

Abstract—It is argued that various factors including the

increasingly ageing population will require more care services to

be delivered to users in their own homes. Desirable characteristics

of such services are outlined. The Open Services Gateway

initiative has been adopted as a widely accepted framework that

is particularly suitable for developing home care services. Service

discovery in this context is enhanced through ontologies that

achieve greater flexibility and precision in service description. A

service ontology stack allows common concepts to be extended for

new services. The architecture of a policy system for home care is

explained. This is used for flexible creation and control of new

services. The core policy language and its extension for home care

are introduced, and illustrated through typical examples. Future

extensions of the approach are discussed.

Index Terms—Home Care, Open Services Gateway initiative,

Policy-Based Management, Service Discovery.

I. INTRODUCTION AND MOTIVATION

A. Background

It is evident from Government and research statistics that the

age distribution in many Western countries is shifting

dramatically towards an older population. This factor alone

will have an enormous impact on the demands for care

services. Resource pressures and economic considerations are

already driving many countries to look for new ways of

delivering care services to greater numbers of people.

An emerging trend is increased use of network-based

services for care delivery to the home. The last five years has

seen major breakthroughs in bandwidth, availability and price

of communications to and within the home. All of these make

home care delivery a more feasible proposition. With the

stabilisation of broadband and wireless, plus advances in

assistive technologies, there is a real opportunity to create

home care networks tailored to the needs of individuals.

Research indicates that the next generation of care products

and services must provide personalised solutions across

distributed networks, where care professionals or informal

carers can monitor an individual’s welfare and well-being in

their own home. This will allow users to benefit from linked

care services and household services, helping users to prolong

an independent existence in their own homes.

The research described in this article aims to deliver care

services locally to end users. It exploits a number of

technologies of value in pervasive healthcare such as wireless

networks, distributed communication, ontologies, policy-based

management, and service-oriented architecture.

B. Research Challenges

Designing systems for care at home presents both

technological and sociological challenges for researchers. The

requirements for a home care system include the following

aspects.

Easy Configuration The developers must allow for lack of

technical knowledge among home users and the organisations

that support them (e.g. health centres, social work

departments). Automated configuration and remote

management are needed to allow for easy installation and

maintenance. Customisation and personalisation are essential

to meet the needs of end users. Home visits are costly in staff

time (especially in rural areas), and must be minimised

Easy Access The system needs to provide accessible and

understandable user interfaces, no more complex than

everyday domestic appliances. Conventional input devices

(keyboard, mouse) are less suitable for non-technical users. A

home care system should offer natural interfaces that exploit

other modalities (e.g. speech, sound and touch). This is even

more important where the end user has physical or mental

impairments, whether through ageing or through illness.

Stakeholder Interests Many parties may be involved in

home care: end users, health centres, community nurses, social

workers, informal carers and family members. The interests of

these stakeholders may conflict at a high level due to differing

goals, or at a low level due to different technical implications.

A home care system must provide mechanisms to support

detection and resolution of such conflicts.

Technology Integration Many network technologies,

device technologies and assistive technologies are available.

An effective home care solution must be able to accommodate

and integrate these. For example, there are many approaches to

home networks such as ANSI X10 (powerline

communication), the European Installation Bus, ETSI 300-220

(wireless communication), and UPnP (Universal Plug-and-

Play).

C. Approach

Pervasive (or ubiquitous) computing has attracted considerable

research and industrial interest (e.g. [1, 2, 3]). Many

approaches to pervasive computing require specialised

expertise for customisation or upgrading. Pervasive computing

techniques have been applied in clinical settings (e.g. [4, 5]).

There has been little research on pervasive computing for care

at home, though some projects (e.g. [6]) are investigating

sending the patient’s medical data back to a care centre.

Services and Policies for Care At Home

Feng Wang, Liam S. Docherty, Kenneth J. Turner, Mario Kolberg, Evan H. Magill

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

Email fw, lsd, kjt, mko, ehm @cs.stir.ac.uk

Feng Wang, Liam S. Docherty, Kenneth J. Turner, Mario Kolberg, Evan H. Magill. Services and Policies for Care at Home. In Jakob E.

Bardram, Juan Carlos Chachques and Upkar Varshney, editors, Proc. 1st. International Conference on Pervasive Computing Technologies

for Healthcare, pages 7.1–7.10, Institution of Electrical and Electronic Engineers Press, New York, USA, November 2006

The authors believe that care at home requires much more

than just relaying sensor data. A complete solution should be

well integrated into the home and into the end user’s lifestyle.

Several commercial offerings support care at home. However

such products follow proprietary rather than open

architectures, and usually require specialised personnel to

install and configure them.

The authors are part of a multi-partner team working on the

MATCH project (Mobilising Advanced Technologies for Care

at Home, www.match-project.org.uk). The mission of this

project is to develop advanced software technologies in

support of health and social care at home. MATCH is focusing

on four technology areas of particular relevance to this goal:

home network services, lifestyle monitoring, speech

communication, and multimodal interfaces.

The authors have observed that approaches to smart houses

and home care often focus on building smart devices. Such

devices are specialised for particular functions, and do not

lend themselves to well to other uses or to combination with

other devices. The philosophy of the MATCH project is, as far

as practicable, to use off-the-shelf, relatively dumb devices.

This allows simple devices to be used to create smart services.

Because this is achieved by software rather than hardware,

new services and configurations are easily achieved.

This paper concentrates on one aspect of the MATCH

project: service provision and management in home networks.

