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Abstract

Type checking is at the heart of distributed systems. The ability to be able to configure
objects and have them interwork correctly may well be regarded as the fundamental issue
in the development of reliable distributed systems. The type system put forward in the
current standardisation activity of Open Distributed Processing (ODP), however, is both
inadequate and incorrect. The inadequacy is due to the scope of the type system being
based entirely on syntactic issues. To achieve reliable interoperability between systems,
a type system should deal with behavioural (semantic) issues as well as non-functional
issues, i.e. aspects of the type that its signature and behaviour do not capture. The
incorrectness is due to the syntactic issues not being dealt with correctly. That is, clients
and servers have fundamentally different type rules that apply to them. We provide a
Z specification of a robust type system that deals with the syntactic aspects of types
(correctly) as well as a treatment of the behavioural and non-functional aspects of types.

Keywords: Z; Types; Open Distributed Processing.

1 Introduction

It could be argued that the ability to develop sub-systems of some larger more complex system

and compose them with a guarantee that they will interwork successfully is the most important

consideration in software engineering today. Object-orientation helps in simplifying this task

to some extent through introducing the idea of objects (sub-systems). Objects interact with

the outside world through a clearly defined interface and they hide (encapsulate) information

internal to themselves. Through consideration of the interfaces of objects, composition of sub-

systems can be reasoned about more simply. This is possible if interface types are introduced

into the system. That is, sub-systems can be composed with one another provided they have

compatible interfaces, where compatibility is based on some form of interface type equivalence.

We investigate this notion of type equivalence using the work on the current standard-

isation of Open Distributed Processing (ODP) (ISO/IEC 1995a, ISO/IEC 1995b, ISO/IEC

1995c, ISO/IEC 1995d, ISO/IEC 1995e). We argue that the types found in distributed sys-

tems are required to satisfy more complex equivalence relations than has so far been sug-

gested if successful interworking of sub-systems is to be achieved. We also show how the



type rules associated with distributed systems in general are different to those that might be

found elsewhere. We present a formalisation of these new considerations in the language Z

(ISO/IEC 1995f). This formalisation is particularly powerful in that it deals with all issues in

checking compatibility of interfaces: signature compatibility, behavioural compatibility, and

non-functional aspects of the interface such as performance issues.

The rest of the paper is structured as follows. Section 2 provides a brief overview of

ODP. Section 3 focuses on the areas of ODP where types are introduced. Section 4 highlights

the problems with types as they are presented in ODP. Section 5 puts forward a new and

improved type model for composing systems. Section 6 shows how Z can be used to specify

the type model suggested. Finally, section 7 draws some conclusions from the work and gives

some acknowledgements. We assume the reader is familiar with the Z notation.

2 Overview of ODP

The ODP-RM (Reference Model) is a framework that is being developed to enable standards

for distributed systems to be developed in a uniform, consistent and expedient fashion. It is

based upon concepts derived from current distributed processing developments and, as far as

possible, on the use of formal description techniques to specify the architecture. The ODP-RM

uses an object-oriented approach. The advantages of this with regard to systems development

generally are well documented in the literature, e.g. (Meyer 1988). The advantages of this

approach for distributed systems development are presented in some detail in (Blair & Lea

1993). The ODP-RM itself is divided into four main parts:

Part 1 - Overview and Guide to Use : contains an overview and guide to use of the

ODP-RM.

Part 2 - Foundations : contains the definition of concepts and gives the framework for

description of distributed systems. It is here that the concept of type, and associated

concept of subtype, are introduced.

Part 3 - Architecture : contains the specification of the required characteristics that qual-

ify distributed system as open, i.e. constraints to which ODP systems must conform.

One feature of Part 3 of concern to this paper is the idea of viewpoint languages. These

represent abstractions of the system as a whole that focus on a particular concern, the

intention being to simplify reasoning about the system as a whole. Of relevance to this

paper is the computational viewpoint since it is here that types are used as a basis for

composing (binding) sub-systems together.

Part 4 - Architectural Semantics : contains a formalisation of a subset of the ODP con-

cepts. This formalisation is achieved through “interpreting” each concept in terms of

the constructs of a given formal specification language. This paper represents ongoing

work in this area.



3 Types in ODP

ODP introduces the concept of a type as a fundamental concept in Part 2 (ISO/IEC 1995b).

It is defined as:

A predicate characterising a collection of < X >’s. An < X > is of the type or satisfies

the type if the predicate holds for that < X >. In ODP types are needed for at least objects,

interfaces and actions.

