Kenneth J. Turner. Specifying and Realising Interactive Voice Services. In
Harmut Koenig, Monica Heiner and Adam Wolisz, editors, Proc. Formal
Techniques for Networked and Distributed Systems (FORTE XVI),
Lecture Notes in Computer Science 2767, 15-30, copyright
Springer-Verlag, Berlin, September 2003.

Specifying and Realising Interactive Voice Services

Kenneth J. Turner

Computing Science and Mathematics, University of Stirli@gotland FK9 4LA
Emailkj t @s. stir.ac. uk

Abstract. VoiceXML (Voice Extended Markup Language) has become a majo
force in interactive voice services. However current apphes to creating \Voice-
XML services are rather low-level. Graphical representatiof VoiceXML are
close to the textual form of the language, and do not give l-tegel description

of a service. REss(Chisel Representation Employing Systematic Specifioitio
can be used to give a more abstract, language-independamtofiinteractive
voice services. EEssis automatically compiled into VoiceXML for implemen-
tation, and into loTos(Language Of Temporal Ordering Specification) or SDL
(Specification and Description Language) for automatediaisa The paper ex-
plains how GRESsis translated into VoiceXML and &Tos

1 Introduction

1.1 Motivation

This paper explains how to represent, specify and analyRe(Interactive Voice Re-
sponse) services. VoiceXML (Moice Extended Markup Lan@dg)]) is typically used
to implement automated telephone enquiry systems. Voide¥Mnuch more accept-
able to users than the early generation of touch-tone sgst8pecifically, VoiceXML
allows users to do what they expect in a telephone call: tadklizsten. VoiceXML can
be linked to databases, telephone networks and web seA®is.result, VoiceXML
is very useful for those who cannot directly access suchrinétion. A user on the
move, for example, is likely to have a mobile telephone buttéd web access. A par-
tially sighted or physically handicapped user could find ¥eelsed services difficult or
impossible to use. Many households still do not have websscce

Being an application of XML, VoiceXML is textual in form. Hosver several com-
mercial packages (e.g. Covigo Studio, Nuance V-BuildexedoDesigner) provide a
graphical representation. Some of these reflect the hicaicstructure of Voice XML,
while others emphasise the relationship among VoiceXMIimelets. These packages
are (not surprisingly) very close to VoiceXML and do not gavelear overview of in-
teractive voice services. In the author’s opinion, exgstinaphical formats are ‘window
dressing’ that do little to clarify the structure and flow afiseXML scripts. It is easy,
even common, to write VoiceXML scripts whose flow of contlabscure and hard
to follow. Indeed, VoiceXML can suffer from the ‘spaghettide’ (tangled logic) that
structured programming was devised to avoid. VoiceXML d@d@ppragmatic and pro-
grammatic approach. There is no way to formally check oryaseh Voice XML script.

In telephony, services are often composed from self-coathfeatures. A feature
is an additional function that is triggered automaticakyg(call forwarding or call

screening). Because a feature is triggered and not exylztied, it readily adds sup-

plementary capabilities. The value of features has beenyasgmonstrated in the IN

(Intelligent Network). VoiceXML does not have featuresqftigh it has subdialogues).
In fact, VoiceXML does not directly recognise the concepaddervice. It is therefore
be useful to enhance VoiceXML with mechanisms for servicekfaatures.

The author’s approach to defining and analysing servicesgisaphical notation
called Ress(Chisel Representation Employing Systematic SpecifioatiGRESSwas
initially based on the industrial Chisel notation develofy BellCore [1]. However,
CRrEsshas considerably advanced from its beginnings. The aimiofuUSRESsSwith
VoiceXML is to define key aspects of interactive voice seggicThe advantages of
CRrEssover using VoiceXML directly are:

— VoiceXML is very close to implementation. HoweveRESS services are repre-
sented at a more abstract level, making it easier to gragpetbeence. For the same
reason ®essdiagrams can be translated into a number of target languafes
which VoiceXML is just one.

— There is no formal definition of VoiceXML. Some concepts irndéXML are only
vaguely described (e.g. event handling) and some are ddbtinsdly (e.g. the se-
mantics of expressions and variables). As a result, it iossjble to say for certain
what certain VoiceXML constructs mean. At times the authas had to resort a
commercial VoiceXML implementation to discover what soneastructs might
mean. Even then, the commercial solution has been seen avédahplausibly.
Through translation to a formal languageRgss contributes to a more precise
understanding of VoiceXML.

— A large VoiceXML application typically has many documentshamany parts. It
can be difficult to check whether the application is selfsistent, e.g. will not loop
indefinitely or end prematurely. VoiceXML development iraptice uses manual
debugging. essgives the immediate benefit of translation to a formal laggua
LoTos (Language of Temporal Ordering Specification) and SDL (8igetion
and Description Language). The resulting specificationb@arigorously analysed.

