
Time, E-LOTOS, and the FireWire

Carron Shankland 1 and Alberto Verdejo 2

1 Department of Computing Science and Mathematics,

University of Stirling

ces@cs.stir.ac.uk
2 Departamento de Sistemas Informáticos y Programación

Universidad Complutense de Madrid

jalberto@eucmos.sim.ucm.es

Abstract. The proposed ISO standard formal description technique

E-LOTOS is used to describe a leader election protocol (that of the

IEEE 1394 serial multimedia bus), allowing illustration of the new as-

pects of the language, particularly time and parallelism.

Keywords: E-LOTOS (Enhancements to LOTOS), IEEE 1394, Proto-

cols, Leader Election Algorithm, Formal Methods.

1 Introduction

The proposed ISO standard formal description technique E-LOTOS is used to
give a timed description of the leader election protocol of the IEEE 1394 serial
multimedia bus, demonstrating the capabilities of the new language for describ-
ing communications protocols.

The 1394 (FireWire) serial multimedia bus is an IEEE standard for multi-
media communications. It connects together a collection of systems and devices
in order to carry all forms of digitized video and audio quickly, reliably, and in-
expensively. Its architecture is scalable, and it is “hot-pluggable”, so a designer
or user can add or subtract systems and peripherals easily at any time.

The 1394 as a whole is complex, comprising of several different subprotocols,
each concerned with different tasks (e.g. data transfer between nodes in the
network, bus arbitration, leader election). In the standard [IEE95] it is described
in layers, in the style of OSI, and each layer is split into different phases. Our
focus here is the tree identify phase of the physical layer.

Although formal methods were not used in the development of the 1394
standard, various aspects of the system have been described elsewhere using
a variety of different techniques, including I/O automata [DGRV97,Rom99],
µCRL [SvdZ98], and E-LOTOS [SM97]. Most of these do not address the real
time aspects of the system, although these are an important part of the C++
implementations of the IEEE standard. Our main aim is to model the standard
as closely as possible, particularly addressing the real time issues.

In this paper we present a specification in E-LOTOS of the Tree Identify
protocol of the 1394. E-LOTOS (Enhancements to LOTOS) is a new formal

2

description technique, currently undergoing the standardisation process [ISO98].
The ISO formal description technique LOTOS [ISO88] has been in use for over a
decade, and although it has been shown to be useful in some areas, the language
was perceived to have several failings, hence the development of E-LOTOS. Many
new features have been added, the most important being better modularity, a
more flexible data type specification language, and the capability to express real
time.

A secondary aim of this case study was to present and evaluate features
of E-LOTOS. Although not all new features have been used here, we feel that
this paper will serve as an introduction to the main features of E-LOTOS for
experienced LOTOS users and newcomers alike.

Our experience with E-LOTOS has been positive. The description of this
reasonably complex protocol can be made in a modular fashion, breaking down
phases into processes, and separating the data type specifications from the pro-
cess specifications. The real time aspects can be introduced to the specification
without detracting from the non-real time aspects, and synchronisation of pairs
of processes in a network of many similar processes can be easily specified.

Familiarity is assumed with LOTOS or E-LOTOS. Tutorials to E-LOTOS can
be found in an appendix to the committee draft standard [ISO98] and in [Ver99].

In the next section the 1394 tree identify protocol is introduced informally.
There follows an E-LOTOS specification of the protocol, and finally some con-
clusions are drawn about our experience with E-LOTOS.

2 Informal Overview of the Protocol

The tree identification protocol of IEEE 1394 is a leader (root) election protocol
which takes place after a bus reset in the network (i.e. when a node is added
to, or removed from, the network). Immediately after a bus reset all nodes in
the network have equal status, and know only to which other nodes they are
connected. A leader (root) must be elected to serve as the bus manager for the
other phases of the 1394. Figure 1(a) shows the initial state of a possible network.
Connections between nodes are indicated by solid lines.

Each node carries out a series of negotiations with its neighbours in order
to establish the direction of the parent-child relationship between them. More
specifically, if a node has n connections then in the normal case it receives “be
my parent” requests from all, or all but one, of its connections, up to a time
limit CONFIG_TIMEOUT. If CONFIG_TIMEOUT is reached before n − 1 requests are
made this indicates that the network contains a loop, therefore it is not possible
to configure the network as a tree, and an error is reported.

