
Kenneth J. Turner and Qian Bing. Systematic Testing of Radiotherapy
Accelerators. In Hartmut Ehrig, Berndt J. Kramer and Atilla Ertas, editors,
Proc. Integrated Design and Process Technology (IDPT 02), pages 33.1-33.8,
Society for Design and Process Science, Grandview, Texas, USA, June 2002.

Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c©2002 Society for Desing and Process Science

Systematic Testing of Radiotherapy Accelerators

Kenneth J. Turner and Qian Bing
Computing Science and Mathematics

University of Stirling, Scotland FK9 4LA
kjt@cs.stir.ac.uk, qb@cs.stir.ac.uk

ABSTRACT:
The nature of radiotherapy accelerators is briefly ex-

plained. It is argued that these complex safety-critical sys-
tems need a systematic basis for testing their software. The
paper describes a novel application of protocol specification
and testing methods to radiotherapy accelerators. It is ex-
plained that the accelerator control system is specified using
LOTOS (Language Of Temporal Ordering Specification). It
is completely infeasible to use the LOTOS directly for test
generation. Instead, specification inputs are restricted us-
ing annotations in a Parameter Constraint Language. This
is automatically translated into LOTOS and combined with
the accelerator specification. It then becomes manageable
to generate tests of the actual accelerator to check that it
agrees with its specification according to the relation ioconf
(input-output conformance). Test annotations and a sample
test are described.

I. INTRODUCTION

A. Radiotherapy Accelerators

Radiotherapy equipment is used medically to deliver
controlled doses of radiation to a patient, usually to destroy
cancerous tissue. Among the several kinds of radiother-
apy equipment, the most important is the linear accelerator
(‘accelerator’ or ‘linac’). This is so-named because it accel-
erates a beam of electrons to high energy that can be used
directly or to generate x-rays. Accelerators are highly spe-
cialised pieces of equipment that require special housing
and trained operators. For this reason, they are generally
found in oncology (cancer) clinics.

Radiotherapy is a safety-critical procedure that demands
accurate delivery of radiation. A number of radiation ac-
cidents have been well documented (e.g. [16], [17]). The
Therac-25 accelerator is infamous as having caused acci-
dental injuries, in some cases leading to death [18]. In fact,
a radiation underdose is as undesirable as an overdose since
it may fail to kill a tumour. Not delivering radiation to the
exact area is also serious since it damages the surrounding
healthy tissue instead of destroying the cancerous growth.

Radiotherapy equipment is regulated, designed and
tested to very high standards. A review of standards for
software-controlled medical devices is given in [14]. The
main international standards of relevance to this paper are
those in the IEC 601 series. This is a very large collection of
standards, specifically including programmable electrical

medical systems [8], [9]. A number of subsidiary standards
concern accelerators [10]. The US Food and Drug Admin-
istration has published guidelines on Good Manufacturing
Practice [4] that are relevant to software-controlled medi-
cal devices. Radiotherapy machines are typically certified
in the US before they are sold anywhere in the world. The
American Association of Physicists in Medicine has laid
down a code of practice specifically for radiotherapy ac-
celerators [19]. The Canadian Atomic Energy Authority
also plays an active role in regulating radiotherapy devices.
The European Commission is defining standards for safety
of medical equipment (e.g. the Medical Devices Directive
[2]). More general software development standards are also
relevant, such as the ISO/IEC 9000 series on quality assur-
ance and its European EN equivalents.

Early radiotherapy equipment was essentially hardware.
Hardware aspects of accelerators are regularly and thor-
oughly checked. For example, dosimeters (dosage meters)
are periodically calibrated against national standards. The
accuracy of radiation delivery is also regularly checked in
simulated treatments. The hardware is extensively pro-
tected by interlocks that address situations like power sup-
ply failure, dosimeter failure, or entry to the treatment room
during radiation delivery.

Modern accelerators are, however, complex software-
controlled systems. (The Therac-25 accidents stemmed
in part from a reduction in the number of hardware inter-
locks.) Accelerator software resembles standard applica-
tion software. It requires a graphical user interface, periph-
eral input-output, file system operations, and data commu-
nications. The accelerator software depends on a conven-
tional style of operating system. The software must respect
strict demands for dependable, real-time operation. Soft-
ware, unlike hardware, does not deteriorate over time so
that different reliability concerns apply. Like any applica-
tion, the accelerator control software is upgraded from time
to time by the manufacturers. Of course, the software is
developed much more carefully than conventional applica-
tion software. However with new accelerator software, it is
desirable to check that the new version has not introduced
any flaws. Surprisingly, there seems to be little automation
to help clinics to do this.