A subtype is defined in Part 2 (ISO/IEC 1995b) as:

A type A is a subtype of a type B, and B is a supertype of type A, if every < X > which

satisfies A also satisfies B.

These elementary concepts are then used in the computational viewpoint to restrict inter-

actions between objects. That is, they are used to enforce the legal bindings that can occur

between objects, where a binding may loosely be considered as the composition of two (or

more) interfaces. This is achieved through denoting interfaces with a type. This type captures

(characterises) the features that manifest themselves in that interface. Features are manifest

in ODP through syntactic aspects only. We shall show the limitations of this approach and

the incorrect way it is applied in ODP.

3.1 Inadequacy of Current Model

Basing interface type equivalence on structural and name equivalence of signatures results

only in a “message is understood” policy of type checking. That is, if two signatures are type

equivalent under these conditions then any invocation of an operation in an interface will at

least be understood. The semantics of the operation might well be entirely different from that

expected however. For example, the types cowboy and rectangle could be regarded as type

equivalent if they both supported the single operation .draw(), even though the semantics

(behaviour) of this operation is totally different in each case.

Thus structural and name equivalence of signatures only is not a sufficiently strong type

checking policy to enable separate sub-systems (objects) to be composed with a guarantee of

correct interworking.

3.2 Incorrectness of Current Model

Interfaces in the computational viewpoint can be operational, signal or stream. These inter-

faces have associated with them causalities. An operational interface possesses either a client

or a server causality. This designation of causality represents an implicit assumption on the

expected behaviour of that interface. A server performs functions requested by a client; a

client requests functions to be performed by the server.

ODP does not distinguish between the clients and servers when establishing type rela-

tionships however. This is incorrect. Clause 7.2.4.3 of (ISO/IEC 1995c) states informally:

“operation interface X is a signature subtype of operation interface Y when X possesses all

of the operations of Y (and possibly more); the parameters of the operations in Y should

be subtypes of the corresponding operation in X; and the results of operations of Y should

be supertypes of the corresponding operations in X.” The problems of this definition are

illustrated using the following diagram.
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The notation of a b for servers means that the server accepts an input of type a and

provides an output of type b. For clients a b means that the client sends an output of type

a and receives one of type b. We state that these types are ranges and classical type rules

(Cardelli & Wegner 1985) apply to them, i.e. a subrange is a subtype.

An interface type relation is used in ODP for two different, but related, reasons: to

substitute one interface for another and to bind interfaces together. We consider the problems

in the ODP definition with regard to these two aspects.

3.2.1 Incorrectness in Substitution

Substitutability should be based on the environment being unaware of any difference in the

substitute. Thus causality is essential here. It would be incorrect to substitute server object

A with client object C, even though they support the same operations, since the client expects

functions to be performed by other objects. Thus any clients bound to server object A initially,

would not be serviced by client object C. Thus as far as substitutability is concerned, type

checking requires like causalities. We thus propose extending the signature of interfaces to

include a causality label.

Having established like causality, substitutability between clients and clients and servers

and servers is also different. A client is an acceptable substitute for a second client when

the operations it requests are a subset of the operations of the original client. The input

parameters associated with the request are subtypes of the original parameters, and all result

parameters of the substitute are supertypes of the original parameters. Thus it does not ask

for anything the old client never asked for and everything it does ask for is understood by the

server. In the diagram C is thus an acceptable substitute for D since it has less operations;

the operation parameters of C are subtypes of the corresponding operations in D; and the

results of those operations in C are supertypes of those in D.

A server is an acceptable substitute for another server when it possesses all the operations

of the former and possibly more, and any request that could be dealt with by the original

server may be dealt with by the substitute. This requires that the input parameters of

the substitute server are supertypes of the original server and the return parameters of the

substitute server are subtypes of the original server result parameters. In the diagram B is

thus an acceptable substitute for A since it has more operations; the operation parameters

of A are subtypes of the corresponding operations in B; and the results of those operations

in B are subtypes of those in A.

Thus in effect the type relations between client substitutability and server substitutability

are opposite with subsetting and supersetting of operations respectively. Hence in our exam-

ple, B is type equivalent (a subtype) to A and C type equivalent (a subtype) to D based

on a syntactic substitutability relationship. As can be seen, ODP only deals with the case of

server interfaces and does not make a distinction between client and server substitutions.



