Kenneth J. Turner and Lynne Blair. Policies and Conflicts in Call Control,
Computer Networks, 51(2):496-514, February 2007

Policies and Conflicts in Call Control

Kenneth J. Turnérand Lynne Blaif !

& Computing Science and Mathematics, University of StiflBiiyling FK9 4LA, UK
b Computing, InfoLab 21, South Drive, Lancaster Univerdipncaster LA1 4WA, UK

Abstract

Policy-based management is introduced and related to thafispneeds of call con-
trol. It is explained how policies differ in important wayi features. Related work on
policy-based management is reviewed, leading to the csiatithat a different approach
is required for call control. A general architecture is praed for a policy system. This
includes an overview of the major policy components, retathem to the system under
control and to the context system that provides additiamakrimation.

As a framework for explaining how policy conflicts are hamtjlthe policy language for
call control is briefly presented along with some sampleqgesdi. The paper then focuses
on how policy conflicts are defined and resolved, using samgdelutions to illustrate
the approach. Pointers are given to future enhancemenwdity gupport, including new
applications of policies to novel domains.

Keywords: Call Control, Internet Telephony, Policy, Policy Conflict

1 Introduction

This paper presents a novel approach to policy-based dafitealls, and to han-

dling conflicts that may arise among such policies. This aasden as a significant
step forward from features and interaction handling in emonal telephony. The
paper offers the following enhancements to previous pabbas on this approach:

e Anextended review is given of policy-based managemens iBhised to explain
the distinctive needs of policies to call control, and whyemesting policy system
was found to be suitable for this application.

I Work carried out while the author was on leave at the Unitgxsi Stirling.
Email addresseskjt@cs.stir.ac.uk (Kenneth J. Turner), Ib@comp.lancalkag¢Lynne

Blair).

Preprint submitted to Elsevier Preprint 21 November 2006

e A unified and generalised view is presented of the entirecpdystem. This
demonstrates that the approach is not tied to call conttod. description also
provides the necessary framework for understanding howgypobnflicts in call
control are handled.

e The mechanisms for conflict detection and resolution haea lgeneralised, al-
lowing a wider variety of conflicts to be handled.

e Compared to [7], much more detail of resolution policies basn given, along
with a number of illustrative examples.

e An overview is given of new enhancements being developeth®mpolicy sys-
tem, and how it is being adapted for new applications.

1.1 Policy-Based Systems

Policy-based management has become popular for congr@luariety of systems.
As examples, policies are commonly used for access coqtrality of service, and
system management. Policies capture high-level goalscdratbe automatically
enforced. Using predefined policies, a system can dynaipnadjust its behaviour
without requiring manual intervention.

Suppose it is hecessary to control access to a networkepriihe system man-
ager can define which users may access this printer, changgtiings, or upgrade
its firmware. As another example, suppose a streaming vigeters must adapt
to changing workloads. The system manager can allocateltefsources such as
processing, bandwidth and buffering. As demands varycg@aslican decide how to
modify these resources: frame rate or size might be altedpression parame-
ters might be adjusted, and colour depth might be changed.

Policy conflict is an almost inevitable consequence of geliased management.
Such conflicts may arise at different levels. Even the pediaf a single user may
interfere with each other. The user of a network printer,dgample, may have
high quality and low cost as goals. The policies of peer useyg also disagree.
For example one user in a videoconference might desire dugihty video, while
the other requires low-quality due to limited device capas. Policies may also
be defined hierarchically within an organisation. Conftgtipolicies may occur
at all levels, e.g. individual (high-quality video needed@partment (H.261 video
codec preferred), organisation (video bandwidth shoulkihiéed).

This paper reports on work to develop a policy-based systerodil control. One
aim was to allow end users (telephone subscribers) to dediinggs for how they
wish their calls to be handled. Another aim was to allow syséeiministrators to
define higher-level policies for handling policy conflictlthough several existing
policy languages might have been suitable, it will be seahapplications like call
control require a different approach. Few options existedl€aling with conflicts,
S0 again a distinctive solution was required.

1.2 Call Control

In telephony, the basic call is extended through featurbes@& are relatively self-
contained additions of functionality, e.g. for call diviers, call waiting or charge
card calling. An important aspect of features is that theyaartomatically invoked,
usually at well-defined trigger points in the basic callstatodel. This means that
features can readily be added with little disturbance tdoeisac call. Unfortunately,
the same mechanism means that features may interfere withotlaer — the well-
known feature interaction problem [10].

There is a good analogy between features and policies, anebe feature interac-
tion and policy conflict. In a sense, a feature is a low-lewdily. In fact, the authors
are working on policy refinement to allow higher-level p@gto be expanded into
lower-level ones. This will bridge the gap between poli@esd features. However,
features have a number of characteristics that limit thexilfility. In contrast, poli-
cies are higher-level and more malleable. There are sitgsabetween them, but
also important differences [13,29]:

e Features and policies are both intended to allow users tiwaidheir calls.

e Feature interaction and policy conflict may both be handtatically (at defini-
tion time) or dynamically (at call time).

e Features are low-level and imperative, whereas policieshagher-level and
declarative. Suppose the user does not wish to receivefoafisthe press. In
a feature-based approach, terminating call screeningdmoeilrequired with a
list of blocked numbers. A comparable policy could simpligot calls from the

press, identified by the caller domain or topic.

e Features have limited parameters, whereas policies carubk more flexible.
For example, a call diversion feature would typically begpaeterised by the af-
fected number, the forwarding number, and the conditiodifegrsion. A compa-
rable policy could be much more subtle, choosing differentvarding numbers
according to the caller, the time of day, the subject of tHe & capabilities
and devices of the call parties, etc.

e Features are fixed and managed by the network operator qyreqat supplier,
whereas policies are open-ended and defined (mostly) by serd.uA typical
network or switch may have tens to hundreds of features.ofitgh this may
offer the user many options, the range of choices is noretkdixed and cus-
tomisation is limited. If the user’s requirement is not mgtdm existing feature,
there is no alternative.

e Because features are defined by engineers, a technicallylepm@pproach may
be followed. In contrast, policies should be definable bysigemeet their needs.
Although the policy language necessarily limits what useay do, the range of
policies is much wider and is in fact infinite. Since policg®uld be accessible
to ordinary users, a user-friendly and non-technical agpginanust be adopted.
As a special case, more complex policies may also be defineetwork oper-
ators.

e Feature interaction handling is essentially under therobof one network op-
erator or equipment supplier. (Although this may not applgnulti-carrier calls,
a common approach is often adopted.) This makes it muchraasdentify and
manage feature interactions. Policies, however, areliauger-defined. Further-
more, the policies applying to a call may stem from any paus#rs (who may
have never called each other before). Detecting and regppolicy conflicts is
thus a much more challenging and dynamic task.

¢ One thing that helps resolution is that policies are clogarser needs, so it is
easier to determine what the user’s intention was. Not kng\le intention is
a well-known problem in resolving feature interactionsn€ider Do Not Dis-
turb in conjunction with Alarm Call. Is the intention to blkoall calls (including
wake-up calls), or to avoid being bothered by calls from offeople?

Some network operators have introduced additional flaggbly allowing third
parties to add external functionality. This is the approtaiten by Parlay/OSA
(Open Service Architecturajww.parlay.org. For example, this more flexible treat-
ment of features like Automatic Call Distribution and Freepe Routing. It is ar-
guable whether such an approach can be described as feated-or policy-based.

Policy support for call control was developed by the@kNT project: Advanced
Call Control Enhancing Network Technologiesyw.cs.stir.ac.uk/accenthe ap-
proach to policies for call control is discussed in [26,Z7,3n fact, a broad view
was taken of what a ‘call’ might be. This includes traditibtedephony, but also al-
lows for newer developments such Internet telephony, dctere Voice Response,
multimedia calls, and Web/Grid services. Although the dionaé call control has
been of considerable influence, a generic approach has leeeloded that can be
adapted for other domains.

1.3 Related Work

CPL (Call Processing Language [19]) allows users to definethey wish calls to
be handled. However CPL is limited in a number of ways thateriaknsuitable
for general call control:

e Itis limited in its network bindings (currently H.323 andFS|I

¢ It gives limited control over calls, specifically just cadltap. There is also a need
for mid-call control (e.g. when a new party is added to a aail) call tear-down
control (i.e. when a call is disconnected). CPL also supgpanty limited checks,
e.g. on the caller or the current time.

e It does not support a range of preferences (positive or ivegatith different
strengths).

e It is not (yet) integrated with context systems that proyidesence and avail-
ability information.