B. Formal Methods

Formal methods are an obvious choice to support the de-
velopment and testing of radiotherapy equipment. For ex-



ample formality offers precise specification, rigorous anal-
ysis, and automated test generation. Somewhat unexpect-
edly, radiotherapy equipment has attracted little attention
from the formal methods community. [21] is one of few
contributions, having made use of LOTOS (Language Of
Temporal Ordering Specification [11]) to investigate equip-
ment characteristics. The only other work known to the
authors has used Z in the development of software for a ra-
diation therapy machine [13].

Conformance testing uses experimentation to check an
implementation against its formal specification. Tests are
derived from the specification, then applied to the Imple-
mentation Under Test. Based on observations made during
test execution, a verdict is given about the correct function-
ing of the implementation. The unique contribution of this
paper is the application to radiotherapy accelerators of tech-
niques normally used only with protocols: the LOTOS lan-
guage, and methods for generating conformance tests.

Test theories were first studied more than a decade ago.
They aim to define implementation relations by explicitly
using external tests and observations (e.g. [20]). Apart from
defining an implementation relation, conformance testing
involves finding a set of tests to distinguish between cor-
rect and incorrect implementations. Several test generation
algorithms for LOTOS-like specifications have been pro-
posed. In [22] a testing theory is proposed for communi-
cating systems that distinguish inputs and outputs. This is a
more realistic view of systems such as accelerators.

The test suite for an accelerator is generated from a
LOTOS specification following an algorithm based on that
given in [22]. The authors have extended CADP (Cæsar
Aldébaran Development Package) to generate accelerator
test suites automatically. Each test case in the generated
test suite defines the possible inputs and expected outputs.

The following sections start by giving an introduction to
radiotherapy accelerators. The structure of the control sys-
tem specification is explained, avoiding LOTOS details for
the benefit of the general reader. The strategy for test anno-
tation is explained with some basic examples and with the
actual test constraints for an accelerator. A non-technical
outline is then given of how the constrained specification is
used to create a test suite automatically.

II. RADIOTHERAPY ACCELERATORS

A. Accelerator Hardware

The entire accelerator is located in a treatment room.
This is heavily screened to prevent radiation leakage to the
outside. Access is via an interlocked door (or gate) from
the control room. The control room houses the operator
console and supporting computer systems. For security, the
operator must insert a key into the console before it will
work. [6] provides a comprehensive introduction to the the-
ory and practice of accelerators.

A typical accelerator is shown schematically in figure 1.

Rotating
Gantry

Gantry
Support

Electron
Beam

Treatment
Couch

Electron/X-Ray
Beam

Treatment
Head

Gun

Pendant

Fig. 1. Accelerator Outline

The accelerator proper is mounted on a gantry that rotates
about the horizontal axis. The accelerator uses a travel-
ling waveguide to accelerate electrons from an electron gun.
The beam is controlled so as to yield electrons with energies
typically in the range 6 to 20 MeV (million electron-volts).
Radiation dosages are measured in MUs (monitor units).
MUs reflect the calibration of dosimeters rather than any
absolute unit, but 1 MU approximates to 1 cGy (centigray,
a standard unit of radiation dosage).

The horizontal electron beam is bent by magnets through
90◦(or 270◦) so that it points downwards. In electron mode,
the electrons emerge through a radio-transparent plate to
reach the patient. In x-ray mode the electrons strike a target,
causing a shower of x-rays towards the patient.

The treatment head contains a collimator. This consists
of four movable plates, two that move in the X direction and
two that move in the Y direction. They define a rectangle
that restricts the beam to a defined aperture. A sophisti-
cated accelerator will have an MLC (multi-leaf collimator).
This has many (one or two hundred) individually movable
leaves that may be used to set an arbitrary shape for the
beam aperture. An ‘accessory’ may be fitted to the treat-
ment head to control the beam distribution. The treatment
head also houses an optical system that allows the shape
and position of the beam to be seen on the patient’s skin
prior to treatment.