3.2.2 Incorrectness in Binding

With regard to type relationships and binding, opposite causality is required between the

interfaces. It would be meaningless to bind two clients together (or two servers) since they

would both either expect to be served or expect to serve one another respectively. Given that

opposite causality has been established, type relationship for binding requires that:

• the client asks for only a subset of the operations of the server;

• the requests made by the client are understood by the server;

• the responses issued by the server are understood by the client.

In the most simple form of binding (primitive) as given in clause 7.2.3.2 of (ISO/IEC

1995c), it is stated that interfaces can be bound provided they have complementary interface

signatures. Complementary is defined as identical except for opposite causality. This is too

strong a signature compatibility relation since it prohibits the interface of C being bound to

the interface of B above, despite all possible client requests being catered for (understood)

by the server and the server responses being understood by the client.

4 Type Equivalence

As a result of these considerations, it is apparent that the notion of causality is fundamental

to the different aspects that have to be dealt with in establishing type equivalence. However,

as shown in section 3.1, type equivalence based on signatures only is inadequate. We argue

that type equivalence should be separated into three areas. Firstly, syntactic equivalence of

signatures should be achieved, as done in most type systems currently used in distributed sys-

tems, e.g. Emerald (Black, Hutchinson, Jul, Levy & L.Carter 1987), CORBA (The Common

Object Request Broker Architecture and Specification: Revision 2.0 July 1995), DCE (Shirley

1993). As such, it is a well investigated area.

Once signature compatibility has been established, type checking should be extended to

deal with behavioural aspects of types. This alone may not be enough to guarantee successful

sub-system interworking, so it should be augmented with checks related to the non-functional

equivalence of types. For example, two syntactically compatible interfaces that do not offer

contradictory behaviours may not always be successfully bound together, e.g. if one produces

outputs faster than the other can consume inputs then their interworking will be effected. To

show how these three areas can be dealt with, we provide a Z specification of each area and

how they can be unified in the context of the computational viewpoint of ODP. In particular

we focus on operational interfaces of the computational viewpoint, specifically those dealing

with interrogations, and non-functional aspects of these interfaces related to time.

4.1 Syntactic Aspects of Operational Interfaces

ODP prescribes rules for correct structuring of operational interfaces. These rules require

certain naming rules to be satisfied for the labelling of operation and parameters of interface

signatures. We firstly introduce a [Name] for things. The types existing in the system are

denoted by [TypeId ]. It should be pointed out that TypeId is likely to be more complex since

there are many types that might exist in a given system, e.g. actions, interfaces and objects.



The parameters that are associated with interfaces to computational objects consist of a

name and a type. It should always be possible to determine the type of a parameter in a

given system. Thus Param is introduced as an injective function from names to types.

Param : Name TypeId

It is also useful to introduce sequences of these parameters.

PList == seq Param

As stated earlier, interfaces in the computational viewpoint can be stream, operational or

signal. These have a causality associated with the interface as a whole (operational) or with

the individual actions associated with the interfaces (stream, signal). The causalities needed

for consideration of the interfaces in this paper may be represented by:

Causality ::= Client | Server

An interrogation is represented by an invocation followed by a non-empty set of termi-

nations. An invocation is represented by a name and the number, name and type of the

argument parameters associated with the invocation.

InvTemplate

invName : Name

inArgs : PList

A termination action is similar to an invocation, i.e. it has a name, number, names and

types of result parameters.

TermTemplate

termName : Name

outArgs : PList

Having defined invocation and termination actions, an interrogation signature may be

represented by:

IntSig

inv : InvTemplate

terms : 1 TermTemplate

The operational interface signatures under consideration here consist of sets of interroga-

tions, and the interface as a whole is given a causality of client or server. Naming consid-

erations of the components of the interface are also required. That is, all invocation names

in the interface are required to be unique. All termination names associated with a given

invocation are required to be unique, and the parameter names associated with invocations

and terminations are required to be unique. This can be represented as:



OpIntSig

ints : IntSig

role : Causality

role ∈ {Client , Server}
(∀ is1, is2 : IntSig ;

t1, t2 : TermTemplate; p 1, p2 : Param •
(is1 ∈ ints ∧ is 2 ∈ ints ∧ is 1 6= is2 ⇒

is1.inv .invName 6= is 2.inv .invName) ∧
(is1 ∈ ints ∧ t 1 ∈ is1.terms ∧ t 2 ∈ is1.terms ∧ t 1 6= t2 ⇒

t1.termName 6= t 2.termName) ∧
(is1 ∈ ints ∧ 〈p 1〉 in is1.inv .inArgs ∧ 〈p 2〉 in is1.inv .inArgs

