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Abstract

The problems of multiple specification languages for multiple architectures are discussed.
It is concluded that an architectural semantics is of practical value in ensuring consistent and
effective development of specifications. The approach is discussed in general and by exam-
ples, concentrating mainly on an architectural semantics for Open Systems Interconnection in
relation to ESTELLE, LOTOS and SDL. It is shown how an architectural semantics can be real-
ised using a library of specification templates, allowing the specifier to work at a higher, more
architectural level. Some LOTOS templates are discussed, mainly for Open Systems Intercon-
nection.
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1 Intr oduction

1.1 The Problem of Multiple Languages

What language might be used to specify problems in a given domain? A number of languages have
been developed for specific kinds of application. For example, in the field of communications systems
there are the standardised FDTs (Formal Description Techniques). These are ESTELLE (Extended
Finite State Machine Language [9]), LOTOS (Language Of Temporal Ordering Specification [10]) and
SDL (Specification and Description Language [18]). Other standardised techniques for communica-
tions systems offer a rigorous, if not (mathematically) formal, approach: ASN.1 (Abstract Syntax
Notation 1 [12, 13]) and TTCN (Tree and Tabular Combined Notation [14]). In the field of hardware
description there are many widely used languages such as CIRCAL (Circuit Calculus [23]), HOL
(Higher Order Logic [3]) and VHDL (VLSI Hardware Description Language [7]). Although the lan-
guages just cited are tied by origin to a particular domain, they might be considered general-purpose
languages that could be used on a wide variety of problems.

In the computer science community generally, an even wider range of non-standardised specifi-
cation languages is also available. Languages reaching standardisation or in widespread use include
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CCS (Calculus of Communicating Systems [24]), CSP (Communicating Sequential Processes [6]),
VDM (Vienna Development Method [19]) and Z [28]. Again these are languages with broad applica-
bility.

The rich choice of specification languages is good because it allows an appropriate selection for
the kind of problem to be specified. However, there could be difficulties when comparing specifica-
tions of the same problem in different languages. Similarly there could be difficulties when combining
specifications in different languages of parts of the same system. Such difficulties are particularly
acute in standardisation, where there is strong interest in specification but multiple incompatible spec-
ifications are unacceptable. (Unfortunately, deciding whether two specifications are compatible may
be hard – or even impossible if they are in different languages.) Even if only one specification lan-
guage were used, stylistic differences between specifiers could make it hard to relate specifications of
the same system or systems from the same class. Of course, it is not so common that independent
specifications of the same thing are written.1 More likely, specifications in the same language may be
written of subsystems that have to be combined.

A real-life example is found in the specifications written of standards from OSI (Open Systems
Interconnection [8]). There it is necessary to combine specifications of adjacent layers. How can this
be achieved without a common understanding by specifiers of the architectural concepts? Such con-
cepts are typically expressed in natural language and so allow room for interpretation. When the pos-
sibility of multiple specification languages is considered, the scope for differing formalisations could
be rather wide. A key issue is therefore to ensure that the concepts of a given problem domain are
specified consistently, whether using one language or several.

1.2 The Problem of Multiple Ar chitectures

Specification languages have often been developed initially for a particular class of system (e.g. OSI
systems). Inevitably the designers of the language will wish to capitalise on their investment by apply-
ing the language to new kinds of system (e.g. telecommunications services). This is especially true of
standardised languages since the cost of development is high and should be repaid by widespread use.
However, it is rarely possible to use a language on a new class of system without considerable investi-
gation of how best to specify the concepts of such systems. In other words it is necessary to establish
an effective relationship between the concepts of the new class of system to be modelled and those of
the specification language. It would be time-consuming to develop this relationship afresh for every
new architecture and for every language that might be applied to it.

In general it could be necessary to consider a full mapping between all architectures and specifi-
cation languages of interest – a costly solution. A practical strategy is therefore required to reduce the
overheads of this approach. Relating an architecture to a specification language determines an archi-
tectural semantics.2 This reflects the concepts of an architecture in a specification language. As will
be seen, an architectural semantics can be developed in a way that efficiently allows for multiple
architectures and multiple languages.

1.3 The Need for Ar chitectural Specification

A specifier who worked purely at the level of the specification language would be constantly making
decisions about how best to model architectural concepts in the language. This would be like an elec-
tronics engineer always having to design circuits from first principles; it could be done, but would not
be cost-effective. Of course, circuits are designed in the knowledge of higher-level combinations of
components: potential dividers, tuned circuits, logic gates, amplifiers, etc. Many such macro compo-
nents are available directly to the circuit designer. And even if not, the designer can proceed at the
level of blocks rather than elementary components, secure in the knowledge that the design of these

1Except perhaps for the Alternating Bit Protocol and the like!
2The term is due to Chris Vissers (University of Twente).
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blocks is already worked out. Awareness of higher-level structures allows an engineer to look at com-
ponents in a circuit diagram and recognise the blocks and their relationships. Understanding as well as
design are thus enhanced by attention to architecture.

The specifier should ideally be able to work at the level of architectural components and their
combinations. A certain class of feature in the system to be specified should immediately suggest a
particular way of specifying it. Conversely, it should be obvious from the specification that certain
parts of it correspond to well-known architectural features. This approach might be termed architec-
tural specification. The term specification architecture will be used to mean the structuring of speci-
fications, not the specification of architecture in general. An effective specification architecture can be
supported by specification templates based on analysing the architecture of some class of systems.