OSGi (Open Service Gateway Initiative [7, 8]) has been

selected as an industry-recognised approach to service

provision. OSGi is neutral with respect to network

technologies, and already supports a number of industry

standards. Although originally conceived for service delivery

to the home, OSGi has also been enthusiastically adopted for

other applications such as automobile services.

Two key issues in home care networks are service

discovery and policy-based management. Service discovery

requires fine-grained description combined with flexibility.

Policies are needed to let a variety of stakeholders state how

they wish care services to be managed.

Section II introduces the technical background to the work

reported here. Section III provides an overview of the home

care system that has been designed. The approach to service

discovery is discussed in section IV. Policy-based management

of home care services is described in section V. Finally,

section VI summarises initial experience of the approach and

discusses future work.

II. BACKGROUND AND RELATED WORK

A. Positioning of The Research

The MATCH project is distinguished in a number of respects.

The emphasis is on delivery of care services to the home.

Social care plays a dominant role, though healthcare issues are

also accommodated. This requires a wide range of situations in

the home to be monitored and managed. For a similar reason,

assistive technologies are also important. MATCH is interfacing

to healthcare monitoring devices rather than developing them.

MATCH is focused on home care services. As a result, the

MATCH approach needs to be seen in the context of home

network architectures rather than healthcare information

systems. The work on smart houses tends to concentrate on

home automation (e.g. appliances, entertainment, security).

Delivery of care is of lesser interest. Smart houses often

emphasise device control, with service provision being

secondary.

OSGi is ideal for MATCH as the approach is vendor-

neutral, device independent, and focused on service provision.

The designers of OSGi envisaged healthcare and self-care as

important applications. Several projects have applied OSGi to

healthcare, e.g. e-HealthCare (ehealth.sourceforge.net), Home

HealthCare (www.ida.liu.se/%7estuha/anna-web/projects/

HHC-overview.htm) and SAPHIRE [20]. However, healthcare is

not the main focus of MATCH. As far as the authors are aware,

its emphasis on social care using OSGi is unique.

[18] defines a widely used standard for exchange of

healthcare information. This is supported by open-source

projects like MIRTH (www.mirthproject.org). A middleware

standard for healthcare information systems is defined in [19].

This addresses middleware for storage and retrieval of shared

healthcare data. The Continua Health Alliance

(www.continuaalliance.org) is particularly concerned to ensure

interoperability of telecare solutions. A number of

specifications have been developed to support healthcare

applications of CORBA (Common Object Request Broker

Architecture). However, all these approaches are exclusively

for healthcare applications (typically electronic patient

records), and so are of only peripheral relevance to MATCH.

Other differentiating factors in MATCH include the use of

ontologies to enhance discovery of home care services, the use

of policies to manage these services, and the fusion of multiple

disciplines (e.g. activity monitoring, home networks,

multimodal interfaces, speech technology, stakeholder

analysis).

B. Open Services Gateway Initiative

OSGi defines a standardised, component-oriented execution

environment for Java applications running on networked

devices. An OSGi application (called a bundle) is a collection

of software components rather than a monolithic chunk of

code. The core of OSGi is a framework that manages the life-

cycle of bundles, as well as providing important common

services. Bundles can be installed, updated, started, stopped,

and removed without stopping the platform. This is an

important advantage for home care applications. Bundles can

share code by exporting and importing packages. They can

also use functionality provided by other bundles at run-time

through a service registry.

On top of the framework, OSGi provides many standard

services such as package administration, device access,

protocol support (e.g. Jini, UPnP, X10), and miscellaneous

capabilities such as an HTTP service and XML parsing.

Remote management supports remote deployment, monitoring

and maintenance of unattended devices. These facilities greatly

simplify the process of developing solutions for home care.

C. Service Discovery

Service discovery within OSGi is limited to finding an

implementation of a given service interface. LDAP

(Lightweight Directory Access Protocol) may optionally be

used to discriminate among multiple implementations. In a

pervasive environment, it is likely that context information will

be more important for service discovery rather than properties

of the service implementation. Contextual information includes

the characteristics of a service with respect to its environment.

The standard OSGi approach to service discovery uses simple

key/value property pairs that are registered with the framework

along with the service implementation. This method restricts

the description to the service implementation, i.e. its technical

characteristics. Ambiguities may arise due to inconsistency in

concepts. For example, location may mean the URL from

which a bundle was loaded or the physical location of a device

controlled by the bundle. [9] highlights ambiguity as one of the

potential problems when performing service discovery in

OSGi.

Ambiguous descriptions could perhaps be avoided by using

unique URIs to identify service properties. However, it is hard

to make this work in practice. Even in natural language,

similar terms can be used with the same meaning, and the same

term can be used with different connotations. It is therefore

problematic to make automated service discovery work

reliably.

Semantic descriptions are popular for web services.

Semantically-based description languages for web services

include SWSF (Semantic Web Services Framework) and

OWL-S (Web Ontology Language with semantic markup for

services). These aim to support standard ways of describing

services and interacting with them, though at present they are

still under development. Protocols such as UPnP contain

service and device descriptions in an XML format. However

unlike OWL-S, these are fixed and cannot evolve as new

information is added.

Ontologies have become popular as the basis for consistent

communication among agents and web services. RDF

(Resource Description Framework) and its associated RDFS

schema can be used to ascribe meaning to data. DAML+OIL

(DARPA Agent Markup Language plus Ontology Interchange

Language) and OWL allow more expressiveness and

functionality. The OWL-DL description logic supports logical

inference and reasoning, allowing inconsistencies to be

discovered and new information to be inferred.

