
Kenneth J. Turner and Lynne Blair. Policies and Conflicts in Call Control,
Computer Networks, 51(2):496-514, February 2007

Policies and Conflicts in Call Control

Kenneth J. Turnera and Lynne Blairb 1

a Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
b Computing, InfoLab 21, South Drive, Lancaster University,Lancaster LA1 4WA, UK

Abstract

Policy-based management is introduced and related to the specific needs of call con-
trol. It is explained how policies differ in important ways from features. Related work on
policy-based management is reviewed, leading to the conclusion that a different approach
is required for call control. A general architecture is presented for a policy system. This
includes an overview of the major policy components, relating them to the system under
control and to the context system that provides additional information.

As a framework for explaining how policy conflicts are handled, the policy language for
call control is briefly presented along with some sample policies. The paper then focuses
on how policy conflicts are defined and resolved, using sampleresolutions to illustrate
the approach. Pointers are given to future enhancements to policy support, including new
applications of policies to novel domains.

Keywords: Call Control, Internet Telephony, Policy, Policy Conflict

1 Introduction

This paper presents a novel approach to policy-based control of calls, and to han-
dling conflicts that may arise among such policies. This can be seen as a significant
step forward from features and interaction handling in conventional telephony. The
paper offers the following enhancements to previous publications on this approach:

• An extended review is given of policy-based management. This is used to explain
the distinctive needs of policies to call control, and why noexisting policy system
was found to be suitable for this application.

1 Work carried out while the author was on leave at the University of Stirling.
Email addresses:kjt@cs.stir.ac.uk (Kenneth J. Turner), lb@comp.lancs.ac.uk (Lynne

Blair).

Preprint submitted to Elsevier Preprint 21 November 2006



• A unified and generalised view is presented of the entire policy system. This
demonstrates that the approach is not tied to call control. The description also
provides the necessary framework for understanding how policy conflicts in call
control are handled.

• The mechanisms for conflict detection and resolution have been generalised, al-
lowing a wider variety of conflicts to be handled.

• Compared to [7], much more detail of resolution policies hasbeen given, along
with a number of illustrative examples.

• An overview is given of new enhancements being developed forthe policy sys-
tem, and how it is being adapted for new applications.

1.1 Policy-Based Systems

Policy-based management has become popular for controlling a variety of systems.
As examples, policies are commonly used for access control,quality of service, and
system management. Policies capture high-level goals thatcan be automatically
enforced. Using predefined policies, a system can dynamically adjust its behaviour
without requiring manual intervention.

Suppose it is necessary to control access to a networked printer. The system man-
ager can define which users may access this printer, change its settings, or upgrade
its firmware. As another example, suppose a streaming video system must adapt
to changing workloads. The system manager can allocate default resources such as
processing, bandwidth and buffering. As demands vary, policies can decide how to
modify these resources: frame rate or size might be altered,compression parame-
ters might be adjusted, and colour depth might be changed.

Policy conflict is an almost inevitable consequence of policy-based management.
Such conflicts may arise at different levels. Even the policies of a single user may
interfere with each other. The user of a network printer, forexample, may have
high quality and low cost as goals. The policies of peer usersmay also disagree.
For example one user in a videoconference might desire high-quality video, while
the other requires low-quality due to limited device capabilities. Policies may also
be defined hierarchically within an organisation. Conflicting policies may occur
at all levels, e.g. individual (high-quality video needed), department (H.261 video
codec preferred), organisation (video bandwidth should belimited).

This paper reports on work to develop a policy-based system for call control. One
aim was to allow end users (telephone subscribers) to define policies for how they
wish their calls to be handled. Another aim was to allow system administrators to
define higher-level policies for handling policy conflict. Although several existing
policy languages might have been suitable, it will be seen that applications like call
control require a different approach. Few options existed for dealing with conflicts,
so again a distinctive solution was required.

2



1.2 Call Control

In telephony, the basic call is extended through features. These are relatively self-
contained additions of functionality, e.g. for call diversion, call waiting or charge
card calling. An important aspect of features is that they are automatically invoked,
usually at well-defined trigger points in the basic call state model. This means that
features can readily be added with little disturbance to thebasic call. Unfortunately,
the same mechanism means that features may interfere with each other – the well-
known feature interaction problem [10].

There is a good analogy between features and policies, and between feature interac-
tion and policy conflict. In a sense, a feature is a low-level policy. In fact, the authors
are working on policy refinement to allow higher-level policies to be expanded into
lower-level ones. This will bridge the gap between policiesand features. However,
features have a number of characteristics that limit their flexibility. In contrast, poli-
cies are higher-level and more malleable. There are similarities between them, but
also important differences [13,29]:

• Features and policies are both intended to allow users to control their calls.
• Feature interaction and policy conflict may both be handled statically (at defini-

tion time) or dynamically (at call time).
• Features are low-level and imperative, whereas policies are higher-level and

declarative. Suppose the user does not wish to receive callsfrom the press. In
a feature-based approach, terminating call screening would be required with a
list of blocked numbers. A comparable policy could simply reject calls from the
press, identified by the caller domain or topic.

• Features have limited parameters, whereas policies can be much more flexible.
For example, a call diversion feature would typically be parameterised by the af-
fected number, the forwarding number, and the condition fordiversion. A compa-
rable policy could be much more subtle, choosing different forwarding numbers
according to the caller, the time of day, the subject of the call, the capabilities
and devices of the call parties, etc.

• Features are fixed and managed by the network operator or equipment supplier,
whereas policies are open-ended and defined (mostly) by end users. A typical
network or switch may have tens to hundreds of features. Although this may
offer the user many options, the range of choices is nonetheless fixed and cus-
tomisation is limited. If the user’s requirement is not met by an existing feature,
there is no alternative.

• Because features are defined by engineers, a technically complex approach may
be followed. In contrast, policies should be definable by users to meet their needs.
Although the policy language necessarily limits what usersmay do, the range of
policies is much wider and is in fact infinite. Since policiesshould be accessible
to ordinary users, a user-friendly and non-technical approach must be adopted.
As a special case, more complex policies may also be defined bynetwork oper-
ators.

3



• Feature interaction handling is essentially under the control of one network op-
erator or equipment supplier. (Although this may not apply to multi-carrier calls,
a common approach is often adopted.) This makes it much easier to identify and
manage feature interactions. Policies, however, are largely user-defined. Further-
more, the policies applying to a call may stem from any pair ofusers (who may
have never called each other before). Detecting and resolving policy conflicts is
thus a much more challenging and dynamic task.

• One thing that helps resolution is that policies are closer to user needs, so it is
easier to determine what the user’s intention was. Not knowing the intention is
a well-known problem in resolving feature interactions. Consider Do Not Dis-
turb in conjunction with Alarm Call. Is the intention to block all calls (including
wake-up calls), or to avoid being bothered by calls from other people?

Some network operators have introduced additional flexibility by allowing third
parties to add external functionality. This is the approachtaken by Parlay/OSA
(Open Service Architecture,www.parlay.org). For example, this more flexible treat-
ment of features like Automatic Call Distribution and Freephone Routing. It is ar-
guable whether such an approach can be described as feature-based or policy-based.

Policy support for call control was developed by the ACCENT project: Advanced
Call Control Enhancing Network Technologies,www.cs.stir.ac.uk/accent. The ap-
proach to policies for call control is discussed in [26,27,37]. In fact, a broad view
was taken of what a ‘call’ might be. This includes traditional telephony, but also al-
lows for newer developments such Internet telephony, Interactive Voice Response,
multimedia calls, and Web/Grid services. Although the domain of call control has
been of considerable influence, a generic approach has been developed that can be
adapted for other domains.

1.3 Related Work

CPL (Call Processing Language [19]) allows users to define how they wish calls to
be handled. However CPL is limited in a number of ways that make it unsuitable
for general call control:

• It is limited in its network bindings (currently H.323 and SIP).
• It gives limited control over calls, specifically just call setup. There is also a need

for mid-call control (e.g. when a new party is added to a call)and call tear-down
control (i.e. when a call is disconnected). CPL also supports only limited checks,
e.g. on the caller or the current time.