Templates are the practical goal of the work, since they considerably increase the efficiency and
consistency of specification. As will be seen, a template library can be supported by tools, helping to
automate the process of specification – though of course it remains a highly creative task. In order to
reach the goal of specification templates, several intermediate stages will be described in the paper.
General consideration of specifying an architecture in some formal language will suggest an approach
to defining architectural semantics. This will benefit from defining a consistent hierarchy of architec-
tural concepts. Many of these can be mapped onto more fundamental concepts, which will also be
developed as a consistent hierarchy. The fundamental concepts are relevant because they are common
to a number of architectures. Formal representations can then be defined for the chosen specification
language; specific examples in LOTOS will be given. The taxonomy of architectural concepts will be
useful here in achieving a consistent formalisation. Finally, the formal representations can be embed-
ded in specification templates that can be called up from a library.

Architectural matters are essentially intuitive and informal. To this extent it is not possible to give
an entirely rigorous way of formalising architectural concepts. (In software engineering, analysis and
specification similarly have to deal with informal requirements; true rigour is not possible until a for-
mal specification of requirements exists.) However, it is certainly possible to adopt a systematic
approach to formalising architectural concepts, and this is a key aspect of the approach in the paper.
Architectural semantics involves two kinds of activity: conceptual analysis based on the informal
description of an architecture, and specification based on a formal language. The conceptual analysis
provides a framework within which consistent formalisation is possible. Of course, the architectural
semantics is unlikely to be unique; there may be a number of reasonable ways of analysing the con-
cepts of an architecture and formalising them. The combined experience of architects and specifiers
will be necessary in order to choose a good approach. (Similarly, there is no one way to write a pro-
gram that implements some requirements, but an experienced programmer will be knowledgeable
about appropriate approaches.) The existence of an architectural semantics (even if it is not unique) is
a powerful aid in ensuring consistency of specification.

1.4 Historical Development

An interest in specification architecture was evident from the early days of developing ESTELLE and
LOTOS. Since these FDTs had to be suitable for specifying OSI at least, it was important that they
reflected OSI architectural concepts in a natural way. The FDT group in ISO (International Organiza-
tion for Standardization) was part of the OSI group (SC21/WG1). The FDT group was split into an
FDT architecture subgroup as well as subgroups for ESTELLE and LOTOS. The architecture subgroup
(which the author chaired for some years) was charged with developing a proper relationship between
OSI and the FDTs. [30] reports early work on an architectural semantics for OSI using LOTOS.

The work of the architecture subgroup led to the establishment of ISO project 21.44 concerned
with architectural semantics for FDTs. This project was focused on OSI, but it turned out that much of
the work was directly relevant to the emerging definition of ODP (Open Distributed Processing [17]).
At the same time, much of the FDT development work in the OSI area was running down. The archi-
tectural semantics project was therefore transferred to the ODP group and expanded to cover its
requirements.3 Other specification languages such as RAISE (Rigorous Approach to Industrial Soft-
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ware Engineering [25]) and variants of Z have been subsequently investigated for their suitability in
modelling ODP concepts.

About the same time as the OSI architectural semantics project, a parallel and related project was
set up between ISO and CCITT (International Consultative Committee on Telegraphy and Telephony,
now ITU-T (International Telecommunications Union)). With three standardised FDTs available, it
was considered important to offer guidance to specifiers using these techniques. ISO project 21.45
(CCITT Question 6/X) dealt with guidelines for the application of FDTs [11]. Naturally there were
questions of how best to model architectural concepts in each FDT. Much of the OSI architectural
semantics work was therefore absorbed into the FDT guidelines.

The work on specification architecture in standards circles stimulated research elsewhere. For
example, the PANGLOSS project (Parallel Architecture for Networking Gateways Linking OSI Sys-
tems, ESPRIT 890) followed an architectural approach in the formal specification of a high-speed net-
work gateway. [1] describes how LOTOS was used to specify and design the gateway. The same
project inspired an architectural approach to specification and design of communications systems [2].
An architectural semantics for distributed systems was subsequently developed [26]. Concern that
specific FDTs imposed individual interpretations of architectural concepts prompted a study using
temporal logic. Initially the properties of interaction points were investigated in [4], leading to wider
consideration of architectural issues [5].

1.5 Paper Structure

Section 2 explains the motivation and approach behind defining an architectural semantics. As an
illustration, a partial architectural semantics is worked out for OSI in relation to ESTELLE, LOTOS and
SDL. Examples are also given from other fields. Section 3 shows how an architectural semantics can
be realised as a library of specification templates that allow the specifier to work at a higher, architec-
tural level. Some LOTOS templates, mainly for OSI, are used to illustrate the approach.

2 Ar chitectural Semantics

2.1 Moti vation

When formal specifications of OSI standards were first written, it soon became clear that there were
many possibilities for representing architectural concepts in a formal way. To some extent this
reflected the intention to keep the architecture at a broad, implementation-independent level. The vari-
eties of interpretation also stemmed from the use of natural language in the defining documents. Hav-
ing to specify broadly defined concepts in an FDT forced attention on how these concepts should be
interpreted. The following examples are a few typical problems taken from the work on formalising
OSI standards.

A service primitive is a key feature in OSI since it models the interactions at a service, i.e.
between adjacent protocol entities. Yet a service primitive in not defined in the main OSI reference
document [8]; it is defined in the OSI service conventions [15]. Even there it is not said whether serv-
ice primitives are atomic, instantaneous or synchronous. Some specifiers considered service primitive
occurrences to be like procedure calls. Others thought of them as asynchronous requests that were
queued until they could be processed (the ESTELLE and SDL view). Yet others treated them as syn-
chronous events (the LOTOS view). This was not mere hair-splitting, because the consequences of
each view led to different behaviour being specified.