[10] describes a middleware architecture for enhancing

service descriptions in an OSGi framework, using XML

descriptions of service behaviour. This approach concentrates

more on how a service behaves, rather than on what the service

offers. The solution in the current paper gives a fuller

description of services, including a complete description of

their effects.

The need for context awareness within a networked

environment is emerging as a relatively new area of research.

Some efforts (e.g. [1, 11, 12]) use real-time context

information to aid in system decision-making. Other work (e.g.

[13, 14]) uses ontologies to describe context terms within the

environment. The authors’ approach differs in using service-

oriented context information, instead of just application or

system aspects.

D. Policy-Based Management

Policy-based management has been applied to a number of

areas, including the management of networks/distributed

systems [15, 16] and system configuration [9]. However the

target users of most policy systems are IT professionals who

can be expected to have specialised technical knowledge.

One exception is the policy system developed by the

ACCENT project [17], which was developed for end users to

manage their calls. Call control policies are in ECA form

(Event-Condition-Action). When the given combination of

triggers occurs under defined conditions, the specified actions

are performed. Conditions make use of so-called environment

variables. These may be established by a trigger, by a context

system (e.g. user role, capability), or by the policy server (e.g.

current time, policy preference). A policy wizard allows

policies to be defined by non-technical users using stylised

natural language.

The ACCENT policy system is designed to be neutral with

respect to triggers, conditions and actions. This reflects the

fact that any policy language it supports has a core structure

that is then specialised for different applications. The system is

also designed to be generic in that it deals with ‘servers’ via a

defined API. In call control, the policy system is interfaced to

communications servers that handle with the underlying

networks.

Since the authors had direct access to the ACCENT system,

it was of interest to see if this could be adapted for home care

policies. This has proven to be practicable, though not entirely

straightforward. Triggers may arise from a wide variety of

sensors in the home, while actions may apply to many different

kinds of actuators. In call control, state is implicit (being

managed by a communications server). For home care, the

policy system has to be aware of the system configuration and

state. Call control also does not involve correlation across

different calls, whereas the activities of home devices typically

have to be coordinated.

III. HOME CARE SYSTEM OVERVIEW

A high-level view of the system architecture is shown in figure

1. Inputs come from sensors in a broad sense: physical devices

as well as logical information sources and user inputs. Outputs

go to actuators that may similarly be physical, logical or user-

oriented. Home services and device control are located in what

OSGi terms a residential gateway. This is linked to the outside

world, typically via a broadband connection to the Internet.

However, for some purposes it is convenient to link to a

cellular network – either directly or via an Internet gateway.

This reflects the strong interest in using mobile devices for

symptom monitoring. These typically make use of digital

phone systems such as GPRS (General Packet Radio Service)

or UMTS (Universal Mobile Telecommunications System).

Subject to user agreement, information from the home can

be sent to a variety of care providers: health centres, social

work departments, and informal carers. Information can also

flow from care providers to the home. However, many other

Internet-based sources of information can be used in the home

(e.g. weather reports about severe conditions).

An obvious concern with any networked system is security.

Unauthorised access must be prevented to the home system

and the data it collects. OSGi provides a general security

framework that is being extended to meet the needs of home

care. This is coupled with security policies that define who

may configure devices and services, who may use what data

for what purpose, etc.

The home care devices supported include general ones

(e.g. flood detectors, movement sensors) as well as specialised

assistive technology devices (e.g. epilepsy monitors, fall

detectors). The MATCH project is also investigating a range of

modalities such as speech communication, non-speech audio,

haptic (touch) devices, and analysis of tremor and gait. Speech

has obvious applications for input (voice commands) and for

output (synthesised reminders and advice). However, speech

communication for care at home presents particular challenges.

Due to age or illness, users may speak unclearly or may have

hearing limitations. Speech recognition in a home environment

is also difficult. Non-speech interfaces must also be designed

to meet the needs of target users.

With user consent, data about health and lifestyle can be

captured and stored within the home. Policies control what

information may be recorded, processed, and released to

approved third parties. Lifestyle monitoring can make use of

such information to detect significant variations from the

norm, and to determine long-term trends such as deterioration

in user capabilities. Research in activity monitoring and

lifestyle modelling has shown exciting potential. It enhances

the understanding of activities that affect quality of life, and

how changes in these activities influence the independence of

older or infirm people. The results from lifestyle monitoring

allow user needs and well-being to be monitored, so that

external help can be sought in good time. Activity tracking and

modelling are being extended to give users and their carers

more confidence while they are out and about. This helps users

to remain mobile and active.

The home care system is not closed. Instead, it is

connected to external care parties through the Internet or other

data networks. Call centres currently use a restricted range of

services such as telephony. It is planned to extend the range of

services to include aspects such as remote health monitoring

and telecare, remote system management, and remote

configuration. An advantage of the approach is that the

configuration of home devices need not be fixed in purpose.

The project is developing a goal-directed, top-down approach

that configures devices and their combination to achieve

specific purposes. For example, a movement sensor may be

used to support many goals such as security, monitoring room

usage, noting household entry/exit, controlling lighting, and

activating nearby appliances.

IV. SERVICE DISCOVERY

A. Ontology-Based Service Description and Discovery

Home care relies on a variety of services to control devices,

provide care, and support management using policies. There is

a need for service discovery, particularly in support of

automated configuration and goal-directed configuration. As

noted earlier, conventional OSGi service discovery suffers

from problems of inconsistency and ambiguity in service

description. The authors’ preferred approach is to use

ontologies that provide a uniform and semantically-based way

of describing services and the concepts they need. Ontologies

offer the consistency and reusability required. Ontology-based

service descriptions are rich enough to capture context

information about a service, allowing for more expressive

service description and discovery.