1.2 Relationship to Other Work

Several graphical representations have been used tolgesornmunications services.
SDL is the main formal language used in communications.@lgh it has a graphical
form, SDL is a general-purpose language that was not dedsjggagicularly to represent
communications services. MSCs (Message Sequence Chartdyher-level and more
straightforward in their representation of services. UQUse Case Maps [2]) have
been used to describe communications services graphieialyever none of these ap-
proaches is domain-specific, and they cannot be translatedirange of languages.
In comparison to Bess SDL for example does not have specialised support for a
domain like interactive voice services. As a result the wmjent SDL specification is
larger and more complex. The only formal analysis possibl@hatever SDL offers
(mainly state space exploration). WitrREssan SDL-based analysis remains possi-
ble, different kinds of analysis can be achieved throughids and Voice XML scripts
can be obtained automaticallsom the same diagram$ee for example [4, 9] for a
comparison of @ ssand SDL descriptions of SIP (Session Initiation Protocol).

As noted earlier, there are a number of commercial toolséicaXML. These offer
more complete VoiceXML coverage tharREss and provide proprietary extensions
for commercial deployment. However they are focused on&XML only, and do not
offer any kind of formal analysis. Their (graphical) repretations are too close to
VoiceXML for abstract service descriptions that are corhpresible to non-specialists.

Although QRESShas origins in communications services, it is not tied tcséhe
CRrEsshas plug-in domains that define the service vocabulary ipara¢e and modular
fashion. @Resshas already been proven with services for the IN (Intellidégtwork)
[8] and SIP (Session Initiation Protocol) [9, 11]. The woeported in the present paper
shows how @Esscan be used with VoiceXML.

CrEssis a front-end for defining and formalising serviceRESsis neutral with
respect to the target language. The translation RE€Sinto LoTos or SDL gives
formal meaning to services defined irREss This formalisation provides access to
any analytic technique using these languages. Among ttiesauthor’s own approach
[7] is one of several. For implementationREsscan also be compiled as appropriate
into SIP CGI (Common Gateway Interface, realised in Pedjilpinto SIP CPL (Call
Processing Language), and also into VoiceXML.

A key issue in telephony is feature interaction [3] — indegesmtly designed features
can interfere with each other. This issue is well known froaditional telephony and
the IN, but also arises with SIP services. The feature iotemaliterature is too large to
review here; see, for example, the proceedings of FIW (Fedmteraction Workshop).
Although VoiceXML does not recognise the concept of seragicéeature, it has been
shown that feature interactions can also arise with Voic&{].

1.3 Overview of The Paper

The new contribution made by this paper is the applicatioBREssto IVR services.
The paper discusses how IVR services and features can bebaesin CRESS and
explains how they are translated into VoiceXML andllos CRESScan also be trans-
lated into SDL, as outlined in [10]. As background, sectiosuPnmarises the RESsS
graphical notation insofar as it applies to interactiveeeservices. Examples oRESS
diagrams appear later, an®k€ssis further discussed in [8, 9, 11]. Section 3 introduces
VoiceXML and its representation inKESS It will be seen how @essdiagrams for
interactive voice services are translated into VoiceXMect®n 4 discusses how the
same diagrams are translated intoTlos This allows a variety of formal analyses to
be carried out of a service before it is developed and degdlogeng VoiceXML.

2 The CrRESss Notation

At first sight, it might seem that Ressis just another way of drawing state diagrams.
However it differs in a number of important respects. Staténtentionally implicit

in CRESS because this allows more abstract descriptions to be gims between
states may be guarded by event conditions as well as valudtioms. Perhaps most
importantly, GREsshas explicit support for defining and composing featurese €
also has plug-in vocabularies that adapt it for differeqiE@ation domains. These allow
CRressdiagrams to be thoroughly checked for syntactic and statitastic correctness.

2.1 Diagram Elements

Ultimately, CREssdeals with a single diagram. However it is convenient to troics
diagrams from smaller pieces. A multi-page diagram, fomepde, is linked through
connectors. More usefully, features are defined in sepdraggams that are automati-
cally included by either cut-and-paste or by triggering. RESsdiagram is a directed,
possibly cyclic graph. If the graph is cyclic, it may not bespible to determine the ini-
tial node uniquely. In such a case, an expl&tiart node is given. Comments may take
several forms: text between parallel lines, hyperlinkslesfiand audio commentary.

Nodes in a diagram (shown as ovals) contain events and theimeters (e.gub-
mit order.jsp”weight product’). A node is identified by a number followed optionally
by a symbol to indicate its kind. For example, the first noda éémplate feature is
marked ‘+’ if it is appended to the triggering node, or ‘—’tif$ prefixed. Events may be
signals (input or output messages) or actions (like prograrg language statements).
A NoEvent (or empty) node can be used to connect other nodes. An evgnbma
followed by assignments separated by ‘/’ (d.timeout<— 2).

The arcs between nodes may be labelled by guards. These ne@théevalue con-
ditions (imposing a restriction on the behaviour) or eventditions (that are activated
by dynamic occurrence of an event). Event handlers arendisshed by their names
(e.g.Nolnput, triggered when the user does not respond to a VoiceXML pthmp

A CrESsdiagram may contain a rule box (a rounded rectangle) thatekefieneral
rules and configuration information. A rule box typicallyotires the types of diagram
variables (e.gUses Valueproduct, weight A rule box may define configuration infor-
mation like parent diagrams, chosen features and transiatimns. Rule boxes have
yet other uses [8, 9, 11] that are not so applicable to inteecoice services.