• It does not support a range of preferences (positive or negative, with different
strengths).

• It is not (yet) integrated with context systems that providepresence and avail-
ability information.

• It does not offer any mechanisms for detecting and resolvingconflicts among
call preferences.

4



Some of the limitations of CPL have been addressed in work on LESS (Lan-
guage for End System Services [41]). New developments in this include support
for presence-based services and consideration of feature interactions.

Call centres and CTI (Computer Telephony Integration) support flexible call han-
dling; see [16] for a survey of the approaches. Call centres rely on mechanisms such
as Calling Line Identification and Automatic Call Distribution to route callers to
appropriate agents. Call centres are designed for large businesses, unlike the work
reported here which is intended for individual end users. Call centres essentially
deal with routing within one organisation, whereas call policies handle calls on a
global basis. Call centres also do not support the kinds of capabilities discussed in
this paper. Policy-based support of calls is thus complementary to the techniques
used in call centres.

Although call centres are not appropriate for ordinary subscribers, the policy sys-
tem was designed to allow third-party policy support. This allows a user to offload
policy definition and enforcement to a separate organisation, much as they might
employ an answering service. This means that end users can then benefit from poli-
cies, without being exposed to the technical issues. As willbe seen, the policy
wizard allows an administrator to define policies on behalf of users. An adminis-
trator can also predefine policies that users simply select (such as ‘on holiday’ or
‘out of the office’). Again, the goal is make policies useful to those who wish to use
them indirectly.

Policies have been used in many kinds of management tasks. Example applica-
tions, with one representative citation each, include access control [5], admission
control [42], agent-based systems [8], content distribution [39], distributed trust
[34], group collaboration [24], healthcare [1], network management [22], Open
Distributed Processing [35], QoS (Quality of Service) [25], security [33], and sys-
tems management [12].

[21] defines policies as information that can be used to modify the behaviour of a
system. This is a very general and open-ended definition. In the context of this pa-
per, policies are interpreted as the goals for how calls should be handled. Policies
lend themselves well to networked applications, where the very distribution de-
mands careful management. Despite this, call handling systems have attracted little
policy support. [2] uses fuzzy policies as a means of resolving feature interactions.
Many researchers see policies as important in future call handling [13].

Policy language developments in industry have largely focused on network man-
agement and QoS. For example, Cisco have developed policy support for control of
security and QoS in routers. Lucent and Bell Labs developed PDL (Policy Descrip-
tion Language) for network management. Hewlett-Packard’sPolicyXpert (now dis-
continued) was also focused on network management. The IETFstandard for COPS
(Common Open Policy Service) is intended as a protocol for managing QoS. None

5



of these efforts is of direct relevance to call control.

[27] discusses the kind of policies that are needed in call control. Initially, some
existing policy languages were evaluated to determine their suitability for this ap-
plication. For example, a detailed evaluation [27] was madeof Ponder [12]. It was
found that Ponder was only partly suitable for this purpose.Nonetheless, Ponder
has been influential on the work reported on call control.

A new policy approach was defined to overcome limitations of existing languages
in a call control context:

• The focus of on call control is distinctive. It places different demands on a policy
system, and of course it requires specialised support in a communications setting.
The language developed for call control falls into the general category termed
ECA (Event-Condition-Action). However the events, conditions and actions that
arise in call control are completely different from, say, those required in network
management.

• Ideally a policy language should be capable of specialisation for various applica-
tion domains. This is true of only some existing languages. Although a language
for call control has been developed, the core of the languageis separate and can
be adapted for other uses. Even when used for call control, the language has to
be largely independent of the underlying communications system.

• In systems management, a useful distinction can be often made between the sub-
ject of a policy (that performs an action) and the target of a policy (that is acted
upon). A number of policy languages such as Ponder reflect this. In call control,
the nature of subject and target becomes unclear. It can be argued that the subject
is the caller, the call or the network, while the target is thecallee, the call or the
network. Suppose a caller wishes video as well as voice. Is this achieved by the
caller, the call instance or the network? Is it the callee, the call instance or the
network state that is altered? Because of this issue, it was found difficult to apply
Ponder effectively to call control.

• In many application domains, the entities involved in policies are fairly static
and predictable. This does not apply to call control, where any user (previously
unknown) may call any other user. As a result, call control introduces a much
more dynamic set of policies. In addition, policies may be introduced by the
underlying networks as well as the call parties.

• Most policy languages require specialised technical expertise, being designed
for programmers or technicians. In contrast, policies for call control must be
accessible to the ordinary subscriber. This presents a major challenge, because
the policy language and the supporting policy system must beusable by non-
technical people. Communication is global, so policy support must also be truly
international – specifically, multilingual.

• Call control is more likely to lead to policy conflict becausevery many users
with unpredictable policies may wish to communicate. Conflict handling needs
to be meaningful to ordinary end users.

• Many policy languages support modal or deontic aspects. In the OPI language

6



[3], these are obligation, permission and interdiction. Ponder has obligation, au-
thorisation and refrain policies. Obligation and interdiction apply to the subject,
while permission applies to the target. Since the notions ofsubject and target do
not map so readily to call control, these modalities need some rethinking for call
control. Furthermore, obligations placed on end users havelimited value since
they cannot be enforced.

• A policy language should ideally have a form that is readily parsed by many
tools. XML is widely employed for structured information, but is used by only a
few policy languages.

For these reasons, it was concluded that no existing policy system would adequately
serve for call control. It was therefore necessary to develop a new policy language
and policy support, inspired by the unique needs of call control. However the lan-
guage has been cleanly separated into a core and its specialisation for various ap-
plication domains (here, call control). This allows the policy system to be largely
re-used in other contexts. In this respect, the call controlpolicy language resembles
some others such as Ponder.

Distributed definition of policies can lead to incompatibilities among them. Policy
conflict resembles the extensively studied feature interaction problem. A general
discussion of this problem appears in [9–11]. It is argued in[28] that some tech-
niques from feature interaction can be adapted for detection and resolution of policy
conflicts. Nonetheless, conflict handling is still a challenging task.

Apart from feature interaction, policy conflict also resembles work on interactions
among requirements [32] and on conflicts among goals [38]. Policy conflict has
been studied for some years, but without any general solution emerging; it is eas-
ier to resolve policy conflicts in particular domains. [20] considers conflict analysis
for management policies. A Role Based Management frameworkincludes tool sup-
port for determining significant policy conflicts. The use ofmeta-policies has been
considered in distributed systems management [21]. This work applies meta-policy
checks when policies are specified and when they are executed. The POLICE lan-
guage [14] aims to simplify conflict handling by avoiding negative policies. This is
possible because policies in this language automatically lead to prohibition unless
explicit authorisation is given.

[2] aims to define hierarchical policies such that, by definition, the subordinate
policies cannot conflict. Conflicts are, however, still possible if one policy in the
hierarchy is changed. The need for policies to control agents is examined in [40].
Multi-agent conflicts are avoided either through negotiation between agents or by
appropriate sequencing of their tasks. [15] recognises butdoes not address conflicts
that arise in policy-driven adaptation mechanisms. [6] tackles the problem of au-
thorisation policies leading to conflict. This is resolved by providing a function to
compare policies and decide which should take precedence.

7



1.4 Overview of Paper

Section 2 introduces the policy system, both in general and in its specialisation for
call control. Section 3 overviews the policy language, and discusses how it has been
specialised for call control and conflict resolution. Illustrative examples are given
of both call policies and resolution policies. Section 4 summarises and evaluates
the work, indicating how it is being developed further.

2 The Policy System

This section describes the architecture and main components of the policy system.
An overview of the architecture appears in [28]. The implementation and APIs of
the policy server are specified in [30]. The implementation and customisation of the
policy wizard are described in [36]. A general overview of policies in call control
is presented in [37]. Its specialisation for H.323 Internettelephony is covered in
[17,18]. Conflict handling for call control is discussed in [7].

