is defined for automatically identifying poten-

tial conflicts among policies. This relies on domain knowledge to annotate policy

actions with their effects. Conflict filtering is performed offline, but supports con-

flict detection and resolution online. The technique has been implemented in the

RECAP tool (Rigorously Evaluated Conflicts Among Policies). Subject to user

guidance, this tool filters conflicting pairs of actions and automatically generates

resolutions. The approach is generic, but is illustrated with the APPEL policy

language for call control. The technique has improved the scalability of conflict

handling, and has reduced the effort required of the previous manual approach.

Keywords: Call Control, Conflict Detection, Ontology, OWL, Policy

1 Introduction

1.1 Policies and Features

Policies are rules used to control a system dynamically through a set of actions to be

performed in specified circumstances. Policies are typically defined by an event, a con-

dition and an action. Historically, policy-based systems have been developed in domains

such as access control, quality of service, security and system management. In all these

applications, policies are typically created and maintained by administrators. However,

the authors’ approach is unusual in being designed for ordinary system users.

During the past decade, many policy languages and systems have been developed to

decentralise the control of system behaviour, to automate system management, and to

give more control to end users. This added flexibility has the advantage that users can

tailor services more accurately to their needs, reducing reliance on generic system fa-

cilities. Traditional feature-based approaches lack flexibility. In telephony, for example,

the features are mostly defined by the network operator. Users have little choice except

to select the features they wish and to define a few feature parameters.

Systems that offer multiple, independently-defined features are prone to interac-

tions – a well-known situation where the behaviour of one feature may affect another.

Many feature interactions have been identified in call control. Detecting these interac-

tions is often problematic due to the large numbers of features (several hundred in a

typical PBX). Resolving the interactions can also be problematic because features are

low-level units of functionality.



It is often necessary to understand the user’s true intention before obtaining a satis-

factory resolution. For example, consider the well-known interaction between Do Not

Disturb and Alarm Call. The user’s intention was presumably to avoid calls from others,

but not the alarm call from the exchange. Policies are closer to user goals (e.g. ‘I do not

wish to be called by anyone’) and so more faithfully reflect user intentions. Resolving

interactions or conflicts is facilitated by the higher-level approach of policies.

This paper presents an approach to conflict handling using domain knowledge cap-

tured in an ontology. Collecting this knowledge is a manual step. However, conflict de-

tection is then fully automated using the RECAP tool (Rigorously Evaluated Conflicts

Among Policies). Conflict resolution is partially automated by RECAP – outline reso-

lution policies are automatically generated, for completion by the domain expert using

a policy wizard. The general idea is that conflicts are identified and specified through

offline filtering. The resulting conflict resolution policies are then use online.

1.2 Ontology Support for Policies

The authors use a policy system called ACCENT (Advanced Component Control En-

hancing Network Technologies). This includes a policy server that supports the APPEL

policy language, a wizard for creating and editing policies, and a variety of supporting

interfaces for various application domains.

In recent research, the authors have extended APPEL to support new and multiple

domains. As the core schema of APPEL is generic, it can be extended for different

applications by adding further schemas. However, this does not adequately deal with

concepts in the application domains. The authors have therefore developed additional

support for APPEL through a range of ontologies.

The new approach uses OWL (Web Ontology Language) to describe the core AP-

PEL language. The core ontology is then extended hierarchically to define user interface

information and to specialise the language for particular domains. This has increased

the extensibility and precision of the policy language. APPEL is supported by a wiz-

ard that offers a web-based interface for creating and editing policies. This has been

re-engineered to replace hard-coded domain information (for call control) with infor-

mation stored within the ontologies. The result is a highly flexible user interface, easily

adaptable to reflect new application domains.

1.3 Related Work

Policy conflict is equivalent of feature interaction in telephony and related domains.

Since policies are defined in a decentralised manner, the potential for unwanted in-

teraction is far greater than that of conventional feature-based systems. The increased

flexibility that policies offer to users is offset by more pervasive, complex and subtle

conflicts among policies.