The main Ressdiagram defines the root behaviour. Although this may be the
only diagram, @Esssupports feature diagrams that modify the root diagramtfoero
features). A spliced (plug-in) feature is inserted into atrdiagram by cut-and-paste.
The feature indicates how it is linked into the original d&m by giving the insertion
point and how it flows back into the root diagram. This styldezfture is appropriate
for a one-off change to the original diagram.

It is often preferable to use a template (macro) feature ith&iggered by some
event in the root diagram. The triggering event is given mnfitst node of the feature.
Feature execution stops on reachirigigish (or empty) node. At this point, behaviour
resumes from the triggering node in the original diagranelate feature is statically
instantiated using the parameters of the triggering evidrg.instantiated feature may
be appended, prefixed or substituted for the triggering node

2.2 Automated Support

Cressusually relies on a domain-specific infrastructure. Fomeple, IVR services
often require a speech synthesiser and a speech recodrseobperate with the main
application. Such a framework is specified using the sangetéanguage as the one to
which diagrams are compiled (e.gotos, SDL, VoiceXML). Although the framework
is specific to a domain and a target language, it is indepdmdéme particular services

or features deployed. The framework includes macro cadisabtivate the €esspre-
processor. This automatically generates configurati@tifip information such as the
translated diagrams and feature-dependent data types.

The OrREsstoolset has the form of a conventional compiler but is unlisusome
respects. For portability it is written in Perl, comprisigigout 13,000 lines of code. The
CRrRESstoolset consists of five main tools. Including test scerstioere are about 600
supporting files for all domains and target languages. hatér the GRESStoolset con-
sists of a preprocessor (that instantiates the specifictimnework), a lexical analyser
(that deals with various diagram formats), a parser (thefopms syntactic analysis),
and several code generators (e.g. faribs SDL and VoiceXML). Although it might
have been desirable to use a parser generator (e.g. Amtiging is only a small part
of what CREsshas to do. A traditional compiler deals with textual langesgRESS
however, deals with a graphical language. This createseistiag challenges, e.g. com-
piling cyclic rather than hierarchical constructs.

3 Interactive Voice Services in VoiceXML

3.1 Introduction to VoiceXML

VoiceXML [13] derives from earlier work on scripting langges for interactive voice
services. VoiceXML is a mixture of the declarative and thpérative, the event-driven
and the sequential. VoiceXML is a large language embedded ieven larger frame-
work. For example, VoiceXML includes &ASCRIPT (JavaScript). It also supports
complex grammars for speech synthesis and speech reaygnitiiceXML is inte-
grated with other technologies such as database accessargbwers.

VoiceXML lacks the telephony concept of a feature as behawioat may be trig-
gered by some condition. The nearest equivalent in VoiceX#a subdialogue (re-
sembling a subroutine). Subdialogues are executed in apérdient interpreter con-
text, making it difficult to share certain information. InigeXML, at best some code
can beexplicitly invoked as a ‘feature’; automatic feature invocation is sigtported.
Triggered features have proven their worth in telephonyaredsupported by REss

The VoiceXML caller completes fields in forms (or menus) bgaking in response
to prompts. Each field is associated with a variable thattisoshe user’s input. Voice-
XML applications are often written as a number of documentgaining a number of
forms, each containing a number of fields. This is the mostrabform of modularity
in VoiceXML. However this can easily hide the flow between filens and fields.

TTS (Text-To-Speech) may be used to speak messages. Texbenaarked up
to indicate how certain words are pronounced, and genexaliigfine the speech pat-
tern. However TTS is only approximation of natural speeochyaice XML allows pre-
recorded voice to be used in preference.

Speech recognition is used to extract digital data from ungeit. This is guided by a
speech grammar, for which there are several standards. iumguts (including menu
choices and yes/no) can also be provided using DTMF (Duaé Malti-Frequency),
i.e. dialling digits on a touch-tone telephonerEsssupports the standard VoiceXML
grammars:Boolean (optionally defining DTMF digits for yes/no)Currency Date,

Digits (optionally defining expected length, or minimum/maximwndths) Number
Phone(with optional extension) an@ime(12/24 hour clock).

Some VoiceXML actions may be governed by a count or a condiio when the
action is permitted. For example a different prompt may bemion the third input
attempt, or a field may be selected only when some condititynés Actions may have
optional parameters (e.g. a sound file or fetch timeout)ahatelevant to a Voice XML
platform but not directly useful for Ress Although these may appear in &RESS
diagram, they are used only when translating into Voice XMr. other target languages
these optional parameters are ignored.

The types supported byREssare domain-specific. For VoiceXML there is just a
single type\Value since the underlying 1A SCcRIPThas dynamic types. Actual values
can be booleans, numbers or strings. In addition therawr@andundefined/alues.

VoiceXML supports a fairly complex hierarchical event mbdevent handlers may
be defined at four levels: platform, application, form, fieRlatform handlers pro-
vide fall-back support, though they are rarely useful. Aggtion handlers oversee all
forms in an application. Form handlers allow their fields har® common event han-
dling. Finally, fields usually define handlers for eventspédfic interest. A script may
<throw > an event, transferring control a matching handler. Staheeents include:

Cancel, Exit, Help: the user asked to cancel processing, to exit, or to get goédan
Catch: deals with a list of events
Error: arun-time error occurred
Filled, Nolnput, NoMatch: the user spoke correct input, nothing, or invalid input.