Assuming n or n − 1 requests have been made the node then moves into an
acknowledgement phase, where it sends acknowledgements “you are my child”
to all the nodes which sent “be my parent” in the previous phase. When all
acknowledgements have been sent either the node has n children and therefore
is the root node, or the node sends a “be my parent” request on the so far unused
connection and awaits an acknowledgement from the parent. Leaf nodes skip the

3

Fig. 1. Network Configurations during the Tree Identify Protocol

initial receive requests phase and move straight to this point; they have only one
connection therefore it must be their parent. Figure 1(b) shows the instant when
node 3 and 5 has their parent already decided (solid connections with arrows
pointing to the parent), and node 1 is asking node 2 to be its parent (the queried
relationship is shown by a dotted line and arrow).

Communication between nodes is asynchronous therefore it is possible that
two nodes might simultaneously request that the other is their parent, leading to
root contention (each wants the other to be the root, see Figure 1(c)). To resolve
root contention, each node selects a random Boolean. The value of the Boolean
specifies a long or short wait before resending the “be my parent” request. This
may lead to contention again, but fairness guarantees that eventually one node
will become the root.

When all negotiations are concluded, the node which has established that it
is the parent of all its connected nodes must be the root node of a spanning tree
of the network. See Figure 1(d) in which node 2 is the root node.

Setting a node’s FORCE_ROOT parameter is intended to alter this basic pattern
of communication by delaying the transition from the first phase (receiving “be
my parent” requests) to the acknowledgement phase, therefore there is a higher
probability that the node receives requests on all its connections, thus ensuring
that it becomes the root of the tree.

There are two desirable properties for this system:

– A single leader is chosen (safety).

4

– A leader is eventually chosen (liveness).

In addition to describing the protocol of the standard [IEE95] the specifica-
tion presented here should also satisfy these properties.

3 Timed E-LOTOS Specification of 1394

3.1 Overview: General Design Decisions

Our aim in the specification of the FireWire is to model the protocol as spec-
ified in the standard [IEE95] as closely as possible, using as a basis the state
transition diagrams, C++ implementations, and text therein. The reasons for
this are twofold. Firstly, this is a post-hoc specification exercise therefore the
point is to capture the particular leader election algorithm described in the 1394
standard [IEE95], especially any errors in that description. Secondly, it is a test
of the E-LOTOS specification language to confirm it is suited to description of
such systems.

This decision to model the system as closely as possible has led to a more
concrete specification than might otherwise be desirable if developing the specifi-
cation from informal requirements. For example, the I/O automata specifications
of [DGRV97] and the µ-CRL descriptions of [SvdZ98] are rather more abstract;
possibly this is an effect of the specification languages chosen. Different levels of
abstract are explored over a number of specifications in these papers, including
ignoring all node negotiation, ignoring contention, having synchronous or asyn-
chronous communication and ignoring time. The closest specification to that here
in terms of level of abstraction is the recent timed I/O specification of [Rom99],
which concentrates on verification of the correctness of the specification but
ignores the effect of the FORCE_ROOT parameter.

A rather concrete style of specification also fits the general E-LOTOS philoso-
phy. Although it is a specification language, the development committee felt that
it was better to allow software engineers to describe systems in as convenient a
way as possible, i.e. using constructs familiar from programming languages such
as variables, loops, if statements, case statements and exceptions. The main
benefit (over just using a programming language for the description) is that the
language has a formal basis, and is amenable to analysis.

That said, the specification language does encourage abstraction of certain
aspects, e.g. network configuration and messages between nodes. Nodes in the
real system have a number of ports which are connected or unconnected. The
physical cable connections describe the network implicitly. In the specification
the nodes have identifiers and the configuration of the network is modelled by
a list of pairs (node identifier, list of identifiers of nodes to which that node is
connected).