Another undefined aspect of service primitives was whether it was necessary to specify incorrect
behaviour by the service user, e.g. issuing a service primitive at an invalid time. Again the specifiers

3The standardisation community felt that an OSI architectural semantics was less important by this time, so the OSI 
aspect of the project was not progressed much further.
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came up with different interpretations. Incorrect behaviour could be explicitly specified but ignored
(the ESTELLE view). Incorrect behaviour might be explicitly allowed but implicitly ignored (the SDL
view). Incorrect behaviour might even be omitted completely from the specification and thus be
beyond its scope (the LOTOS view, reflecting a preference for greater abstraction).

Service data units were also open to interpretation. Are they atomic? OSI allows for the possibil-
ity of interface data units to transfer fragments of a service data unit across a service. However, it is
not clear whether a protocol entity can legitimately deal in isolation with such parts of a service data
unit. It might be desirable, for example, to send protocol data units before all the interface data units
have been completely transferred across the service. Interface data units might even be regarded as an
implementation matter and thus not at the same level of abstraction as service data units. There is thus
again a choice of how an architectural concept might be interpreted.

Several views emerged as to the true meaning of a service access point. It might be treated as a
purely structural concept, representing an abstract interface between two protocol entities. However, a
service access point might also be an active agent; in particular, some specifiers thought of it having a
dynamic aspect to establish connections through it. In another treatment, service access points were
considered to be processes that could be decomposed further into subsidiary entities. Other questions
about service access points also arose. Could connection-less and connection-mode services be sup-
ported at the same service access point? Were endpoints within service access points necessarily asso-
ciated with connections, or were they a more general concept?

It was clear from the experience of trying to formalise OSI standards that much more guidance
was needed on interpreting architectural concepts.

2.2 Approach

An architectural semantics is intended to guide the specification of standards for a particular architec-
ture. The aim is to interpret the concepts of that architecture in a particular specification language.
Ideally such a semantics should be given denotationally, i.e. should prescribe how each architectural
concept is represented in the language. However, to be prescriptive requires agreement on the ‘best’
approach to specification. Often there are several reasonable specification styles for a concept, and it
takes time and experience to evolve a recommended practice. Even then, it may be easier to give a
sample specification than to give rules for modelling a concept. Architectural semantics has therefore
tended to be a mixture of the prescriptive and the descriptive.

In considering the concepts of an architecture or the constructs of a language it may be useful to
distinguish between components and combinators. The components are the building blocks, and may
be elementary or composite. The combinators are the means of creating more complex components
from simpler ones. For an architecture, there may not be explicit recognition of combinators as such.
For a language, the combinators are often called its operators.

As examples of these, consider concatenation (an OSI term) and behaviour (a language term).
The concatenation combinator takes a list of protocol data units as components and builds a service
data unit as component. The partial ordering combinator takes a set of actions as components and
builds a behaviour as component. Since the result of combination is a component, the combinator
itself may be loosely referred to as if it were the component (e.g. a concatenation of protocol data
units or a partial ordering of actions). The distinction between component and combinator may there-
fore not be a sharp one. Examples of particular components and combinators are discussed in later
subsections.

A specific instance of some architecture (e.g. an OSI protocol standard) conforms to that archi-
tecture, making reference to and being built from its components and combinators. A specific formal
specification (e.g. in LOTOS) conforms to the constructs of the language, being defined by its seman-
tics. The relationships among these elements are shown in Figure1. If the architectural concepts have
a defined denotation in terms of the language constructs, this induces a relation between the architec-
ture instance and its formal specification. Alternatively, if the architecture instance has a defined
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denotation directly in terms of the formal specification, this induces a relation between the architec-
tural concepts and the basic language constructs. Figure1 thus shows a kind of homomorphism.4

There is a choice of whether an architectural semantics is developed primarily at the level of spe-
cific architecture instances or at a more basic level. A direct mapping between all  architectures of
interest and all  specification languages would require  mappings. This would be costly to
define. However, there is a solution if the architectures can be restricted to some very general class
such as information processing systems (of which OSI and ODP systems are examples). Such systems
share many components out of which more complex components are built. Such systems may also
share combinators for building these higher-level components. If these fundamental components and
combinators can be established for each architecture and can be denoted in each specification lan-
guage, then the number of mappings to be considered falls to .

A separate issue is whether architectural concepts should be directly mapped to specification
constructs or via some intermediate hierarchy that exploits the dependencies between concepts in the
architecture and constructs in the language. The two approaches are depicted in Figure2. The direct
mapping in (a) gives each architectural concept a specific denotation in some language. As a result,
the mapping could be complex to define, would not show a clear hierarchical relationship, and could
risk inconsistent specification of concepts at different levels in the architecture. A direct mapping
would also be required for each architecture-language pair. The indirect mapping is shown in (b).
Here there is a clear hierarchy, and the extent of the mapping is reduced because it can be restricted to
fundamental concepts.

4Or perhaps an ISOmorphism in the case of an international standard!

Figure 1  Relationship between Architecture and Specification

Figure 2  Relationship between Architectural Concepts and Language Constructs
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With many architectures and many languages, an indirect mapping between each architecture
and language would be required at the fundamental level. However, an indirect mapping would result
in a less obvious relationship between composite architectural concepts and their denotations. Such a
mapping might offer little practical guidance to the specifier.