Although VoiceXML does not considdfilled to be an event, it behaves like one.
Besides standard events, programmer-defined events maynbtructed from several
parts (e.glogin.failure.passworil Normally this would be caught by a handler for the
same name. But if there is nothing to match, a handleldgin.failure (or failing that
login) may deal with the event. If no handler matches, the apjicaerminates.
Events are also implicitly associated with a prompt couatctetime a field is en-
tered, its prompt count is incremented. This may be usedth@ryesponse to an event.
In fact this is more complex than it seems. Suppose evenidigate defined for counts
1 (the default), 2 and 4. The first is activated on count 1, #eesd on counts 2 or 3, and
the last on count 4 or higher. A condition may also be imposegivevent handler being
activated. This is relevant if several handlers could atler apply. Voice XML does not
define what happens if conditions overlap — in fact the behans non-deterministic.

3.2 Cressfor VoiceXML

In principle, VoiceXML has elements at platform, applicatj form and field levels.
VoiceXML can also be split over a number of documents. HoweavgoiceXML ap-
plication can be defined as a single document with a singta,fand this is how it is
regarded in ®ESS in fact, application and form level are the same IRESS Fields
can be defined as separate sections or pages efEs€liagram, using connectors to
join them. For a large application this is convenient anderrapodular. However for a
small application it is sufficient to represent the form asngle integrated whole. In

addition, splitting fields makes the flow between them lesgats. For these reasons,
fields are deliberately not prominent irRESS

CRESsis not a literal graphical rendering of VoiceXML structufihis would be
pointless since most commercial tools for VoiceXML do thisaay. The flow of con-
trol in CRESScan be more visible; in VoiceXML it can be hard to determiniee flow is
sometimes implicit (e.g. transitioning to the next field @mpletion of the current one)
and sometimes buried (e.g. an embeddegmto>). CRESSsupports cyclic behaviour
as loops in a diagram; these have to be coded indirectly ioeVaviL.

CREssexpects to have a definition of root behaviour as the core @race. In
VoiceXML, an application root document serves a similargose but is very restric-
tive. It may contain only variables, event handlers and elgiary definitions that are
common to the documents of a VoiceXML application.

It is not feasible for @Essto support the entirety of VoiceXML, EMASCRIPT,
speech synthesis markup, speech grammars, database atdegsb access. Instead,
CREssconcentrates on the essential aspects of VoiceXML coritiolited support is
provided for EMASCRIPT — specifically for numerical, string and logical expression

The following summarises the main elements sfeSsfor interactive voice ser-
vices. Unless stated, the VoiceXML equivalent is very samile.g.Audio in CRESS
corresponds tecaudio> in VoiceXML). Strings and lists are given in double quotes
(e.g.”Please place your order’weight product). Substrings can be given inside a list
using single quotes. Variables, grammars, etc. are wittpootes in Ress Voice XML
actions sometimes allow literals or expressions as altemparameters (e.g. a literal
or computed event name may be throwngeSsalways uses an expression.

Audio messagespeaks a message. Variable values in this or any text strang ba
interpolated in ®ESS using $variable to include the value of a variable. Some
names are special, e genumeratés used to include the options of the current field.
The VoiceXML equivalents of these arevalue> and<enumerate> respectively.

Clear [variables] resets the prompt count, and undefines all (or the namedbles.

Exit leaves the application.

Option variable prompt options [conditionPefines a<field>, issues a<prompt >,
analyses the input usingoption> values, and sets the field variable from this. An
optional condition can be imposed on entry to the field.

Prompt message [count] [condition]ssues an audio prompt. The prompt may be sub-
ject to a count and/or a condition.

Reprompt restarts the current form. The first unfilled field is enteresijally causing
the most recent prompt to be re-issued.

Requestvariable prompt grammar [conditionpehaves likeOption, but defines ac-
ceptable input using a grammar rather than a list of spegifions.

Retry restarts the current form, re-inputting the most recend fi€his is a common
requirement that is surprisingly missing from VoiceXML uhdefines the current
field variable, and issues<areprompt >.

Subdialog[ue]URI variables send the variable values to a URI (either another Voice-
XML script or a web server executable script). In generaf thay return a new
VoiceXML script dynamically. This is not a problem wherr€ssis interpreted

by VoiceXML. However for translation to other languagegy(d.otos or SDL),

it is not possible to handle dynamically created VoiceXMhstead, limited sup-
port is provided for external scripts that perform a compate(e.g. interrogate a
database) and return resultRESsprovides a web adaptor written in C that links
to the target language.

Submit URI variables sends the variable values to a web server URI (usually an ex-
ecutable script). Often the server just absorbs the regelgs writes them to a
database). As for subdialogues, the server may return Xttecreated on-the-
fly. This cannot be handled except when VoiceXML is the tatgeguage. The
CRressapproach handles the commonest cases of server scriptgritatce no
result Submit) and scripts that compute some resuBaljdialogue.

Throw eventpasses an event to the closest matching handler.