¢ It does not offer any mechanisms for detecting and resoleorgflicts among
call preferences.

Some of the limitations of CPL have been addressed in work B83. (Lan-
guage for End System Services [41]). New developments @itttlude support
for presence-based services and consideration of featign@ctions.

Call centres and CTI (Computer Telephony Integration) supfbexible call han-
dling; see [16] for a survey of the approaches. Call cen&lgson mechanisms such
as Calling Line Identification and Automatic Call Distriban to route callers to
appropriate agents. Call centres are designed for largadsses, unlike the work
reported here which is intended for individual end userdl €tres essentially
deal with routing within one organisation, whereas caligets handle calls on a
global basis. Call centres also do not support the kinds dlgitities discussed in
this paper. Policy-based support of calls is thus compléangrno the techniques
used in call centres.

Although call centres are not appropriate for ordinary subsrs, the policy sys-
tem was designed to allow third-party policy support. Thiigves a user to offload

policy definition and enforcement to a separate organisatiauch as they might
employ an answering service. This means that end userseab#mefit from poli-

cies, without being exposed to the technical issues. As lvéllseen, the policy
wizard allows an administrator to define policies on behélfisers. An adminis-

trator can also predefine policies that users simply seseth(as ‘on holiday’ or

‘out of the office’). Again, the goal is make policies usefutlhose who wish to use
them indirectly.

Policies have been used in many kinds of management tasksnfit® applica-
tions, with one representative citation each, include sscentrol [5], admission
control [42], agent-based systems [8], content distrduf39], distributed trust
[34], group collaboration [24], healthcare [1], network magement [22], Open
Distributed Processing [35], QoS (Quality of Service) [Zgcurity [33], and sys-
tems management [12].

[21] defines policies as information that can be used to nyatié behaviour of a
system. This is a very general and open-ended definitiomdmrontext of this pa-
per, policies are interpreted as the goals for how calls Ishioet handled. Policies
lend themselves well to networked applications, where #mny distribution de-

mands careful management. Despite this, call handlingsyshave attracted little
policy support. [2] uses fuzzy policies as a means of reaglféature interactions.
Many researchers see policies as important in future calliveg [13].

Policy language developments in industry have largely $eduon network man-
agement and QoS. For example, Cisco have developed popgpsdifor control of
security and QoS in routers. Lucent and Bell Labs develofd(Policy Descrip-
tion Language) for network management. Hewlett-Pack&digyXpert (now dis-
continued) was also focused on network management. Thegigndard for COPS
(Common Open Policy Service) is intended as a protocol faragang Qo0S. None

of these efforts is of direct relevance to call control.

[27] discusses the kind of policies that are needed in caitrod Initially, some
existing policy languages were evaluated to determine thatability for this ap-
plication. For example, a detailed evaluation [27] was mafd@onder [12]. It was
found that Ponder was only partly suitable for this purpd$enetheless, Ponder
has been influential on the work reported on call control.

A new policy approach was defined to overcome limitationsxisteng languages
in a call control context:

The focus of on call control is distinctive. It places difet demands on a policy
system, and of course it requires specialised support imamications setting.
The language developed for call control falls into the gaheategory termed
ECA (Event-Condition-Action). However the events, cormfis and actions that
arise in call control are completely different from, saygh required in network
management.

Ideally a policy language should be capable of speciatindtr various applica-
tion domains. This is true of only some existing languagédhdAigh a language
for call control has been developed, the core of the langisaggeparate and can
be adapted for other uses. Even when used for call contelatiguage has to
be largely independent of the underlying communicatiossesy.

In systems management, a useful distinction can be oftee imettiveen the sub-
ject of a policy (that performs an action) and the target obkcy (that is acted
upon). A number of policy languages such as Ponder refleztlthcall control,
the nature of subject and target becomes unclear. It cargbedthat the subject
is the caller, the call or the network, while the target isthéee, the call or the
network. Suppose a caller wishes video as well as voiceidsatthieved by the
caller, the call instance or the network? Is it the callee,dall instance or the
network state that is altered? Because of this issue, it@asdfdifficult to apply
Ponder effectively to call control.

In many application domains, the entities involved in pekcare fairly static
and predictable. This does not apply to call control, wherewser (previously
unknown) may call any other user. As a result, call contrédoiduces a much
more dynamic set of policies. In addition, policies may b&dduced by the
underlying networks as well as the call parties.

Most policy languages require specialised technical digmerbeing designed
for programmers or technicians. In contrast, policies falf control must be
accessible to the ordinary subscriber. This presents arrobh@lenge, because
the policy language and the supporting policy system musidadle by non-
technical people. Communication is global, so policy suppust also be truly
international — specifically, multilingual.

Call control is more likely to lead to policy conflict becaugery many users
with unpredictable policies may wish to communicate. Cohftandling needs
to be meaningful to ordinary end users.

Many policy languages support modal or deontic aspecthdrPI language

[3], these are obligation, permission and interdictiomdRer has obligation, au-
thorisation and refrain policies. Obligation and intetitin apply to the subject,
while permission applies to the target. Since the notiorsibfect and target do
not map so readily to call control, these modalities needesathinking for call
control. Furthermore, obligations placed on end users hauted value since
they cannot be enforced.

e A policy language should ideally have a form that is readidysed by many
tools. XML is widely employed for structured informatioryths used by only a
few policy languages.

For these reasons, it was concluded that no existing potstgs would adequately
serve for call control. It was therefore necessary to dgvalaew policy language
and policy support, inspired by the unique needs of callrobnitiowever the lan-
guage has been cleanly separated into a core and its spataiifor various ap-
plication domains (here, call control). This allows theippkystem to be largely
re-used in other contexts. In this respect, the call copwbty language resembles
some others such as Ponder.

Distributed definition of policies can lead to incompatitis among them. Policy
conflict resembles the extensively studied feature intenagroblem. A general
discussion of this problem appears in [9-11]. It is arguef28] that some tech-
niques from feature interaction can be adapted for deteatiol resolution of policy
conflicts. Nonetheless, conflict handling is still a chadjieny task.

Apart from feature interaction, policy conflict also reséesbwork on interactions
among requirements [32] and on conflicts among goals [38]cyPoonflict has
been studied for some years, but without any general sol@erging; it is eas-
ier to resolve policy conflicts in particular domains. [20hsiders conflict analysis
for management policies. A Role Based Management frameivohkdes tool sup-
port for determining significant policy conflicts. The usawéta-policies has been
considered in distributed systems management [21]. Thik eygplies meta-policy
checks when policies are specified and when they are execttedP®OLICE lan-
guage [14] aims to simplify conflict handling by avoiding aéige policies. This is
possible because policies in this language automaticzdlgt to prohibition unless
explicit authorisation is given.

[2] aims to define hierarchical policies such that, by dabnit the subordinate
policies cannot conflict. Conflicts are, however, still pbksif one policy in the
hierarchy is changed. The need for policies to control agesnéxamined in [40].
Multi-agent conflicts are avoided either through negatiathetween agents or by
appropriate sequencing of their tasks. [15] recogniseddes not address conflicts
that arise in policy-driven adaptation mechanisms. [6kliexthe problem of au-
thorisation policies leading to conflict. This is resolveddroviding a function to
compare policies and decide which should take precedence.

1.4 Overview of Paper

Section 2 introduces the policy system, both in general aris ispecialisation for
call control. Section 3 overviews the policy language, asdusses how it has been
specialised for call control and conflict resolution. Ithadive examples are given
of both call policies and resolution policies. Section 4 suwamses and evaluates
the work, indicating how it is being developed further.

