Gemma A. Campbell and Kenneth J. Turner. Ontologiesto support Call Control Palicies.
In N. Meghanathan, D. Collange and Y. Takasaki, editors, Proc.

3rd. Advanced International Conference on Telecommunications (AICT’ 07),

pages 5.1-5.6, |IEEE Computer Society, New York.

Ontologies to suppo

Gemma A. Campbell

rt Call Control Policies

and Kenneth J. Turner

Computing Science and Mathematics, University afigg, Stirling FK9 4LA, UK
Email gca | kit @cs.stir.ac.uk

Abstract—The topic of policy-based management is introduced.
Its specific application by the ACCENT project to call control is
then discussed. The APEL policy language supports regular
policies as well as resolution policies that deal ith conflict
handling. The core A°PEL language can be specialised, e.g. for call
control. Ontologies are introduced as a means of pauring
domain-specific knowledge — here, about calls. Isiseen how this
has allowed the ACENT policy system to be generalised for use in
a variety of domains. This is supported by a stackf interrelated
ontologies: for generic policy aspects, for a polc definition
wizard, and for call control. The approach has beerintegrated
with the AccenT system, allowing its extension for policy-based
management in new domains.

Index Terms—Call Control,
OWL, Policy.

Internet Telephony, Ontology,

|. INTRODUCTION

This paper explores the use of new techniques varazbd
telecommunications. Policies are used to persanatistrol of
(Internet) telephony, while ontologies are useddafine a
solid foundation for the application domain.

Traditional telephony services, such as call diesxsare
centralised and limited in their effectiveness. if lrevocation
cannot take account of individual preference or digeamic
context of the call. Policies have emerged as angwing
method of promoting and managing decentralisedics\in
networks to give end-users more control. Usinggiedi, a user
may customise a service and define high-level goalactions
a system should take depending on the circumstanaeisich
an event occurs. A policy defines how to modify liehaviour
of a system, depending on whether defined conditi@ng.
time or user context) are detected.

This paper reports a specialisation of the poliagdul
management system developed by the€CENT project
(Advanced Call Control Enhancing Network Technodsgi

[1]). Although ACCENT focused on Internet call processing, it

developed a general approach for policy-based nesneugt of
any kind of service. The @CENT system supports creation,
editing, deployment and execution of policies ezpegl in a
policy description language calledPPEL (ACCENT Project
Policy Environment/Language [8]). The paper focusesow

APPEL was modelled using a framework of ontologies which

separately encapsulate generic aspects of theydaliguage
and specialised aspects dealing with call control.

Using ontologies to describe the policy languagd as
specialisation for call control goes beyond singlatax, as it
allows a deeper knowledge of the application dontaitbe
expressed. The motivation for defining ther&Llanguage in
this way was to enable greater flexibility in suppaf the core
language structure and those of its specialisations

Section Il provides background on policy-based esyist
and languages, together with an overview of theCENT
policy system. An introduction to ontologies ance twl
ontology language is also given. Section Il ddszsi the
ontology framework developed for describing callnicol.
Support for policy conflict handling is discussedsection IV,
where the approach is extended for resolution eslicSection
V evaluates the approach and highlights future work

Il. CONTEXT AND BACKGROUND

A. Policy Languages

Policy-based management techniques have histgriteen
employed for purposes such as access control, tyuafi
service, and security. However, policy-based systdrave
found much wider application. The work byC@ENT on
management of (Internet) call control is a novellaation of
policies. A policy is defined by users in some highel
language that specifies the syntax and semantitiseopolicy
constructs. Many policy languages have been degdlop
However, this paper focuses on theGiNT approach because
of the distinct advantages it offers, including dssign for
users not programmers, extensibility of the corglemge, and
proven suitability for the unique requirements afl control.
The place of the 8CENTwork in the general context of policy
systems is discussed in [11].

B. The ACCENT Policy System

The ACCENT policy-based management system [11] allows
users to specify high-level policies for how theiglwcalls to

be handled. The major components of theCBNT system
have the three-layer structure as shown in Figure 1

. User
User Pphcy <« || Interface || € Context
Wizarc Systen
Interface
Layer \/E\ /
[|
A
gogt(gm Policy Policy Policy
y Database Serve Store
Layer X
v
Communications Communications
System Network Serve
Layer

Figure 1.ACCENT Policy System Architecture

At the lowest level is the Communications Systenyelta
that connects the system to its external enviromntealicy
enforcement is handled by the Policy System Layet t
incorporates the Policy Server and Policy Storestha top
level is the User Interface Layer, where userstergalicies
and contextual information is obtained. Users adefind edit
policies via the Policy Wizard [10]. This suppogdamiliar
web-based interface, which allows policies to benagemd
irrespective of the user’s location. For a detaiegblanation
of the ACCENT system architecture refer to [9].