Use of ontologies ensures consistency among services

developed by different parties. An ontology describes the

concepts and their relationships within a given domain – here,

home care. Developers can extend this ontology when creating

new services. For example, a generic ontology can define the

characteristics of location. This can then be specialised for

new purposes, e.g. to talk about absolute, relative or network

location.

OWL (and its variants) are appropriate for defining

ontologies in home care. Apart from expressiveness, OWL is

endorsed by the W3C and is well supported by tools.

It is unlikely that a single ontology would be sufficient in

capturing all concepts and properties in a domain that

continues to evolve. This is an issue in home care, where the

configuration of devices and services needs to adapt to the

changing needs of users. Ontologies allow concepts and

properties to be readily modified to match an evolving domain.

In the area of service description, suppose a new lighting

service were developed after an initial service description

ontology had been created. A developer could use concepts

from the initial ontology as well as concepts created

specifically for the new service. Languages like OWL allow a

base ontology to be imported and extended. Home care is a

rapidly evolving application domain, with new devices and

services constantly under development As an understanding of

home care evolves, common concepts can be moved from

more specialised ontologies into the shared base.

Currently, service discovery in OSGi is limited to queries

about service properties. An ontology has been developed for

home care services, capturing information about technical

aspects of a service as well as the context of its use. This

Residential

Gateway

Inputs Outputs Storage

Healthcare Social Work Informal Care

Cellular
Network

Internet

Figure 1. High-Level Architecture for Home Care

supports queries where the effect of a service rather than its

implementation are important. As an example, suppose that an

application wished to control temperature in a room with

windows. The issue here is that room temperature is affected

by more than just heating or air conditioning. Windows let in

sunshine, which heats a room. Windows allow heat to escape

by radiation and conduction. Windows can also be opened to

equalise the internal and external temperatures. A heating

application therefore needs to be able to discover which rooms

in the house have windows, and which of these rooms have

temperature control services.

In a pervasive environment, the authors believe that current

OSGi service discovery mechanisms are too limited. Context-

dependent queries founded on ontology-based service

descriptions provide a more robust and expressive approach.

B. Service Properties

Using the results of service discovery requires an

understanding of how to use the returned services and what

their effect is. A basic approach provides only information

about the interface to a services – its syntax. For example, it

may be discovered how to call a temperature control service,

but other effects of this may not be known. Thus, heating one

room may be countered by trying to cool an adjacent room. A

cost-effective way of cooling a room in summer may be to

open the windows, but this could compromise security.

Such side effects are described using an ontology for

service description. This results in a fuller description of

services, including their primary functions as well as

secondary or side effects. This allows the requester to be more

precise about the home care service required. More

interestingly, it supports automated detection of undesirable

conflicts among services. In a home setting, it is likely that

services will be developed by independent vendors. This is

already the case, with current offerings including services for

security, climate control, energy monitoring, and

entertainment. As already mentioned with temperature control

vs. security, independent services may inadvertently interfere

with each other. This is a well-known issue in telephony,

where it is called the feature interaction problem. In policy-

based management, such interference is referred to as policy

conflict.

OSGi provides a security manager that restricts access to

implementations of a particular interface. While appropriate

for certain service types such as home security, this can be too

coarse-grained for some services. Authorisation and access are

therefore defined as part of the generic service ontology.

Service discovery and usage can then be controlled. An

authorisation hierarchy (lattice) allows finer-grained

management. For example, services with limited privileges are

not allowed to discover or to use more strictly controlled

services. Security is enforced by the service implementation

rather than its interface.

C. Ontologies for Home Care Services

The authors have developed a number of OWL ontologies to

support more precise and expressive service discovery. These

ontologies represent the essential characteristics of home care

services deployed using OSGi. The ontologies are

intentionally abstract. For example, the base ontology

describes general concepts like vendor, location, service type

and environment. These are then defined in more detail by

ontologies specific to these concepts. Thus, the generic notion

of location is extended to allow relationships among rooms to

be expressed (such as ‘next to’). Similarly, the generic notion

of service type is extended to talk about service authorisation

and secondary effects (linked to effects in the environment

ontology). The approach thus gives both an abstract and a

detailed view of the same ideas.

The collection of ontologies is referred to as a service

ontology stack, as illustrated in figure 2. Using these

ontologies, developers can create their own service

descriptions – by customising one of the service type

ontologies provided, or by using concepts from lower-level

ontologies. This allows home care services to be given more

expressive descriptions.

However, the service descriptions cannot be used directly

by OSGi. A semantic service discovery bundle has been

created using the Jena2 Semantic Web Toolkit

(jena.sourceforge.net). Jena stores and reasons about service

ontology descriptions, and supports queries about services.

This bundle works in conjunction with the current OSGi

service registry, as shown in figure 3.

A requester can submit queries to the semantic service

discovery bundle. This returns results as fully-qualified class

names for matching service instances within the framework. A

requester may have to include authorisation information to

discover services that are strictly controlled. On receiving fully

Figure 3. Semantic Service Discovery

 Service Providers

 Service Users

register

service

discover

service

upload

description

service

usage

OSGi Service

Registry

Semantic Service

Discovery

get

implementation

Developer-Defined Ontology

Base Ontology

Service Type Ontologies

Vendor

Ontology

Location

Ontology

Service Type

Ontology

Environment

Ontology

Figure 2. Service Ontology Stack

qualified class names, the requester makes a selection and

performs normal OSGi service discovery, supplying the

service name and class name in an LDAP query. This obtains

the desired service implementation. If a service is removed

from the OSGi framework, the semantic service discovery

bundle is notified so that it can remove the relevant ontology

description from its registry.