2 The Policy System

This section describes the architecture and main compsétiie policy system.
An overview of the architecture appears in [28]. The implatagon and APIs of
the policy server are specified in [30]. The implementatiath eustomisation of the
policy wizard are described in [36]. A general overview ofigpies in call control
is presented in [37]. Its specialisation for H.323 Interted¢phony is covered in
[17,18]. Conflict handling for call control is discussed .|

2.1 Policy System Architecture

The generic policy system architecture is shown in figuréhé&:drrows represent
socket interfaces. This gives considerable flexibilitjpwlng the components of
the policy system to be distributed as required. It is alsy ¢a replicate the com-
ponents for resilience or load-sharing. For example anmsgéon might use an
external policy server, might have a single policy servat thanages multiple de-
partments, or might have one policy server per departmémnte$he interfaces are
logical ones, the components may be on separate physidcahsy®r might share
the same equipment. The policy system components have beeonranything
between one and five separate systems.

All the code is written in Java, so multi-platform operatignpossible; the pol-

icy system has been demonstrated without change on foereiiff platforms. The
policy system is also designed to be as independent as fws$ithe underlying

communications services. This is essential because thencaiating users can-
not predict what network technology might be used. For exanap different times

a call to the same user might connect to a conventional telegha mobile tele-

phone, an Internet telephone or to voicemail. The policiastrbe independent of
this. Of course, the potential penalty is that network-#gecapabilities cannot be
exploited (for good reasons). In fact, it is possible to defiolicies that depend on
a particular network — but the user can be warned of this.

Policy . Policy
Wizard stor.e retrle.ve Store
details details
retrie& %re
details Policy details
request Server
actio

J;)tify noti%\

System event context | Context
Interface System

Fig. 1. Generic Policy System Architecture

The policy serveris the heart of the system. The server retrieves and enforces
policies, detecting and resolving policy conflictspalicy wizardprovides a user-
friendly, natural language interface to the policy systémart from defining and
editing policies, the wizard also supports policy variableolicy templates, voice
clips, and a simple interface to presence and availabijicy information is held
in a policy storethat includes regular policies, resolution policies, pphariables
and user profiles. Theystem interfacaotifies the policy system of significant
events in the system being managed, and performs the adiciated by the policy
system. Theontext systermrovides the policy system with contextual information
that may influence policies. For example, this might idgngifcall party’s avail-
ability and capabilities.

2.2 Policy Server

The policy server is triggered by external events, mostyifithe system interface
but also from the context system. The event interface pesvidformation in a

domain-independent format. For example, the system adenfnay notify the pol-

icy server of a request for a networked printer, a proposddogonference, or an
incoming call.

Event notifications can be as fine-grained or as coarseeagtain desired. Events
are normally high-level triggers, such as a call being matvever individual
keypresses on a telephone could also be reported as e¥enteeie desirable to
have policies at this level. For example, use of the hash varggkey might be
disabled by a policy in order to restrict user actions.

At a minimum, the system interface must identify the evert tre users involved
in the event. For an incoming call, for example, it would nea least the terminat-
ing call event, the caller and the callee. This is used tatogate the policy store

for policies relevant to the event. In addition, higherdipolicies are also implic-
itly identified (e.g. those for the user’s department andaniggtion). Policies are
associated with users, and implicitly with the devices ailitges they control. In
call control, for example, policies can be associated with user’s telephone or
with the user’s voice mailbox.

The policy server retrieves a collection of policies thateym an event. These are
checked for conflict using the resolution policies that gpplthis context. Typi-
cally, resolution policies are defined by an administraborgroups of users (e.g. a
department). However, they may also be defined by indivglaakelated organi-
sations (e.g. the provider of a telephone service). As wikéen later, a resolution
policy defines a class of conflicts that it handles. If no cotdliexist among the
actions proposed by the policies, these actions are sehetsystem interface for
execution. If conflicts exist, the resolution policies diet which actions result.

Normally, the effect of resolution is to create a subset efggtoposed actions. That
is, incompatible actions are eliminated. However, resmfuimight also result in
completely different actions. Suppose Anne likes to hadewicalls, while Bert
likes to have a complete recording of a call. Since this coeglt in very large
call records, their administrator Cath might define the “adi¢o’ and ‘record call’
actions as conflicting. The resolution might be to confeee@ath into the call
initially to decide whether video may be used or recorded.

2.3 Policy Wizard

Internally, policies are XML documents defined by a schemgadlgh they are

thus text files, they are usable only by specialists. Thepaizard therefore exists
to present and edit policies in a user-friendly manner. Ehparticularly important

when dealing with end users such as subscribers. The poiraydavis web-based,
being supported by JSP scripts (Java Server Pages) in a wel. #gart from the

familiarity of a web interface, this has the advantage tloditges may be modified
from anywhere. A user away from the office, for example, mayately log into the

policy system and change how calls are handled (e.g. forthem to the current
location, send them to voicemail).

The policy wizard interface shows policies in structuredura language. This

was deemed to be the most appropriate way of interacting evithusers. Note

that natural language processing is not required becaesatirface is carefully

structured. Because of the international nature of comguthe policy wizard was

designed to be multi-lingual. Currently it supports Enfglisrench and German, but
is readily extended for many other languages. The wizaalslpports variants on
the languages, e.g. American English and British English.

Other forms of interface were considered for the policy wdza he authors like

10

Choose Existing Policy

Edit an existing policy by clicking its Label
Enable/disable an existing policy by clicking its Status
Remove an existing policy by clicking Delete

Label Status Changed Valid from Valid to Remove?
Personal message for Jack Disabled | 2006-04-17 16:02 Delete
Transfer a call to Jean Enabled | 2006-04-17 16:01 || 2005-12-25 09:00 | 2006-01-06 0%:00 || Delete

Fig. 2. Screenshot of Policy List in The Wizard

Interactive Voice Response as an alternative, becauseutdwallow a user on
the move to define and modify policies (with perhaps just a itedielephone).
A graphical representation of the underlying XML was alsonsidered. Since poli-
cies have a simple tree structure, this would be easy to\ahtowever the effect
would essentially be draw place boxes around the phraseaihaurrently ren-
dered in natural language. It is unclear whether this woelg much.

As an example of the policy wizard in action, figure 2 lists sopolicies for call

control. These are the existing policies of English spedkark. Figure 3 shows
what Mark sees when he clicks on the label of the second pdalilowing him to

modify it. Currently it defines the following:

Applicability: The policy is defined as part of Mark’s ‘In the office’ profilesA
signing a policy to a profile allows Mark to quickly enablefdient set of poli-
cies, e.g. ‘At home’ or ‘On holiday’.

Preference: Mark prefersto have this policy apply. A policy can alternatively have
a mustor shouldpreference, negative preferences, or an empty (‘don’t)care
preference.

Rules: When there is no response to a call after 10 seconds or if suenealls,
checkifitis after LPM. In that case, forward the call to jepic.com, then send
a message to michael@uni.ac.uk that there has been a cadirto M

All the elements of a policy are hyperlinked; clicking on dereent takes the user
to a page where the element can be changed. The Symbol indicates where
the policy can be extended. For example, clicking on the ifistance of - -” in
figure 3 allows the user to add a further trigger, combinet astd or or.

2.4 System Interface

The system controlled by policies depends, of course, orp#ncular domain.
For access control to a printer, it might be a print spooler.dall control, it might
be a proxy server for SIP (Session Initiation Protocol, usddternet telephony).

11

Edit Policy

Applicability (label, owner, ...}):

label Transfer a call to Jean
valid from 2002-12-25 09:00
valid to 2006-01-06 02:00
profile Inthe office

status enabled

Preference (must, prefer, ...):
pl’EfEl’
Rules (combinations, triggers, conditions, actions):

when a call is not answered after 10 SECONS wee
or
when | am called ses
if the hour is after 13:00 s
do forward the call to jean@plc.com ess
and then
do send a message to michael@uni ac Uk about call to Mark ess

| Save || Cancel || Help |

Fig. 3. Screenshot of Wizard Policy Editor

The system interface has to be created by adding a policsfaseemodule to the
server. Experience has shown that this is feasible in masgscahough it requires
the server API to be defined. An interface module is typicabput 1,000 lines of
code. As an example for call control, interfaces were coetéhe MKC 7000 ICS

softswitch and to the SER proxy server (SIP Express Router).

The system interface is bidirectional. It is designed tggerr on significant events:
requesting a printer, excessive jitter in a videoconfegemgtiating a call, etc. The
relevant event parameters are collected and sent to a E#ieer determined by
a configuration parameter. While this event is being handbedcessing of the
event in the server is suspended. (Of course, the servenaestto handle other
activities normally.) Once the policy system has decidedcviactions apply (a
possibly empty list), these are sent to the system inteffilmcexecution. Actions
might deny a print request, add bandwidth to a videocontereor divert a call.