2.1 Policy System Architecture

The generic policy system architecture is shown in figure 1: the arrows represent
socket interfaces. This gives considerable flexibility, allowing the components of
the policy system to be distributed as required. It is also easy to replicate the com-
ponents for resilience or load-sharing. For example an organisation might use an
external policy server, might have a single policy server that manages multiple de-
partments, or might have one policy server per department. Since the interfaces are
logical ones, the components may be on separate physical systems or might share
the same equipment. The policy system components have been run on anything
between one and five separate systems.

All the code is written in Java, so multi-platform operationis possible; the pol-
icy system has been demonstrated without change on four different platforms. The
policy system is also designed to be as independent as possible of the underlying
communications services. This is essential because the communicating users can-
not predict what network technology might be used. For example, at different times
a call to the same user might connect to a conventional telephone, a mobile tele-
phone, an Internet telephone or to voicemail. The policies must be independent of
this. Of course, the potential penalty is that network-specific capabilities cannot be
exploited (for good reasons). In fact, it is possible to define policies that depend on
a particular network – but the user can be warned of this.

8



store
details

retrieve
details

Policy
Wizard

Context
System

Policy
Server

Policy
Store

System
Interface

store
details

retrieve
details

notify
context

notify
event

request
action

Fig. 1. Generic Policy System Architecture

The policy serveris the heart of the system. The server retrieves and enforces
policies, detecting and resolving policy conflicts. Apolicy wizardprovides a user-
friendly, natural language interface to the policy system.Apart from defining and
editing policies, the wizard also supports policy variables, policy templates, voice
clips, and a simple interface to presence and availability.Policy information is held
in a policy storethat includes regular policies, resolution policies, policy variables
and user profiles. Thesystem interfacenotifies the policy system of significant
events in the system being managed, and performs the actionsdictated by the policy
system. Thecontext systemprovides the policy system with contextual information
that may influence policies. For example, this might identify a call party’s avail-
ability and capabilities.

2.2 Policy Server

The policy server is triggered by external events, mostly from the system interface
but also from the context system. The event interface provides information in a
domain-independent format. For example, the system interface may notify the pol-
icy server of a request for a networked printer, a proposed videoconference, or an
incoming call.

Event notifications can be as fine-grained or as coarse-grained as desired. Events
are normally high-level triggers, such as a call being made.However individual
keypresses on a telephone could also be reported as events, if it were desirable to
have policies at this level. For example, use of the hash or square key might be
disabled by a policy in order to restrict user actions.

At a minimum, the system interface must identify the event and the users involved
in the event. For an incoming call, for example, it would report at least the terminat-
ing call event, the caller and the callee. This is used to interrogate the policy store

9



for policies relevant to the event. In addition, higher-level policies are also implic-
itly identified (e.g. those for the user’s department and organisation). Policies are
associated with users, and implicitly with the devices or facilities they control. In
call control, for example, policies can be associated with the user’s telephone or
with the user’s voice mailbox.

The policy server retrieves a collection of policies that govern an event. These are
checked for conflict using the resolution policies that apply in this context. Typi-
cally, resolution policies are defined by an administrator for groups of users (e.g. a
department). However, they may also be defined by individuals or related organi-
sations (e.g. the provider of a telephone service). As will be seen later, a resolution
policy defines a class of conflicts that it handles. If no conflicts exist among the
actions proposed by the policies, these actions are sent to the system interface for
execution. If conflicts exist, the resolution policies dictate which actions result.

Normally, the effect of resolution is to create a subset of the proposed actions. That
is, incompatible actions are eliminated. However, resolution might also result in
completely different actions. Suppose Anne likes to have video calls, while Bert
likes to have a complete recording of a call. Since this couldresult in very large
call records, their administrator Cath might define the ‘addvideo’ and ‘record call’
actions as conflicting. The resolution might be to conference Cath into the call
initially to decide whether video may be used or recorded.

2.3 Policy Wizard

Internally, policies are XML documents defined by a schema. Although they are
thus text files, they are usable only by specialists. The policy wizard therefore exists
to present and edit policies in a user-friendly manner. Thisis particularly important
when dealing with end users such as subscribers. The policy wizard is web-based,
being supported by JSP scripts (Java Server Pages) in a web server. Apart from the
familiarity of a web interface, this has the advantage that policies may be modified
from anywhere. A user away from the office, for example, may remotely log into the
policy system and change how calls are handled (e.g. forwardthem to the current
location, send them to voicemail).

The policy wizard interface shows policies in structured natural language. This
was deemed to be the most appropriate way of interacting withend users. Note
that natural language processing is not required because the interface is carefully
structured. Because of the international nature of computing, the policy wizard was
designed to be multi-lingual. Currently it supports English, French and German, but
is readily extended for many other languages. The wizard also supports variants on
the languages, e.g. American English and British English.

Other forms of interface were considered for the policy wizard. The authors like

10



Fig. 2. Screenshot of Policy List in The Wizard

Interactive Voice Response as an alternative, because it would allow a user on
the move to define and modify policies (with perhaps just a mobile telephone).
A graphical representation of the underlying XML was also considered. Since poli-
cies have a simple tree structure, this would be easy to achieve. However the effect
would essentially be draw place boxes around the phrases that are currently ren-
dered in natural language. It is unclear whether this would help much.

As an example of the policy wizard in action, figure 2 lists some policies for call
control. These are the existing policies of English speakerMark. Figure 3 shows
what Mark sees when he clicks on the label of the second policy, allowing him to
modify it. Currently it defines the following:

Applicability: The policy is defined as part of Mark’s ‘In the office’ profile. As-
signing a policy to a profile allows Mark to quickly enable different set of poli-
cies, e.g. ‘At home’ or ‘On holiday’.

Preference: Mark prefersto have this policy apply. A policy can alternatively have
a mustor shouldpreference, negative preferences, or an empty (‘don’t care’)
preference.

Rules: When there is no response to a call after 10 seconds or if someone calls,
check if it is after 1PM. In that case, forward the call to jean@plc.com, then send
a message to michael@uni.ac.uk that there has been a call to Mark.

All the elements of a policy are hyperlinked; clicking on an element takes the user
to a page where the element can be changed. The ‘· · ·’ symbol indicates where
the policy can be extended. For example, clicking on the firstinstance of ‘· · ·’ in
figure 3 allows the user to add a further trigger, combined with andor or.

2.4 System Interface

The system controlled by policies depends, of course, on theparticular domain.
For access control to a printer, it might be a print spooler. For call control, it might
be a proxy server for SIP (Session Initiation Protocol, usedin Internet telephony).

11



Fig. 3. Screenshot of Wizard Policy Editor

The system interface has to be created by adding a policy interface module to the
server. Experience has shown that this is feasible in many cases, though it requires
the server API to be defined. An interface module is typicallyabout 1,000 lines of
code. As an example for call control, interfaces were created to the MKC 7000 ICS
softswitch and to the SER proxy server (SIP Express Router).

The system interface is bidirectional. It is designed to trigger on significant events:
requesting a printer, excessive jitter in a videoconference, initiating a call, etc. The
relevant event parameters are collected and sent to a policyserver determined by
a configuration parameter. While this event is being handled, processing of the
event in the server is suspended. (Of course, the server continues to handle other
activities normally.) Once the policy system has decided which actions apply (a
possibly empty list), these are sent to the system interfacefor execution. Actions
might deny a print request, add bandwidth to a videoconference, or divert a call.

The policy server is designed to be generic, so it does not need to have knowledge

12



of specific system interfaces. The exchange with the policy server has a uniform
format: key-value pairs for the event parameters and the resulting actions. The in-
terpretation of events and actions is domain-specific, and thus defined by the spe-
cialisation in effect for the policy language. However, thepolicy server is driven
by a database table giving the mapping between policy terminology and domain
terminology. For example, anINVITE in SIP is mapped to aconnectevent in policy
terms. The events and actions for call control are discussedin section 3.2.