3.3 Sample Interactive Voice Services

To illustrate the notation, Figure 1 shows th@&ssroot diagram for a VoiceXML
application. This is for the hypothetical Charities Ban&tthllows telephone donations
to charity. This service invites the caller to name thearity (UNICEF, WWF, Red
Cross) and the requireamountin US dollars. These items are then submitted to the
donation.jspscript. If the user asks for help or says nothing followingrarppt, an
explanation is given and the user is re-prompted. VoiceXgds a currency amount
as a string whose first three characters give the currengy @gd.”USD"). In case the
user says another currency (e.g. pounds sterling), theisiserqprompted if the stated
currency is not US dollar&etry in node 7 is used to clear the value enterecgfopunt
otherwise the field will be ignored on the re-prompt becatibas already been filled.

Suppose that Charities Bank has a range of applicationddgetie donation appli-
cation in Figure 1. There might, for example, be separatécgtipns to enquire about
what charities are supported, or to request a tax relieéstant. It would be desir-
able to ensure a consistent VoiceXML treatment of all thgg#ieations: there should
be the same default handling of events and a common intrimeudt would also be
worthwhile to request confirmation before anything is sutedito a web server. There
is therefore a case for common features. For brevity sefeaslires are omitted here,
such as ones to request an account number and a PIN.

Figure 2 is a feature that defines an introductory environtfterall bank applica-
tions. The feature is placed just after B&rt node in the root diagram (implicit before
Figure 1 node 1). Welcome messages are spoken before exgapflication-specific
code. Common handlers are defined for various events. Adtihan application is likely
to deal withNolnput andNoMatch on a per-field basis, figure 2 ensures that after three
such failures the user is disconnected. Figure 2 also dejeresral VoiceXML proper-
ties: here the timeout for no input is set to two secottidsgout<— 2).

Figure 3 defines a confirmation feature that asks the useptepd before submit-
ting information to a web server. This feature is not spetdi€harities Bank, and is
usable in a number of applications. The feature is triggésed Submit action, be-
ing executed just before it. On user confirmation, executmrtinues with submission;
otherwise, the current fields are cleared and the user isoregied.

1 Audio "Please

{Uses Value charity, amount] .
make your donation"

2 Option charity
"Which charity?"
"UNICEF WWF 'Red Cross™

Filled Catch "Help Nolnput"

3 Request amount
"How many dollars?"
Currency

8 Audio "Choose
from $enumerate”

Filled Catch "Help Nolnput"

Y

9 Reprompt

SubString(amount,0,3) = Else

"SD"
| <
4 Audio "You donated 6 Audio "Choose an
$amount to $charity” amount in US dollars"

5 Submit donation.jsp
"charity amount"

Fig. 1. CREssRoot Diagram Donatg for Charity Donation Application

/ timeout <- 2 NoMatch
Catch "Nolnput
NoMatch" 3

Error

7 Audio "Not
recognised - try again"

2 Audio "Welcome

to Charities Bank" Exit

6 Audio "Sorry - too
many attempts"

4 Audio "Sorry - an
internal error occurred"

Y

3 Audio "Say Help
or Exit at any time"

5 Audio "Thank you
for calling - goodbye"

Fig. 2. CREssFeature Diagramlijtro) to introduce Charities Bank Applications

U URL
v Variables

Uses Value confirm

2 Request confirm
"Do you wish to proceed?"
Boolean

Filled Catch "Help Nolnput NoMatch"

5 Audio "Please
say Yes or No"

6 Reprompt

confirm Else
ok D
4 Reprompt

Fig. 3. CRESsSFeature DiagramGonfirm) for Confirmation

Most of the translation from Ressto VoiceXML is straightforward. One compli-
cation that arises is how to deal with loops in diagrams ardkadhat can be reached
along more than one path. It might seem obvious to use a Vdilte X goto>. Unfortu-
nately this may branch only to a document, form or field; ita$ possible to move to an
arbitrary node. As aresult, it is necessary to branch usireyant. (A<throw > acts as
a computed<goto> anyway.) The revisited node is then translated as an evediéra
Most CRESsoperators have equivalents in VoiceXML, but a few likéer (remove a
prefix from a string) andh (set membership) are defined usingNeA SCRIPT.

To give an idea of how €esstranslates interactive voice services into VoiceXML,
the following shows some of the translation for figure 1 as fifiwed by the features
in figures 2 and 3. As shown, therREsstranslator automatically generates extensive
comments that link the code to the diagrams. TlRReEESSRequestin figure 1 node 3
becomes a VoiceXML field that fills in th@mountas a currency. The user is prompted
to enter a donation in dollars. If the user asks for help orsduat say anything, an
event handler catches this and moves to figure 1 node 6. If UW&rsl@re specified,
the donation is announced to the user. Execution then aggiwith theconfirmfield;
Confirm.1is instance 1 of th€onfirmtemplate.