In the standard, nodes sample the ports to detect wire voltages which are
interpreted as messages from the connected nodes. In the specification, messages
are modelled as process events; however, not all messages used in the standard
have been modelled here. Typically, a node receives a “be my parent” request,

5

sends an acknowledgement to that request, and checks that acknowledgement
has been received (all by setting or sampling wire voltages). The first two are
modelled as process events; obviously the initial request must be part of the
specification, and the acknowledgement is necessary to detect contention. The
third message, checking the child has received an acknowledgement, is ignored.
The message passing medium is assumed to be reliable (no messages are lost or
corrupted).

Abstraction can introduce problems as well as simplify them. The protocol
only operates correctly if the network can be configured as a tree (i.e. there are
no loops and no disconnected components). The first is checked by the proto-
col of the standard itself. The second is not checked by the protocol because
disconnected nodes are merely a different network. However, the representation
chosen in the specification makes it a problem here because once a node is in
the network list then it is part of the network, whether or not it is connected
to any other nodes in the network. Therefore a check for disconnected nodes is
added to the specification.

Communication between nodes is asynchronous and modelled by one place
buffers. One place buffers are sufficient since only one message is sent between
two nodes in a particular direction at any given time.

Presentation of the E-LOTOS specification of the 1394 follows in three main
sections: modules, data types and processes (which is where the timing details
are discussed).

3.2 Modules

One of the enhancements of E-LOTOS is modularity, which allows the definition
of types, functions, and processes in separate modules, control of their visibility
by means of module interfaces, and the definition of generic modules, useful for
code reuse.

In this paper the module system is illustrated by describing the data types
as one module, the processes specifying the behaviour of the different phases of
the tree identification protocol as another, and the time constants as a third. All
modules are used (imported) by the main specification of Figure 2.

E-LOTOS also offers further parameterisation and reuse facilities via ab-
straction and encapsulation, but the specifications here do not lend themselves
to such further modularisation.

The variable P:conntable read from the environment in the specification of
Figure 2 models the initial configuration of the network. P is a list of pairs, where
the first element indicates the node identifier and the second element is the set
of nodes to which it is connected. For example, to match the configuration of the
network as shown in Figure 1 the value of P would be [(0,{2}), (1,{2,3}),
(2,{0,1,4}), (3,{1}), (4,{2,5,6}), (5,{4}), (6,{4})]. In this example
the conntable is ordered, but this is for clarity and is not essential to correct
operation of the specification.

6

specification TimedFireWire import Types, FireWireProcs, Constants is

gates read, leader, error

behaviour

var

P:conntable

in

trap

exception LoopException is error endexn

exception ConnectionError is error endexn

in

(* input the network configuration from an external source *)

read (?P);

if (sizeof(P)=1 and not connected(P)) then

leader; SelfIDT[...](id, p) (* we’re done *)

else if connected(P) then ImpT[leader](P)[LoopException]

else raise ConnectionError

endif

endif

endtrap

endvar

endspec

Fig. 2. Top Level of the FireWire Specification

Exceptions have been added to E-LOTOS, hence the conntable (network) is
checked for disconnected components and if there are any an exception is raised
(since the algorithm is not designed to operate correctly in that case).

A new notation has been added to E-LOTOS, one which was in common
informal use among LOTOS users. This is the use of [...] to denote the gate
parameters of a process in an instantiation where actual gates identifiers are
equal to the formal ones. Although seemingly trivial, this is actually a big bonus!

3.3 DataTypes

The part regarding the declaration and use of data types is one of those that
has been changed more in E-LOTOS with respect to its predecessor LOTOS.
In LOTOS the abstract data type specification language ACT ONE [EM85] is
used to declare new data types and to represent their values. This language is
fairly user-unfriendly and suffers from limitations such as the semi-decidability
of equational specifications, the lack of modularity, and the inability to define
partial operations. In E-LOTOS, ACT ONE has been substituted by a new lan-
guage in which data types are declared in a similar way to that in functional
languages (ML, Haskell), and where some facilities for value use and manipula-
tion are given.

The data types are given in Figure 3 and the function definitions in Figure 4.
Comments are enclosed within (* and *). The novel features of E-LOTOS are
described in some detail below.