As an example, information from a communications server might include:

• the time of the event
• the type of event (e.g. no answer to a call)
• the type of network (e.g. SIP Internet telephony)
• the addresses involved: the user who triggered the event, the caller and the callee
• the topic of the call.

The resulting actions might include:

• reject the call, forward the call, or fork the call (i.e. try multiple destinations)
• add or remove a third party (i.e. another subscriber)
• add or remove some medium (e.g. video)
• play a clip in some medium (e.g. audio or video).

2.5 Context System

The context system provides additional information that policies may act upon. The
difference between this and the system interface is that context includes information
to supplement system events. As a specific example, information from a context
system for call control might include:

• the capabilities of a call party (e.g. a French speaker, a Java expert)
• the role of a call party (e.g. the callee’s manager, a press agent)
• the presence and availability of a call party (e.g. present in Building 7, available

for budget discussions).

The context system is outside the scope of the policy system,though it has a defined
interface to it. The context system may obtain information from any source such as
an organisation chart (for roles), an active badge system (for presence), or a user’s
schedule (for availability). Like system events, context events may trigger policies.
For example, Anne can define a policy that notifies her (by email, pager or call)
when Mark becomes available.

As a demonstration of a simple context system, the authors have implemented a
link to a user’s calendar as stored by Microsoft Outlook. This allows presence and
availability information to be fed automatically into the policy system. For example,
it may be determined that Anne is off-site or in room 5, and that she has a meeting
or is free.

13



2.6 Policy Store

The policy store is used to hold dynamically changing information such as policies,
policy variables and conflict details. In addition, the policy system stores more
static information such as login data, as well as the terminology mapping between
policies and domains. In fact, the use of the dynamic and static information is quite
different. Although a single policy store could be used, thecurrent implementation
uses two different kinds of databases. Dynamic informationis held in an XML
database (the IBM TSpaces tuple space server). Static information is held in an
SQL database (MySQL). Internally, both forms of database are implemented via
an abstract interface. Alternative databases can therefore be readily used in place
of the current solutions.

3 The Policy Language

This section discusses the policy language APPEL (ACCENT Project Policy Lan-
guage Environment/Language, the French word for ‘call’). APPEL is specified in
[31]. Its use for SIP is described in [37], for H.323 in [18], and for conflict handling
in [7].

3.1 Core Language

APPEL is a family of policy languages with a common core. As illustrated in fig-
ure 4, the core language provides a structure for policies without commitment to
any particular application domain. The core language is then specialised for each
domain by defining its particular triggers, conditions and actions. At present two
APPEL derivatives have been defined, one for call control and one for call conflict
resolution. Others are currently under development.

The core APPEL language is specified in [31]. As APPEL is defined by an XML
schema, a call policy document requires a wrapping of the form:

<?xml version=′′1.0′′ encoding=′′UTF−8′′?>
<policy documentxmlns:xsi=′′http://www.w3.org/2001/XMLSchema−instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appelcall.xsd′′>
...

</policy document>

(Resolution policies conform to theappel resolutionschema.) For brevity, this
wrapping plus the obvious XML closing tags are omitted in thesample policies
given in this paper.

14



APPEL

Core
Language

APPEL

Call Control

APPEL

Call Conflict
Resolution

Define triggers, conditions, actions

Fig. 4. APPELCore and Derived Languages

Simple policies use<trigger>, <condition> or <action> elements. Where a
combination of these is required, the plural form of the tagsis used. Following
this, a combination operator and a pair of elements are given. If more than two
elements need to be combined, they are progressively grouped in pairs.

Policy elements are required to have a fixed name so that XML validation can
be performed. If an element has parameters, these have to be written as argument
place-holders likearg1or arg2. The argument values are then written as attributes.
As an example thefork to action takes one parameter, written as:

<action arg1=′′anne@home.co.uk′′>fork to(arg1)

APPEL is intended as a general language for expressing policies ina variety of
application domains. The core language is therefore cleanly separated from its spe-
cialisations. Unlike many policy languages, APPEL is designed for end users rather
than technicians or administrators. This has significantlyinfluenced the design of
the language, e.g. it is closer to natural language than to programming. The moti-
vation was to ensure that policies could readily be formulated and understood by
ordinary users.

Policies have owners and apply to domains. These are the samewhen a person
defines individual policies. However it is possible for an administrator to define
policies that apply to others, typically in the same organisation. The owner is always
a person, identified by an email-like address (e.g. anne@cs.stir.ac.uk). The domain
to which a policy applies may be an individual, a symbolic name for a group of
individuals, or a list of both. Individuals may belong to several domains.

The approach supports generic policies that are instantiated as required. This allows
a policy administrator to define a range of re-usable policies that can be easily
adapted by end users. For example, a policy to forward calls on no answer requires
only the forwarding address and the timeout to be defined. APPEL also supports
policies that are parameterised by policy variables. This allows the user to vary
behaviour by defining the variables independently of the policies. For the same
example, the forwarding address and the timeout could be defined by variables

15



rather than fixing them in the policy. Apart from being simpler for a novice user,
this allows a single change (e.g. in the forwarding address)to apply to a range of
policies.

Generic policies are directly supported by the policy wizard as policy templates.
Although a range of template policies is predefined, this canbe modified for use
within an organisation. This lends itself to vertical markets, i.e. classes of business
applications. For example, different suites of policies might be provided for use in
medical practices or in legal offices. The same approach alsoallows for localisation,
so policies may differ from country to country according to local practice.

Following the focus on end users, APPEL optionally allows a simple preference
to be associated with a policy:must, shouldor prefer (plus the negative forms of
these). Preferences come into play only when conflicts have to be resolved.

A policy document defines one or more policy rules. The applicability of a rule
depends on a number of factors: whether it is activated, whether it falls within its
period of validity, whether it matches the current user profile, whether its trigger has
occurred, and whether its conditions are satisfied. An inapplicable rule is simply
ignored.

Policy rules may be composed in various ways: unguarded (unconditional), guarded
(conditional), sequential (use first applicable rule) , or parallel (try rules concur-
rently). A rule body contains an optional trigger, an optional condition, and a com-
pulsory action. Triggers are caused by external events fromthe system interface or
the context system. Omitting a trigger means that a rule doesnot need an explicit
event to occur; such a rule is a goal. A triggered rule must have its conditions sat-
isfied for it to execute. Omitting a condition means that onlya trigger is needed to
enable the rule. If both the trigger and the condition are omitted, the action can be
executed without a trigger. However, the validity period for the policy may delay
the action.

Triggers may be combined usingand andor. Conditions may be combined with
and, or andnot. Actions are the outcome of a policy, and are sent to the system
interface for execution. Actions may be composed in variousways:and (both ex-
ecuted in a system-defined order),andthen(both executed in the given order),or
(one executed by system choice),orelse(the first executed if permitted), orelse
(subject to the preceding condition).

3.2 Policy Language for Call Control

Figure 5 shows the triggers, condition parameters and actions defined for call con-
trol. Most of the elements here should be understandable, but see [31] for a detailed
explanation. These are interrelated in that only certain combinations of triggers,

16



conditions and actions are permissible. As an example, apresenttrigger establishes
the date, time and user location. A policy with this trigger may refer to these condi-
tions, and may invoke actions such as making a connection or sending a message.
The policy wizard enforces such restrictions. It also dealswith combinations of
triggers:and forms the union of the permitted conditions and actions, while or
forms their intersection.

3.3 Sample Policies for Call Control

The use of APPELhas been illustrated elsewhere [18,31,37]. Only some briefexam-
ples are therefore given here as a context for understandingthe conflict resolution
policies discussed in section 3.5.

Fork Incoming Calls: Anne wishes to be called both at the office and at home.
However, she does not feel strongly about this and so omits a preference. Incoming
calls to the office are therefore also forked her home address, i.e. both are tried.