The patient lies on a treatment couch that may be ad-
justed for height, in-out position (longitude), side-to-side
position (latitude), and rotation. A pendant (remote control
device) is attached to the couch for setting the couch posi-
tion and also for rotating the gantry. The operator sets up
the patient and the accelerator so that the correct part of the
body will be irradiated.

B. Accelerator Control System

During treatment, the delivered radiation dose is read pe-
riodically from the accelerator. For safety, this is measured
by two independent dosimeters and each dose reading is ac-
cumulated. The first dosimeter reading is usually what de-
termines that treatment is complete. The accumulated dose



should rise to the planned dose, but some tolerance is al-
lowed. In case the first dosimeter does not work properly,
readings from the second dosimeter are used as a backstop.
Treatment is aborted if the second dose measurement ex-
ceeds the planned dose by 20 MUs or more. The dose rate
is also checked at every measurement. It may not deviate
from the planned rate by more than an amount that depends
on the particular treatment. Finally, the treatment time is
calculated from the dose and dose rate. The clock time is
read to ensure that treatment does not exceed the planned
time by more than 10%.

Figure 2 shows the main elements of a typical control
system. The operator usually starts by arranging the patient
and the accelerator geometry in the treatment room. The in-
room computer displays setup information in the treatment
room. The operator then retires to the control room, where
treatment details are set up on the console computer. The
console display shows the current accelerator setup and sta-
tus. Treatments are usually planned separately and stored
on a file server. The treatment is downloaded to the treat-
ment computer and thence to the console computer.

Peripheral input-output is handled by a separate commu-
nications computer. During actual treatment (delivery of
radiation), the accelerator is under the command of a sep-
arate control computer that issues commands and monitors
status via common RAM. The entire system uses about half
a dozen computers or microprocessors so it is not surprising
that the software is complex. For the work reported in this
paper, the control system has been drastically simplified as
shown in figure 3. This effectively groups all of the con-
trol functions in a single black box. The main inputs and
outputs are shown in the diagram.

III. ACCELERATOR SPECIFICATION

The simplified accelerator control system shown in fig-
ure 3 has been specified in LOTOS. Although the specifi-
cation reflects a particular type of accelerator, the descrip-
tion is typical of a variety of accelerators. The specification
is straightforward: 730 non-comment lines, about half of
these being taken up by data types.

Many of the data types simply rename the natural num-
bers (e.g. dose units, angles, positions). Although in prac-
tice these parameters are floating point numbers with var-
ious scales and ranges, this simplified approach is accept-
able. It just means that the offset and units for these param-
eters are calculated differently from clinical practice.

Although the specification contains a Clock process, this
merely increments a time count as a natural number. This
is sufficient for the purposes of the specification. It would
be necessary to use E-LOTOS (Enhanced LOTOS [12]) if a
more precise notion of time were required. However, E-
LOTOS tool support is still rather incomplete.

The main process is Control. Initially this allows acceler-
ator setup by the Setting process. Setting the gantry or the
couch position causes movement commands to be issued,

but other inputs are merely stored prior to treatment. The
console display is updated after every input to reflect the
current accelerator status. The operator may initiate treat-
ment once a valid set of parameters has been entered.

The accelerator setting is then sent to the accelerator
and radiation begins. The Monitoring process periodically
reads the accelerator status, i.e. the two dosimeter readings.
Normally, treatment continues until the prescribed dose has
been delivered. Section II-B describes how the accumu-
lated doses and the clock are used to terminate treatment.
The operator is permitted to pause and resume treatment,
perhaps because the patient is restless. Any abnormal con-
dition such as an interlock stops the treatment immediately.
On completion of treatment, radiation is stopped and the
operator is informed.

IV. TEST GENERATION

A. Test Strategy

The aim of test generation is to produce useful system
tests from the accelerator specification. There does not ap-
pear to be a systematic procedure for clinics to check ac-
celerator software. Automated testing can therefore sup-
plement normal clinical practice, particularly following a
software upgrade. Currently, the generated tests can only
be run manually by an operator following a script. In fu-
ture it is hoped to convert the tests into the same format as
used for patient treatments. It would then become possi-
ble to load the test suite into the treatment computer and to
execute the tests automatically.

There is a choice of when to generate tests. Ideally, a
symbolic transition system would first be created from the
specification. Tests would then be generated by traversing
this transition graph, choosing test values on-the-fly. Unfor-
tunately tools to achieve this are not yet available, though
[1] is a promising basis. Tests for accelerators have there-
fore been generated by first constraining the specification
behaviour. This is done by imposing input constraints with
a special-purpose language that is automatically translated
into LOTOS and composed with the specification.