A compromise is thus desirable. A hierarchy of concepts and constructs should be established
along with a mapping at various levels. The mapping should exploit the hierarchy and thus define the
denotation of a composite architectural concept using the denotations of its constituent parts. Such a
mapping would be intermediate in size and complexity between the extremes of  and . In
the context of some example architectures and specification languages, the mapping might be as
shown in Figure3. The  darker arrows represent the indirect fundamental mappings, the 
lighter arrows represent the direct architectural mappings. The formal representations obtained by fol-

lowing the lighter arrows would be preferable if the result were more compact and more comprehensi-
ble than the result of indirectly composing lower-level formal representations.

Developing an architectural semantics begins with consideration of a new architecture. A core
set of fundamental information processing components and combinators has to be developed initially,
and may have to be extended for a new architecture. The concepts of the architecture will usually, but
not necessarily, have been defined already in a hierarchical fashion. When there is no hierarchy, part
of defining the architectural semantics includes establishing this. Even if there is an existing hierar-
chy, it may not be sufficiently precise to allow immediate formalisation. It is unlikely that the architec-
ture will have been expressed in terms of fundamental components and combinators; doing this is
another part of the architectural semantics. Even without considering issues of formalisation, the
development of a consistent concept hierarchy can be a valuable exercise.

The architectural semantics can now deal with the specification languages of interest. For a new
specification language it is necessary to define a denotation for each fundamental component and
combinator. If the language is insufficiently expressive this may prove to be awkward or even impos-
sible, thus limiting the use of the language for some architectures. The final step is to provide a deno-
tation for each composite architectural concept, building on the denotations already defined.

As will be seen from the examples about to be given, the development of an architectural seman-
tics is relatively intricate. However, analysing an architecture is desirable to achieve a systematic for-
mal representation of concepts

Figure 3  Mapping between Multiple Architectures and Specification Languages
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2.3 Fundamental Information Processing Components and Combinators

The set of fundamental components and combinators might include the ones below. As a typographi-
cal convention, different fonts are used for names of components and combinators. Many of these are
common to a number of architectures, though the list here is far from complete and is only suggestive.
Particular architectures might require other specialised concepts.

components: action, activity, class, communication, constraint, identifier, information, interac-
tion, interaction point, object, octet, parameter, provider, rendezvous, resource, state, state
machine, template, term, type, user, value, variable.

combinators: aggregation, classification, configuration, conjunction, constraint composition, dis-
junction, hiding, instantiation, interleaving, interruption, iteration, mapping, negation, partial
ordering, partition, relation, selection, sequence, set, state composition, string, supply com-
position, synchronisation.

0
Space does not allow a full exposition of these fundamental concepts, but the following examples
might be helpful:

components:

action: the establishment of one or more items of information.

activity: a partial ordering of actions by relative time of occurrence.

identifier: a unique label.

information: data with a predefined interpretation.

interaction: an action requiring the participation of two or more objects.

interaction point: a partition of interactions into groups representing distinct communication.

object: an activity and its associated information.

combinators:

hiding: making interactions invisible that are considered to be internal.

partial ordering: a partial, transitive relation over a set.

supply composition: an interleaving of objects considered as users in synchronisation with an
object considered as provider.

0
The only unusual concept here is that of supply composition. This represents a common situation
where a service is supplied to a number of users. The users are independent of each other and syn-
chronise with the provider to obtain the service. The relationships among the fundamental concepts
above are summarised in Figure4. The arrows in this figure indicate how definitions rely on lower-
level definitions; identifier is shown ‘floating’  as it does not depend on any other definition. Table1
gives a general description of how the concepts might be represented in ESTELLE, LOTOS and SDL. In
practice a full formalisation of each concept would be given, but to avoid technical details of three
languages only a summary is given here.

2.4 OSI Architectural Semantics

As an example, a partial architectural semantics will be developed for OSI in relation to ESTELLE,
LOTOS and SDL. OSI architectural concepts will be formulated in terms of the fundamental ones so
that a simpler mapping can be defined. A more fully worked out exposition of OSI architectural
semantics is given in [11]. Many useful hints are also given in the examples of [32]. A detailed treat-
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ment with respect to LOTOS is given in [29, 38]. The set of architectural components and combinators
needed for OSI might include the following:

components:

address: an identifier for a service access point.

function: a self-contained activity of a protocol entity.

protocol entity: a service user capable of supporting associations with other service users of
the same underlying service provider.

service access point: an interaction point between a service user and a service provider.

service data unit: information that may be conveyed in a service primitive parameter without
interpretation by the service provider.

service primitive: an interaction between a service user and a service provider.

service provider: a provider.

Figure 4  Relationships among Fundamental Concepts

Concept ESTELLE LOTOS SDL

action module transition event (with parameters) process transition

activity module execution behaviour process execution

identifier value of a designated typevalue of a designated type value of a designated type

information PASCAL data type value abstract data type value abstract data type value

interaction interaction event synchronisation signal

interaction point interaction point event gate end of channel/signalroute

object module instance process instantiation process instance

hiding internal interaction point hiding an event gate internal channel/signalroute

partial ordering module body behaviour expression process definition

supply composition interleaving of user objects in synchronisation with a provider object

Table 1  Representations of Some Fundamental Concepts
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service user: a user.

combinators:

association: a partition of service user interactions requiring communication via the service
provider of interactions within the same partition.

blocking: a one-to-many relation between service data units of a service user and its support-
ing protocol entity.

multiplexing: a many-to-one relation between associations of a service user and its supporting
protocol entity.

protocol: a supply composition of protocol entities considered as users and an underlying
service considered as provider.

service: the hiding of interactions between the protocol entities and the underlying service of
a protocol.