<policy owner=′′anne@cs.stir.ac.uk′′ applies to=′′anne@cs.stir.ac.uk′′

id=′′Fork Incoming Calls′′ enabled=′′ true′′ changed=′′2005-12-24T11:20:05′′>
<policy rule>

<trigger>connect incoming
<action arg1=′′anne@home.co.uk′′>fork to(arg1)

Forward On Unavailable: While Anne is unavailable, incoming calls should be
forwarded to Bert. The empty argument forunavailablemeans the current user
is unavailable, i.e. busy. Presence and availability events on their own can trigger
a policy. When used in conjunction with another trigger, they are implicitly and
automatically generated according to the user’s status.

<policy owner=′′anne@cs.stir.ac.uk′′ applies to=′′anne@cs.stir.ac.uk′′

id=′′Forward On Unavailable′′ enabled=′′true′′ changed=′′2005-12-24T11:38:16′′>
<preference>should
<policy rule>

<triggers>

<and/>
<trigger>connect incoming
<trigger arg1=′′ ′′>unavailable(arg1)

<action arg1=′′bert@cs.stir.ac.uk′′>forward to(arg1)

Video For Outgoing Calls: Anne must have video for any calls she makes.

<policy owner=′′anne@cs.stir.ac.uk′′ applies to=′′anne@cs.stir.ac.uk′′

id=′′Video For Outgoing Calls′′ enabled=′′ true′′ changed=′′2005-12-24T16:25:47′′>
<preference>must
<policy rule>

<trigger>connect outgoing

17



Trigger Condition Parameters Actions

– date, day, time note availability,
note presence,
send message

absent date, day, time log event, notepresence,
send message

available date, day, time, topic connect to, log event,
note availability,
send message

bandwidth request bandwidth, callee, caller,
date, day, medium,
network type, time

confirm bandwidth,
reject bandwidth

connect,
connect incoming,
connectoutgoing,
no answer,
no answer incoming,
no answeroutgoing

active content,
bandwidth, callcontent,
call type, callee, caller,
capability, capabilityset,
cost, date, day,
destinationaddress,
device, location, medium,
network type, priority,
quality, role,
signalling address,
sourceaddress, time,
topic, traffic load

add caller, addmedium,
add party, fork to,
forward to, log event,
note availability,
note presence, playclip,
reject call,
remove medium,
remove party,
send message

disconnect,
disconnectincoming,
disconnectoutgoing

callee, caller, date, day,
medium, networktype,
time

log event,
note availability,
note presence, playclip,
send message

event caller, date, day,
network type, time, topic

note availability,
note presence,
send message

present date, day, location, time connect to, log event,
note presence,
send message

register,
register incoming,
registeroutgoing

caller, date, day,
network type, time

note presence, rejectcall

unavailable date, day, time log event,
note availability,
send message

Fig. 5. Triggers, Condition Parameters and Actions for CallControl

18



<action arg1=′′video′′>add medium(arg1)

Still Unavailable After Call : A user might normally be considered available after
a call ends. Anne prefers to stipulate explicitly when she isavailable, so on call dis-
connection she notes herself as still unavailable. This is the meaning of the empty
argument fornote availability.

<policy owner=′′anne@cs.stir.ac.uk′′ applies to=′′anne@cs.stir.ac.uk′′

id=′′Still Unavailable After Call′′ enabled=′′ true′′ changed=′′2005-12-24T13:18:01′′>
<preference>prefer
<policy rule>

<trigger>disconnect
<action arg1=′′ ′′>note availability(arg1)

3.4 Policy Language for Call Control Conflict

3.4.1 Detecting Conflicts

Policy conflicts may arise statically (when policies are defined) or dynamically
(when policies are executed). Although the design of the policy server allows for
both, the focus of the work reported here has been on dynamic conflicts. In fact
this is a much more demanding task, partly because the relevant policies cannot be
determined in advance, and partly because conflict detection resolution has to work
in real time.

Conflicts are handled by resolution policies, distinguished from regular policies.
Resolution policies are higher-level policies that deal with clashes among policy
actions. An important design issue was to externalise the handling of conflicts.
Detection and resolution are therefore defined outside the policy server, and are not
built into it. Apart from handling conflicts in a more transparent manner, this allows
conflicts to be dealt with in a localised way. Although there is a predefined set of
resolution policies, these may be varied according to the needs of the organisation.

A resolution policy defines what conflict means, and specifieshow to resolve it.
Conflict handling is specific to an application domain. In some cases, conflict de-
tection could be generic. For example, anaddaction will probably conflict with a
removeaction for the same parameters. However this is not inevitable, and could de-
pend on the domain. For example H.323 allows additional video codecs, but H.261
must be supported by everyone. Videoconferencing softwaretypically allows users
to select codecs. Suppose the users have contradictory policies about which ones
to use. It is not necessary to handle this as a policy conflict,since the underlying
network will manage the negotiation.

For this reason, APPEL does not have an in-built notion of conflict. Instead, all
conflicts must be explicitly defined. Conversely, if two actions are not defined as

19



conflicting then they are regarded as compatible. Although this makes the approach
more flexible and generic, it potentially means extra effortto identify conflicts. To
alleviate this, a library of predefined resolution policiesis provided. This can be
adapted and extended for local use with little extra work.

Of course, this begs the questions of what should be considered a conflict and how
such conflicts should be resolved. Since conflicts arise fromactions, then all pair-
wise combinations of these need to be considered. The resolution approach guar-
antees that only pairs need to be considered; in feature interaction, some three-way
interactions are known. Many conflict-prone pairs can be identified mechanically,
e.g.add-addor add-removefor related actions. However, it requires human judg-
ment to identify whether these really are conflicts and how best to resolve them.
More seriously, some conflicts involve combinations of apparently unrelated ac-
tions. As a case in point, consider the example given later ofadding a caller and
adding video to a call. The identification of conflicts can therefore be only semi-
automated. However, this is also true in the more mature areaof feature interaction.

In call control (figure 5), there are 16 possible actions and therefore16×16

2
= 128

possible pairs. Some of these (log event, send message) are compatible with all
other actions, while some (note availability, note presence) can conflict only with
each other. In practice, there are thus about 50 combinations that would need to be
examined. It is believed that a degree of automation is possible, though human judg-
ment must be the final arbiter. Future work will include a means of semi-automating
this analysis (similar to interaction filtering for features, e.g. [23]).

Conflict detection is defined to be commutative and associative. If action 1 conflicts
with action 2, then action 2 conflicts with action 1. The way inwhich action 1, ac-
tion 2 and action 3 are combined does not affect the conflict outcome. The policy
server exploits this when it checks a set of proposed actionsagainst the resolution
policies. Since resolutions may be defined in various user domains, they are (par-
tially) ordered by domain before they are applied. This ensures that higher-domain
resolutions (e.g. for stir.ac.uk) are applied in preference to lower-domain ones (e.g.
for cs.stir.ac.uk).

When dealing with conflicts in the call domain, the policy system can take ad-
vantage of the possibility to play voice clips. For example,a user whose policy is
overridden can be informed that this happened and why. However, care is needed
to ensure that privacy is not breached. Suppose Anne has a policy that she does
not wish to receive calls from Bert. If Bert is thwarted in calling Anne, it could
be embarrassing to Anne if he were told exactly why! This is similar to the Ter-
minating Call Screening feature. Network operators are careful to block the caller
without revealing why. Because of the greater flexibility ofpolicies, a wider range
of responses may be given. For example colleagues might be told that their callee
will next be available at lunch-time, but an external callermight just be told that
the person is unavailable.

20



Another interesting possibility, not currently implemented, is that the conflict res-
olution system can learn what resolutions are acceptable. If Bert’s call to Anne is
rejected due to policy conflict, the system log will record this. A user might even
get to ‘vote’ by dialling a digit from 0 to 9, indicating the degree of satisfaction
with an outcome.