Conflicts in a policy-based environment are often caused by the simultaneous ex-

ecution of policies with contradictory actions. (Conflicts can also arise between ac-

tions and system state, i.e. the result of previous actions.) Policy conflict requires study

of three different aspects: filtering conflict-prone policies, defining conflict detection

mechanisms, and defining a conflict resolution strategy. Although policy filtering is a

2



new departure, conflict detection and resolution have already been studied. In system

management, for example, conflict detection and resolution techniques include [?,?].

Enhancements to COPS (Common Open Policy Service, RFC 2748) are aimed at man-

aging policy conflict through rigorous definition of actions.

Many techniques have been developed to automate feature interaction detection at

the specification stage. Techniques in feature interaction detection have focused heav-

ily on a variety of formal methods such as process algebras, automata and (temporal)

logic. Of these, techniques for filtering interaction-prone features are the most relevant.

However, few are directly relevant to policy-based control. Nonetheless, the ideas have

influenced the work reported here.

The notion of interaction filtering was initially presented in [?]. The filtering pro-

cess is followed by detailed checking and refinement of conflicts. Several tools support

an automated approach to filtering feature interactions. One example is a prototype de-

signed to detect interactions in a call environment [?]. This filters interactions among IN

services, using simple descriptions of the static structure for each service. Interactions

are detected for groups of services used in particular call scenarios.

Formal approaches have been followed by a number of researchers. FIX (Feature

Interaction Extractor [?]) is an example of a domain-independent approach, although

only application to telephony has been reported. This uses the model checker COSPAN

to run consistency tests on feature specifications. In a further stage, the tool user can

investigate the generated scenarios and decide on their accuracy. [?] presents a filtering

technique based on Use Case Maps and applies it to telephony features. [?] uses precon-

ditions and postconditions to identify inconsistencies in features for LESS (Language

for End Systems Services).

[?] describes work that is directly relevant to this paper as it uses temporal logic to

formalise the semantics of APPEL. This leads to a formal basis for automated detection

of conflicts. In other work on APPEL, [?] presents a method for discovering conflicts

based on the pre/post-conditions of actions. This allows semantically-based inferences

to be drawn about the compatibility of actions. However, it is technically more complex

than the simple and intuitive approach of the work reported here. As complementary

techniques, future study will investigate how [?,?] can be reconciled and integrated

with the authors’ approach.

The work reported here differs in important respects from the foregoing:

– Policies rather than features are used for control. These support higher-level state-

ments of user intentions, and facilitate the resolution of conflicts.

– The approach is adapted to many domains, including ones outside telephony. For

example, the authors use it to detect conflicts in home care and in sensor networks.

– A formal specification of the system and its policies is not required. In practice a

precise specification is usually infeasible because the system is too complex, is pro-

prietary, or is open-ended because users can define their own features or policies.

– The approach is intentionally less formal. This has the advantages of being simpler

to set up and more intuitive, i.e. relying only on domain knowledge. Domain ex-

perts, rather than formalists, can define the information needed for conflict filtering.

The analysis is efficient and domain-oriented.

3



1.4 Paper Outline

Section 2 presents an overview of the ACCENT policy system, the APPEL policy lan-

guage, and its approach to conflict detection and resolution. Section 3 introduces on-

tologies, and outlines how they were used to model APPEL. Section 4 explains how

ontologies are used to identify policy conflicts. Section 5 discusses the approach to

conflict filtering and the associated tool support. Section 6 evaluates the results.

2 The ACCENT Policy Approach

2.1 Policy System and Language

The ACCENT policy system (Advanced Component Control Enhancing Network Tech-

nologies, www.cs.stir.ac.uk/accent) was originally designed to allow users to tailor (In-

ternet) call handling to their own preferences. As illustrated in figure 1, the ACCENT

system is split across three layers. At the lowest level, the system layer connects the

policy system to its external environment. Policy enforcement is handled by the policy

system layer that incorporates the policy server, policy store (where policies reside) and

policy database (containing user login and server configuration data). At the top level,

the user interface layer is where users create policies and where contextual information

is obtained. Policies are defined and edited via a web-based policy wizard [?]. Each

policy is saved as an XML document and uploaded to the policy store. The general

approach of ACCENT is described in [?].