0
The concept of supply composition is used here to model the combination of protocol entities

with an underlying service to produce a protocol. Hiding the internal service access points of this pro-
tocol yields a new service, so services are nested as would be expected in a layered architecture like
OSI. Figure5 illustrates the composition of a service; note that service and protocol refer to each
other as the definitions are recursive. The relationships among the architectural concepts are summa-
rised in Figure6. For clarity, the use of fundamental concepts is shown separately in Figure7; proto-
col entity is shown ‘floating’ as it does not rely on any fundamental concepts.

Figure 5  Composition of a Service

Figure 6  Relationships among Architectural Concepts
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Table2 suggests representations of the architectural concepts above in ESTELLE, LOTOS and
SDL As earlier, the exact representation in each language is omitted for simplicity; in fact the repre-
sentations shown are sufficiently general that their description applies to all three languages, so there
is not one column per language. Note that the approach allows many of the denotations to be given in
terms of the fundamental ones, thus simplifying the mapping. For concreteness, Section 3.3 shows
how a selection of these concepts may be specified in LOTOS.

2.5 Other Ar chitectural Semantics

An architectural semantics for ODP is in the process of being standardised [16, 27]. This work fol-
lows a broadly similar approach to the OSI architectural semantics, which in fact served as the trigger
for it. The fundamental information processing concepts needed for ODP are a superset of those
needed for OSI. The architectural semantics is actively being developed for LOTOS and Z, with other
contributions using ESTELLE and SDL.

Figure 7  Relationships among Architectural and Fundamental Concepts

Concept ESTELLE , LOTOS, SDL

address identifier from a specially designated type
function self-contained activity of a protocol entity
protocol entity user supporting associations

service access pointinteraction point between user and provider
service data unit information represented as an octet string
service primitive interaction between user and provider
service provider object in a provider role
service user object in a user role
association function supporting a partition of user interactions
blocking function supporting a one-to-many relation between service data units
multiplexing function supporting a many-to-one relation between associations
protocol interleaving of protocol entities in synchronisation with an underlying service
service hiding of internal protocol interaction points

Table 2  Representations of Some Architectural Concepts
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Design concepts for ODP have been investigated separately in [40]. An architectural semantics
for distributed systems has also been investigated in [21]. The emphasis of this work was CIM (Com-
puter Integrated Manufacturing), although making extensive use of OSI and ODP principles. Other
issues such as real time, priority and probability were considered as well, using LOTOS as the basis.

The author’s goal in [31] was to support the creation of communications services in a flexible,
user-oriented and formal manner. The formulation of an architectural semantics proved helpful in
defining the architecture of services as well as the mapping to LOTOS. For comparison with the OSI
architectural semantics, some of the components and combinators needed for service creation are
listed below without explanation. The basic components are taken to be service facilities; each may
exist in five basic patterns, and each pattern has five possible ordering combinators. The combinators
are ways of combing service facilities into more complex services. For fuller details see the original
paper.

components: provider-confirmed facility, provider-initiated facility, user/provider-confirmed
facility, unconfirmed facility, user-confirmed facility.

combinators: alternate, colliding, consecutive, disables, enables, interleaves, interrupts,
ordered, overtakes, reliable, simultaneous, single, unreliable.

0
A rather different kind of architectural semantics was developed by the author for specification

of digital logic [37]. Although digital logic may be loosely considered as an information processing
system in the same sense as OSI, ODP or CIM, the range of architectural concepts needed is rather
specialised. The basic concepts are rather simple, but the range of combinations is very large. Again
for comparison with the OSI architectural semantics, the following bare list suggests some of the
architectural concepts needed; the original paper should be consulted for a full explanation.

components: binary signal, logic sink, logic source.

combinators:

one-input: delays, inverter, repeater.

two/three/four-input: and, nand, nor, or, xor.

logic/arithmetic: adders, coders, plexers.

memories: flip-flops, dividers, latches.

3 Specification Templates

3.1 Moti vation

Defining an architectural semantics establishes a sound relationship between an architecture and the
language used to formalise it. However, as will have been evident from Section 2 the architectural
semantics may be rather intricate. Certainly an architectural semantics in the form described there will
not be of immediate practical use to the specifier. What is required is a codification of the architectural
semantics to assist in producing compatible specifications of an architecture more directly. In the
analogy of Section1.3, what is needed is the equivalent of the electronic designer’s handbook.

The concept of a specification template is therefore introduced. Several views can be taken of
this. At a basic level, a specification template is simply a syntactic device. It is merely a fragment of
specification text that can be conveniently recalled and inserted in a specification. To enhance the
value of such templates they can be parameterised to increase their generality. Parameterisation might
be at the level of the specification language, such as value parameters, variable names or process
names. However, parameters could in principle take any syntactic form, such as pieces of behaviour,
declarations or expressions. Indeed the power of templates comes as much from specifying combina-
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tions as from specifying components. The emphasis on combinations reflects the fact that it is easier
to fill in parts of a defined framework – the specification architecture.

From another viewpoint, specification templates embody component re-use. This has been a holy
grail of software production for decades. Of course, the components used in a specification are likely
to be very different from software components. Specification components will usually reflect abstract
statements of requirements. They may simply be common data types needed to describe a system,
such as addresses, protocol data units or service data units in a communications system. A specifica-
tion component may also describe an abstract computation, such as routing, blocking or multiplexing
in a communications system. More interestingly, specification components may also be logical state-
ments defining constraints, assertions or invariants. The specification of a message-switching system,
for example, might make use of generic requirements on reliable delivery of messages, correct order-
ing of messages or quality of service. These requirements could be formulated as specification frag-
ments to be incorporated in a number of specifications.