The semantic service discovery bundle also provides

methods for a service to modify its ontology description,

allowing context information to be changed dynamically.

Using the fully qualified class name as a unique identifier,

semantic service discovery updates obsolete information.

V. POLICY-BASED SYSTEM MANAGEMENT

A. Policy System Design

To support better flexibility and control, home care services

are managed by a policy system. This allows users to

formulate policies for how they wish the care system to

behave. In fact, a user in this context means a range of

stakeholders including end users, care providers and informal

carers. The policy system is part of the residential gateway

shown in figure 1. It is integrated into the OSGi framework,

interacting with it to manage devices and services.

Figure 4 shows the architecture of the policy system. The

inputs and outputs are as discussed for figure 1; they include

physical devices, but also interactions with users and services.

Policies are expressed in a language called APPEL (ACCENT

Project Policy Environment/Language). This provides a set of

core constructs. APPEL is then specialised for each application

domain by defining the triggers, conditions and actions in that

domain.

The policy store holds policies internally as XML

documents that conform to the APPEL schema. However, the

policy system must support non-technical users. The policy

wizard is therefore vital as an easy-to-use way of creating,

modifying and deleting policies. The wizard allows policies to

be formulated and edited using stylised natural language. The

wizard is web-based, partly because this is now familiar to

many users, and partly because policies can then be edited

remotely. However, it is recognised that a textual web

interface may not be suitable for all users. Other approaches

being considered for the policy wizard include a graphical

interface and a speech-based one.

Since the wizard must allow policy definition in a variety

of applications, domain-specific knowledge must be factored

out. This is achieved by a system called POPPET (Policy

Ontology-Parsing Program – Extensible Translation). This

uses ontologies, but for a very different reason from their use

in service discovery. In this case, ontologies are used to

capture the concepts and relationships for policies about home

care. The core APPEL language has its own ontology that is

extended by an ontology for the wizard. Finally, a domain-

specific ontology sits on top of this. The wizard uses POPPET

to discover the specific kinds of policies that may be

formulated in a domain.

The policy wizard offers a number of simplifications for

ease of use. In fact a user need not define policies in order to

benefit from them; the policy system administrator may define

policies on behalf of a group of users. The administrator also

manages user profiles that include user expertise. This affects

how much of the policy language the user sees, a novice user

being presented with just the basics. A range of template

policies is provided, allowing the user to select pre-defined

policies rather than having to create them from scratch. These

policies may have a few parameters that the user is expected to

complete (e.g. a name or telephone number). Alternatively,

policies may be parameterised by variables that are

instantiated at run time. These variables are defined separately

from policies, either manually through the wizard or

automatically through the system.

Apart from policies, the policy store holds user profiles, the

system configuration, and the system state. Configuration

information is necessary so that policies can refer symbolically

to things like ‘the front door’, ‘the community nurse’ or ‘the

security service’. System state is needed so that policies can be

interpreted dynamically in context. Status variables keep track

of device and service state, such as whether a bed is occupied

or whether a service is online.

The home server provides the communication mechanism

between home devices and the policy system. Components

communicate with the policy system by sending or receiving

events. These contain a trigger name and a set of attributes.

For example, a UPnP passive infrared sensor sends out

movement events with attributes identifying the source of the

event. An X10 dimmer module accepts actions with attributes

such as the house code, the unit code and the dimming level.

A policy system input (typically a sensor) causes the home

server to report a triggering event. The policy server retrieves

the policies associated with this trigger. Policies are selected

only if they meet certain conditions. These include what the

policy applies to, the period of validity of a policy, and what

profile the policy belongs to. Policies may be grouped into

categories such as ‘at night’ or ‘on holiday’, allowing sets of

policies to be activated easily. Variables in the selected

policies are retrieved from the policy store; this includes

configuration variables and status variables. Policy conditions

are evaluated to determine which policies apply. All enabled

policies then dictate the actions to be performed. In the

absence of conflict, these actions are sent to the home server.

In turn, this causes various outputs (typically to actuators).

Policy

Wizard

Policy

Store

Policy

Server

Ontology

Server

 Inputs Outputs
Home

Server

Figure 4. Policy System Architecture

The policy server also deals with conflicts among policies

due to contradictory actions. Opposing actions are examples of

simple conflicts (e.g. ‘open the door’ vs. ‘do not open the

door’). However, conflict detection can be much more

sophisticated. For example, ‘open a window’ conflicts with

‘heat the room’ during winter. Conflict handling is externalised

by design. That is, the policy server does not have built-in

rules to detect and resolve conflicts. Instead, conflicts are

defined by higher-level resolution policies. These take

conflicting policy actions as triggers that lead to resolution. A

generic resolution chooses among the conflicting actions

according to some high-level criterion (e.g. a carer’s policy is

preferred to an end user’s policy). A specific resolution

dictates explicitly what actions are taken to handle the conflict.

This might be an automatic response or might involve a

person.

B. The Core Policy Language

The core policy language builds on previous work for call

control [17]. The core is defined by a domain-independent

XML schema. Specific triggers, conditions and actions are not

specified by the core language. Instead, these are added as

extensions in domain-specific schemas. The core language

offers a range of constructs including the following.