∧ p1 6= p2)⇒ first p 1 6= first p2)

4.2 Syntactic Compatibility for Binding

Two operational interfaces are syntactically equivalent and can be bound when they have

opposite causalities and they do not issue requests or responses that are not understood. We

thus introduce an elementary relationship between types based on substitution. For simplicity,

we assume this relationship is based on sequences of parameters (types). The extension from

type relationships to relationships between sequences of types is straightforward (Cardelli &

Wegner 1985).

isSubtype : PList PList

Two interfaces with opposite causality can be bound successfully with regard to messages

being understood when the invocation names of the client exist in the server and the param-

eters associated with the request are subtypes of those in the server interface. In addition,

the termination names of the server must exist in the client and the parameters associated

with the response are supertypes of those in the server interface. This can be represented by:

BindSyntaxOk : OpIntSig OpIntSig

∀ ois1, ois2 : OpIntSig | (ois 1, ois2) ∈ BindSyntaxOk •
ois1.role = Client ∧ ois 2.role = Server ⇒
(∀ int1 : IntSig | int 1 ∈ ois1.ints • (∃ int 2 : IntSig • int 2 ∈ ois2.ints ∧

int1.inv .invName = int 2.inv .invName ∧ (int 1.inv .inArgs , int 2.inv .inArgs) ∈ isSubtype ∧
(∀ tt2 : TermTemplate | tt 2 ∈ int2.terms • (∃ tt 1 : TermTemplate • tt 1 ∈ int1.terms ∧
tt2.termName = tt 1.termName ∧ (tt 2.outArgs , tt 1.outArgs) ∈ isSubtype))))

For brevity, we do not make this a symmetric relationship, i.e. we do not give here the

case where the role of ois 1 is a server and ois 2 is a client. We also do not deal with higher order

type systems, where the parameters of invocations can reference other interfaces. To specify

this would require a check on the parameters and whether they were basic or referenced other

interfaces. If they were basic then our simple subtype relation would suffice. If they referenced

other interfaces, a recursive definition would be needed.



4.3 Syntactic Compatibility for Substitution

One server operational interface can be substituted for another when it understands all mes-

sages that could be sent to the original server, and the responses it gives will be understood

by the recipient, i.e. the client.

SubstituteSyntaxOk : OpIntSig OpIntSig

∀ ois1, ois2 : OpIntSig | (ois 1, ois2) ∈ SubstituteSyntaxOk •
ois1.role = Server ∧ ois 2.role = Server ⇒
(∀ int2 : IntSig | int 2 ∈ ois2.ints • (∃ int 1 : IntSig • int 1 ∈ ois1.ints ∧

int1.inv .invName = int 2.inv .invName ∧ (int 1.inv .inArgs , int 2.inv .inArgs) ∈ isSubtype ∧
(∀ tt2 : TermTemplate | tt 2 ∈ int2.terms • (∃ tt 1 : TermTemplate • tt 1 ∈ int1.terms ∧
tt2.termName = tt 1.termName ∧ (tt 2.outArgs , tt 1.outArgs) ∈ isSubtype))))

For brevity, we do not give here the conditions for client substitutions. As previously we

deal with first order type systems where parameters do not reference other interfaces. The

extension to deal with higher order cases is possible to specify, but omitted for brevity.

4.4 Behavioural Equivalence

In general, operation schemas are used to model actions in Z, i.e. an operation schema

captures a before state and a state that must exist following the occurrence of this operation

schema. Preconditions (the state before) and postconditions (the state after) can be calculated

for the occurrence of a given operation schema.

In Z it is not normally the case that collections of actions are composed to form be-

haviours, where a behaviour here represents some sort of ordering relation between the oper-

ation schemas (actions). Rather, a Z specification is typically represented by a collection of

unrelated 1 schemas acting upon some state, often represented itself by a schema.