Specification templates should ideally have an architectural meaning. The concepts of an archi-
tecture should correspond to templates that the specifier can call up. This would allow specification at
a higher, architectural level. Consistency, productivity and comprehensibility would be improved by
this. Templates should therefore be based on architectural semantics, making architectural specifica-
tion relatively painless and immediate. However, it is not always useful to define a template for each
architectural concept. In some cases the concept may be intermediate or auxiliary, serving to define a
more specific concept. In other cases, the concept may be so general that a template would say little.
In these circumstances it may be better to define templates only for more definite instances of the con-
cept.

As possible templates consider protocol, supply composition and function. The architecture of a
protocol as protocol entities composed with an underlying service can be given directly as a specifica-
tion fragment; it appears in Section 3.3. On the other hand, the notion of supply composition is just a
step towards defining a protocol and is not interesting as a template in its own right. Finally, a function
is too general a concept to give as a template; only specific functions such as concatenation and multi-
plexing would be sensibly given as templates.

It may be convenient to focus verification on specification templates, emphasising their seman-
tics rather than syntactic form. As [31] contends, success in engineering depends on combining
known components in known ways to produce predictable results. In a specification context, tem-
plates should have known properties that have been verified in advance. The difficulties of verifying
the overall specification might then be reduced by a hierarchical approach: known combinations of
verified specification components leading to trusted components at a higher level.

Specification templates suggest the use of tools. A translator is required that will replace refer-
ences to templates with the corresponding specification text. Such a translator might act as a property-
oriented compiler – one that generates ‘code’  according to the required behavioural properties rather
than according to a given algorithm. The use of templates can support a declarative style of specifica-
tion, facilitating translation of architectural properties into the specification language [31].

3.2 Approach

The approach taken to specification templates is essentially textual. This makes a fairly safe presump-
tion that the specification language has a textual form, but could be adapted to graphical forms of
specification. Ideally, templates would be expressed directly in the specification language itself. To
some extent this is possible, but unfortunately the flexibility needed in parameterisation and textual
substitution is beyond convenient reach in most languages. It might be noted that programming lan-
guages are often used with a preprocessor in order to achieve this kind of flexibility. The preferred
approach is therefore to express templates in a form that is preprocessed into the specification lan-
guage.

A macro processor rather than a purpose-built translator is an obvious choice for dealing with
preprocessing of specification templates. Macro files can act as specification libraries, and can be used
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almost invisibly by the specifier. For example, LITE (LOTOSPHERE Integrated Tool Environment [39])
allows LOTOS specifications to be preprocessed automatically. This might include running a macro
processor to instantiate specification templates. A macro-based approach does not in itself confer
many benefits; the added value comes from linking templates to architectural concepts, architectural
semantics and verification procedures.

The particular choice of macro language is not important provided it allows adequate parameter-
isation. As will be described, the author has created several libraries of specification templates using
the m4 macro processor [20: Chapter 8]. The main reason for choosing m4 is its widespread availabil-
ity; it has been distributed with UNIX for many years and can also be obtained for other environments.
In brief, m4 allows (parameterised) macros, conditional macro expansion and string operations on
input. These basic facilities are not immediately useful to build a typical specification template
library. However, with care and ingenuity, higher-level macro facilities can be defined [33]. These
include text variables, hierarchies of macros, loops (using recursion), higher-order macros (taking
macros as parameters) and ‘curried’  macros (partially applied to some of their parameters). Creating a
template library is rather easier with these facilities, though it must be admitted that the work is rather
intricate.

A template library must exist for each architecture-language pair. Fortunately, a basis in architec-
tural semantics reduces the work involved in building such libraries. Indeed, definition of an architec-
tural semantics and a template library can usefully proceed together. By focusing attention on
architectural issues, the specifier can think in problem-oriented rather than language-oriented terms. If
the template library were not defined formally, there might be loss of precision. However if the library
is just a textual veneer on top of the language, the denotation of expressions using the library should
be immediate and obvious.

A possible problem might be the indirect link between the specification using templates and the
specification using the language proper. As will be seen, the use of templates can result in ‘specifica-
tions’  that are a few percent of the true specification’s size after macro expansion. This is a good indi-
cation of the productivity and effectiveness of specification templates. But the specifier must
ultimately work with the generated specification, say to refine, verify or implement it. Template
expansion is thus unlike conventional compilation, where the code resulting from translation is of lit-
tle interest to the programmer. The structure of the template library and its expansion through macro
processing must therefore be clear to the specifier. This is where the emphasis on architectural issues
again plays an important role.

3.3 OSI Specification Templates for L OTOS

As an example, the partial architectural semantics considered for OSI in Section 2.4 will be revisited.
For brevity a selection of specification templates for only LOTOS will be discussed, though a similar
treatment could be given for ESTELLE or SDL.5 Familiarity with LOTOS will be assumed. The facili-
ties of m4 used in the templates will be described as they appear.

A service provider sees a service data unit as an unstructured sequence of octets. The template
defining it is therefore a straightforward renaming of the library type for an octet string:

define(data_type,‘
type DATA is OctetString renamedby

sortnames Data for OctetString
endtype (* DATA *)

’)

Since there are two languages used here they are distinguished by typeface, with m4 given in roman
type and LOTOS in italics. Keywords in both languages are emboldened. In m4, define introduces a
macro name (data_type) and its definition (‘ ...’ ). Macro definitions are usually given in single quotes

5This would use the textual form of SDL/PR rather than SDL/GR.
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to prevent their interpretation prior to macro expansion. The above template for service data units can
be included in a LOTOS specification simply by giving its name. The template defines constant text
and is unparameterised. In fact, templates realising LOTOS data types are mainly unparameterised.