Parameterised Policies The language supports

parameterised policies that are instantiated with particular

values for policy variables. This is useful, for example, in

template policies for non-technical users. Policy variables are

also used to give symbolic names to devices that otherwise

have configuration-specific addresses. The system

configuration held in the policy store performs this mapping.

Domains Individual policies apply to whoever defines

them. However policies may be defined for domains, i.e.

groups of users such as those in a specific nursing home or in a

category like community nurse.

Modality A policy may define a preference (e.g. must,

should or prefer, along with negative versions of these). This

information implies a weight for the policy that is taken into

account if conflicts have to be resolved.

Rule Combinations Policies comprise rules that may be

combined in various ways, e.g. subject to some condition, tried

in sequence, or executed in parallel.

Rules An optional trigger specifies the external event(s)

that may activate a policy. Triggers may be combined with

and/or. An optional condition defines the circumstances in

which a policy may apply. Conditions rely on information

established by triggers, such the device, the system state, or the

time of triggering. Conditions may be combined with boolean

operators. An action gives the effect of a rule. Actions may be

combined with various operators such as and/or, though more

sophisticated combinations are possible such as parallel

execution.

C. The Policy Language for Home Care

The core policy language has been specialised for the triggers,

conditions and actions required for home care.

1) Triggers

Sensor inputs are handled by a generic device trigger. It would

have been possible to define a range of device-specific

triggers. However, this would have considerably complicated

the policy language. It would also have biased it towards a

particular set of device types. A study was made of the kinds

of devices that are useful in home care This resulted in a

taxonomy of such devices, showing that there is considerable

commonality among them from the event point of view.

A single device_in trigger is therefore used, with an

argument that indicates the device (e.g. front_door) and one

that indicates the status (e.g. open). It is preferable to use

symbolic names for devices, mapped to addresses through the

system configuration; however, well-known addresses could

be used (e.g. for the residential gateway itself). Device inputs

establish other values that can be used in policy conditions.

In call control, policies mainly depend on the attributes of

triggers. This is sometimes sufficient for home care

applications. For example, a policy may just need to know that

the front door has been opened. However, more typically a

home care policy needs to know the overall system state. For

example, movement down the path after the front door is

locked suggests that someone has just left the house.

Unlike call control, home care policies are often strongly

influenced by timing. For example, it may be necessary to

issue a warning that the cooker is still on if the user leaves the

kitchen for some period of time. This requires a timer trigger

that needs to know whether the cooker is on or off. The cooker

status established by other triggers is therefore held in the

policy store.

Time-based triggers have been added to the policy

language and server. An at trigger happens at a certain point in

time. An every trigger occurs at a fixed time each day. An

after_event trigger is fired if a specified event happens after a

given period of time, while a no_event trigger occurs if this

does not happen. A repeated trigger means a given event re-

occurs a given number of times in some period.

Other triggers are used for particular services. For

example, speech input uses a recognise trigger.

2) Conditions

A policy may have a single condition or a combination of

these. A single condition has a parameter (a value established

by a trigger), an operator (that performs the check) and a value

(established by the trigger or known from the system state). As

noted earlier, the status of system entities is maintained (e.g. a

door is open or a user is watching television). When the system

status is updated, the entity, its new state and the time of the

change are all recorded. The term ‘entity’ is used broadly here

to include devices, services and people.

The core policy language defines a limited range of

condition operators that are interpreted according to the kind

of value being checked. Apart from comparison operators like

= and >=, there are in and out operators to check for inclusion

or exclusion. The latter are particularly useful for ranges or

sets (e.g. a time or location check).

3) Actions

Actuators may be of many different kinds, controlled by

different protocols. For example a lamp may be switched on

using X10, or a video recorder may be managed through

UPnP. It is a design goal that the policy system be independent

of particular devices and protocols; it is up to OSGi to handle

Figure 5. Night Wandering Policy

<policy_rule>

 <trigger arg1=":front_door" arg2="open">

 device_in(arg1,arg2)

 <conditions>

 <and/>

 <condition>

 <parameter>time

 <operator>in

 <value>23:00:00..07:00:00

 <condition>

 <parameter>:master_bed

 <operator>eq

 <value>unoccupied

 <action arg1=":hallway"

 arg2="it is night time, go back to bed">

 speak(arg1,arg2)

these differences. For generality, a single device_out action is

therefore used. This carries arguments that give the device

identifier, command name and parameter names/values. As for

inputs, outputs normally use symbolic names for devices.

Other actions are used for particular services. For example,

speech output uses a speak action.

D. Policy Examples for Home Care

To make the policy language concrete, the following examples

show how it can be used to control a variety of devices in

support of home care. The policy language is more widely

used, e.g. for managing services and for defining higher-level

goals. The example policies are shown in XML form, but

omitting some ‘red tape’ such as the obvious closing tags.

Although the policy system is focused on supporting care

at home, the experience of social work departments is that it is

vital to provide end users with a comfortable living

environment. It is therefore often important to protect the

home as well as its occupants. To this extent, some of the

policy examples here would be useful in any home.

1) Medical Care Policies

Older people, especially those with dementia, are prone to

waking in the middle of the night and leaving the house. Figure

5 shows how the user can be advised to return to bed using

synthesised speech (say, of a family member).

Although policies have an XML form internally, users do

not see this. The example below is rendered in stylised natural

language as follows: when the front door opens; if the time is

between 11PM and 7AM, and the main bed is unoccupied;

speak a message in the hallway ‘it is night time, go back to

bed’.