7

module Types is

(* Node identifiers *)

type iden renames nat endtype

(* Set of connections *)

type connections is set of iden endtype

(* Node plus the set of nodes to which it is connected *)

type pair is (iden, connections) endtype

(* Network description *)

type conntable is list of pair endtype

(* Two types of message can be sent *)

type conntype is parent | ack endtype

(* Standard form of communications *)

type comm is (iden, iden, conntype) endtype

Fig. 3. Data Types for the FireWire Specification

Standard types such as integers, Booleans, lists and sets are part of the
language. E-LOTOS allows synonymous types to be defined to facilitate more
meaningful data type names, e.g. iden which is the set of natural numbers.

The type of connections is specified as a set of identifiers. E-LOTOS pro-
vides standard functions to manipulate sets that are used in the processes below
(Section 3.4). Similarly list, as in conntable, is a built-in type and E-LOTOS
provides several functions to manipulate lists.

New user defined data types can be declared by enumeration of all the con-
structors, as in conntype. Each constructor may also have data arguments, but
in this case there are none.

The record type (iden, iden, conntype) is used to model communications
in the system by identifying the source and destination nodes, and also the
message type. Such anonymous type cannot be used directly in E-LOTOS, so it
is given a name: comm.

Of course, user-defined data types are of limited use without user-defined
functions. Those for the FireWire are given in Figure 4. Although several func-
tions are provided with the built-in sets, the function to check if a given set has
only one member is not provided, so it is declared here.

The next three functions are all concerned with manipulating the conntable

(network configuration). The first, connected, returns true if all nodes are asso-
ciated with a non-empty set of connections. A case statement is used to pattern
match on list constructors. This technique is also used in neighbours, which
returns the connections associated with a particular node, and sizeof, which
returns the number of nodes in the network. In both of these functions it is

8

(* True if the current set is a singleton, false otherwise. *)

function singleton (c:connections):bool is

card(c) = 1

endfun

(* Checks that all nodes are connected to at least one other node *)

function connected(ct:conntable):boolean is

case ct is

nil -> true

| cons ((?n, ?c), ?cs) -> if empty(c) then false

else connected(cs) endif

endcase

endfun

(* Returns the length of the conntable *)

function sizeof(ct:conntable):nat is

case ct is

nil -> 0

| cons ((?n, ?c), ?cs) -> 1 + sizeof(cs)

endcase

endfun

(* Extracts the list of connections associated with index x *)

function neighbours(ct:conntable,x:nat):connections is

case ct is

nil-> {}

| cons ((?n,?c), ?cs) -> if x = n then c

else neighbours(cs,x) endif

endcase

endfun

(* Produce a list of naturals from x to y *)

function infix upto (x:nat, y:nat):List is

if y < x then nil else cons(x, (x + 1) upto y) endif

endfun

endmod

Fig. 4. Function Definitions for the FireWire Specification

9

assumed that the list contains no duplicates. The if and case statements are
new features of E-LOTOS.

Infix functions can also be defined, as in the upto function, to allow a more
natural specification style.

3.4 Processes

The behaviour of the system is modelled by processes and events. Each node
in the network is modelled by a separate process and the whole is given by the
parallel composition of these nodes. The combination of these processes to give
the whole network is described first, followed by the behaviour of individual
nodes.

The whole network is described by:

module FireWireProcs is

process ImpT [leader, error] (P:conntable) raises [LoopException] is

var

id:iden, n:nat, l:list of nat

in

?n := sizeof(P);

?l := (0 upto (n-1));

hide c:comm in

par c#2 in

[c] -> par ?id in l

||| TreeIDT [...](id, neighbours(P,id),

{}, false)[LoopException]

endpar

|| [c] -> Buffers[...](n)

endpar

endhide

endvar

endproc

Two novel forms of parallelism are introduced in E-LOTOS, and both are
used in the ImpT specification. The first is parallel over values, seen in the line

par ?id in l

||| TreeIDT [...](id, neighbours(P,id), {}, false)[LoopException]

endpar

The variable id is instantiated from a list of n values, producing n instanti-
ations of the TreeIDT process, each with parameters dependent on the current
value of id. TreeIDT describes the behaviour of an individual node in the system.
Parallel over values therefore allows a general description of a group of processes
(run in parallel), without specifying the data parameters for each process in
the network individually, or specifying the number of processes in the system.
In LOTOS such systems had to have the values and the number of processes
hardwired into the specification.