<field nameZamount type=currency> <!—— Donate 3 fieldamount ——>
<prompt >How many dollarsz/prompt > <!—— Donate 3 prompt-—>
<catch event£help noinput> <!—— catch event-—>
<throw eventZdonation.6/> <!—— Donate 6 (again}-—>
</catch> <!—— end catch-—>
<filled > <!—— filled event——>
<if cond£amount.substring(0,3) =" USD"’> <!—— check SubString #USD" ——>
<audio> <!—— Donate 4 audic-—>
You donated<value exprfamount/> to <value exprcharity />
</audio>

10

<goto nextitem=confirm.2/> <!——to Confirm.1 2——>

<elsd> <!—— else after SubString £USD”" ——>
<throw event£donation.6/> <!—— Donate 6 (again}—>

<[if > <!—— end check SubString “USD"" ——>
</ffilled> <!——endfilled——>
</[field> <!—— end field——>

As noted earlier, figure 1 node 6 must be translated in an evemdler because
there are two paths to it. It provides audio help to the usee. GRESsSRetry undefines
theamounffield (if necessary, forcing re-entry to the field) and rerppts the user.

<catch eventZdonation.6> <!—— Donate 6——>
<audio>Choose an amount in US dollatg&audio> <!—— Donate 6 audic-—>
<assignname=amount expr=undefined/> <!—— Donate 7 undefineamount ——>
<reprompt/> <!—— Donate 7 to form top-—>
</catch> <!—— end catch-—>

4 Interactive Voice Services in LOTOS

In comparison to the translation ofREssdiagrams into VoiceXML, the translation
into LoTosis extremely tricky. In addition, a very substantial speeifion framework
is required. This is fixed and predefined, being completet wipes and behaviour
specific to the diagrams being translated. The complexithetranslation should be
no surprise since much of a VoiceXML interpreter has to beasgnted in bTos

4.1 Inputs, Outputs and Actions

Normally each node is translated directly intotos behaviour. However if there is
more than one path to a node, this node and the following oree¢ranslated as a
LoTtos process. The branches to the node then become calls of thiegs. Since
an event handler may be entered repeatedly, a node folloawingvent guard is also
translated as a process.

The CREsSsparser optimises diagrams before they are passed to a codeatm.
For exampléNoEventnodes are removed where possible, Biedbranches are moved
to the end of the guard list. However it is not possible to reenaNoEvent node in
some circumstances (e.g. in a loop or between guards, see fichefore nodes 4 and
6). A NoEventmay thus not need translation or may be translated as a groces

Inputs and outputs are reasonably straightforward to kagmslt is necessary to
distinguish them because inputs may accept new valuesg whtputs must use only
defined values. In fact theRE sstranslator performs a data-flow analysis to determine
this. If an input variable is known at a certain point, it igpeded by ‘!I" in the loTOS
translation; if an input variable is unknown, it is precedyd?’.

CRrREssnodes may also be VoiceXML actions that do not simply inpuiwtput and
so are classed separately. Actions are domain-specifibgsottanslation into bToS
also depends on the domain. For most actions, the transliatioot too complex. The
main exceptions are fieldMenu, Option, Reques) and eventsThrow).

Each field is translated to adTos process. If a VoiceXML field has already been
filled in (its field variable is defined), behaviour continweith the next field. @ess

11

must therefore statically build a map of which field followhigh. Since VoiceXML is
linear but GRessdiagrams are two-dimensional, it may not be clear what tixéfiedd
is. By convention, fields are ordered by node number withthediagram. A field is
entered if its field variable is undefined and its conditiogdtisfied. The prompt count
is incremented at this point.

Input recognition is performed by a predefinRdcogniseprocess that deals with
all the standard VoiceXML grammars. This is much simplentspeech recognition,
but is still complex (in a language likedT0s). The LoTOSrecogniser does not have
to handle the variations that occur in speech. For examplerarcy amount might be
spoken as ‘one hundred and ten dollars’ or ‘a hundred tend)Ltke LOTOS recog-
niser also accepts the DTMF equivalent of ‘speech’ inpue Técogniser deals with
events likeCancel Exit, Help andNolnput. Once recognition is complete, the recog-
niser synchronises with the application on the resultirepevForFilled, the input value
is also supplied. The field process then throws the eventdived, causing behaviour
to continue with the corresponding event handler. Althotlghmight seem a complex
solution, it is exactly what VoiceXML does. It is also essahibecause the same event
may be handled differently according to the current pronguing and condition. For
example Nolnput may be handled at field level (figure 1 nodes 6 and 8) or at form
level (figure 2 node 6).

4.2 Expressions and Expression Guards

Interactive voice services expect to use speech synthedis@eech recognition. It is
not, of course, meaningful to use speech withTtbs Instead, speech is simulated using
text messages. Synthesis is little more than string prawgdsut recognition requires
substantial machinery for parsing text input accordingh® dtandard grammars. The
LoTosspecification framework includes about 900 lines of intecdata types. These
are complex partly becauseloslacks built-in support for types like characters, num-
bers and strings. However, the recogniser also requireeXailL-specific data types.

ECMASCRIPT numerical, string and logical operators are supported loyvatgnt
LoTos operators. The dynamic types of VoiceXML create a problemtfanslation
since LOoTOS s strongly typed. All variables and values are therefoaadtated to a
singleValuetype in LoTosthat is interpreted according to the specific value. Assign-
ment is made using adTosLet statement. As well as the declared diagram variables,
there are two implicit onesxxoptiongthe currenkoption> values) and/xprompt(the
current prompt counter). All these variables are parametithe generated processes.