This example illustrates several points about the policy

language. Triggers and actions have fixed values such as

device_in or speak. For proper validation, arguments must be

carried as XML attributes (arg1, arg2, etc.). Policy variables

are distinguished from literal values by a colon prefix, e.g.

:front_door or :master_bed. Combinators like and are binary,

so a compound condition must be constructed from pairs of

sub-conditions.

2) Home Appliance Policies

Home appliances can be controlled by a variety of means. For

example, X10 allows standard electrical appliances such as

cookers or washing machines to be switched on/off through

mains wiring. UPnP allows home entertainment devices to be

controlled via an in-house network. Policies can dictate how

these appliances are used. Such policies can be conveniences

for the user, saving them from having to remember to do

things. However, policies can also be used to avoid potentially

dangerous situations. For example, if a user needs supervision

while cooking then the cooker should not turn on unless a

helper is present.

The example in figure 6 describes a situation in which

someone has a home help call every evening to cook dinner.

To save time, a policy turns on the oven at 7PM and sets it for

200°C. This ensures it is warmed up for the home help calling.

3) Security Policies

Figure 7 shows a policy that turns on an alarm for 20 minutes

if there is movement in the hallway or lounge between

midnight and 6AM.

4) Entertainment and Communications

Home care policies are also valuable in supporting everyday

activities. For example, someone with limited dexterity,

impaired dexterity or weakened cognitive abilities may find it

difficult to operate appliances like washing machines, video

recorders or telephones.

As an entertainment example, the policy in figure 8 states

that the user wishes to record channel 3 for one hour, starting

at 9PM on 31st May 2006. (Date and time formats follow

XML schema conventions.)

Figure 6. Oven Warming Policy

<policy_rule>

 <trigger arg1="19:00:00">every(arg1)

 <action arg1=":oven" arg2="on"

 arg3="temperature=200">

 device_out(arg1,arg2,arg3)

Figure 7. Night-Time Movement Policy

<policy_rule>

 <triggers>

 <or/>

 <trigger arg1=":hallway" arg2="movement">

 device_in(arg1,arg2)

 <trigger arg1=":lounge" arg2="movement">

 device_in(arg1,arg2)

 <condition>

 <parameter>time

 <operator>in

 <value>24:00:00..06:00:00

 <action arg1=":alarm" arg2="on" arg3="period=20">

 device_out(arg1,arg2,arg3)

<policy_rule>

 <trigger arg1="2006-05-31T21:00:00">at(arg1)

 <action arg1=":video_recorder" arg2="record"

 arg3="channel=3,period=01:00:00">

 device_out(arg1,arg2,arg3)

Figure 8. Video Recording Policy

VI. EVALUATION

A. Current Status

Knopflerfish [12] has been used as an open-source

implementation of OSGi Release 4. Jena and Protégé

(protege.stanford.edu) have been used to create ontologies in

support of service discovery and policies. The existing

ACCENT policy system has been re-used, though it required

packaging the policy server as an OSGi bundle. An event

service is supported directly by OSGi version 4, significantly

reducing the development effort. Using OSGi as the

foundation for home care services has been a positive

experience, with particular benefits gained from the clean

separation of services, devices and protocols.

The semantic service discovery bundle has been developed

and deployed within OSGi, allowing experimentation with

complex service queries. An initial service ontology stack has

been used to create descriptions of home care services. Using a

set of basic service type ontologies, evaluation of semantic

service discovery has demonstrated its expressiveness.

Currently, queries may be single, multiple (fixed-content) or

complex combinations.

Practical evaluation of the approach has been conducted in

a laboratory that serves as a home environment. Various

wireless sensors are used to detect movement, flooding,

smoke, bed occupancy, and door opening. A standard wireless

receiver has been interfaced to a PC using a USB adapter. An

OSGi bundle was written to read the wireless sensor inputs.

For output, OSGi bundles have been written to control X10

appliances (on, off, dim), to control UPnP alarm devices, to

interface with SIP (Session Initiation Protocol, used for

Internet telephony), and to send text messages for mobile

telephones.

The policy examples given earlier have been tried in

practice, though some devices had to be simulated by software

in the meantime. It has been found that policies are conducive

to flexibility and ease of change. The approach of other

developers typically requires programming a PIC

(Programmable Interface Controller), FPGA (Field

Programmable Gate Array), or custom code for a service. In

contrast, a wide variety of policy-based services can be created

without having to write any software. For development

purposes, policies can be entered in XML format. However,

the wizard is the primary means for ordinary users to define

policies.

B. Future Work

The efficiency and scalability of semantic service discovery

will be investigated as descriptions become more

comprehensive. An issue here will be maintaining only the

most relevant or current information in the ontological

knowledge base. The greater precision of service description

will be exploited to detect potential interference and how to

handle this. It is planned to extend the framework with a

service that identifies and resolves interference before services

are instantiated.

The conflict detection and resolution techniques developed

by ACCENT will be of value in this role and for handling policy

conflict. This will be important in enhancing the robustness of

home care services. Conflict handling allows interference to be

detected statically (at definition time) or dynamically (during

execution). So far, most effort has gone into dynamic handling

as this is the more challenging issue. However, it is believed

that similar ideas can be extended to static handling as well.

Of necessity, resolution requires ignoring certain policy

actions. If this is required, the policy system must be able to

explain why this happened. The use of synthesised speech is an

obvious possibility here. Different schemes will also be

investigated for achieving the best possible resolution. For

example, denying an action may be associated with a certain

penalty. The policy server also allows for pre-negotiation and

post-negotiation (negotiating a conflict before or after

committing to particular policy actions).