The policy server is designed to be generic, so it does nat ttekave knowledge

12

of specific system interfaces. The exchange with the pokeryes has a uniform
format: key-value pairs for the event parameters and thdtneg actions. The in-
terpretation of events and actions is domain-specific, bod tlefined by the spe-
cialisation in effect for the policy language. However, fi@icy server is driven
by a database table giving the mapping between policy tedogy and domain
terminology. For example, dNVITE in SIP is mapped to eonnecievent in policy
terms. The events and actions for call control are discussselction 3.2.

As an example, information from a communications servettniigclude:

the time of the event

the type of event (e.g. no answer to a call)

the type of network (e.g. SIP Internet telephony)

the addresses involved: the user who triggered the eventalker and the callee
the topic of the call.

The resulting actions might include:

reject the call, forward the call, or fork the call (i.e. tryttiple destinations)
add or remove a third party (i.e. another subscriber)

add or remove some medium (e.g. video)

play a clip in some medium (e.g. audio or video).

2.5 Context System

The context system provides additional information thaicges may act upon. The
difference between this and the system interface is thaegbimcludes information
to supplement system events. As a specific example, infm&bm a context

system for call control might include:

e the capabilities of a call party (e.g. a French speaker, a dapert)

¢ the role of a call party (e.g. the callee’s manager, a presstag

¢ the presence and availability of a call party (e.g. preseBuiilding 7, available
for budget discussions).

The context system is outside the scope of the policy systeugh it has a defined
interface to it. The context system may obtain informati@mf any source such as
an organisation chart (for roles), an active badge systenp(esence), or a user’s
schedule (for availability). Like system events, contesdrégs may trigger policies.
For example, Anne can define a policy that notifies her (by Empager or call)
when Mark becomes available.

As a demonstration of a simple context system, the authars imaplemented a
link to a user’s calendar as stored by Microsoft Outlook sTdilows presence and
availability information to be fed automatically into theljzy system. For example,
it may be determined that Anne is off-site or in room 5, and #f& has a meeting
oris free.

13

2.6 Policy Store

The policy store is used to hold dynamically changing infation such as policies,
policy variables and conflict details. In addition, the pglsystem stores more
static information such as login data, as well as the terln@gmomapping between
policies and domains. In fact, the use of the dynamic anecstdbrmation is quite
different. Although a single policy store could be used,dheent implementation
uses two different kinds of databases. Dynamic informatsoheld in an XML
database (the IBM TSpaces tuple space server). Statianatayn is held in an
SQL database (MySQL). Internally, both forms of databaseirmplemented via
an abstract interface. Alternative databases can therd®rreadily used in place
of the current solutions.

3 The Policy Language

This section discusses the policy languagerAL (ACCENT Project Policy Lan-
guage Environment/Language, the French word for ‘call'PPAL is specified in
[31]. Its use for SIP is described in [37], for H.323 in [18fdafor conflict handling
in[7].

3.1 Core Language

APPEL is a family of policy languages with a common core. As illasdd in fig-
ure 4, the core language provides a structure for policidésont commitment to
any particular application domain. The core language is 8pecialised for each
domain by defining its particular triggers, conditions actians. At present two
APPEL derivatives have been defined, one for call control and onedib conflict
resolution. Others are currently under development.

The core A°PEL language is specified in [31]. AsRREL is defined by an XML
schema, a call policy document requires a wrapping of thafor

<2xml version# 1.0’ encodingZUTF—-8"?>
<policy_ documentxmins:xsiZ http://www.w3.0rg/2001/XMLSchemainstancé
xsi:noNamespaceSchemal ocati6http://www.cs.stir.ac.uk/schemas/appedll.xsd’ >

</policy_document>

(Resolution policies conform to thappel resolutionschema.) For brevity, this
wrapping plus the obvious XML closing tags are omitted in slaenple policies
given in this paper.

14

APPEL
Core
Language

7 | -
AN

Define triggers, conditions, actio

X

APPEL

Call Control Call Conflict

Resolution

I
APPEL I
I
|

Fig. 4. APPEL Core and Derived Languages

Simple policies use<trigger >, <condition> or <action> elements. Where a
combination of these is required, the plural form of the tegased. Following

this, a combination operator and a pair of elements are gifenore than two

elements need to be combined, they are progressively gidogmirs.

Policy elements are required to have a fixed nhame so that XMidateon can

be performed. If an element has parameters, these have tattenvas argument
place-holders likargl or arg2. The argument values are then written as attributes.
As an example théork_to action takes one parameter, written as:

<action argl#’anne@home.co.k-fork_to(argl)

APPEL is intended as a general language for expressing policiasviariety of
application domains. The core language is therefore ofesaparated from its spe-
cialisations. Unlike many policy languagespPeL is designed for end users rather
than technicians or administrators. This has significainflyenced the design of
the language, e.qg. it is closer to natural language thandgramming. The moti-
vation was to ensure that policies could readily be fornaglaand understood by
ordinary users.

Policies have owners and apply to domains. These are the waee a person
defines individual policies. However it is possible for anmaaistrator to define

policies that apply to others, typically in the same orgatiis. The owner is always
a person, identified by an email-like address (e.g. annes@iraac.uk). The domain
to which a policy applies may be an individual, a symbolic eafior a group of

individuals, or a list of both. Individuals may belong to ses domains.

The approach supports generic policies that are instadtas required. This allows
a policy administrator to define a range of re-usable pditiet can be easily
adapted by end users. For example, a policy to forward callsocanswer requires
only the forwarding address and the timeout to be definethkeA also supports
policies that are parameterised by policy variables. THhmsva the user to vary
behaviour by defining the variables independently of thecps. For the same
example, the forwarding address and the timeout could beetefdy variables

15

rather than fixing them in the policy. Apart from being simpier a novice user,
this allows a single change (e.g. in the forwarding addresapply to a range of
policies.

Generic policies are directly supported by the policy wizas policy templates.
Although a range of template policies is predefined, thistlmamodified for use
within an organisation. This lends itself to vertical mase.e. classes of business
applications. For example, different suites of policieg/imibe provided for use in
medical practices or in legal offices. The same approacteditses for localisation,
so policies may differ from country to country accordingdcal practice.

Following the focus on end users,PAEL optionally allows a simple preference
to be associated with a policynust shouldor prefer (plus the negative forms of
these). Preferences come into play only when conflicts habe resolved.

A policy document defines one or more policy rules. The appiidty of a rule
depends on a number of factors: whether it is activated, lvenet falls within its
period of validity, whether it matches the current user pepivhether its trigger has
occurred, and whether its conditions are satisfied. An ihegdge rule is simply
ignored.

Policy rules may be composed in various ways: unguardeaqditonal), guarded
(conditional), sequential (use first applicable rule) , arghel (try rules concur-
rently). A rule body contains an optional trigger, an op#ibcondition, and a com-
pulsory action. Triggers are caused by external events fhensystem interface or
the context system. Omitting a trigger means that a rule doeseed an explicit
event to occur; such a rule is a goal. A triggered rule muse ligvconditions sat-
isfied for it to execute. Omitting a condition means that aalyigger is needed to
enable the rule. If both the trigger and the condition aretiauj the action can be
executed without a trigger. However, the validity period tiee policy may delay
the action.

Triggers may be combined usiragnd andor. Conditions may be combined with
and or andnot Actions are the outcome of a policy, and are sent to the syste
interface for execution. Actions may be composed in varigags: and (both ex-
ecuted in a system-defined ordeajydthen(both executed in the given ordeoy,
(one executed by system choice)else(the first executed if permitted), @ise
(subject to the preceding condition).

3.2 Policy Language for Call Control

Figure 5 shows the triggers, condition parameters andrectefined for call con-
trol. Most of the elements here should be understandabisgey31] for a detailed
explanation. These are interrelated in that only certamlmoations of triggers,

16

conditions and actions are permissible. As an exampessentrigger establishes
the date, time and user location. A policy with this triggexymefer to these condi-
tions, and may invoke actions such as making a connectioarmliisg a message.
The policy wizard enforces such restrictions. It also dedth combinations of
triggers:and forms the union of the permitted conditions and actions,levbr
forms their intersection.