Policy

Store

Context

System

Communications

Network Server

User

InterfaceUser

Interface

Layer

Policy

System

Layer

Communications

System

Layer

Policy

Wizard

Policy

Server

System

Policy

Database

Fig. 1. ACCENT System Architecture

APPEL (ACCENT Project Policy Environment/Language [?]) is a comprehensive

and flexible language, designed to express policies within the ACCENT system. Key

factors in the design of APPEL include a simple but concise structure, ease of exten-

sion, and orientation towards ordinary users. APPEL comprises a core language and its

specialisations for different application domains. The original specialisations were for

call control and conflict resolution, but new specialisations have been developed for

home care and sensor networks.

4



APPEL defines the overall structure of a policy document: regular policies, resolu-

tion policies, and policy variables. A policy consists of one or more rules in ECA form

(Event-Condition-Action). Each rule has a combination of triggers (optional), condi-

tions (optional), and actions (mandatory). The core language constructs are extended

through specialisation for new applications.

A policy is eligible for execution if its triggers occur simultaneously and its con-

ditions apply. Additional conditions may be imposed, such as the period during which

the policy applies, or the profile to which the policy belongs. When the policy system

is informed of an event, the applicable policies are retrieved and applied if eligible. As

multiple policies can be triggered, conflicts may arise among their actions.

2.2 Conflict Detection and Resolution

Conflicts result from clashes between pairs of policy actions. As an example from call

control, the caller may wish to conference in a third party whom the callee does not

wish to speak to. The caller/callee policies propose add/remove party(person) for some

individual. These contradictory actions must be identified as conflicting. They must also

be resolved, e.g. by giving the caller (as the bill payer) priority.

The ACCENT system allows for both static and dynamic conflict detection. Static

detection is performed when a policy is defined and uploaded to the policy system,

while dynamic detection occurs at run-time. Although both methods are permitted, only

dynamic detection is currently implemented. This focus was intentional since run-time

conflict handling is the more challenging task. Dynamic conflicts also subsume static

conflicts. The actions resulting from a policy trigger are checked pairwise for conflicts.

(The design of the language means that the order of comparison is irrelevant, and that

only pairs need be checked.) The outcome is a set of non-conflicting actions.

Human guidance is almost inevitably required to determine how best to handle con-

flicts. Only certain ‘technical’ conflicts might be detected fully automatically. Even

then, the treatment of a conflict requires judgment. As an example, suppose one user

wishes to add video to a call but the other user wishes to avoid this. This is clearly

an add/remove conflict. A trivial resolution would be to permit one or other policy to

prevail. However, an acceptable resolution might be much more complex, e.g. using a

third party to adjudicate the conflict.

As a further example, suppose one user wishes to add the G.723 audio codec to a call

but the other user wishes to avoid it. This appears to be an identical kind of add/remove

conflict. In fact it is not, because both parties (in H.323) must be willing to support the

G.711 audio codec. There is therefore no need to treat this as a conflict. This illustrates

that conflict detection requires domain knowledge and human intuition.

Conflict handling in ACCENT is defined by resolution policies that are distinct from

regular policies. Resolution policies express when and how the system should respond

to conflicts. Their effect is to process a set of proposed policy actions, selecting those

that are compatible with the conflict handling rules. Resolution policies are specified as

an extension of the core APPEL language, and therefore use the same syntax as regular

policies. However, resolution policies use a different vocabulary because they serve a

different purpose. The domain-specific actions of regular policies are the triggers of

5



resolution policies. Resolution policies can dictate generic outcomes (selecting among

the proposed actions) or specific outcomes (dictating domain-specific actions).

APPEL has a built in notion of policy preference which allows a user to indicate

how strongly they wish a policy to be applied. This allocates priorities to policies as one

means of resolving conflicts. However, other resolutions may be used such as choosing

the policy of a superior user, or choosing a longer-standing policy. Resolution policies

gives considerable flexibility in that conflict handling is not hard-coded into the policy

system. It is defined externally and can be domain-specific. To avoid infinite regress,

resolution is performed just once. The approach ensures that the outcome is conflict-

free, and does not require resolutions to be checked again for conflicts.