This is purely a specification style, however, and Z due to its expressiveness can be used

to model behaviours as might be given with other less abstract formal languages such as

LOTOS (ISO/IEC 1989). With regard to this paper, the actions we consider can be either

invocations or terminations. An action is more than simply a signature however. It is also a

relation between a before and an after [State]. For simplicity, we model the state as a basic

type, however it might well be represented by a schema containing the information that the

object encapsulates, e.g. local variables and the predicates that apply to them. We may thus

model actions generically by a parameterised free type definition which takes a signature, e.g.

an invocation template, and two states as parameters. The first of these states represents the

state that must exist for that action to fire, i.e. its precondition, and the second represents

the state resulting from the firing of that action, i.e. the postcondition.

action ::= Inv InvTemplate × State × State | Term TermTemplate × State × State

Now a behaviour in effect is a collection of actions with a set of constraints on when they

may occur. These constraints impose an irreflexive partial ordering on the set of actions.

That is, the constraints form a transitive, irreflexive and anti-symmetric ordering relation on

the set of actions. This may be represented by:

1In the sense that they do not prescribe an ordering relation between the operation schemas.



behspec == {ar : action action | ar = ar + ∧ ar ∩ ar ∼ = ∧ ar ∩ id action = }

Through reasoning about behaviour in this abstract manner, it is possible to consider

compositions of behaviours more simply. This includes composition of interfaces and their

associated behaviours.

The state of an object at a given time may then be represented by a sequence containing

sets of state sequences, i.e. those states that the object has already been in.

history == seq( 1(seqState))

We illustrate briefly how the history is related to the behaviour specification through the

following simple graph of actions with associated states.

s3
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s4s1

s0
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d

Here the behaviour specification is given by {(a, b), (a, c), (b, c), (d , e), (d , f ), (e, f )} and

the history is given by 〈{〈s 0〉}, {〈s 0, s1〉, 〈s0, s4〉}, {〈s 0, s1, s2〉, 〈s0, s4, s5〉}, {〈s 0, s1, s2, s3〉, 〈s0, s4, s5, s6〉}〉.
We may now represent the interface to a server object as a schema consisting of an

operational interface signature, a behaviour specification and a history of states:

ServerInterface

ois : OpIntSig

sbs : behspec

shistory : seq( 1(seq State))

ois .role = Server ∧
(∀ is : IntSig ; it : InvTemplate; tt : TermTemplate; s 1, s2, s3, s4 : State |
is ∈ ois .ints ∧ it = is .inv ∧ tt ∈ is .terms ∧ (Inv(it , s 1, s2),Term(tt , s 3, s4)) ∈ sbs •

(∀ ss : 1(seq State) | ss ∈ ran shistory • 〈s 1〉 ∈ ss ∧
(∀ ss2 : seqState | 〈s 1, s2〉 ss2 ∈ ss •

(∃ ss3 : seq State | ss 3 ∈
⋃

(ran shistory) • ss 3 = 〈s1, s2〉 ss2 〈s3, s4〉))))

Here we state that the object should have a server role. It should always accept invo-

cations, i.e. the precondition for invocations are always satisfied. We also state that for

all invocations there must exist a finite sequence of states before the termination associated

with that invocation can be issued, i.e. sequences of states that result in the state for the

termination not being reachable are prohibited. It is possible to write more predicates here

relating states to actions but for simplicity we do not do so. We model the structure of client

objects similarly. For brevity, we do not include their associated predicates here.

ClientInterface

ois : OpIntSig

cbs : behspec

chistory : seq( 1(seqState))

ois .role = Client



A server and a client object may be bound successfully with regard to behavioural issues,

when all requests a client might make are acceptable to the server and all responses issued

by the server are understood by the client. The resultant behaviour is given by the transitive

closure of the two behaviour specifications.

ClientServerBindBehOk : ServerInterface ClientInterface

∀ si : ServerInterface; ci : ClientInterface | (si , ci) ∈ ClientServerBindBehOk •
(si .ois , ci .ois) ∈ BindSyntaxOk ∧ (∃ res ! : behspec • res ! = (si .sbs ∪ ci .cbs) +)

This axiomatic description shows the power of the Z language as opposed to other formal

languages such as LOTOS. Here for a server and client to be bound together successfully,

there must not exist contradictory behaviours. That is, if the server interface can perform

action a followed by action b then the client interface cannot require action b to be performed

before a. In LOTOS for example, this cannot be achieved within the specification itself. That

is, such issues are considered when testing of the specification is done.

A server interface is an acceptable substitute for another server interface when it is syn-

tactically compatible, i.e. it extends the signature. We also require that whatever sequence

of states the original server could produce between an invocation and its associated termina-

tion then the substitute server cannot have a sequence of states that does not lead to these

sequences arising. That is, it will not deadlock if the former does not deadlock. This in effect

is the basis of the process algebra theory of extension (Brinksma & Scollo December 1986).