The second novelty is that synchronisation can take place on an n from
m basis, here exemplified by the 2 from n synchronisation between Buffers

10

and TreeIDT processes. In LOTOS, multiway synchronisation and the particular
parallel operators available mean that if all processes in a network are specified
to synchronise on a particular gate then every communication on that gate has
to be participated in by all processes. To describe the sort of network presented
here means hardwiring the number of nodes, and defining special communication
channels for pairs of connected nodes.

Here, although potentially each node can communicate with all buffers si-
multaneously (because they all use the gate c to synchronise), it is forced by use
of the n from m parallel construct to communicate with only one buffer (i.e. syn-
chronisation involves two processes from a possible n processes). Additionally,
data parameters to the events are used to make sure that the node communicates
with the right buffer and hence the right destination node.

A LOTOS notational device which has been preserved in E-LOTOS is the
use of ? to denote a binding occurrence of a variable. Notice that here it is
used in an assignment statement; another of the features drawn from imperative
programming. Use of a ! denotes a value, or used occurrence of a variable.

Hiding is also inherited from LOTOS. Here all the events on gate c will be
hidden from the environment. This means that the only events observable in the
environment are leader and error. This would be useful if a formal analysis,
such as a proof that the specification satisfies a formal version of the properties
stated in Section 2, were to be carried out. Additionally, hiding is used to force
the evolution of the system, since events on hidden gates are urgent, that is, they
have to be performed as soon as possible unless another event occurs without
consuming time.

Communication between nodes occurs via Buffers (therefore communication
is asynchronous). Messages in the 1394 are sent along wires of variable length
(up to 4.5m), therefore message passing is also subject to delay. The Buffer

processes here introduce randomly chosen delays (specific wire lengths are not
used for particular connections). Buffer[c](j, k) represents the wire between
nodes j and k.

process Buffer[c:comm](j:iden, k:iden) is

var

m:conntype, t:time

in

loop

c(!j, !k, ?m);

?t := any time [(lower_buffer < t) and (t < upper_buffer)];

wait(t);

c(!j, !k, !m)

endloop

endvar

endproc

The Buffer is the first process presented here which uses time. Real time
may be added to a specification in one of two ways: by defining the exact time
at which events occur (by adding annotations to actions), or by defining the

11

time that behaviours take (by using wait statements). We only use the second
method in this specification.

Buffers receive a message, choose a delay time, wait for that length of time,
pass the message on, then loop (another feature introduced to E-LOTOS from
programming languages). The choice of delay time is nondeterministic; this is
signified by the any wildcard. The wait statement is used to force time to pass,
necessary because all c actions are hidden and therefore urgent.

Each TreeIDT process uses two buffers to communicate with another node;
one for each direction of communication. A network of n 2 buffers parameterised
by (0, 0), (0, 1), . . . , (1, 0), (1, 1), . . . , (n − 1, n − 1) is created using the parallel
over values construct. This produces more buffers than are necessary (since the
actual network should not be fully connected), but the specification is simple,
and the extra buffers do not interfere with other events. Buffers are interleaved;
they do not communicate with each other. Figure 5 shows the buffers between
nodes 1, 2 and 3 of Figure 1. Those buffers between nodes 2 and 3 are shown
in a different typeface to indicate that they are not used (they do not model a
connection in the real network).

1

3

2

Buffer[c](1,3)

Buffer[c](2,3)Buffer[c](2,1)

Buffer[c](1,2)
Buffer[c](3,2)

Buffer[c](3,1)

Fig. 5. Buffers

In E-LOTOS, the network of buffers is constructed by:

process Buffers[c:comm](n:nat) is

var

j:iden, k:iden, l:list of nat

in

?l := (o upto (n-1));

par ?j in l

||| par ?k in l

||| Buffer[c](j, k)

endpar

endpar

endvar

endproc

12

A single node in the system is modelled by the process TreeIDT; this process
includes timing details in the separate process AlarmClock and the first phase of
the protocol proper, receive “be my parent” requests, in ReceiveReqs. The other
phases are described in separate processes: SendAcks, WaitPar, and Contention.
A further phase, SelfIDT, denotes the part of the 1394 which follows the tree
identification protocol. SelfIDT is not described in this case study.