Conflict handling within ACCENT is described in [?]. The main limitation of this

previous work was that resolution policies had to be defined manually. This was tedious

and error-prone. The new work reported here describes an ontology-driven mechanism

to automate conflict detection. The RECAP tool provides automated support for de-

tecting conflicts and for creating outline resolution policies. The details of resolution

require human judgment and are added in a further manual step.

3 Ontology Support for Policies

3.1 Ontology Background

An ontology is the set of terms used to describe and represent an area of knowledge, to-

gether with the logical relationships among these [?]. It provides a common vocabulary

to share information in a domain, including the key terms, their semantic interconnec-

tions, and the rules of inference. Ontologies enable separation of domain knowledge

from common operational knowledge in a system.

A variety of specialised languages are used to define ontologies. OWL (Web Ontol-

ogy Language [?]) is a standard XML-based language. It is supported by a wide range

of software, and can be integrated with other techniques. In addition, OWL provides a

larger function range than any other ontology language to date. For these reasons, OWL

was used to define the ontologies in the work reported here.

An OWL ontology defines classes, properties and individuals. A class represents a

particular term or concept in a domain, while a property is a named relationship be-

tween two classes. An individual is an instance or member of a class, usually repre-

senting real data content within an ontology. Properties are defined for classes in the

form of restrictions that specify the nature of a relationship between two classes. OWL

supports inheritance within class and property structures. OWL can also import shared

ontologies. The ontological basis for APPEL exploits this, using multiple documents for

different aspects of the core language and its specialisation in various domains.

Ontology support for policies is provided by POPPET (Policy Ontology Parser Pro-

gram Extensible Translation [?]). This uses the PELLET ontology reasoning engine

(pellet.owldl.com) and the Jena ontology parser (jena.sourceforge.net). POPPET parses

and integrates ontologies on behalf of the ACCENT system. Figure 2 illustrates the re-

lationship between ACCENT and POPPET.

6



POPPET

Server

PELLET

Reasoner

POPPET

Policy
Wizard

Policy
Server

ACCENT

RMI

OWL

Ontology
ACCENT

User Interface

Fig. 2. Ontology Support by POPPET for ACCENT Policies

3.2 Ontologies for Policies

Ontologies were defined for the core of APPEL and its domain specialisations. Using

OWL, three layers of ontologies were developed [?].

At the lowest level, GenPol (generic policy) defines core language elements such

as variables, rules, triggers, conditions and actions. This includes the basic elements

of a policy and the cardinality rules relating these. Each core element is defined as an

ontology class. Relationships between classes are defined using ontology properties that

link them. Using properties to describe the associations between concepts is a powerful

means of modelling the structure of APPEL. The GenPol ontology contains no domain

knowledge, only a definition of how high-level concepts may be combined to form a

regular policy or resolution policy.

The ACCENT policy wizard [?] is a user-friendly front-end for creating and editing

policies. Such a facility is key in supporting policy definition by non-technical users

of the system. The wizard presents policy and domain information using near natural

language. The user interface is not part of APPEL proper, but is essential for the system

to be usable. Additional, wizard-related knowledge is therefore defined in WizPol (wiz-

ard policy) as an extension of GenPol. This specialises the core language for use with

the wizard. Examples of wizard-specific facilities include the categorisation of triggers,

conditions, actions and operators. In addition, a subset of the language functionality is

matched to the skill or authorisation level of a user.

The GenPol and WizPol ontologies define domain-independent aspects of regular

policies and resolution policies. To specialise the language for a new domain, a further

ontology is created to import and extend these base ontologies; importing WizPol im-

plicitly imports GenPol as well. A domain-specific ontology can contain arbitrary new

concepts, but all policy language concepts must be subclasses within the hierarchy de-

fined by the base ontologies. Consequently, as these ontologies are combined through

an import mechanism only, they do not suffer incompatibility issues.