3.3 Sample Policies for Call Control

The use of APELhas been illustrated elsewhere [18,31,37]. Only some éxia-
ples are therefore given here as a context for understamigkngonflict resolution
policies discussed in section 3.5.

Fork Incoming Calls: Anne wishes to be called both at the office and at home.
However, she does not feel strongly about this and so omitsfangence. Incoming
calls to the office are therefore also forked her home adgdrresboth are tried.

<policy owner#anne@cs.stir.ac.(ikapplies to="anne@cs.stir.ac.lk
id="Fork Incoming Call$ enabled#tru¢’ changed“2005-12-24T11:20:05>
<policy_rule>
<trigger >connectincoming
<action argl#’anne@home.co.lk-fork_to(argl)

Forward On Unavailable: While Anne is unavailable, incoming calls should be
forwarded to Bert. The empty argument fonavailablemeans the current user
is unavailable, i.e. busy. Presence and availability eventtheir own can trigger
a policy. When used in conjunction with another triggerytlhee implicitly and
automatically generated according to the user’s status.

<policy ownerZanne@cs.stir.ac.(ikapplies to="anne@cs.stir.ac.lk
id="Forward On Unavailableenabled#trué¢’ changed%2005-12-24T11:38:16>
<preference>should
<policy_rule>
<triggers>
<and/>
<trigger >connect incoming
<trigger argl¥'”>unavailable(argl)
<action argl¥bert@cs.stir.ac.uik>forward.to(argl)

Video For Outgoing Calls: Anne must have video for any calls she makes.

<policy owner#anne@cs.stir.ac.likapplies to="anne@cs.stir.ac.lik
id="Video For Outgoing Callsenabled#tru¢’ changed“2005-12-24T16:25:47>
<preference>must
<policy_rule>
<trigger >connect outgoing

17

Trigger Condition Parameters | Actions
- date, day, time note availability,
note presence,
send message
absent date, day, time log_event, notepresence
send message
available date, day, time, topic connectto, log event,
note availability,
send message
bandwidth request bandwidth, callee, caller,| confirm.bandwidth,
date, day, medium, reject bandwidth
network type, time
connect, active content, add caller, add medium,

connectincoming,
connectoutgoing,
no_answer,
no_answerincoming,

bandwidth, callcontent,
call_type, callee, caller,
capability, capabilityset,
cost, date, day,

add party, fork to,
forward.to, log_event,
note availability,

note presence, playclip,

no_answeroutgoing | destinationaddress, reject call,
device, location, medium|, remove medium,
network type, priority, remove party,
quality, role, send message
signalling address,
source address, time,
topic, traffic load

disconnect, callee, caller, date, day, | log_event,

disconnectincoming,
disconnectoutgoing

medium, networktype,
time

note availability,
note presence, playclip,

send message
event caller, date, day, note availability,
network type, time, topic| note presence,
send message
present date, day, location, time | connectto, log event,
note presence,
send message
register, caller, date, day, note presence, rejectall

register incoming,
registeroutgoing

network type, time

unavailable

date, day, time

log_event,
note availability,
send message

Fig. 5. Triggers, Condition Parameters and Actions for Calhtrol

18

<action arglZ'vided’ >add medium(argl)

Still Unavailable After Call : A user might normally be considered available after
a call ends. Anne prefers to stipulate explicitly when shevalable, so on call dis-
connection she notes herself as still unavailable. Thisesneaning of the empty
argument fomote availability.

<policy owner#anne@cs.stir.ac.likapplies to="anne@cs.stir.ac.lik
id="Still Unavailable After Call enabled#true’ changed“2005-12-24T13:18:0>
<preference>prefer
<policy_rule>
<trigger >disconnect
<action argl¥'”>note availability(argl)

3.4 Policy Language for Call Control Conflict

3.4.1 Detecting Conflicts

Policy conflicts may arise statically (when policies are mksdfi) or dynamically
(when policies are executed). Although the design of th&cpaerver allows for
both, the focus of the work reported here has been on dynaoniticts. In fact

this is a much more demanding task, partly because the relpedicies cannot be
determined in advance, and partly because conflict detexgnlution has to work
in real time.

Conflicts are handled by resolution policies, distinguisfi®@m regular policies.
Resolution policies are higher-level policies that deahvadlashes among policy
actions. An important design issue was to externalise tmelllmay of conflicts.

Detection and resolution are therefore defined outsidedheypserver, and are not
built into it. Apart from handling conflicts in a more transpat manner, this allows
conflicts to be dealt with in a localised way. Although thesaipredefined set of
resolution policies, these may be varied according to tleelsef the organisation.

A resolution policy defines what conflict means, and specti@s to resolve it.

Conflict handling is specific to an application domain. In sorases, conflict de-
tection could be generic. For example,aad action will probably conflict with a
removeaction for the same parameters. However this is not ineleifaind could de-
pend on the domain. For example H.323 allows additionalovmelecs, but H.261
must be supported by everyone. Videoconferencing softtyareally allows users
to select codecs. Suppose the users have contradictoprgsotibout which ones
to use. It is not necessary to handle this as a policy condliste the underlying
network will manage the negotiation.

For this reason, APEL does not have an in-built notion of conflict. Instead, all
conflicts must be explicitly defined. Conversely, if two aas are not defined as

19

conflicting then they are regarded as compatible. Althohghrhakes the approach
more flexible and generic, it potentially means extra effoitlentify conflicts. To
alleviate this, a library of predefined resolution policisprovided. This can be
adapted and extended for local use with little extra work.

Of course, this begs the questions of what should be corsldeconflict and how
such conflicts should be resolved. Since conflicts arise fiotions, then all pair-
wise combinations of these need to be considered. The tesokpproach guar-
antees that only pairs need to be considered; in featunaactien, some three-way
interactions are known. Many conflict-prone pairs can batiled mechanically,
e.g.add-addor add-removdor related actions. However, it requires human judg-
ment to identify whether these really are conflicts and howst be resolve them.
More seriously, some conflicts involve combinations of appdy unrelated ac-
tions. As a case in point, consider the example given laterdding a caller and
adding video to a call. The identification of conflicts canrédiere be only semi-
automated. However, this is also true in the more maturedreature interaction.

In call control (figure 5), there are 16 possible actions dredeforel®s1® = 128
possible pairs. Some of theded_event send messageare compatible with all
other actions, while soma&¢te availability, note presencgcan conflict only with
each other. In practice, there are thus about 50 combirstitat would need to be
examined. Itis believed that a degree of automation is ptessgthough human judg-
ment must be the final arbiter. Future work will include a neafisemi-automating
this analysis (similar to interaction filtering for featare.g. [23]).

Conflict detection is defined to be commutative and asseeidfiaction 1 conflicts
with action 2, then action 2 conflicts with action 1. The wayihich action 1, ac-
tion 2 and action 3 are combined does not affect the conflittaroe. The policy
server exploits this when it checks a set of proposed actgasst the resolution
policies. Since resolutions may be defined in various useraias, they are (par-
tially) ordered by domain before they are applied. This essthat higher-domain
resolutions (e.g. for stir.ac.uk) are applied in prefeestaclower-domain ones (e.g.
for cs.stir.ac.uk).

When dealing with conflicts in the call domain, the policy teys can take ad-
vantage of the possibility to play voice clips. For exampleiser whose policy is
overridden can be informed that this happened and why. Hexyvesre is needed
to ensure that privacy is not breached. Suppose Anne has@y ploht she does
not wish to receive calls from Bert. If Bert is thwarted inloa Anne, it could
be embarrassing to Anne if he were told exactly why! This isilsir to the Ter-
minating Call Screening feature. Network operators arefaato block the caller
without revealing why. Because of the greater flexibilitypoficies, a wider range
of responses may be given. For example colleagues mightidéhtt their callee
will next be available at lunch-time, but an external caftgght just be told that
the person is unavailable.

20

Another interesting possibility, not currently implemedt is that the conflict res-
olution system can learn what resolutions are acceptabiBert’s call to Anne is
rejected due to policy conflict, the system log will recordstiA user might even
get to ‘vote’ by dialling a digit from 0 to 9, indicating the giee of satisfaction
with an outcome.