Most work on formally-based (conformance) testing has
concentrated on protocols. It has been shown that the same
methods can be applied to hardware testing [15]. Both pro-
tocol testing and hardware testing are control-dominated.
That is, the focus is on behavioural rather than data as-
pects. An accelerator is, however, heavily influenced by
data. For example, the specification outlined in section III
is controlled by fourteen input settings. Most of these have
a very large number of possible values (e.g. dose, dose rate,
positions, angles) that may be set in any order. As a result,
the number of possible test cases is astronomical (in excess
of 10

12). Only a small number of these test cases would be
interesting.

It is therefore necessary to seriously restrict the values
used for testing. Fortunately, the inputs needed by an ac-



Couch Accelerator
MLC

Controller

Console
Computer

Treatment
Computer

Keyboard File Server

Door

Key

Pendant

Accelerator
Display

Comms
Computer

Control
Computer

Display

Accessory
Controller

Display

In-Room
Computer

Display

Disc

Control
Room

Common
RAM

Treatment
Room

Fig. 2. Accelerator Control System

Couch

Accelerator

Control
System

Couch Setting

Start/Pause/Finish
Mode, Energy, Dose Units, Rate

Collimator Setting, Accessory Setting

Start/Pause/Finish
Mode, Energy

Dose Units, Rate
Gantry Angle

Collimator Setting
Accessory Setting

Status
Interlock

Display
Interlock
Finished

Clock

Time

Console

Pendant

Gantry Angle
Couch  Setting

Fig. 3. Simplified Accelerator Control System



celerator fall into two categories: values from a short list
of alternatives, and numbers within a defined range. An in-
put with limited alternatives (e.g. an enumerated type) can
be tested in full. An appropriate technique for ranges is
boundary testing as used in software engineering. As noted
earlier, numeric input parameters have been mapped to nat-
ural numbers in the specification. Suppose that some in-
put is a natural in the range 6 to 20 inclusive. Significant
test values are the lowest and highest permissible values,
plus some middling value (e.g. 6, 13, 20). If it is desired
to check for robustness, values just outside the permissible
range should also be checked for rejection (e.g. 5, 21). It
is not possible to analyse an arbitrary LOTOS data type to
determine that its values lie in a bounded range. Test gen-
eration therefore relies on the specifier giving some help,
namely the nature and values of bounds.

Even with these restrictions to test values, the number
of test cases is still far too large because of input permuta-
tions. Instead, the specifier can help by indicating the order
in which inputs may be supplied. Even if this is only a
partial order, the combinatorial situation can be greatly im-
proved.

B. Input Value Constraints

Only the specifier knows the intended range and order-
ing for input values; these cannot (reasonably) be inferred
from the specification. The authors have designed PCL (Pa-
rameter Constraint Language, ‘Pickle’) to allow the speci-
fier to give guidance on what inputs to supply and when.
In general, this is a difficult problem as a wide variety of
event structures and specification styles are possible with
LOTOS. PCL is a reasonably general and flexible language
that is applicable to many other testing problems. However
it was particularly inspired by the need to test the kind of
accelerator specification found in section III.

PCL annotations are special LOTOS comments. As com-
ments, they do not affect the specification behaviour. In-
stead, the LOTOS source is preprocessed to obtain con-
straints that are automatically placed in parallel with the
main specification behaviour. This restricts certain inputs,
while leaving outputs and some inputs unconstrained. If
symbolic automata are generated in future, the PCL anno-
tations will be used to guide the generation of test values
during automaton traversal.

In fact, LOTOS does not distinguish input from output so
key event occurrences must be annotated. To be exact, only
one example of each event structure is annotated. Since the
same data type may be used in different events with differ-
ent sets of values, it is appropriate to annotate key events
rather than data types. An example might be:

prime : values(2, 3, 5)
indicating that only the inputs 2, 3, 5 should be considered
during test generation. The label prime for this set of values
is used when input constraints are assembled. The PCL
preprocessor infers the event format from the context.

The values directive is appropriate for a limited set of
discrete values. If the parameter is a number in a range (as
is very common in accelerator specifications), a shorthand
is available:

hour : range(1, 12)
which is equivalent to the lowest, middling and highest val-
ues: 1, 6, 12. For robustness testing, the values just on each
side of this range may be included by:

hour : bounds(1, 12)
which includes 0 and 13 as well.