The CallControl domain ontology specialises APPEL for call handling. Significant

extensions include call control triggers, conditions and actions. Using properties defined

in GenPol, constraints may be placed on individual triggers, conditions and actions. This

defines their use for certain user levels and for display categories within the wizard. In

7



addition, properties define which actions and conditions are permitted with a particular

trigger, and the valid range of operators associated with each condition parameter. Fur-

ther user interface and data type aspects may be included in a domain-specific ontology.

4 Automated Conflict Detection

4.1 Action Effects

Conflicts arise between policy actions with certain parameters. When two actions with

a similar effect are executed simultaneously, the result may be a conflict. For example,

actions that add and remove the same aspect are potentially in conflict. Thus, the call

control actions add party and remove party are likely to contradict each other. Other

conflicts are far more subtle, and cannot easily be identified by naming alone.

Action parameters may use enumerated types, e.g. call control parameter medium

has possible values audio, video and whiteboard. Actions plus selected parameters al-

low a deeper exploration of conflicts. Where an action has an enumerated parameter

type, conflicts between instances of the same action are likely only if the parameters

are the same. For example, call control action add medium(audio) could be considered

to conflict with a second add medium(audio). However, if the second action wished

to add video then this would not be an obvious conflict. For this reason, actions with

distinct values in an enumerated parameter set are treated as distinct actions.

In general, an action must be considered along with a subset of its parameters. In a

domain like call control, there is a rich set of action names that suggest conflicts in them-

selves. Even there, it is often necessary to take parameters into account. For example,

adding one party and removing a different party is not problematic. In other domains

such as home care and sensor networks, a much more limited selection of action names

is used. This is because actions are mainly differentiated by their parameters. A simple

device out action, for example, carries parameters that indicate the action type, device

class, device instance and action parameters. Conflict detection has to work with the

domain policy language as defined. In general, a subset of parameters must therefore

be considered for conflict along with the basic action name. However, for simplicity the

following text mainly refers to comparing actions.

Policy actions are defined to have one or more effects on the execution environment.

These effects range from the technical (e.g. bandwidth) to the social (e.g. privacy).

Internal policy actions affect the policy system itself, such as setting system properties

or accessing system resources. Conflicts are likely where two actions share a common

effect. Any action may potentially conflict with itself. However, all action pairs must

be considered too. (As noted earlier, only two-way and not n-way conflicts need be

considered.)

Figure 3 shows the effects of internal policy actions, while figure 4 shows the ef-

fects of call control actions. Call control actions with enumerated parameters are listed

separately. Effects for internal policy actions are distinct from those of domain actions,

as internal and external actions do not (normally) conflict. Effect categories differ de-

pending on the language domain.

8



Action Effect

log event(arg1) file

restart timer(arg1) timer

send message(arg1,arg2) channel

set variable(arg1,arg2) variable

start timer(arg1,arg2) timer

stop timer(arg1) timer

unset variable(arg1) variable

Fig. 3. Internal Action Effects

As discussed in section 3.2, ontologies have been used to model policy language

concepts. It is therefore convenient to define action effects in these ontologies. How-

ever, the ontologies play no role in conflict detection or resolution. As conflict detection

is not an integral part of APPEL, the concept of action effect is defined in the WizPol

ontology. This allows conflict information to be specified outside the core language,

while maintaining the advantage of further specialisation in domain-specific ontolo-

gies. Effect information is defined in WizPol through the ActionEffect class and the

hasActionEffect property. The ActionEffect class is a superclass of all effect categories

for both internal and domain-specific policy actions. Generic action effects are defined

as subclasses of this class in WizPol. Domain-specific action effects are defined as sub-

classes within a separate domain ontology that imports WizPol. Each policy action is

linked to the appropriate effect category class using the hasActionEffect property. This

relates actions and effects, allowing a tool to infer overlapping actions.