process TreeIDT[leader, c:comm]

(id:iden, p:connections, ch:connections, fr:bool)

raises [ErrorExc] is

hide alarmct, alarmfr, stopAlarmct, stopAlarmfr in

ReceiveReqs[...](id,p,ch,card(p),fr)[ErrorExc]

|[alarmct, alarmfr, stopAlarmct, stopAlarmfr]|

(AlarmClock[alarmct, stopAlarmct](CONFIG_TIMEOUT)

|||

if fr then AlarmClock[alarmfr, stopAlarmfr](FRTIME) endif)

endhide

endproc

The parameters used here are:

– id, the identification number of the node,
– p, the set of communications still to make (initially the set of nodes connected

to id), and
– ch, the children to be acknowledged.

The main use of p and ch is in the ReceiveReqs phase and the SendAcks phase.
In ReceiveReqs, as each request is made the node making the request is removed
from the set p and added to the set ch. The ReceiveReqs phase terminates
and SendAcks is called when p is empty, or is a singleton set. In SendAcks as
each child is acknowledged that child is removed from the set ch. When all
negotiations are complete, p will be empty (indicating that the node id is the
leader), or will have one member (the parent of id).

Timing concerns are separated from the procedure of negotiating the par-
ent relationship with other nodes. There are two timing considerations for each
node. The first is whether or not the CONFIG_TIMEOUT has been exceeded. This
indicates that the network has been set up incorrectly (i.e. it includes a loop)
and an exception is raised. In the specification a separate “alarm clock” is
used which waits for CONFIG_TIMEOUT time units. The alarm is run in paral-
lel with ReceiveReqs and notifies this process with an alarmct event when
CONFIG_TIMEOUT expires.

The second timing consideration concerns the force root parameter fr. Nor-
mally it is possible for a node to move to the SendAcks phase when n − 1
communications have been made (where n is the initial size of the set p, that
is, the neighbours of the node). Setting fr forces the node to wait a bit longer,
in the hope that all n communications will be made (and the node becomes the
leader). To model this we set another alarm clock with timeout value of FRTIME.
If fr is set then stopAlarmct is only enabled if n communications have been

13

made, until the second alarm (alarmfr) goes off after which stopAlarmct is
enabled when n− 1 communications have been made. The second alarm is only
needed when fr is set.

The alarm clock process is

process AlarmClock[alarm, stopAlarm](TO:time) is

stopAlarm

[]

wait(TO); alarm

endproc

and the main message passing part of the node is

process ReceiveReqs

[leader,c:comm,alarmct,alarmfr,stopAlarmct,stopAlarmfr]

(id:iden, p:connections, ch:connections, n:nat, fr:bool)

raises [LoopExc] is

var j:iden in

(* receive a "be my parent" request *)

c (?j, !id, !parent)[isin(j, p)];

ReceiveReqs[...](id, diff(p,{j}), union(ch,{j}), n, fr)[LoopExc]

[]

(* Stop receiving requests at either n or n-1.

The n-1 test is delayed when fr is set. *)

stopAlarmct [if fr then (card(ch)=n) else (card(ch) >= n-1) endif];

(* FRTIME alarm may still be running, so stop it too *)

if fr then stopAlarmfr endif;

SendAcks[...](id,p,ch)

[]

(* Timeout on FRTIME, therefore start testing for n-1 connections.

Set fr to false to denote this. *)

alarmfr;

ReceiveReqs[...](id, p, ch, n, false)[LoopExc]

[]

(* Timeout on CONFIG_TIMEOUT, therefore stop receiving requests. *)

alarmct;

(* FRTIME alarm may still be running, so stop it *)

if fr then stopAlarmfr endif;

if (card(ch) < n-1) then

(* timeout and not enough communications *)

raise LoopExc

else

(* although timeout, enough communications, so continue *)

SendAcks[...](id, p, ch)

endif

endvar

endproc

Note that although stopAlarmct is enabled when n−1 communications have
been made (when fr is not set), a further communication may happen before

14

the alarm is stopped (if that communication is ready). This satisfies the text of
the standard which specifies that a node moves on to the next phase on all or
all but one communications.