This model of a history preserving extension is also consistent with the work presented in

(Liskov & Wing 1995).

ServerServerSubBehOk : ServerInterface ServerInterface

∀ si1, si2 : ServerInterface | (si 1, si2) ∈ ServerServerSubBehOk •
(si1.ois , si 2.ois) ∈ SubstituteSyntaxOk ∧
(∀ is : IntSig ; it : InvTemplate; tt : TermTemplate; s 1, s2, s3, s4, s5, s6, s7, s8 : State |
is ∈ si1.ois .ints ∩ si 2.ois .ints ∧ it = is .inv ∧ tt ∈ is .terms ∧
(Inv(it , s 1, s2),Term(tt , s 3, s4)) ∈ si2.sbs ∧ (Inv(it , s 5, s6),Term(tt , s 7, s8)) ∈ si1.sbs •

(∀ ss : seq State | 〈s 1, s2〉 ss 〈s 3, s4〉 ∈
⋃

(ran si 2.shistory) •
¬ (∃ ss2 : seq State | 〈s 5, s6〉 ss2 ∈

⋃
(ran si 1.shistory) •

(∀ ss3 : seq State | 〈s 5, s6〉 ss3 〈s7, s8〉 ∈
⋃

(ran si 1.shistory) • ¬ (ss 2 in ss3)))))

4.5 Non-functional Equivalence

There are many different sorts of non-functional equivalences that we might be interested

in. For simplicity, we focus on the maximum number of state changes associated with a

server interface following an invocation. This can then be used for example, to calculate

the maximum time duration from the firing of an invocation to the firing of its associated

termination, using the loose approximation that more state changes mean longer durations.

It might well be the case that the different interrogations associated with a server interface

will have different prescriptions on the maximum non-functional aspects, e.g. state changes

and hence timeliness requirements. For simplicity, we consider all of them at once.



maximumStateChanges : ServerInterface × IntSig

∀ si : ServerInterface; is : IntSig | is ∈ si .ois .ints •
(∀ it : InvTemplate; tt : TermTemplate; s 1, s2, s3, s4 : State |
it = is .inv ∧ tt ∈ is .terms ∧ (Inv(it , s 1, s2),Term(tt , s 3, s4)) ∈ si .sbs •

maximumStateChanges(si , is) = max {ss 1 : seqState |
head ss1 = s2 ∧ last ss 1 = s4 ∧ {ss1} ∈ ran si .shistory • #ss 1})

It should be noted here that we take the sequence to start at s 2 since the invocation starts

once state s 1 has been exited. We also assume that there is some form of fairness condition

in the system. That is, if the precondition for an action is satisfied then it will eventually

occur. This is necessary since invocations are always possible. It is also necessary to satisfy

the proof obligation that the set cardinality operator is applied to finite sets.

Extending this to cover minimum state changes, and hence lower time duration limits

requires only that the final predicate returns the minimum sequence. From this, upper and

lower limits for the number of state changes from invocation to termination can be established.

This information can subsequently be used to calculate time windows for interrogations, i.e.

the upper and lower time limits for reception of a termination following an invocation.

5 Conclusions

This paper has shown the flaws in the current type system adopted by ODP and the limita-

tions in type checking based on signatures only as found in most current distributed system

approaches. Causality plays a central role in type checking at the signature level that has

been glossed over in most work. The need to consider behavioural aspects of types is critical

to achieving reliable interworking in distributed systems, since a signature is only a very weak

substitute for behaviour. We have modelled behaviour here in a novel way that is not the

usual Z approach and might initially be open to question. In effect we have a form of labelled

transition system behaviour ala LOTOS. So are we simply re-inventing LOTOS semantics in

Z? To answer this question, we list the advantages put forward in our work:

• we separate signature from behaviour (unlike in process algebras);

• we can introduce behavioural relations inside the specification instead of outside, e.g.

when testing for conformance;

• we can also specify powerful relations that labelled transition systems do not tradition-

ally offer, e.g. transitive closure.

This paper has also recognised that behavioural and syntactic considerations may not be

enough to build reliable interworking systems. Non-functional aspects of types should also be

checked, e.g. quality of service. We have shown how Z can be used to specify type checking

at all three levels, i.e. syntactic, behavioural and non-functional.

It is likely that the issues surrounding this work will have to be addressed by the current

standardisation activity of type management (ISO/IEC May 1996) so that interworking of

distributed systems can be achieved successfully.
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