4.2 Conflict Detection Algorithm

Only pairs of actions need to be considered in the analysis; there are no three-way

conflicts. Potential conflicts between actions can be inferred from the ontology-defined

effect categories through a two-stage algorithm. Firstly, any two actions sharing at least

one common effect are identified as potentially conflicting. Secondly, actions with enu-

merated parameter types are analysed. Where two actions share the same parameter

value then they potentially conflict, otherwise it is assumed that no conflict exists.

The total number of action pairs, including self-conflicts, is
n(n+1)

2 where n is the

number of possible policy actions. The policy language for call control has 21 possible

actions and therefore a total of 231 action pairs. Conflict handling is commutative (if

A1 and A2 conflict, then so do A2 and A1) and associative (the way in which actions are

paired is irrelevant).

The ontologies allow a list of actions to be inferred for each effect category. If two

actions are present in some category, they can be marked as potentially conflicting. For

example, the call control actions fork to and forward to potentially conflict as they both

affect the route. All action pairs deemed to conflict in this way are then automatically

reviewed with respect to their parameters. As explained earlier, actions with enumerated

parameter types are considered in more detail. This increases the total number of action

pairings as an action may be instantiated multiple times with different parameter values.

For example, the action add medium with its parameter is equivalent to three distinct

9



Action Effect

add caller(conference) party, privacy

add caller(hold) party, privacy

add caller(monitor) party, privacy

add caller(release) party, privacy

add caller(wait) party, privacy

add medium(audio) medium, privacy

add medium(video) medium, privacy

add medium(whiteboard) medium, privacy

add party party, privacy

confirm bandwidth bandwidth

connect to route

fork to route

forward to route

note availability availability

note presence presence

play clip medium

reject call call

reject bandwidth bandwidth

remove medium(audio) medium

remove medium(video) medium

remove medium(whiteboard) medium

remove party party

Fig. 4. Call Control Action Effects

actions. This allows more accurate analysis of potential conflicts. Where actions might

be treated as potentially conflicting based on a shared effect, this might not be the case

when particular parameters are considered.

To explain this more concretely, some examples for medium are shown in figure 5.

An action may conflict with itself if there is a common parameter (e.g. both instances

wish to add video), and may not conflict if the parameters are different (e.g. they wish

to add video and whiteboard respectively). Different actions with a common effect and

the same parameter indicate potential conflict (e.g. attempting to add and remove audio

simultaneously). Actions with a common effect and dissimilar parameters are assumed

not to conflict (e.g. altering the medium by adding video and removing whiteboard).

Action1 Action2 Conflict

add medium(audio) remove medium(audio) X

add medium(audio) add medium(video) ×

add medium(video) add medium(video) X

add medium(video) remove medium(whiteboard) ×

Fig. 5. Sample Call Control Conflicts with Action Parameters

10



5 The RECAP Conflict Filtering Tool

5.1 Automated Support for Conflict Filtering

The RECAP tool (Rigorously Evaluated Conflicts Among Policies) has been developed

to automate the algorithm in section 4 for identifying conflict-prone actions. Figure 6

illustrates what the tool looks like on-screen. Taking the first line as an example, the

tool shows pairs of actions (add medium(audio) and add medium(audio)), why they

conflict (shared effect on medium and privacy), and when this conflict was last modified

(automatically or manually).

Depending on the domain, the conflicts identified by RECAP may or may not be

complete and correct. Conversely, subtle conflicts that are not automatically flagged

can be added by hand. As noted earlier, conflict handling will always require human

judgment and cannot be fully automated. Based on human guidance, RECAP produces

conflict resolution policies.

RECAP is started by pointing at the relevant domain ontology. Using the action ef-

fects, the tool automatically constructs a matrix of all policy action pairs and highlights

those deemed to be potential conflicts. The tool user may explore the matrix, confirming

or refining each conflicting action pair. If closer inspection reveals that there is no real

conflict, this pairing can be flagged as conflict-free. If an action is linked in an ontology

to some effect, this may not be true of the actual implementation. Conflicts arising from

this cause can be dismissed using the tool to undo the linking.

Potential conflicts are displayed in the tool matrix by noting the common effects in

the appropriate cell. For convenience, internal and domain-specific actions are described

here in separate figures though in practice they are combined by RECAP.