There may be interdependencies among input values.
Suppose that input size has test values 5, 13 and 21. The
range for a further parameter may be given by expressions
based on this:

value : values(size + 5, 2 * size)
Considering the test values for size, this equates to selecting
values(10, 10), values(18, 26) and values(26, 42).

Input values may be given inside a LOTOS expression, in
which case the expression is evaluated for each value:

status : MakeStatus(range(1, 10), values(2, 4, 8))
This is equivalent to the values MakeStatus(1, 2), MakeSta-
tus(5, 4) and MakeStatus(10, 8).

Because the overall constraints are composed with the
main behaviour, they must synchronise on every event. It
is therefore necessary to annotate output events and uncon-
strained input events as free so that they can be allowed
to happen. It is possible, however, to write LOTOS events
whose event structure cannot be determined automatically.
In such a case it is necessary for the annotation to give the
generic format of the event.

C. Input Ordering Constraints

The PCL annotations so far allow the values of input
events to be constrained by the specifier. To limit combi-
natorial explosion, it is also desirable to limit the possi-
ble orderings of inputs. Again this is done by annotating
the specification. Inputs may be ordered in three different
ways:
separate: input values are chosen completely indepen-
dently. This is the most general case, but causes the largest
number of variations to be tested.
grouped: the ith values for inputs occur in groups, but in
any relative order. Suppose that one input may take values
2, 3, 5 while another may take values Red, Green, Blue.
The first, second and third values from each are chosen and
input in either order: 2 and Red, 3 and Green, 5 and Blue.
Grouped inputs must have an identical number of values.
This is not as restrictive as it might seem since the inputs
will typically all be defined by range or bounds. Grouping
significantly reduces combinatorial explosion by checking
all values together.
serial: the ith values for inputs occur in sequence. For the
same example as above, the inputs would be: 2, Red, 3,
Green, 5, Blue. This is obviously the most restrictive but
least expensive combination of inputs.



Each input should fall into one of these three categories
(or conceivably be free if it is unconstrained). To limit com-
binatorial explosion further, separate or grouped values
may be included in a serial list. As a further enhancement,
an input may be followed by a question mark to indicate an
optional value. Consider a hypothetical stock control sys-
tem with inputs annotated as follows:

separate(price, tax?);
grouped(colour?, size);
serial(weight, separate(type, code?), stock, postage?)

meaning that inputs price and optional tax may be chosen
independently. Input values for optional colour and size
should be chosen in groups. An input value for weight is
followed in either order by type and optional code, then in-
puts are provided for stock and optional postage.

Annotations for input ordering are given following the
top-level LOTOS behaviour expression. The annotations
are extracted by the preprocessor after all the input value
annotations and used to automatically generate an overall
constraint process in LOTOS. This results in a new specifi-
cation that is used to generate tests. Depending on the input
combinations, a number of LOTOS behaviour patterns are
required for the constraint processes.

A final complication is that the specification may have
cyclic behaviour, so it is necessary to know when a fresh
set of input values should be generated. It is assumed that
some key event can be annotated with finish as marking the
end of the current cycle.

D. Accelerator Specification Annotations

The following input value annotations were placed in
strategic places in the accelerator specification. They are
scattered but are extracted by the preprocessor:

mode : values( (* treatment *)
XRayMode, ElectronMode)

energy : range(6, 20) (* beam energy *)
dose : range(5, 100) (* dose units *)
rate : range(1, 50) (* dose rate *)
gantry : range(0, 359) (* gantry angle *)
x1 : values(0, 0, 39) (* collimator X1 *)
x2 : values(1, 40, 40) (* collimator X2 *)
y1 : values(0, 0, 39) (* collimator Y1 *)
y2 : values(1, 40, 40) (* collimator Y2 *)
accessory : values( (* accessory *)
AccessoryIn, AccessoryOut)

rotation : range(0, 359) (* couch rotation *)
latitude : range(0, 50) (* couch latitude position *)
longitude : range(0, 150)(* couch longitude position *)
vertical : range(60, 170) (* couch vertical position *)
accelerator : values( (* dosimeter pair readings *)

MakeStatus(values(2, 1, 2), values(2, 1, 2)),
MakeStatus(values(0, 25, 28), values(10, 26, 35)),
MakeStatus(values(0, 1, 3), values(10, 50, 70)))

If software is governed by a bounded parameter, it is
common experience that coding errors are most likely at the

extremes of the range. This is the basis of boundary value
testing. The same principle applies to accelerator software
testing. In addition, the extreme values also check that the
hardware is correctly operating over its full range. Most
accelerator parameters are therefore defined by range tests.