Automated configuration and goal-directed configuration

will be investigated. The former is desirable for simple on-site

installation. The latter will be useful for refining high-level

goals into more operational objectives. It is anticipated that AI

planning techniques will be used for this aspect. The

composition of OSGi services into new services will also be

studied.

Remote management and security are important future

goals. The corresponding capabilities of OSGi will be

enhanced to make them suitable for home care. Secure

definition of policies is already supported. Management

policies will be defined to allow control of services and access

to data. It will be crucial to manage what data may be used for

what purposes. This includes whether data may be exported

out of the home, and how it may be analysed. Health and

lifestyle data must obviously be kept confidential, and be

processed in an authorised manner by identified individuals.

ACKNOWLEDGEMENTS

The authors thank their colleagues on the MATCH project at

Stirling (Louise Bellin and Julia Clark) for their advice. The

authors are also grateful to their collaborators at the

Universities of Dundee, Edinburgh and Glasgow who are

creating home care facilities that complement the work

reported here. Numerous external partners in MATCH have

been very helpful in providing insights into health and social

care, as well as into device technologies. Gemma Campbell at

Stirling was responsible for developing the POPPET system.

REFERENCES

[1] A Middleware Infrastructure to Enable Active Spaces. M.

Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.

Campbell and K. Nahrstedt, IEEE Pervasive Computing,

1(4):74–83, Oct.–Dec 2002.

[2] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste. Project

Aura: Toward Distraction-Free Pervasive Computing, IEEE

Pervasive Computing,1(2):22–31, Apr.–Jun. 2002.

[3] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah and

E. Jansen. Gator Tech Smart House: A Programmable Pervasive

Space, IEEE Computer, 38(3):50–60, March 2005.

[4] J. E. Bardram. Applications of ContextAware Computing in

Hospital Work – Examples and Design Principles, Proc. ACM

SAC '04, Nicosia, Cyprus, Mar. 2004.

[5] M. Drugge, J. Hallberg, P. Parnes, and K.Synnes. Wearable

Systems in Nursing Home Care: Prototyping Experience, IEEE

Pervasive Computing, 5(1):86–91, Jan.–Mar. 2006.

[6] J. E. Bardram. The Personal Medical Unit – A Ubiquitous

Computing Infrastructure for Personal Pervasive Healthcare. In

T. Adlam, H. Wactlar, and I. Korhonen, eds., Proc. 3rd.

Ubiquitous Computing for Pervasive Healthcare Applications,

Nottingham, UK, Sep. 2004.

[7] D. Marples and P. Kriens. The Open Services Gateway

Initiative: An Introductory Review, IEEE Communications

Magazine, 39(12):110–114, Dec. 2001.

[8] C. Lee, D. Nordstedt and S. Helal. Enabling Smart Spaces with

OSGi, IEEE Pervasive Computing, 2(3):89–94, Jul.–Sep. 2003.

[9] M. Burgess. A Site Configuration Engine, USENIX Computing

Systems, 8(3):309–337, 1995.
[10] Y. Qin, H. Hao, Li Jun, G. Jidong and L. Jian. An Approach to

ensure Service Behaviour Consistency in OSGi. Proc. 12th

Asia-Pacific Software Engineering Conference, pp. 185–192,

2005.

[11] A. Ranganathan, J. Al-Muhtadi and R. H. Campbell. Reasoning

about Uncertain Contexts in Pervasive Computing

Environments, IEEE Pervasive Computing, 3(2):62–70, Apr.

2004.

[12] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi and D.

Zhang. Semantic Space: An Infrastructure for Smart Spaces,

IEEE Pervasive Computing, 3(3):32–39, Jul. 2004.

[13] E. Christopoulou, C. Goumopoulos, I. Zaharakis and A.

Kameas. An Ontology-based Conceptual Model for Composing

Context-Aware Applications, Proc. 6th. International

Conference on Ubiquitous Computing, Nottingham, UK, 2004.

[14] X. H. Wang, T. Gu, D. Q. Zhang and H. K. Pung. Ontology

Based Context Modelling and Reasoning using OWL, Proc.

IEEE International Conference on Pervasive Computing and

Communication, Orlando FL, USA, Mar. 2004

[15] J. Lobo, R. Bhatia and S. Jaqvi. A Policy Description Language.

Proc. American Association for Artificial Intelligence, Orlando

FL, USA, Jul. 1999.

[16] N. Damianou, N. Dulay, E. Lupu and M. Sloman. Ponder: A

Language specifying Security and Management Policies for

Distributed Systems, Technical Report, Imperial College,

London, UK, 2000.

[17] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P.

Perry and J. Ireland. Policy Support for Call Control, Computer

Standards and Interfaces, 28(6):635–649, Jun. 2006.

[18] ANSI. Application Protocol for Electronic Data Exchange in

Healthcare Environments, ANSI/HL7 V2.5, American National

Standards Institute, Washington DC, USA, 2003.

[19] CEN. Medical Informatics – Healthcare Information Systems

Architecture - Part 1: Healthcare Middleware Layer, ENV

12967-1, European Committee for Standardization, Delft,

Netherlands, 1998.

[20] A. Hein, O. Nee, D. Willemsen, T. Scheffold, A. Dogac and G.

B. Laleci. Intelligent Healthcare Monitoring based on Semantic

Interoperability Platform - The Homecare Scenario, Proc. 1st

European Conference on eHealth, Fribourg, Switzerland, Oct.

2006.