Expression guards are straightforward to translate. Theammplication is that a
VoiceXML Valuemust be translated to adrosBool. The convenience syntdsein
CRreEssis handled by accumulating all other expression guards agdting them. It is
possible to give only specific guard expressions withglge. In this case, a translator
option can be set to deal with guards that leave gaps fe:g.0’ and 'n < 0").

4.3 Events and Event Guards

Event handling is very complex to translate. As explaineskiction 3.1, events may be
handled at multiple levels, using multi-part event namebject to a prompt count and

12

a boolean condition. In addition, a VoiceXML platform prdes default handlers for
all standard events. In the generateitios, platform handlers are defined for these in
processegvent 1, etc.

The generated @Tos also defines proce€svent 0 as the main event dispatcher,
called whenever an event is thrown. Thegsstranslator statically builds a table of
contexts and events. A context value is either O (i.e. apfio/form level) or> 0
(meaning a field number). All the events that may occur in dedrare extracted from
the CREssdescription. It would be simplest if the destination of aothin event name
could be determined statically. Unfortunately this is nosgible because the thrown
event can be computed dynamically as an expression’(legin.failure! + cause.
The GRESstranslator generates event dispatcher code that respegqigority of Voice-
XML event handling: longer event prefixes and higher pronapirts take precedence.

To give an idea of how this is done, here is an extract from tleedispatcher
for field 2 (figure 1 node 3). For brevity, process gates ancrpaters are omitted
below.Donateis the main application (figure 1ntro_1 is the first instantiation of the
introduction feature (figure 2). Node numbers are appendéuttse labels, withlone
and a count for &olnput node.

[field Eq 2]> (* field Donate 3? *)
[Match(event,Cancel} Event 1 (* Cancel? *)

D [Match(event,Error)yf> Intro_1_4 (* Error? *)
D [Match(event,Filled)}> Donate None.0 (* Filled? *)
D [Match(event,Help)}> Donate 6 (* Help? *)
D [Match(event,Nolnput) And (vxprompt Ge 3}% Intro_1_6 (* Nolnput 3? *)
D [Not(Match(event,Nolnput) And (vxprompt Ge 3)}}% (* Else *)
[Match(event,Nolnput)}> Donate 6 (* Nolnput? *)
[Match(event,NoMatch) And (vxprompt Ge 3}% Intro_1_6 (* NoMatch 3? *)
[Not(Match(event,NoMatch) And (vxprompt Ge 33} (* Else *)
[Match(event,NoMatchy> Intro_1_7 (* NoMatch? *)
[Match(event, Xit)}> Intro_1_5 (* Exit? *)

)
)

4.4 CressTranslationto L oToS

To give an idea of how esstranslates interactive voice services intolos, the code
below was generated for the VoiceXML example in section 3.3.

13

The following is an extract from the body of procd3snate 3 (figure 1 node 3).
Behaviour continues to the next fiel€gnfirmnode 2) if the field variableamounj
is undefined. Otherwise the options list is emptied (nodefthee aRequestnot an
Option), and the prompt count is incremented. The prompt and gramaneasent to
the recogniser. Its response synchronises with the VoideXpblication, causing an
event to be handled by the event dispatclierent 0). The prompt count is then reset.
For readability, string values are shown below in convergidorm, though loTOS
requires an awkward syntax using ‘+’ for character concatien.

[(@amount Ne Undefinedpf Bool] > (* ignore field? *)
Confirm.1_2 (* to Confirm.1 2 *)
I
[(@amount Eq Undefinedpf Bool] > (* enter field? *)
Let vxoptions:Text =<>, vxprompt:Nat = vxprompt + In (* update locals *)
Recogniser !request How many dollars? !CurrencyOf Grammar;(* request field *)
(
Recogniser !Filled ?amount:Value; (* filled event *)
(
Let vxprompt:Nat = Qin (* reset prompt count *)
Event 0 (* dispatch event *)
)
I
Recogniser ?event:Event; (* other event *)
Event 0 (* dispatch event *)

)
)

The following is an extract from the body of procd3enate6 (figure 1 node 6).
The field variable #mounj is undefined, and field processing restarts from the top of
the form (procesBonate 2).

User !Audio !"Choose an amount in dolldrs (* Donate 6 *)
(
Let amount:Value = Undefinekh (* update local *)
Donate 2 (* Donate retry 7 *)
)

Once a translation to@toshas been obtained, the interesting work can begin. The
author has used both TOPO and CADP with the resultiogds. The specification can
be simulated, though this is not very useful sinceeGsmight as well be translated to
VoiceXML and executed as normal. Where thetlostranslation comes into its own is
the formal analysis. Below are examples of whatribscan be used for, but Voice XML
cannot. Although there is insufficient space here to say ntbeereferenced papers can
be consulted for additional detail.

— The specification can be formally analysed to detect de&d)diwelocks, unreach-
able states and unspecified receptions. For example, isjsteavrite Voice XML
scripts that loop indefinitely. Figure 1 suffers from thisetreader is challenged to
detect the problem! Without extensive and time-consumestirig, this can be hard
to find with VoiceXML.