3.4.2 Resolving Conflicts

The triggers of a resolution policy are the actions of regptaicies. Often, just a
pair of triggers is used such add. mediumandremove medium However, multi-

ple triggers may be used as required. For example, confligthealefined to arise
on adding video to the call, adding a third party to the calfl forwarding the call.

A resolution policy explicitly binds the parameters of aat to resolution variables
namedvariable and numbered 1 to 9. The preferences associated with the-corr
sponding policies are implicitly bound to resolution vates namedreference
and numbered 1 to 9. The conditions of a resolution policytgpecally based on
these resolution variables. However, the conditions theatiaed in regular policies
may also appear in resolution policies.

A resolution aims to take a set of conflicting actions andaepkhem with compat-
ible actions. In order to avoid infinite regress, there ismgls level of resolution.
That is, resolution policies are not considered to conflithwach other. The pol-
icy server applies the first resolution policy that is endlddy the actions (i.e. is
triggered by the actions and has satisfied conditions).dflapping resolutions in
the same domain are defined, this will not be noticed. Autedhdiscovery of such
potential problems will be addressed in future work.

The actions of a resolution policy may be generic or spedifi@amples of both
are given later. A generic resolution decides among theictinfj actions. It may
choose among the actions on the following basis:

e apply._calleeor apply._caller

e apply_ olderor apply.newer based on the policy definition time

e apply.inferior or apply.superior, based on the policy domain (e.g. cs.stir.ac.uk
is inferior to stir.ac.uk)

e apply.negativeor apply. positive based on the policy preference (engust not
IS hegative)

e apply.weakeror apply. stronger based on the policy preference (eslyould not
is weaker thamust andshouldis weaker thamust not)

There are also some generic resolutions mainly intendethternal use by the
policy server. A generic resolution may not result in a défimutcome (e.gap-
ply_superiorwill not eliminate actions from policies in the same domalhyes-
olution is unsuccessful, the policy server usesapply.defaultaction to achieve
some resolution. This is a last-resort strategy that @&igsly stronger and then

21

apply_newerif that does not achieve resolution. If a unique action i stit ob-
tained, one is chosen at system discretion. Having to daoghigged as a warning
to the system administrator that the resolution policiesacomplete.

Resolution policies commonly deal with pairs of actionsealing their parame-
ters and the policy preferences. In general this requirasideration of four cases:
equal/similar and equal/opposite (same action parameterferences in a similar
or opposite sense), unequal/similar and unequal/opp@sfterent action parame-
ters, preferences in a similar or opposite sense).

As will be seen in the examples of section 3.5, sometimesall tases need to
be specified explicitly and sometimes fewer. If a resolutioes not deal with all

four cases, the others are handled implicitly. It may benloatesolution is required
because the actions are compatible. For example, eacharseeallowed to fork

a call to a different address. When resolving conflicts, thkcp server does not
perform actions with negative preferences (e.g. the acthwst not add video’ is

ignored if generated by conflict resolution).

Preferences are internally mapped to integersst(+3), should(+2), prefer (+1),
empty or ‘don’t care’ (0)prefer not (-1), should not (-2), must not (-3). Pref-
erences may therefore be ranked by the usual comparisoatope(e.glt, ge).
However, it is usual to employ two operators that make a oadmparisonin
(read as ‘in keeping with’) andut (read as ‘out of keeping with’). Positive and
negative preference values are considered to be oppo&iieso value is similar
to a positive or a negative value. Thosistis in keeping withrshouldor empty, and
is out of keeping withprefer_not or must not Similarly must not is in keeping
with should notor empty, and is out of keeping wilreferor must

3.5 Sample Policies for Call Control Conflict

Fork-Fork Conflict — Generic Resolution: Almost any call control action may
conflict with itself if its arguments are the same and thegrezices of each party
are opposite. As an example, suppose one party wishes tthfedall to an alter-

native address (e.g. to try a home number in addition to thkedi office number).

However, suppose the other party does not wish to fork tHeccHilis address (e.g.
because the callee must be called only in the office). Theviatlg detects this

conflict, and resolves it through a generic action: choosiegstronger of the two

preferences. Note that this policy applies to a domain (glicac.uk) rather than
to the owner. In general, an administrator can define regudmresolution policies

for groups of users identified in this way.

<resolution id="Call Fork-Fork Conflict
ownerZadmin@cs.stir.ac.lkapplies to=" @cs.stir.ac.uk enabled#true’
changed#2005-12-24T15:40:00>

22

<policy_rule>
<triggers>
<and/>
<trigger argl¥variable’ >fork_to(arg1)
<trigger argl¥variable? >fork_to(argl)
<conditions>
<and/>
<condition>
<parameter>variablel
<operator>eq
<value>variable2
<condition>
<parameter>preferencel
<operator>out
<value>preference2
<action>apply_ stronger

This resolution explicitly deals with only the equal/opjtesase. The equal/similar
case is not explicitly handled since the preferences argatibie: ‘must fork to
addressA’ and ‘should fork to addres&’ will result in forking to A since one of
the two equivalent actions will be selected by default. Thequal/opposite case
is not explicitly handled since the actions do not confliotust fork to addres8’
and ‘should not fork to addre€® will result in forking to only A since actions
with negative preferences are not performed. The uneduidlbs case does not
need explicit description: ‘must fork to addre&'sand ‘should fork to addresB’
will result in forking to bothA and B since both actions are compatible. Similar
resolutions could be defined for pairsasfd caller, add_party, add medium etc.

Forward-Forward Conflict — Generic Resolution: Call forwarding is another ex-
ample of a call control action conflicting with itself. Howay the resolution is

more complex. There is conflict if the forwarding addresgestiae same and the
preferences are opposite (equal/opposite case), or ibtiaafding addresses differ
and the preferences are similar (unequal/similar cas&) géheric resolution given
here is to apply the caller’s preference.

<resolution id="Call Forward-Forward Confli€t
owner¥admin@cs.stir.ac.lkapplies to=" @cs.stir.ac.uk enabled#true’
changed#2005-12-24T14:51:20>
<policy_rule>
<triggers>
<and/>
<trigger argl=variable! >forward to(argl)
<trigger argl¥variable? >forward to(argl)
<conditions>
<or/>
<conditions>
<and/>

23

<condition>
<parameter>variablel
<operator>eq
<value>variable2

<condition>
<parameter>preferencel
<operator>out
<value>preference2

<conditions>

<and/>

<condition>
<parameter>variablel
<operator>ne
<parameter>variable2

<condition>
<parameter>preferencel
<operator>in
<value>preference2

<action>apply caller

The equal/similar and unequal/opposite cases are handj@eitly. Similar reso-
lutions could be defined for pairs abte availability, note presencereject call,
etc.

Medium Add-Remove Conflict — Generic Resolution A number of call control
actions are inverses of each other, and are an obvious soiucoeflict. For exam-
ple a conflict arises if one party wishes to add a digital wioterd during the call,
while the other party wishes to omit this. The following ckedf the medium in
guestion is the same for both actions, and whether the atedgoreferences are
similar. If so, this policy selects the weaker preferenca generic resolution. (This
choice is just for illustration, as an example of favouriagd aggressive policies!)

<resolution id="Medium Add-Remove Confliét
owner¥admin@cs.stir.ac.lkapplies to=" @cs.stir.ac.uk enabled#true’
changed#2005-12-24T13:29/1>
<policy_rule>
<triggers>
<and/>
<trigger argl¥variablel >add medium(argl)
<trigger argl¥variable? >remove medium(argl)
<conditions>
<and/>
<condition>
<parameter>variablel
<operator>eq
<value>variable2
<condition>
<parameter>preferencel

24

<operator>in
<value>preference2
<action>apply weaker

This resolution explicitly deals with only the equal/siaritase. The equal/opposite
case is not explicitly handled; ‘must add mediwh and ‘should not remove
mediumM’, for example, will result in addingy/ since actions with negative pref-
erences are not performed. The unequal cases are handlicitlgn®imilar res-
olutions could be defined fadd. party vs. remove party, confirm bandwidthvs.
reject. bandwidth etc.

Bandwidth Confirm-Reject Conflict — Specific Resolution This example is a
straightforward conflict: one party wishes to confirm theuesied bandwidth,
while the other wishes to reject the request. This time tiselwtion is specific:
the bandwidth request is confirmed, and the conflict is nateahi event log. Al-
thoughvariableZ2is set to the reason for rejecting the bandwidth requestnibt in

fact used here.