3.4.2 Resolving Conflicts

The triggers of a resolution policy are the actions of regular policies. Often, just a
pair of triggers is used such asadd mediumandremovemedium. However, multi-
ple triggers may be used as required. For example, conflict may be defined to arise
on adding video to the call, adding a third party to the call, and forwarding the call.

A resolution policy explicitly binds the parameters of actions to resolution variables
namedvariable and numbered 1 to 9. The preferences associated with the corre-
sponding policies are implicitly bound to resolution variables namedpreference
and numbered 1 to 9. The conditions of a resolution policy aretypically based on
these resolution variables. However, the conditions that are used in regular policies
may also appear in resolution policies.

A resolution aims to take a set of conflicting actions and replace them with compat-
ible actions. In order to avoid infinite regress, there is a single level of resolution.
That is, resolution policies are not considered to conflict with each other. The pol-
icy server applies the first resolution policy that is enabled by the actions (i.e. is
triggered by the actions and has satisfied conditions). If overlapping resolutions in
the same domain are defined, this will not be noticed. Automated discovery of such
potential problems will be addressed in future work.

The actions of a resolution policy may be generic or specific.Examples of both
are given later. A generic resolution decides among the conflicting actions. It may
choose among the actions on the following basis:

• apply calleeor apply caller
• apply olderor apply newer, based on the policy definition time
• apply inferior or apply superior, based on the policy domain (e.g. cs.stir.ac.uk

is inferior to stir.ac.uk)
• apply negativeor apply positive, based on the policy preference (e.g.must not

is negative)
• apply weakerorapply stronger, based on the policy preference (e.g.should not

is weaker thanmust, andshouldis weaker thanmust not)

There are also some generic resolutions mainly intended forinternal use by the
policy server. A generic resolution may not result in a definite outcome (e.g.ap-
ply superiorwill not eliminate actions from policies in the same domain). If res-
olution is unsuccessful, the policy server uses theapply defaultaction to achieve
some resolution. This is a last-resort strategy that triesapply stronger, and then

21



apply newerif that does not achieve resolution. If a unique action is still not ob-
tained, one is chosen at system discretion. Having to do thisis logged as a warning
to the system administrator that the resolution policies are incomplete.

Resolution policies commonly deal with pairs of actions, checking their parame-
ters and the policy preferences. In general this requires consideration of four cases:
equal/similar and equal/opposite (same action parameters, preferences in a similar
or opposite sense), unequal/similar and unequal/opposite(different action parame-
ters, preferences in a similar or opposite sense).

As will be seen in the examples of section 3.5, sometimes all four cases need to
be specified explicitly and sometimes fewer. If a resolutiondoes not deal with all
four cases, the others are handled implicitly. It may be thatno resolution is required
because the actions are compatible. For example, each user can be allowed to fork
a call to a different address. When resolving conflicts, the policy server does not
perform actions with negative preferences (e.g. the action‘must not add video’ is
ignored if generated by conflict resolution).

Preferences are internally mapped to integers:must(+3), should(+2), prefer (+1),
empty or ‘don’t care’ (0),prefer not (-1), should not (-2), must not (-3). Pref-
erences may therefore be ranked by the usual comparison operators (e.g.lt, ge).
However, it is usual to employ two operators that make a broader comparison:in
(read as ‘in keeping with’) andout (read as ‘out of keeping with’). Positive and
negative preference values are considered to be opposites.A zero value is similar
to a positive or a negative value. Thusmustis in keeping withshouldor empty, and
is out of keeping withprefer not or must not. Similarly must not is in keeping
with should notor empty, and is out of keeping withpreferor must.

3.5 Sample Policies for Call Control Conflict

Fork-Fork Conflict – Generic Resolution: Almost any call control action may
conflict with itself if its arguments are the same and the preferences of each party
are opposite. As an example, suppose one party wishes to forkthe call to an alter-
native address (e.g. to try a home number in addition to the dialled office number).
However, suppose the other party does not wish to fork the call to this address (e.g.
because the callee must be called only in the office). The following detects this
conflict, and resolves it through a generic action: choosingthe stronger of the two
preferences. Note that this policy applies to a domain (@cs.stir.ac.uk) rather than
to the owner. In general, an administrator can define regularand resolution policies
for groups of users identified in this way.

<resolution id=′′Call Fork-Fork Conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′ true′′

changed=′′2005-12-24T15:40:00′′>

22



<policy rule>

<triggers>

<and/>
<trigger arg1=′′variable1′′>fork to(arg1)
<trigger arg1=′′variable2′′>fork to(arg1)

<conditions>
<and/>
<condition>

<parameter>variable1
<operator>eq
<value>variable2

<condition>

<parameter>preference1
<operator>out
<value>preference2

<action>apply stronger

This resolution explicitly deals with only the equal/opposite case. The equal/similar
case is not explicitly handled since the preferences are compatible: ‘must fork to
addressA’ and ‘should fork to addressA’ will result in forking to A since one of
the two equivalent actions will be selected by default. The unequal/opposite case
is not explicitly handled since the actions do not conflict: ‘must fork to addressA’
and ‘should not fork to addressB’ will result in forking to only A since actions
with negative preferences are not performed. The unequal/similar case does not
need explicit description: ‘must fork to addressA’ and ‘should fork to addressB’
will result in forking to bothA andB since both actions are compatible. Similar
resolutions could be defined for pairs ofadd caller, add party, add medium, etc.

Forward-Forward Conflict – Generic Resolution: Call forwarding is another ex-
ample of a call control action conflicting with itself. However, the resolution is
more complex. There is conflict if the forwarding addresses are the same and the
preferences are opposite (equal/opposite case), or if the forwarding addresses differ
and the preferences are similar (unequal/similar case). The generic resolution given
here is to apply the caller’s preference.

<resolution id=′′Call Forward-Forward Conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′ true′′

changed=′′2005-12-24T14:51:20′′>
<policy rule>

<triggers>

<and/>
<trigger arg1=′′variable1′′>forward to(arg1)
<trigger arg1=′′variable2′′>forward to(arg1)

<conditions>
<or/>
<conditions>

<and/>

23



<condition>

<parameter>variable1
<operator>eq
<value>variable2

<condition>

<parameter>preference1
<operator>out
<value>preference2

<conditions>
<and/>
<condition>

<parameter>variable1
<operator>ne
<parameter>variable2

<condition>

<parameter>preference1
<operator>in
<value>preference2

<action>apply caller

The equal/similar and unequal/opposite cases are handled implicitly. Similar reso-
lutions could be defined for pairs ofnote availability, note presence, reject call,
etc.

Medium Add-Remove Conflict – Generic Resolution: A number of call control
actions are inverses of each other, and are an obvious sourceof conflict. For exam-
ple a conflict arises if one party wishes to add a digital whiteboard during the call,
while the other party wishes to omit this. The following checks if the medium in
question is the same for both actions, and whether the associated preferences are
similar. If so, this policy selects the weaker preference asa generic resolution. (This
choice is just for illustration, as an example of favouring less aggressive policies!)

<resolution id=′′Medium Add-Remove Conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′ true′′

changed=′′2005-12-24T13:29:1′′>
<policy rule>

<triggers>

<and/>
<trigger arg1=′′variable1′′>add medium(arg1)
<trigger arg1=′′variable2′′>remove medium(arg1)

<conditions>
<and/>
<condition>

<parameter>variable1
<operator>eq
<value>variable2

<condition>

<parameter>preference1

24



<operator>in
<value>preference2

<action>apply weaker

This resolution explicitly deals with only the equal/similar case. The equal/opposite
case is not explicitly handled; ‘must add mediumM’ and ‘should not remove
mediumM’, for example, will result in addingM since actions with negative pref-
erences are not performed. The unequal cases are handled implicitly. Similar res-
olutions could be defined foradd party vs. removeparty, confirm bandwidthvs.
reject bandwidth, etc.