For addresses, the architectural semantics simply requires a set of distinct values. Although this
could be achieved by renaming the natural number type, this would introduce additional operations
(like +) that would not be meaningful for addresses. Addresses simply have the form of a base address
or an address ‘following’ another one:

define(addr_type,‘
type ADDR is Boolean

sorts Addr
opns

BaseAddr : → Addr
AnotherAddr : Addr → Addr
 _eq_,_ne_ : Addr, Addr → Bool

eqns
forall addr1, addr2: Addr

ofsort Bool
BaseAddr eq BaseAddr = true;
AnotherAddr (addr1) eq BaseAddr = false;
BaseAddr eq AnotherAddr (addr2) = false;
AnotherAddr (addr1) eq AnotherAddr (addr2)= addr1 eq addr2;
addr1 ne addr2 = not (addr1 eq addr2);

endtype (* ADDR *)
’)

Other templates would generate addresses from this one for the upper and lower boundaries of a pro-
tocol entity. Another template would generate sets of addresses.

A service data unit may be blocked with others into a protocol data unit; the inverse operation at
the receiver is deblocking. The OSI architecture states that blocking and deblocking are inverse oper-
ations, but does not prescribe the manner in which they are carried out; this is left to individual proto-
col standards. The LOTOS specification of (de)blocking defines data type operations on service data
units. Deblocking in fact requires two operations: one to extract a service data unit embedded in the
whole protocol data unit, and one to extract the remainder of the protocol data unit. In the following
definition, <>  is an empty string.

define(block_type,‘
type BLOCK is DATA

opns
deblock_pdu : Data → Data
deblock_sdu : Data → Data
block_pdu : Data, Data → Data

eqns
forall pdu: Data, sdu, sdu1, sdu2: Data

ofsort Data
deblock_pdu (<>) = <>;
deblock_pdu (block_pdu (<>, sdu)) = <>;
deblock_pdu (block_pdu (block_pdu (pdu, sdu1), sdu2))=

block_pdu (deblock_pdu (block_pdu (pdu, sdu1)), sdu2);
deblock_sdu (<>) = <>;
deblock_sdu (block_pdu (<>, sdu)) = sdu;
deblock_sdu (block_pdu (block_pdu (pdu, sdu1), sdu2))=

deblock_sdu (block_pdu (pdu, sdu1));
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endtype (* BLOCK *)
’)

Service primitives present more of a challenge. The occurrence of a service primitive is simply a
LOTOS event with the following parameters: the event gate carrying communication with the service,
the identification of the user, and the service primitive information. Such an event can be defined with
the template:

0

define(serv_prim,‘
$1 ! $2 ! $3 ;

’)

Template parameters are numbered $1, $2, … Their use here corresponds to a call of the form
serv_prim(gate,identifier,information) which generates the LOTOS action prefix:

gate ! identifier ! information ;

For services that support multiple associations the identifier has two components, one for the service
access point and one for the association endpoint within the service access point.

The most involved aspect of service primitives is the structure of information they convey. There
cannot be a fixed template for this because of the variety of service primitives and their parameters.
Specifying service primitives directly in LOTOS is tedious and error-prone. A parameterised template
with the names of the service primitives and their parameter types allows automatic specification of
primitives.

Suppose, for example, that a connection-oriented service has user-confirmed connection, uncon-
firmed normal data transfer, unconfirmed expedited data transfer, and unconfirmed user disconnec-
tion. The following template instance defines service primitives and appropriate parameters for this
service:

prim_type(
Conn_Request(Addr1,Addr2)Conn_Indication(Addr1,Addr2)
Conn_Response(Addr) Conn_Confirm(Addr)
Data_Request(Data) Data_Indication(Data)
Exped_Request(Data) Exped_Indication(Data)
Disconn_Request(Reason) Disconn_Indication(Reason)

)

The prim_type template is a relatively complex set of m4 definitions that take the service primitive
declarations and turn them into a composite LOTOS type. In fact there are a number of subsidiary tem-
plates ‘behind the scenes’  to specify the primitive data type from this information. The parameters of
service primitives are used to derive the signatures of the corresponding LOTOS operations and to
derive their equations. The m4 definitions needed are too detailed to be given here, so only the transla-
tion of the prim_type call above will be given – and even that in outline only:

type PRIM is ADDR,DATA,REASON
sorts Prim
opns

Conn_Request: Addr, Addr → Prim
Conn_Indication: Addr, Addr → Prim
Conn_Response: Addr → Prim
Conn_Confirm: Addr → Prim
Data_Request: Data → Prim
Data_Indication: Data → Prim
Exped_Request: Data → Prim
Exped_Indication: Data → Prim
Disconn_Request: Reason → Prim
Disconn_Indication: Reason → Prim
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Is_Conn_Request, Is_Conn_Indication, Is_Conn_Response, Is_Conn_Confirm,
Is_Data_Request, Is_Data_Indication, Is_Exped_Request, Is_Exped_Indication,

Is_Disconn_Request, Is_Disconn_Indication:
Prim → Bool

Is_Request, Is_Indication: Prim → Bool
_eq_, _ne_: Prim, Prim → Bool

endtype (* PRIM *)

The type PRIM is of course part of the prim_type template, but its definition has to be derived from
the parameters and so cannot be given literally.