<resolution id="Bandwidth Confirm-Reject Conflitt
owner¥admin@cs.stir.ac.Ukapplies to=" @cs.stir.ac.uk enabled#true’
changed#2005-12-24T17:41:32>
<policy_rule>
<triggers>
<and/>
<trigger >confirm.bandwidth
<trigger argl¥variable? >reject bandwidth(argl)
<condition>
<parameter>preferencel
<operator>in
<value>preference2
<actions>
<and/>
<action>confirm_bandwidth</action>
<action argl#'Overruled bandwidth conflict by confirmind'itlog_event(argl)

The resolution explicitly deals with only the equal/simitzase. Other cases are
handled implicitly.

Caller Add-Medium Add — Specific Resolution Suppose one party wishes to
add video to the call, while the other wishes to include adtipiarty in the call
(add.caller). This might be considered undesirable, since the thirt/paould be
able to view the call parties and their workplaces. The rggm is specific: allow
both actions, but conference in cath@cs.stir.ac.uk toseeethe callddd. party).
Note that the triggers and actions are all of different types

<resolution id="Caller-Medium Add-Add Confli&
ownerZadmin@cs.stir.ac.lkapplies to=" @cs.stir.ac.uk enabled#true’
changed#2005-12-24T11:40:00>

25

<policy_rule>
<triggers>
<and/>
<trigger argl¥variablel >add caller(argl)
<trigger argl¥variable? >add medium(argl)
<conditions>
<and/>
<condition>
<parameter>variable2
<operator>eq
<value>video
<condition>
<parameter>preferencel
<operator>in
<value>preference2
<actions>
<and/>
<actions>
<and/>
<action argl¥variablel >add caller(argl)
<action argl¥'variable? >add medium(argl)
<action argl¥cath@cs.stir.ac.dk-add. party(argl)

The resolution explicitly deals with only the equal/simitzase. Other cases are
handled by default.

4 Conclusions

A policy system has been created to support a call policydagg and its associ-
ated conflict handling. The work has concentrated on caltrobm Internet tele-
phony. The software is written in Java and has proven to bepatable. Interfaces
have been created between the policy system and serverdPfgM&C 7000 ICS
and SER softswitches) and H.323 (Gnu GK gatekeeper). Theypsystem has
been demonstrated in conjunction with a variety of systentdiding the PSTN
(Public Switched Telephone Network), PBXs (Private BraBglchanges), mobile
phones, wireless PDAs (Blackberry), and email servers.

Considerable efforts have been put into making the polisyesy usable by ordi-
nary end users. The policy wizard has been the focus of trat édthough the
run-time performance of the policy system has not yet beandtly assessed, em-
pirical studies have shown that the use of policies addsasipall overhead to call
processing — under a second to retrieve policies, detectesmuive conflicts, and
control the underlying communications system in accordamith these policies.

The policy system has been demonstrated to several inaluatrdiences. Three

26

companies are currently considering adapting it for theadpct lines. Although
use by non-technical people has so far been limited, it ileed that the right
ingredients are present to make it usable. The system actinie is designed for
scalability in the number of users and in the deployment ofspial systems to
support policies.

Future work will enhance the current implementation in @asi ways:

e More extensive usability trials will be conducted. Thesd wiclude a formal
assessment of performance and scalability. Currentlyishasvaiting industrial
commitment, since only telephony companies have accesséprasentative
user base.

e The emphasis in conflict handling has been on dynamic (ognaspects. Al-
though static (offline) conflict handling has been studied still to be imple-
mented.

e Itis possible to define overlapping resolution policiest@unated determination
of such problems will be addressed.

e Resolution policies are defined manually, though the predédfiesolutions are a
good basis for this. A semi-automatic method will be invgatied for determin-
ing conflict-prone combinations of policy actions.

¢ Policy refinement is being studied as a means of realisinigenitgvel policies
(particularly goals) using lower-level policies. Plangitechniques from Arti-
ficial Intelligence are the preferred approach. This willpht® bridge the gap
between policies and features.

e Although conflict resolution has been designed for the césaultiple policy
servers [7], it is currently implemented only for the singkrver case.

The core policy language has been defined to be extensiliehambeen instan-
tiated for call control and for call conflict handling. Howesy this is currently
achieved by manual editing of the core language schemallowf@on work, the
elements of the policy language are defined using OWL (WeblOgy Language).
Apart from generalising the approach, this allows autochat¢ension of the pol-
icy system into new domains. Although the policy server ig/vargely domain-
independent, this is not true of the policy wizard (whichreuntly has an intimate
knowledge of call control). The policy wizard has been addfb read the policy
elements from an OWL description of the domain.

Currently, the policy system is tied into SIP and H.323 In&trtelephony. Both
of these are open international standards. An obvious Ipgsiwould be to in-
tegrate the policy system with Skypenw.skype.cojn This is an Internet tele-
phony solution that has rapidly gained popularity; see ¢4fan analysis of Skype.
However Skype is proprietary and closed, making it diffitalintegrate with new
techniques.

The policy work is also being extended into two new areas. @rleese concerns
policies for control of sensor networks — specifically in @ifarms. The other is
applying policies to management of technology and netwerkises that deliver

27

care to users in the home. It is hoped that the flexibility desti@ted by the work
so far will carry over into these novel domains.

Acknowledgements

The work reported here was funded by EPSRC (the UK Engingamal Physical
Sciences Research Council, grant R31263) and by Mitel Né&sv@anada). The
authors are very grateful to Peter Perry and Tom Gray of NN&tlvorks for their
technical advice and support throughout. Integration efgblicy system with the
7000 ICS softswitch was made possible through the activavement of Joe Ire-
land, Peter Musgrave, Ryan Waters and their colleagues & Mé&tworks. The au-
thors also thank their co-workers orcAENT. Stephan Reiff-Marganiec and Jianx-
iong Pang. Mario Kolberg (Stirling) and Grégory Estien@gtawa) contributed to
the development of multi-language support in the policyandiz

References

[1] S. Aljareh and N. Rossiter. Towards security in multeagy clinical information
services. In R. N. Procter and M. Rouncefield, editd?spc. Dependability in
Healthcare Informaticspages 33-41, UK, Mar. 2001. University of Lancaster.

[2] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Featim&eraction resolution
using fuzzy policies. In M. H. Calder and E. H. Magill, eddpProc. 6th. Feature
Interactions in Telecommunications and Software Systpages 94-112. I0S Press,
Amsterdam, Netherlands, May 2000.

[3] M. Barbuceanu, T. Gray, and S. Mankovskii. How to make ryagents fulfil their
obligations. In H. S. Nwana and D. T. Ndumu, editdfspc. 3rd. Conference on
Practical Application of Intelligent Agents and Multi-Agfs pages 255-276, London,
UK, Mar. 1998.

[4] S. A. Baset and H. Schulzrinne. An analysis of the skyper{p@-peer internet
telephony protocol. Technical Report CUCS-039-04, Comip&cience Columbia
Universit, New York, May 2004.

[5] A. Belokosztolszki and K. Moody. Meta-policies for digiuted role-based access
control systems. In J. B. Michael, J. Lobo, and N. Dulay, @ditProc. 3rd.
International Workshop on Policies for Distributed Sysseand Networkspages 106—
115. IEEE Computer Society, Los Alamitos, California, USAne 2002.

[6] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. Aesgsto specify and manage
multipolicy access control models. In J. B. Michael, J. Loand N. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distried Systems and Networks
pages 116-127. IEEE Computer Society, Los Alamitos, Qailifo USA, June 2002.

28

[7] L. Blair and K. J. Turner. Handling policy conflicts in ¢atontrol. In
S. Reiff-Marganiec and M. D. Ryan, editorBroc. 8th. Feature Interactions in
Telecommunications and Software Systepmges 39-57. I0S Press, Amsterdam,
Netherlands, June 2005.

[8] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. GraydaS. Mankovski.
Feature-interaction visualization and resolution in arerdgenvironment. In
K. Kimbler and W. Bouma, editors,Proc. 5th. Feature Interactions in
Telecommunications and Software Systepages 135-149. I0S Press, Amsterdam,
Netherlands, Sept. 1998.