Bandwidth Confirm-Reject Conflict – Specific Resolution: This example is a
straightforward conflict: one party wishes to confirm the requested bandwidth,
while the other wishes to reject the request. This time the resolution is specific:
the bandwidth request is confirmed, and the conflict is noted in an event log. Al-
thoughvariable2is set to the reason for rejecting the bandwidth request, it is not in
fact used here.

<resolution id=′′Bandwidth Confirm-Reject Conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′ true′′

changed=′′2005-12-24T17:41:32′′>
<policy rule>

<triggers>

<and/>
<trigger>confirm bandwidth
<trigger arg1=′′variable2′′>reject bandwidth(arg1)

<condition>

<parameter>preference1
<operator>in
<value>preference2

<actions>
<and/>
<action>confirm bandwidth</action>
<action arg1=′′Overruled bandwidth conflict by confirming it′′

>log event(arg1)

The resolution explicitly deals with only the equal/similar case. Other cases are
handled implicitly.

Caller Add-Medium Add – Specific Resolution: Suppose one party wishes to
add video to the call, while the other wishes to include a third party in the call
(add caller). This might be considered undesirable, since the third party would be
able to view the call parties and their workplaces. The resolution is specific: allow
both actions, but conference in cath@cs.stir.ac.uk to oversee the call (add party).
Note that the triggers and actions are all of different types.

<resolution id=′′Caller-Medium Add-Add Conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′ true′′

changed=′′2005-12-24T11:40:00′′>

25



<policy rule>

<triggers>

<and/>
<trigger arg1=′′variable1′′>add caller(arg1)
<trigger arg1=′′variable2′′>add medium(arg1)

<conditions>
<and/>
<condition>

<parameter>variable2
<operator>eq
<value>video

<condition>

<parameter>preference1
<operator>in
<value>preference2

<actions>
<and/>
<actions>

<and/>
<action arg1=′′variable1′′>add caller(arg1)
<action arg1=′′variable2′′>add medium(arg1)

<action arg1=′′cath@cs.stir.ac.uk′′>add party(arg1)

The resolution explicitly deals with only the equal/similar case. Other cases are
handled by default.

4 Conclusions

A policy system has been created to support a call policy language and its associ-
ated conflict handling. The work has concentrated on call control in Internet tele-
phony. The software is written in Java and has proven to be very portable. Interfaces
have been created between the policy system and servers for SIP (MKC 7000 ICS
and SER softswitches) and H.323 (Gnu GK gatekeeper). The policy system has
been demonstrated in conjunction with a variety of systems,including the PSTN
(Public Switched Telephone Network), PBXs (Private BranchExchanges), mobile
phones, wireless PDAs (Blackberry), and email servers.

Considerable efforts have been put into making the policy system usable by ordi-
nary end users. The policy wizard has been the focus of this goal. Although the
run-time performance of the policy system has not yet been formally assessed, em-
pirical studies have shown that the use of policies adds onlya small overhead to call
processing – under a second to retrieve policies, detect andresolve conflicts, and
control the underlying communications system in accordance with these policies.

The policy system has been demonstrated to several industrial audiences. Three

26



companies are currently considering adapting it for their product lines. Although
use by non-technical people has so far been limited, it is believed that the right
ingredients are present to make it usable. The system architecture is designed for
scalability in the number of users and in the deployment of physical systems to
support policies.

Future work will enhance the current implementation in various ways:

• More extensive usability trials will be conducted. These will include a formal
assessment of performance and scalability. Currently thisis awaiting industrial
commitment, since only telephony companies have access to arepresentative
user base.

• The emphasis in conflict handling has been on dynamic (online) aspects. Al-
though static (offline) conflict handling has been studied, it is still to be imple-
mented.

• It is possible to define overlapping resolution policies. Automated determination
of such problems will be addressed.

• Resolution policies are defined manually, though the predefined resolutions are a
good basis for this. A semi-automatic method will be investigated for determin-
ing conflict-prone combinations of policy actions.

• Policy refinement is being studied as a means of realising higher-level policies
(particularly goals) using lower-level policies. Planning techniques from Arti-
ficial Intelligence are the preferred approach. This will help to bridge the gap
between policies and features.

• Although conflict resolution has been designed for the case of multiple policy
servers [7], it is currently implemented only for the single-server case.

The core policy language has been defined to be extensible, and has been instan-
tiated for call control and for call conflict handling. However, this is currently
achieved by manual editing of the core language schema. In follow-on work, the
elements of the policy language are defined using OWL (Web Ontology Language).
Apart from generalising the approach, this allows automated extension of the pol-
icy system into new domains. Although the policy server is very largely domain-
independent, this is not true of the policy wizard (which currently has an intimate
knowledge of call control). The policy wizard has been adapted to read the policy
elements from an OWL description of the domain.

Currently, the policy system is tied into SIP and H.323 Internet telephony. Both
of these are open international standards. An obvious possibility would be to in-
tegrate the policy system with Skype (www.skype.com). This is an Internet tele-
phony solution that has rapidly gained popularity; see [4] for an analysis of Skype.
However Skype is proprietary and closed, making it difficultto integrate with new
techniques.

The policy work is also being extended into two new areas. Oneof these concerns
policies for control of sensor networks – specifically in wind farms. The other is
applying policies to management of technology and network services that deliver

27



care to users in the home. It is hoped that the flexibility demonstrated by the work
so far will carry over into these novel domains.

Acknowledgements

The work reported here was funded by EPSRC (the UK Engineering and Physical
Sciences Research Council, grant R31263) and by Mitel Networks (Canada). The
authors are very grateful to Peter Perry and Tom Gray of MitelNetworks for their
technical advice and support throughout. Integration of the policy system with the
7000 ICS softswitch was made possible through the active involvement of Joe Ire-
land, Peter Musgrave, Ryan Waters and their colleagues at MKC Networks. The au-
thors also thank their co-workers on ACCENT: Stephan Reiff-Marganiec and Jianx-
iong Pang. Mario Kolberg (Stirling) and Grégory Estienne (Ottawa) contributed to
the development of multi-language support in the policy wizard.

References

[1] S. Aljareh and N. Rossiter. Towards security in multi-agency clinical information
services. In R. N. Procter and M. Rouncefield, editors,Proc. Dependability in
Healthcare Informatics, pages 33–41, UK, Mar. 2001. University of Lancaster.

[2] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Featureinteraction resolution
using fuzzy policies. In M. H. Calder and E. H. Magill, editors, Proc. 6th. Feature
Interactions in Telecommunications and Software Systems, pages 94–112. IOS Press,
Amsterdam, Netherlands, May 2000.

[3] M. Barbuceanu, T. Gray, and S. Mankovskii. How to make your agents fulfil their
obligations. In H. S. Nwana and D. T. Ndumu, editors,Proc. 3rd. Conference on
Practical Application of Intelligent Agents and Multi-Agents, pages 255–276, London,
UK, Mar. 1998.

[4] S. A. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet
telephony protocol. Technical Report CUCS-039-04, Computer Science Columbia
Universit, New York, May 2004.

[5] A. Belokosztolszki and K. Moody. Meta-policies for distributed role-based access
control systems. In J. B. Michael, J. Lobo, and N. Dulay, editors, Proc. 3rd.
International Workshop on Policies for Distributed Systems and Networks, pages 106–
115. IEEE Computer Society, Los Alamitos, California, USA,June 2002.

[6] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A system to specify and manage
multipolicy access control models. In J. B. Michael, J. Lobo, and N. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distributed Systems and Networks,
pages 116–127. IEEE Computer Society, Los Alamitos, California, USA, June 2002.

28



[7] L. Blair and K. J. Turner. Handling policy conflicts in call control. In
S. Reiff-Marganiec and M. D. Ryan, editors,Proc. 8th. Feature Interactions in
Telecommunications and Software Systems, pages 39–57. IOS Press, Amsterdam,
Netherlands, June 2005.

[8] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski.
Feature-interaction visualization and resolution in an agent environment. In
K. Kimbler and W. Bouma, editors,Proc. 5th. Feature Interactions in
Telecommunications and Software Systems, pages 135–149. IOS Press, Amsterdam,
Netherlands, Sept. 1998.