Nearly all the test constraints above are straightforward.
The dosimeter readings are given as three set of values to be
used on each successive treatment. Each set of values gives
three pairs of dosimeter readings. The values are chosen so
that treatment stops on the final value of each triple.

Some inputs and all outputs are marked as unconstrained.
In a few cases it is necessary to indicate the event structure
explicitly as it cannot be determined from the context. In-
ternal events (clock signals) do not need to annotated as
they are not externally visible.

Finally, the permissible combinations of inputs are given:
serial( (* sequence of inputs *)
separate(mode?, accessory?), (* either order *)
energy, dose, rate, (* energy, dose, rate *)
gantry?, (* gantry *)
x1, x2, y1, y2, (* collimator *)
rotation?, latitude?, longitude?, vertical?, (* couch *)
accelerator) (* status *)

The names here refer to the input value labels given earlier.
It will be noted that a number of inputs are optional because
they have default values that need not be set.

The fairly compact annotations for input values and or-
dering are turned automatically into some complex con-
straint processes. An overall constraint process is gener-
ated automatically and placed in parallel with the main be-
haviour. The gates of this top-level process are inferred
from the structure of the annotated events. The Constraints
process relies on the automatically generated sub-processes
ConstraintsFree and ConstraintsRepeated.

ConstraintsFree permits free events to occur without re-
striction. ConstraintsRepeated allows grouped inputs to oc-
cur independently of separate and serial inputs. If ranges
are specified for the constrained events, the lowest, mid-
dling and highest values are chosen in sequence. Since the
specification must be tested for various cycles of behaviour,
the console Finished event is used as the trigger to choose a
new set of repeated events.

The ConstraintsRepeated process uses automatically
generated sub-processes. Grouped inputs are defined by
ConstraintsGrouped, separate inputs by ConstraintsSepa-
rate, and serial inputs by ConstraintsSerial.

E. Accelerator Test Generation

By using PCL annotations, the accelerator behaviour un-
der test is restricted to a manageable extent. Standard test
generation techniques can then be applied.

Specification languages often model a system as an LTS
(Labelled Transition System). In real-world systems, how-
ever, inputs and outputs are clearly distinguished. The in-
puts of a system are always enabled and cannot refuse the



actions offered by the environment. After the system con-
sumes an input and produces its outputs, the environment
has to accept the outputs. Communication is thus no longer
symmetric. Following [22], this kind of behaviour is mod-
elled as an IOLTS (Input-Output Labelled Transition Sys-
tem).

Several implementation relations have been defined to
express conformance of an implementation to its specifi-
cation. In these relations a specification is modelled as an
LTS, and an implementation as an IOLTS. This is because
an LTS can give a more abstract view of a system, while an
IOLTS is closer to reality. The relation ioconf (input-output
conformance) is appropriate for accelerator specifications.
This relation judges an implementation to be correct if, after
every trace of the specification, the implementation outputs
can also be produced by the specification. An implemen-
tation cannot produce outputs that are not expected by the
specification. Since this also holds in quiescent states, the
implementation may not output if the specification cannot
do so. (A quiescent state is one in which no output is ex-
pected.)

Checking ioconf can be achieved by checking trace inclu-
sion on the suspension automaton generated from the LTS.
Briefly, a suspension automaton is a directed graph built by
determinising the LTS and marking quiescent states. The
algorithm to transform an LTS into a suspension automaton
has been described elsewhere [22] and is not repeated here.

Test generation is achieved by traversing the suspension
automaton. The application of PCL annotations to the ac-
celerator specification ensures that the behaviour is finite.
Test generation aims to cover all transitions in the automa-
ton. Generating a sequence that visits every edge in the
graph at least once is the Chinese postman problem [3].
As suspension automata may not be strongly connected,
the approach of [7] is adopted because it is suitable for all
kinds of directed graph. This method uses depth-first search
whenever possible. But when an unvisited edge cannot be
reached, then breadth-first search is used to find a state with
an unvisited edge. The whole procedure repeats until all
transitions have been covered.