[9] M. H. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marg&c. Feature interaction:
A critical review and considered forecaStomputer Network11:115-141, Jan. 2003.

[10] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, VK. Schnure, and
H. Velthuijsen. A feature-interaction benchmark for IN abdyond. I|EEE
Communications Magazinpages 64—69, Mar. 1993.

[11] E. J. Cameron and H. Velthuijsen. Feature interactiotslecommunications systems.
IEEE Communications Magazinpages 18-23, Aug. 1993.

[12] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Pondelanguage specifying
security and management policies for distributed systerashnical report, Imperial
College, London, 2000.

[13] P. Dini, A. Clemm, T. Gray, F. J. Lin, L. Logrippo, and S.ei-Marganiec.
Policy-enabled mechanisms for feature interactions: ieakpectations, challenges.
Computer Networks15(5):585-603, Aug. 2004.

[14] T. Dursun and BOrencik. RLICE: A novel policy framework. Number 2869 in
Lecture Notes in Computer Science, pages 819-827. Spriagein, Germany, 2003.

[15] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst.ilising the event calculus for
policy driven adaptation on mobile systems. In J. B. MichdelLobo, and N. Dulay,
editors, Proc. 3rd. International Workshop on Policies for Distried Systems and
Networks pages 13—-24. IEEE Computer Society, Los Alamitos, CalilgtUSA, June
2002.

[16] N. Gans, G. Koole, and A. Mandelbaum. Telephone caltersnTutorial, review, and
research prospectdManufacturing and Service Operations Manageméni9-141,
Sept. 2002.

[17] T. Huang. Policies for H.323 internet telephony. Tdchh Report CSM-165,
Department of Computing Science and Mathematics, Uniyeo$iStirling, UK, May
2005.

[18] T. Huang and K. J. Turner. Policy support for H.323 cadintling. Computer
Standards and Interface28(2):204—217, Nov. 2005.

[19] J. Lennox and H. Schulzrinne, editor€all Processing Language Framework and
Requirements Internet Draft CPL-Framework-02. The Internet SocietgwNYork,
USA, Jan. 2000.

29

[20] E. C. Lupu and M. Sloman. Conflict analysis for manageimgolicies. In
5th. International Symposium on Integrated Network Managet pages 430—443.
Chapman-Hall, London, UK, 1997.

[21] E. C. Lupu and M. Sloman. Conflicts in policy-based dlstted systems management.
IEEE Trans. on Software Engineeringb(6):852—-869, Nov. 1999.

[22] D. Marriott, M. Mansouri-Samani, and M. Sloman. Spezifion of management
policies. InProc. 5th. IFIP/IEEE Int. Workshop on Distributed Systef®gerations
and Managementl994.

[23] M. Nakamura, T. Kikuno, J. Hassine, and L. M. S. LogrippBeature interaction
filtering with Use Case Maps at requirements stage. In M. Hd&and E. H. Magill,
editors,Proc. 6th. Feature Interactions in Telecommunications Software Systems
pages 163-178. IOS Press, Amsterdam, Netherlands, May 2000

[24] L. Pearlman, V. Welch, I. Foster, and C. Kesselman. A iwamity authorization
service for group collaboration. In J. B. Michael, J. LobadaN. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distriled Systems and Netwoyks
pages 50-59. IEEE Computer Society, Los Alamitos, CalilgrdSA, June 2002.

[25] A. Ponnappan, L. Yang, and R. Pillai. A policy based Qo&agement system for
the IntServ/DiffServ based Internet. In J. B. Michael, Jbbpand N. Dulay, editors,
Proc. 3rd. International Workshop on Policies for Distriled Systems and Netwoyks
pages 159-168. IEEE Computer Society, Los Alamitos, Qaiifo USA, June 2002.

[26] S. Reiff-Marganiec. Policies: Giving user control owalls. In M. D. Ryan, J.-
J. C. Meyer, and H.-D. Ehrich, editor®bjects, Agents and Featurasumber 2975
in Lecture Notes in Computer Science, pages 189-208. Sprilgrlin, Germany,
May 2004.

[27] S. Reiff-Marganiec and K. J. Turner. Use of logic to ddse enhanced
communications services. In D. A. Peled and M. Y. Vardi, @ditProc. Formal
Techniques for Networked and Distributed Systems (FORTE n0ber 2529 in
Lecture Notes in Computer Science, pages 130-145. Spridgdin, Germany, Nov.
2002.

[28] S. Reiff-Marganiec and K. J. Turner. A policy architest for enhancing and
controlling features. In D. Amyot and L. Logrippo, editofBroc. 7th. Feature
Interactions in Telecommunications and Software Systpages 239—-246. 10S Press,
Amsterdam, Netherlands, June 2003.

[29] S. Reiff-Marganiec and K. J. Turner. Feature inteactin policies. Computer
Networks 45(5):569-584, Aug. 2004.

[30] S. Reiff-Marganiec and K. J. Turner. ThecAENT policy server. Technical Report
CSM-164, Department of Computing Science and Mathemadicsersity of Stirling,
UK, Dec. 2005.

[31] S. Reiff-Marganiec, K. J. Turner, and L. Blair. PREL The ACCENT project
policy environment/language. Technical Report CSM-16dp&tment of Computing
Science and Mathematics, University of Stirling, UK, De@03.

30

[32] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirems interaction
managementACM Computing Survey85(2):132—-190, 2003.

[33] T. Ryutov and C. Neuman. The specification and enfore#rn€advanced security
policies. In J. B. Michael, J. Lobo, and N. Dulay, editofspc. 3rd. International
Workshop on Policies for Distributed Systems and Netwgrages 128-138. IEEE
Computer Society, Los Alamitos, California, USA, June 2002

[34] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, &cdbson, H. Mills,
and L. Yu. Requirements for policy languages for trust niagion. In J. B.
Michael, J. Lobo, and N. Dulay, editoBroc. 3rd. International Workshop on Policies
for Distributed Systems and Networksages 68—-79. IEEE Computer Society, Los
Alamitos, California, USA, June 2002.

[35] M. W. A. Steen and J. Derrick. Formalising ODP entemprimlicies. InProc.
3rd. International Enterprise Distributed Object Compgi Conferencelnstitution
of Electrical and Electronic Engineers Press, New York, US@pt. 1999.

[36] K. J. Turner. The &ACENT policy wizard. Technical Report CSM-166, Department of
Computing Science and Mathematics, University of Stirlidél, Dec. 2005.

[37] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, Tra§ P. Perry, and J. Ireland.
Policy support for call control.Computer Standards and Interfacekine 2005. In
press.

[38] A. van Lamsweerde, R. Darimont, and E. Letier. Managiogflicts in goal-driven
requirements engineeringEEE Trans. on Software Engineeringg:908-926, 1998.

[39] D. C. Verma, S. Calo, and K. Amiri. Policy-based managatof content distribution
networks.IEEE Network pages 34-39, 2002.

[40] T. Wagner, J. Shapiro, et al. Multi-level conflict in rtitdhgent systems. IRroc. AAAI
Workshop on Negotiation in Multi-Agent Systed899.

[41] X. Wu and H. Schulzrinne. Programmable end system sesvusing SIP. In
Proc. International Conference on Communications 2008titution of Electrical and
Electronic Engineers Press, New York, USA, May 2003.

[42] R. Yavatkar, D. Pendarakis, and R. GuernkFramework for Policy-Based Admission
Control. RFC 2753. The Internet Society, New York, USA, July 2000.

31

Author Bibliographies

Ken Turner holds a B.Sc. in Electrical Engineering and a PmDArtificial In-
telligence. After 12 years working in the communicationdustry, he became
Professor of Computing Science in 1987 at the University tofilgy, Scotland.
His research interests include policy-based managenmnincinications services,
formal methods, and systems architecture. He conductangsé areas such as
distributed systems, networking, healthcare and harddesen. His teaching in-
terests include communications, compiler design, prograng and software engi-
neering.

Lynne Blair is a senior lecturer in the Computing Departnadritancaster Univer-
sity. She has a background in the formal specification anélcagion of distributed
multimedia systems. Currently her research interestssfooussues of interaction
that occur in software systems and aspect-oriented satderelopment. Of par-
ticular interest is research into dynamically adaptivaesys, especially the devel-
opment of such systems via dynamic aspect-oriented tegésiq

32