The next two phases are not affected by timing considerations.

process SendAcks [leader, c:comm]

(id:iden, p:connections, ch:connections) is

(* From previous phase it is known that p = {} or {k}, where k is the

potential parent of this node. *)

var j:iden, k:iden in

case true is

!isempty(ch) -> (* No more acks to make, so make a parent

request (to the only k in p). *)

c(!id, ?k, !parent)[isin(k, p)];

WaitParent [...] (id, p)

| !singleton(ch) -> (* make last ack and if empty(p) send leader *)

c(!id, ?j, !ack)[isin(j, ch)];

if isempty(p) then

leader; SelfIDT[...](id, p)

else

SendAcks[...](id, p, {})

endif

| any:bool -> (* while more children, send an ack *)

c(!id, ?j, !ack)[isin(j,ch)];

SendAcks[...](id, p, diff(ch,{j}))

endcase

endvar

endproc

Here the case statement is used with true which has the effect of making
statements guarded by the conditions of the case. Note that the guards are
evaluated in top to bottom order (so it is important to put the wildcard last).

This phase sends acknowledgements to all the children of the current node,
and when finished either sends a “be my parent request” to its parent (if there
is an element in p) or declares itself leader (if the set p is empty). Here the case
statement guards match against values; they may also match against construc-
tors (as was seen in the function definitions).

If a parent request has been sent, then a node waits for an acknowledgement.
If a parent request arrives instead, then the two nodes are in contention for
leader.

process WaitParent [leader, c:comm] (id:iden, p:connections) is

var j:iden in

(* There will be only one member of p - the parent.

Either get an ack and are done, or a contentious parent req *)

?j := any iden [isin(j,p)];

(c(!j, !id, !ack); SelfIDT[...](id, p)

[] c(!j, !id, !parent); Contention[...](id, p))

endvar

endproc

15

In the standard, contention is resolved by choosing a random Boolean b and
waiting for a short or long time depending on b before sampling the relevant
port to check for a “be my parent” request from the other node. If the request is
there then this node should agree to be the root and send an acknowledgement
to the other. If the message is not present, then this node will resend its own
“be my parent” request.

The specification presented here differs from the standard because of the
nature of synchronisation in E-LOTOS; it is not possible to check for a message.
Instead, the Boolean is chosen and a wait time selected. If a “be my parent”
request arrives during the wait then the wait aborts and the request is dealt
with. If the wait time expires then the node resends its own “be my parent”
request.

process Contention [leader, c:comm]

(id:iden, p:connections) is

(* There will be only one j in p.

This means that both nodes (i and j) have sent a parent request. *)

var j:iden, b:bool, t:time in

?b := any bool;

?j := any iden [isin(j,p)];

if b then ?t := ROOT_CONTEND_SLOW

else ?t := ROOT_CONTEND_FAST

endif;

(wait(t); c(!id, !j, !parent); WaitParent[...](id, p)

[]

c(!j,!id,!parent); SendAcks[...](id, {}, {j}))

endvar

endproc

endmod

To complete the specification it is also required to declare some constants of
type time (Figure 6). The time values are taken from the standard [IEE95]:

– upper_buffer set to 22.725 ns models the maximum buffer delay time (as-
suming a maximum cable length of 4.5m and propagation delay of 5.05 ns,
both of these are specified in the standard),

– lower_buffer set to 0 ns models the minimum buffer delay time (no mini-
mum cable length is given in the standard),

– CONFIG_TIMEOUT set to a value in the range 166.6 – 166.9 µs, determines
how long a node waits for parent requests in the normal case,

– FRTIME set to a value in the range 83.3 – CONFIG_TIMEOUT µs, determines
how long a node delays the n − 1 communications check when force root is
set,

– ROOT_CONTEND_FAST set to a value in the range 0.24 – 0.26 µs is the small
delay in contention resolution, and

– ROOT_CONTEND_SLOW set to a value in the range 0.57 – 0.60 µs is the longer
delay in contention resolution.