[9] M. H. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction:
A critical review and considered forecast.Computer Networks, 41:115–141, Jan. 2003.

[10] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W.K. Schnure, and
H. Velthuijsen. A feature-interaction benchmark for IN andbeyond. IEEE
Communications Magazine, pages 64–69, Mar. 1993.

[11] E. J. Cameron and H. Velthuijsen. Feature interactionsin telecommunications systems.
IEEE Communications Magazine, pages 18–23, Aug. 1993.

[12] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Ponder:A language specifying
security and management policies for distributed systems.Technical report, Imperial
College, London, 2000.

[13] P. Dini, A. Clemm, T. Gray, F. J. Lin, L. Logrippo, and S. Reiff-Marganiec.
Policy-enabled mechanisms for feature interactions: Reality, expectations, challenges.
Computer Networks, 45(5):585–603, Aug. 2004.

[14] T. Dursun and B.Örencik. POLICE: A novel policy framework. Number 2869 in
Lecture Notes in Computer Science, pages 819–827. Springer, Berlin, Germany, 2003.

[15] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. Utilising the event calculus for
policy driven adaptation on mobile systems. In J. B. Michael, J. Lobo, and N. Dulay,
editors,Proc. 3rd. International Workshop on Policies for Distributed Systems and
Networks, pages 13–24. IEEE Computer Society, Los Alamitos, California, USA, June
2002.

[16] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and
research prospects.Manufacturing and Service Operations Management, 5:79–141,
Sept. 2002.

[17] T. Huang. Policies for H.323 internet telephony. Technical Report CSM-165,
Department of Computing Science and Mathematics, University of Stirling, UK, May
2005.

[18] T. Huang and K. J. Turner. Policy support for H.323 call handling. Computer
Standards and Interfaces, 28(2):204–217, Nov. 2005.

[19] J. Lennox and H. Schulzrinne, editors.Call Processing Language Framework and
Requirements. Internet Draft CPL-Framework-02. The Internet Society, New York,
USA, Jan. 2000.

29



[20] E. C. Lupu and M. Sloman. Conflict analysis for management policies. In
5th. International Symposium on Integrated Network Management, pages 430–443.
Chapman-Hall, London, UK, 1997.

[21] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE Trans. on Software Engineering, 25(6):852–869, Nov. 1999.

[22] D. Marriott, M. Mansouri-Samani, and M. Sloman. Specification of management
policies. InProc. 5th. IFIP/IEEE Int. Workshop on Distributed Systems:Operations
and Management, 1994.

[23] M. Nakamura, T. Kikuno, J. Hassine, and L. M. S. Logrippo. Feature interaction
filtering with Use Case Maps at requirements stage. In M. H. Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions in Telecommunications andSoftware Systems,
pages 163–178. IOS Press, Amsterdam, Netherlands, May 2000.

[24] L. Pearlman, V. Welch, I. Foster, and C. Kesselman. A community authorization
service for group collaboration. In J. B. Michael, J. Lobo, and N. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distributed Systems and Networks,
pages 50–59. IEEE Computer Society, Los Alamitos, California, USA, June 2002.

[25] A. Ponnappan, L. Yang, and R. Pillai. A policy based QoS management system for
the IntServ/DiffServ based Internet. In J. B. Michael, J. Lobo, and N. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distributed Systems and Networks,
pages 159–168. IEEE Computer Society, Los Alamitos, California, USA, June 2002.

[26] S. Reiff-Marganiec. Policies: Giving user control over calls. In M. D. Ryan, J.-
J. C. Meyer, and H.-D. Ehrich, editors,Objects, Agents and Features, number 2975
in Lecture Notes in Computer Science, pages 189–208. Springer, Berlin, Germany,
May 2004.

[27] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced
communications services. In D. A. Peled and M. Y. Vardi, editors, Proc. Formal
Techniques for Networked and Distributed Systems (FORTE XV), number 2529 in
Lecture Notes in Computer Science, pages 130–145. Springer, Berlin, Germany, Nov.
2002.

[28] S. Reiff-Marganiec and K. J. Turner. A policy architecture for enhancing and
controlling features. In D. Amyot and L. Logrippo, editors,Proc. 7th. Feature
Interactions in Telecommunications and Software Systems, pages 239–246. IOS Press,
Amsterdam, Netherlands, June 2003.

[29] S. Reiff-Marganiec and K. J. Turner. Feature interaction in policies. Computer
Networks, 45(5):569–584, Aug. 2004.

[30] S. Reiff-Marganiec and K. J. Turner. The ACCENT policy server. Technical Report
CSM-164, Department of Computing Science and Mathematics,University of Stirling,
UK, Dec. 2005.

[31] S. Reiff-Marganiec, K. J. Turner, and L. Blair. APPEL: The ACCENT project
policy environment/language. Technical Report CSM-161, Department of Computing
Science and Mathematics, University of Stirling, UK, Dec. 2005.

30



[32] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirements interaction
management.ACM Computing Surveys, 35(2):132–190, 2003.

[33] T. Ryutov and C. Neuman. The specification and enforcement of advanced security
policies. In J. B. Michael, J. Lobo, and N. Dulay, editors,Proc. 3rd. International
Workshop on Policies for Distributed Systems and Networks, pages 128–138. IEEE
Computer Society, Los Alamitos, California, USA, June 2002.

[34] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,
and L. Yu. Requirements for policy languages for trust negotiation. In J. B.
Michael, J. Lobo, and N. Dulay, editors,Proc. 3rd. International Workshop on Policies
for Distributed Systems and Networks, pages 68–79. IEEE Computer Society, Los
Alamitos, California, USA, June 2002.

[35] M. W. A. Steen and J. Derrick. Formalising ODP enterprise policies. InProc.
3rd. International Enterprise Distributed Object Computing Conference. Institution
of Electrical and Electronic Engineers Press, New York, USA, Sept. 1999.

[36] K. J. Turner. The ACCENT policy wizard. Technical Report CSM-166, Department of
Computing Science and Mathematics, University of Stirling, UK, Dec. 2005.

[37] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry, and J. Ireland.
Policy support for call control.Computer Standards and Interfaces, June 2005. In
press.

[38] A. van Lamsweerde, R. Darimont, and E. Letier. Managingconflicts in goal-driven
requirements engineering.IEEE Trans. on Software Engineering, 24:908–926, 1998.

[39] D. C. Verma, S. Calo, and K. Amiri. Policy-based management of content distribution
networks.IEEE Network, pages 34–39, 2002.

[40] T. Wagner, J. Shapiro, et al. Multi-level conflict in multi-agent systems. InProc. AAAI
Workshop on Negotiation in Multi-Agent Systems, 1999.

[41] X. Wu and H. Schulzrinne. Programmable end system services using SIP. In
Proc. International Conference on Communications 2003. Institution of Electrical and
Electronic Engineers Press, New York, USA, May 2003.

[42] R. Yavatkar, D. Pendarakis, and R. Guerin.A Framework for Policy-Based Admission
Control. RFC 2753. The Internet Society, New York, USA, July 2000.

31



Author Bibliographies

Ken Turner holds a B.Sc. in Electrical Engineering and a Ph.D. in Artificial In-
telligence. After 12 years working in the communications industry, he became
Professor of Computing Science in 1987 at the University of Stirling, Scotland.
His research interests include policy-based management, communications services,
formal methods, and systems architecture. He conducts research in areas such as
distributed systems, networking, healthcare and hardwaredesign. His teaching in-
terests include communications, compiler design, programming and software engi-
neering.

Lynne Blair is a senior lecturer in the Computing Departmentat Lancaster Univer-
sity. She has a background in the formal specification and verification of distributed
multimedia systems. Currently her research interests focus on issues of interaction
that occur in software systems and aspect-oriented software development. Of par-
ticular interest is research into dynamically adaptive systems, especially the devel-
opment of such systems via dynamic aspect-oriented techniques.

32