Each transition tour is a test case and is saved in a test
file. The test generation algorithm may find that a state
offers alternative outputs with the same gate but different
values. These outputs are marked when the corresponding
test cases are generated, meaning they are not necessarily
matched by the implementation. Execution of the test suite
takes this implementation freedom into account.

CADP (Cæsar Aldébaran Development Package [5])
supports an application programming interface that allows
user-written programs to manipulate the state space of a
given LOTOS specification. As reported in [15], the Test-
Gen tool has been developed to generate a test suite by
creating and traversing a suspension automaton. This tool
was originally developed to generate hardware tests, but the
same approach is applicable to generating accelerator tests.

The accelerator specification in section III was con-
strained as described in section IV-D. The resulting LTS,
minimised with respect to observational equivalence, has
8616 states and 11300 transitions. There are 67 distinct
paths and thus test cases, the longest consisting of 136
events though most are much shorter. A typical test case
provides the following inputs:

mode: electron mode
energy: 13 MeV (million electron-volts)
dose: 52 MUs (monitor units)
rate: 25 MUs/minute
collimator: X1 0 cm, X2 40 cm, Y1 0 cm, Y2 40 cm
gantry: 180◦

couch: rotation 180◦, latitude 25 cm, longitude 75 cm,
vertical 115 cm

dosimeters: 0 and 10 MUs, 25 and 26 MUs, 28 and 35 MUs

All inputs but the last are provided during treatment
setup. The last gives the pairs of dosimeter readings dur-
ing treatment. These are aggregated to give cumulative dose
readings of 0 and 10 MUs, 25 and 36 MUs, 53 and 71 MUs.
In the test above, treatment stops when the accumulated
dose becomes 53 MUs (slightly beyond the planned figure
of 52 MUs). The test would expect treatment to be aborted
if the second dosimeter exceeded the tolerance level of 72
MUs. If the treatment time had exceeded the planned time,
the test would also expect treatment to be aborted. Con-
trol inputs and status outputs (not shown above) are also
included in the test suite according to the accelerator speci-
fication.

V. CONCLUSION

Radiotherapy accelerators have been briefly described.
Since these are complex, software-controlled, safety-
critical systems it is highly desirable to employ systematic
tests of the control system. The structure of a typical accel-
erator specification in LOTOS has been outlined.

To have any hope of generating realistic tests, it is neces-
sary for the specifier to annotate the specification with guid-
ance on choosing useful test inputs. PCL annotations define
key test inputs – either explicit values (say, for an enumer-
ated type) or boundary test values (for a numeric range).
Unconstrained events are also marked. Further PCL anno-
tations define how inputs should be combined to make test
generation practicable. The resulting constraint process in
parallel with the main behaviour allows a manageable au-
tomaton to be generated. A suspension automaton is gen-
erated from this and traversed to create test cases that form
the accelerator test suite.

Although PCL has been designed to help with acceler-
ator testing, it is of general utility and should be useful
for other domains. For example, LOTOS has been used in
fields such as telecommunications, hardware design, graph-
ics, and general software design. In all of these, it would be
convenient to restrict test values during test generation.



So far, test generation has been based on the simplified
accelerator model in figure 3. Future work will generate
tests from more detailed accelerator models such as in fig-
ure 2. The major challenge will be to deal with the much
larger state space. However the finer level of modelling will
hopefully allow more subtle tests to be generated. The pos-
sibility of executing test suites automatically will also be
investigated. Although this work is in the future, it is hoped
that the paper has given sufficient insight into the practica-
bility and importance of the approach for testing radiother-
apy accelerators.

ACKNOWLEDGEMENTS

This paper reports results from the CONFORMED

project (Conformance of Radiological/Medical Devices,
www.cs.stir.ac.uk/∼kjt/research/conformed.html). This is
being undertaken by the authors with financial support
from NCC (National Computing Centre, Manchester UK,
www.ncc.co.uk). Dr. Hamish Porter (Western General Hos-
pital, Edinburgh UK) was generous with advice on acceler-
ator design and operation. However any errors and miscon-
ceptions in the paper are due to the authors. Dr. Jan Tret-
mans (University of Twente) and Dr. Ji He are also thanked
for their insights into test generation.

REFERENCES

[1] M. Calder and C. E. Shankland. A symbolic semantics and bisim-
ulation for full LOTOS. In M. Kim, B. Chin, S. Kang, and D. Lee,
editors, Proc. Formal Techniques for Networked and Distributed Sys-
tems (FORTE XIV), pages 184–200. Kluwer Academic Publishers,
London, UK, Sept. 2001.