16

module Constants is

value upper_buffer:time is 23 endval

value lower_buffer:time is 0 endval

value CONFIG_TIMEOUT:time is 166600 endval

value FRTIME:time is 84000 endval

value ROOT_CONTEND_FAST:time is 250 endval

value ROOT_CONTEND_SLOW:time is 580 endval

endmod

Fig. 6. Time constants

At one point we considered inserting a delay in the ReceiveReqs process, to
model the length of time a node takes to sample a port. While this might make
the passing of time more realistic, it adds nothing else to the specification. The
only time critical part concerns the CONFIG_TIMEOUT, and in the case of a loop
this will always be reached. It is also important not to report a loop if there is
none. The size of the buffer delays, the maximum number of nodes in the network
(64), the maximum number of cable hops between nodes (16) guarantees that
any communications between nodes will arrive before the CONFIG_TIMEOUT value.
Also, it seems difficult choose appropriate values for these limits. The choice
requires knowledge about the kind of processors used in the nodes, the other
processing tasks that might slow down execution, the particular implementation
of 1394, and the translation of that implementation to machine code.

4 Conclusions

We have presented the specification of a case study in the use of E-LOTOS
for a reasonably complex protocol. In the case study we particularly aimed to
express the synchronisation and real time aspects of the protocol. The features
of E-LOTOS make this task reasonably straightforward, producing a compact,
and easy to understand specification (particularly for those familiar with pro-
gramming languages). This gives us confidence that E-LOTOS will be a suitable
language for communications protocols and telecommunications in general.

The specification behaves correctly if it satisfies the properties mentioned
in Section 2. While we did verify the correctness of the E-LOTOS specification
by hand-execution (which is not particularly reliable) we were unable to carry
out any automated checking, validation or verification, because at the moment
tools for E-LOTOS are still under development. Although desirable, verification
in this case was not essential since the tree identify protocol has already been
verified using µCRL and I/O automata, and no errors were found. The same
cannot be said for other parts of the protocol. The study of [SM97] describes the
LINK and TRANS layer of this standard using E-LOTOS and uncovers an error
in the state machines of the LINK layer during verification. (Verification was by
translation into LOTOS, for which several analysis tools exist. This method was
only possible because a restricted subset of E-LOTOS (without time) was used.)

17

Discovery of such errors strengthens the case for the use of formal methods in
the development of standards and in all critical software systems.

Acknowledgements

Thanks to the British Council and the Ministerio de Educación y Ciencia for
supporting this work under the EASEL project (project number 2246), and
to Ken Turner of the University of Stirling, whose idea the EASEL project
was. Thanks also to Luis Llana of the Universidad Complutense de Madrid for
discussions about time in E-LOTOS, and Frank Kelly of the University of Stirling
for discussions regarding the timing aspects of IEEE 1394.

References

[DGRV97] M.C.A. Devillers, W.O.D. Griffioen, J. Romijn, and F. Vaandrager. Veri-

fication of a Leader Election Protocol - Formal Methods Applied to IEEE

1394. Technical Report CSI-R9728, Computing Science Institute, University

of Nijmegen, 1997.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-

tions and Initial Semantics. EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, 1985.

[IEE95] Institute of Electrical and Electronics Engineers. IEEE Standard for a High

Performance Serial Bus. Std 1394-1995, August 1995.

[ISO88] International Organisation for Standardisation. Information Processing Sys-

tems — Open Systems Interconnection — LOTOS — A Formal Descrip-

tion Technique Based on the Temporal Ordering of Observational Behaviour,

1988.

[ISO98] International Organisation for Standardisation. ISO/IEC JTC1/SC21

WG7: Enhancements to LOTOS, May 1998. Final committee draft.

[Rom99] J.M.T Romijn. A Timed Verification of the IEEE 1394 Leader Election Pro-

tocol. In Fourth International Workshop on Formal Methods for Industrial

Critical Systems, 1999.

[SM97] M. Sighireanu and R. Mateescu. Validation of the Link Layer Protocol

of the IEEE-1394 Serial Bus (FireWire): an Experiment with E-LOTOS.

Technical Report 3172, INRIA, 1997.

[SvdZ98] C. Shankland and M. van der Zwaag. The Tree Identify Protocol of IEEE

1394 in µCRL. Formal Aspects of Computing, 10:509–531, 1998.

[Ver99] A. Verdejo. E-LOTOS: Tutorial and semantics. Master’s thesis, 1999.