The result of filtering internal conflicts for APPEL is shown in figure 7. Conflicts are

numbered in the figure according to the underlying effect. As an example of conflict,

actions start timer and stop timer are in conflict because they both have a timer effect

as indicated at their intersection. Some conflicts are non-obvious (e.g. add caller and

add medium). Detailed study by a domain expert confirmed that all conflicts discovered

are real, and that no conflicts had been missed. No changes were therefore needed in

the analysis.

Call control actions deemed conflicting by RECAP are shown in figure 8. For sim-

plicity, this figure shows conflicts between actions without parameters. In the tool, ac-

tions with enumerated parameter types are displayed and compared distinctly. Conflicts

are numbered in the figure according to the underlying effect.

Detailed study by a domain expert confirmed that all detected conflicts but one

are real, and that no conflicts have been missed. There is a possible problem in that

confirm bandwidth is indicated to conflict with itself due to a shared bandwidth effect.

This could indeed be an error, as it might lead to bandwidth being allocated twice. As

it happens, in the ACCENT system it is harmless to confirm bandwidth twice. Without

human guidance, this action pair would be flagged as a conflict. It should be noted

that the bandwidth effect is still required as it correctly identifies the conflict between

confirm bandwidth and reject bandwidth.

11



Fig. 6. Screen-Shot of RECAP

12



lo
g

ev
en

t

re
st

a
rt

ti
m

er
se

n
d

m
es

sa
g

e

se
t

v
a

ri
a

b
le

st
a

rt
ti

m
er

st
o

p
ti

m
er

u
n

se
t

v
a

ri
a

b
le

A
ct

io
n1/

A
ct

io
n2

2 log event

3 3 3 restart timer

1 send message

4 4 set variable

3 3 start timer

3 stop timer

4 unset variable

Conflict: 1 channel, 2 file, 3 timer, 4 variable

Fig. 7. Internal Conflicts identified by RECAP for APPEL

a
d

d
ca

ll
er

a
d

d
m

ed
iu

m

a
d

d
p

a
rt

y

co
n

fi
rm

b
a

n
d

w
id

th
co

n
n

ec
t

to
fo

rk
to

fo
rw

a
rd

to
n

o
te

a
v
a

il
a

b
il

it
y

n
o

te
p

re
se

n
ce

p
la

y
cl

ip

re
je

ct
b

a
n

d
w

id
th

re
je

ct
ca

ll

re
m

o
v
e

m
ed

iu
m

re
m

o
v
e

p
a

rt
y

A
ct

io
n1/

A
ct

io
n2

5,7 7 5,7 5 add caller

4,7 7 4 4 add medium

5,7 5 add party

2 2 confirm bandwidth

8 8 8 connect to

8 8 connect to

8 forward to

1 note availability

6 note presence

4 4 play clip

2 reject bandwidth

3 reject call

4 remove medium

5 remove party

Conflict: 1 availability, 2 bandwidth, 3 call, 4 medium, 5 party, 6 presence, 7 privacy, 8 route

Fig. 8. Call Control Conflicts identified by RECAP for APPEL

13



As demonstrated by figures 7 and 8, the automated conflict analysis (for call control)

is very accurate. However, it confirms that human guidance is still needed in a small

number of cases.

RECAP is mainly intended to analyse conflicts when a domain policy language is

initially defined, using an ontology as the source of action effects. This initial analysis

is saved to file and can subsequently be reloaded into the tool. This avoids the user and

the tool from having to repeat a prior analysis, particularly if the user has manually

modified the conflict list.

5.2 Automated Support for Resolution

RECAP turns the conflict list into a set of outline APPEL resolution policies that define

the detection part of conflict handling. These policies define the conflicting triggers and

parameter conditions, but resolution actions must be completed manually. The policies

are automatically uploaded to the policy system, where the wizard is used to define

the resolutions. Conversely, RECAP reads existing resolution policies and annotates the

matrix with conflicts derived from these. This is a useful feature which allows con-

flicts defined manually via the policy wizard to be used in conjunction with conflicts

identified by RECAP.