[2] EC. Medical devices directive. Technical Report 93/42/EEC, Euro-
pean Commission, Brussels, Belgium, June 1993.

[3] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chi-
nese postman. Mathematical Programming, 5:88–124, 1972.

[4] FDA. Medical devices: Current good manufacturing practice. Tech-
nical Report 61 FD 195, US Food and Drug Administration, New
York, USA, Oct. 1996.

[5] J.-C. Fern ández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier,
and M. Sighireanu. CADP (CÆSAR/ALDÉBARAN Development
Package): A protocol validation and verification toolbox. In R. Alur
and T. A. Henzinger, editors, Proc. 8th. Conference on Computer-
Aided Verification, number 1102 in Lecture Notes in Computer Sci-
ence, pages 437–440. Springer-Verlag, Berlin, Germany, Aug. 1996.

[6] D. Greene and P. C. Williams. Linear Accelerators for Radiation
Therapy. IOP Publishing Ltd., Bristol and Philadelphia, 1997.

[7] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architec-
ture validation for processors. In Proc. 22nd. Annual International
Symposium on Computer Architecture, 1995.

[8] IEC. Medical Electrical Equipment – Part 1: General Requirements
for Safety. IEC 601-1. International Electrotechnical Commission,
Geneva, Switzerland, 1988.

[9] IEC. Medical Electrical Equipment – Part 1: General Requirements
for Safety – 4. Collateral Standard: Programmable Electrical Med-
ical Systems. IEC 601-1-4. International Electrotechnical Commis-
sion, Geneva, Switzerland, 1988.

[10] IEC. Medical Electrical Equipment – Part 2: Particular Require-
ments for Safety. IEC 601-2. International Electrotechnical Com-
mission, Geneva, Switzerland, 1988.

[11] ISO/IEC. Information Processing Systems – Open Systems Intercon-
nection – LOTOS – A Formal Description Technique based on the
Temporal Ordering of Observational Behaviour. ISO/IEC 8807. In-
ternational Organization for Standardization, Geneva, Switzerland,
1989.

[12] ISO/IEC. Information Processing Systems – Open Systems In-
terconnection – Enhanced LOTOS – A Formal Description Tech-
nique based on the Temporal Ordering of Observational Behaviour.
ISO/IEC 15437. International Organization for Standardization,
Geneva, Switzerland, Apr. 2000.

[13] J. Jacky, J. Unger, M. Patrick, D. Reid, and R. Risler. Experience
with Z developing a control program for a radiation therapy ma-
chine. In J. P. Bowen, editor, Proc. 10th. International Conference
of Z Users, Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, Dec. 1996.

[14] J. Jacobson and O. Andersen. Software controlled medical devices.
Technical Report SP-Rapport 1997:11, European Network of Clubs
for Reliability and Safety of Software, Apr. 1997. ISBN 91-7848-
669-6.

[15] Ji He and K. J. Turner. Protocol-inspired hardware testing. In
G. Csopaki, S. Dibuz, and K. Tarnay, editors, Proc. Testing Com-
municating Systems XII, pages 131–147, London, UK, Sept. 1999.
Kluwer Academic Publishers.

[16] E. J. Joyce. Accelerator linked to fifth radiation overdose. American
Medical News, 1, Feb. 1987.

[17] C. J. Karzmark. Procedural and operator error aspects of radiation
accidents in radiotherapy. International Journal of Radiation Oncol-
ogy Biological Physics, 13:1599–1602, Jan. 1987.

[18] N. Leveson and C. S. Turner. An investigation of the Therac-25
accidents. IEEE Computer, 26(7):18–41, July 1993.

[19] R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de
Geijn, and M. S. Weinhous. AAPM code of practice for radiotherapy
accelerators. Medical Physics, 21(7):1093–1121, July 1994.

[20] R. D. Nicola. External equivalences for transition systems. Acta
Informatica, 24:211–237, 1987.

[21] M. H. Thomas. The story of the Therac-25 in LOTOS. High Integrity
Systems Journal, 1(1):3–15, Feb. 1994.

[22] J. Tretmans. Test generation with inputs, outputs and repetitive qui-
escence. Software Concepts and Tools, 17:103–120, 1996.