Architectural combinators usually appear in process definitions. According to the architectural
semantics, a protocol consists of a set of interleaved protocol entities synchronised with an underlying
service. The template for this might include the following process definition:

process Protocol [$1, $2] ($1_Addrs: $1_Addr_Set) : noexit :=
choice $2_Addrs: $2_Addr_Set []

prot_ents($1, $2, $1_Addrs, $2_Addrs)
|[$2]|

under_serv($2, $2_Addrs)
endproc (* Protocol *)

Parameters $1 and $2 give the names for the upper and lower protocol gates; these also qualify the
address names. Note the combination of calls on subsidiary templates to define the protocol entities
(prot_ents) and the underlying service (under_serv). The whole template might be expanded to the
following definition for the protocol process:

process Protocol [Upper, Lower] (Upper_Addrs: Upper_Addr_Set) : noexit :=
choice Lower_Addrs: Lower_Addr_Set []

Protocol_Entities [Upper, Lower] (Upper_Addrs,Lower_Addrs)
|[Lower]|

Underlying_Service [Lower] (Lower_Addrs)
endproc (* Protocol *)

The template library takes care of a small problem with templates like this. In the protocol template,
process instantiations must be generated by the subsidiary templates prot_ents and under_serv. How-
ever, process definitions are also needed somewhere so the templates generate these separately.

The final example of a specification template is for a service. This is obtained by hiding the lower
service access points (and hence gate) of a protocol:

process Service [$1] ($1_Addrs : $1_Addr_Set) : noexit :=
hide Lower in

prot($1,Lower)
endproc (* Service *)

The foregoing templates are a small part of an OSI template library for LOTOS developed by the
author. The template library has about 70 m4 macros occupying 530 non-comment lines, and is avail-
able on-line as [35]. To appreciate how such a library might be useful, consider the connection-ori-
ented service example used to illustrate service primitives above. The description using the template
library is as follows:

co_serv_spec(
CO,
Conn_Request(Addr1,Addr2)Conn_Indication(Addr1,Addr2)
Conn_Response(Addr) Conn_Confirm(Addr)
Data_Request(Data) Data_Indication(Data)
Exped_Request(Data) Exped_Indication(Data)
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Disconn_Request(Reason) Disconn_Indication(Reason)
)

This is virtually identical to the call of prim_type except that the communication interface CO (a
LOTOS gate) is given as a parameter. When translated to LOTOS the resulting specification is about 490
lines. A 1:50 expansion is fairly typical of the productivity gains that are possible using specification
templates.

3.4 Other Specification Templates

Template libraries have been developed for some of the other architectural semantics discussed in
Section2.5.

For the ODP architectural semantics, [41] has advocated the use of LOTOS templates. The intent
of this work is similar to that described here, although expansion of templates through a macro library
was not the main point. This, however, would seem to be a straightforward extension.

The components and combinators for service creation have been embedded in m4 templates that
support a special-purpose specification language called SAGE (Service Attribute Generator [31]). The
pattern and ordering property of a service facility are translated into a LOTOS specification fragment.
Combinations of facilities are realised using LOTOS temporal operators in predefined arrangements.
As a simple example of these templates, consider an acknowledged connection-less service. This sup-
ports one-way transfer of datagrams carrying source/destination addresses and user data. Transfer of
datagrams is confirmed by the service provider and is reliable. The following template instances
declare these properties:

forall (facility (12,provider_confirmed,reliable,Datagram(Addr,Addr,Data)))

The facility template defines a service facility; the notation 12 gives the direction of transfer (from
user 1 to user 2). The forall declaration permits all instances of the datagram facility. The service cre-
ation library holds about 35 macros in about 650 non-comment lines of m4 and is available on-line as
[36]. Full details of the approach and other examples are given in the original paper.

The architectural semantics defined for digital logic has been incorporated into a template library
called DILL (Digital Logic in LOTOS [37]). This allows an electronics designer to formulate a circuit
using conventional components and to have a LOTOS specification generated automatically. The spec-
ification can be generated and simulated with only limited knowledge of LOTOS. A further develop-
ment of this work allows graphical animation of the circuit design, so the electronics designer needs
only a superficial understanding of LOTOS [22]. The digital logic library holds about 65 macros in
about 600 non-comment lines of m4 and is available on-line as [34].

A small example of a circuit might be a two-input ‘not and’  function that realises the logical
function . This is not commonly available as a ready-made component, but ‘not’  and
‘and’  functions are. The circuit may be constructed from an inverter and a two-input ‘and’  gate. The
template instance for this is given in Figure8 along with the conventional circuit diagram.

circuit(‘NotAnd2 [Ip1, Ip2, Op]’,‘
hide NotIp1 in

Inverter [Ip1, NotIp1]
|[NotIp1]|

And2 [NotIp1, Ip2, Op]
where

Inverter_Decl
And2_Decl

’)

Figure 8  Composition of a Circuit

IP1¬ IP2∧

NotIp1Ip1

Ip2

Op
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Logic gates are ‘wired up’  using the LOTOS synchronisation operator. The component library
described in the original paper supports declarations such as Inverter_Decl and And2_Decl.

4 Conclusion

It has been argued that the use of multiple specification languages with multiple architectures may
create problems of inconsistency. The development of appropriate specification styles for all these
languages and architectures could be time-consuming. The architectures themselves may be loosely
defined, hindering formalisation. An approach to defining architectural semantics via fundamental
information processing concepts has therefore been advocated, offering a solution to these problems.
It has been shown how architectural semantics can be embodied in a library of specification templates
as a practical tool for the specifier. OSI has been used as the main example, with other illustrations
taken from ODP, CIM, service creation and digital logic. Although all of these architectural semantics
could be elaborated further, investigations have been conducted in sufficient breadth and depth to give
confidence in the value of the approach.
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