14

— Tests can be automatically generated from the specificafionexample, the au-
thor has developed PCL (Parameter Constraint Languagé tid 2)low practical
tests to be created from data-intensive specificationi(asénteractive voice ser-
vices). If the specification has finite behaviour, exhaestasts can be generated
that traverse all paths. If the specification has infinitesvébur, tests must be gen-
erated as Chinese Postman tours of the specification’s ssispeautomaton [6].
The tests form a useful (regression) test suite for livartgsif an IVR service. In
this context, the tests can act as scripts for human useendsesfed into a speech
synthesiser acting as an automated caller.

— Desirable properties of the service can be formulated in AGTXTL, e.g. as done
in [5]. For example these mightinclude ‘a bank account masbe debited without
the correct PIN’ (safety), ‘a call must end with a goodbye sage’ (liveness), or
‘the same prompt must not be issued more than three timeg€dérm from loops).
The CADP model checker can verify such properties agaiegjémerated Tos

— Feature interactions can be checked [11]. For example,tarethat introduces
extra choices in a menu can interfere with current use of DTNifts to select
from the menu. A feature may introduce an event handler thatrimes the form
event handler, resulting in different behaviour. An intgi@n can also arise if two
features change a variable in inconsistent ways.

5 Conclusion

It has been shown thatRE SScan represent interactive voice services. It has been seen
how CREssdescriptions can be translated into VoiceXML and intoTlos. CRESS
combines the benefits of an accessible graphical notatidopreated implementation

of a VoiceXML application, and formal analysis of problemsa service description.
CRESsis thus valuable as an aid to developing interactive voiceiGes.

The plug-in architecture of REsshas now been demonstrated in three different
domains: conventional telephony (IN), Internet teleph@WP), and interactive voice
(VoiceXML). Although these are all examples of voice seegicthe approach is generic
and should be relevant to non-voice applications such asseefices. For example, it
is hoped in future to apply REssto WSDL (Web Services Description Language).

References

1. A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and B.Swayne. SCF3/Sculptor
with Chisel: Requirements engineering for communicatisessices. In K. Kimbler and
W. Bouma, editorsProc. 5th. Feature Interactions in Telecommunications Soétware Sys-
tems pages 45-63. I0OS Press, Amsterdam, Netherlands, Segt. 199

2. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, IJn&nnes, B. Stepien, and
T. Ware. Feature description and feature interaction arslyith use case maps andtos
In M. H. Calder and E. H. Magill, editorsroc. 6th. Feature Interactions in Telecommu-
nications and Software Systenpages 274—-289, Amsterdam, Netherlands, May 2000. 10S
Press.

15

10.

11.

12.

13.

E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. Bchnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyohBEE Communications Magazinpages
64—69, Mar. 1993.

. K. Y. Chan and G. von Bochmann. Methods for designing Sifices in SDL with fewer

feature interactions. In D. Amyot and L. Logrippo, editdPsoc. 7th. Feature Interactions
in Telecommunications and Software Systgmages 59—76, Amsterdam, Netherlands, June
2003. I0S Press.

. JiHe and K. J. Turner. Specification and verification oftckyonous hardware usingiros

InJ. Wu, S. T. Chanson, and Q. Gao, editéhsic. Formal Methods for Protocol Engineering
and Distributed Systems (FORTE XII/PSTV XIpgges 295-312, London, UK, Oct. 1999.
Kluwer Academic Publishers.

. J. Tretmans. Conformance testing with labelled tramsiystems: Implementation relations

and test generatiorComputer Network29:25-59, 1996.

. K. J. Turner. Validating architectural feature desdoips using loTos In K. Kimbler

and W. Bouma, editor$roc. 5th. Feature Interactions in Telecommunications Software
Systemgpages 247-261, Amsterdam, Netherlands, Sept. 1998. I&S.Pr

. K. J. Turner. Formalising theHGsEL feature notation. In M. H. Calder and E. H. Magill,

editors,Proc. 6th. Feature Interactions in Telecommunications Software Systempages
241-256, Amsterdam, Netherlands, May 2000. IOS Press.

. K. J. Turner. Modelling SIP services usin@€ss In D. A. Peled and M. Y. Vardi, editors,

Proc. Formal Techniques for Networked and Distributed &yst(FORTE XV humber 2529
in Lecture Notes in Computer Science, pages 162-177. Sprverlag, Berlin, Germany,
Nov. 2002.

K. J. Turner. Formalising graphical service descriggtiasing SDL. In R. Reed, edit@DL
User Forum 03Lecture Notes in Computer Science, Berlin, Germany, JOB82 Springer-
Verlag.

K. J. Turner. Representing new voice services and thatufes. In D. Amyot and L. Lo-
grippo, editorsProc. 7th. Feature Interactions in Telecommunications 8nftware Systems
pages 123-140, Amsterdam, Netherlands, June 2003. IOS. Pres

K. J. Turner and Qian Bing. Protocol techniques for mestadiotherapy accelerators. In
D. A. Peled and M. Y. Vardi, editor®roc. Formal Techniques for Networked and Distributed
Systems (FORTE XWjumber 2529 in Lecture Notes in Computer Science, page3631—
Springer-Verlag, Berlin, Germany, Nov. 2002.

VoiceXML Forum.Voice eXtensible Markup Languagébice XML Version 1.0. Voice XML
Forum, Mar. 2000.

16