Resolution policies can be simple or complex, specific or generic, and dependent on

many factors including the conflicting policies and their parameters. One or more ac-

tions may be required of a resolution. See [?] for a list of typical resolution policies. As

an example, suppose one party wishes to add video to the call with add medium(video),

while the other party wishes to conference in a third person with add party(person).

This is correctly flagged as a conflict since the third party would be able to view the call

parties and their workplaces (affecting privacy). Using human judgment, it might be

decided to allow video and the third party. However, someone (e.g. a manager) should

be included in the call to oversee it.

In view of this complexity, RECAP generates only outline resolution policies that

specify default policy attributes, triggers corresponding to the conflicting actions, and

default actions to resolve the conflict. The outline resolutions are then uploaded and

customised using the wizard as normal. Resolution policy editing is dealt with by the

wizard and not by RECAP. This allows RECAP to remain domain-independent and not

be constrained to a particular resolution technique or policy language. An additional

advantage is that resolution policies are then edited through the same interface as regular

domain policies.

All default resolution parameters are defined by a properties file, and can therefore

be readily modified according to local practice. The property file allows any structural

components of outline resolutions to be altered. Resolution policies are normally dis-

abled on upload. This ensures they are ignored by the policy server until they have been

edited to include a specific resolution. This avoids incomplete or inconsistent resolu-

tions from being used accidentally.

RECAP could be given a more user-friendly interface to change the default resolu-

tion policy structure and parameters. Currently this is achieved by manually editing the

properties file. Although the tool is mainly intended for use during definition of a new

application domain, there could be some value in easing later changes.

14



Policies in general are distinguished by unique identifiers, typically some phrase

chosen by the user. Resolution policies automatically created by RECAP have machine-

generated (but human-usable) identifiers. If the identifier of such a policy is changed

manually, this could lead to duplication. The tool could detect this situation by looking

for overlap of resolution triggers and conditions.

6 Conclusion

A technique and a tool have been introduced for (semi-)automated filtering of conflict-

prone policies. Ontologies have been used to model the core and domain-specific as-

pects of APPEL – for regular and as well as resolution policies. Conflicts between policy

actions are handled in ACCENT by resolution policies. Action effects defined in ontolo-

gies allow conflicting action pairs to be discovered as potential conflicts.

As has been seen, the analysis leads to very accurate results (for call control).

Nonetheless, RECAP allows potential conflicts to be refined manually since a fully auto-

mated approach is impossible due to the complexity and subtlety of policy interactions.

Following filtering, outline resolution policies are generated and uploaded for comple-

tion with the policy wizard.

RECAP offers an automated approach to conflict analysis and resolution where pre-

viously this was achieved manually. This has improved the scalability of APPEL, and

has substantially reduced the time and complexity of dealing with conflicts. Associating

actions with their effects is very simple compared to formal methods, but yields very

good results. The straightforward and domain-oriented approach is much less expensive

to use than one that requires a complete formal model.

RECAP provides a way of visually identifying conflicts within an arbitrary collec-

tion of policy actions. Unlike many existing approaches and tools, policies in any do-

main may be analysed easily by RECAP, and not just those for call control. The tool is

also useful for policy applications where action parameters play a bigger role.

RECAP has been designed for stand-alone use. Although conflict data is mainly

expected to derive from an ontology, conflict information may be input from a local

file. Consequently, data generated by other tools or systems may be used by RECAP for

conflict filtering. The only requirement is knowledge of the conflict data format used.

Although RECAP is aimed at filtering conflicts in the initial stages of specifying a

new policy language, it may be used in later revisions of the language to refine conflicts

and to generate resolutions.

Acknowledgements

The authors thank their colleagues Stephan Reiff-Marganiec (now at the University of

Leicester) and Lynne Blair (who was on leave from Lancaster University during the

development of ACCENT). Both contributed substantially to the design of the policy

system that lies at the foundation of the work reported in this paper. Gavin Campbell’s

work on the PROSEN project was supported by grant C014804 from the UK Engineering

and Physical Sciences Research Council.

15