The system supports rule-based policies in evemdltion-
action (ECA) form. A policy rule broadly consist$ three
main elements:

e a combination of triggers: events that potentiaiyise a
policy to be executed

defined by resolution policies that are distinainfr regular
policies. This gives considerable flexibility inathconflict
handling is not hard-coded into the policy systenit -s
defined externally, and can be domain-specific.

Resolution policies express when and how the system
should respond to conflicts. Their effect is tdefil a set of
proposed policy actions, selecting those that ampatible
and in accordance with the stated conflict handiings. As
an example, the caller may wish to use video wthigecallee
does not. Their respective policies propose ‘adte®i and
‘avoid video’ actions that are obviously contradigt This
will be determined as a conflict and resolved, thg.caller (as
the bill payer) may be given priority.

Resolution policies are specified as an extensibithe
core APPEL language, and therefore use the same syntax as

e a combination of conditions: predicates over conteypolicies themselves. However, resolution policiese ua

variables that determine whether a policy may eteecu
e acombination of actions: outputs dictated by acyol

A policy is eligible for execution if its triggersccur
simultaneously and its conditions apply. Additionahditions
may be imposed, such as the period during whichptiiey
applies, or the profile to which the policy belonyghen the
policy system is informed of an event, the appliegiolicies
are retrieved, and applied if eligible. Multipleligges can be
triggered, which may lead to conflict if their awois clash. The
policy server automatically detects and resolve$ sonflicts.

A comprehensive policy description language cafegeL
[8] was designed to facilitate the creation of pies within the

ACCENT system. RPELcomprises a core language schema antf

its specialisations for different application donsai For
example, there are specialisations for call conamll for

conflict resolution. A&PEL defines the overall structure of a

policy document, including regular policies, resan
policies, and policy variables. A policy consistoae or more
policy rules. Each of these contains an optionigigar, an
optional condition, and a compulsory actioreRP&L specifies
how compound triggers, conditions and actions @adédfined.
Other core facilities of the language include agearof
operators for conditions.

To give a feel for the approach, the following aneple
examples of the kinds of policies that can be esged. APEL
is capable of describing much more complex or symtlicies.
e Calls to department staff must never be divertedaoy.

e Ken is available for calls about policy languages.

e When Evan arrives, alert Ken by email to call him.

e Calls for Gemma should be sent to voicemail if ghe
busy. However, calls from Bob must continue to ring

e Calls from French speakers should be answered
Solange or Michel.

¢ International calls must not be forwarded.

C. Handling Policy Conflicts

Policy conflict resembles the well-known featuréemaction
problem in traditional telephony. Conflicts in alipg-based
environment are caused by the simultaneous execudfo
policies with contradictory actions. TheCBENT approach is
described in [12]. Run-time conflict detection aedolution is
carried out during policy execution. Conflict handl is

different vocabulary because they govern differénings.
When (domain-specific) actions are proposed by laggu
policies, these become the triggers of resolutiaficigs.
Resolution policies can dictate generic outcomedesing
among the proposed actions) or specific outcomisaohg
domain-specific actions, e.g. for call control).

D. Ontologies

An ontology is the set of terms used to descrilzk r@present
an area of knowledge, together with the logicahtiehships
among these. It provides a common vocabulary taesha
information in a domain, including the key termseit
mantic interconnections, and some rules of infere
Ontologies confer the ability to share a commoneusiinding
of how information is structured in a particular nokin.
Ontologies also enable separation of domain knaydefdom
common operational knowledge in a system. A moréeeipth
review of ontologies can be found in [5].

A variety of specialised languages are used tondefi
ontologies. @/ (Web Ontology Language [7]) is an XML-
based language that was standardised by the Wadd Web
Consortium in 2004. Due to its standards status| @ains
through widely available software support, as wel
compatibility with other techniques that can begrated with
it. In addition, QvL provides a larger function range than any
other ontology language to date. For these reagons,was
used to define the ontologies described in thispap

Using OwL, an ontology is created by defining various
classes, properties and individuals. A class reptss a
particular term or concept in the domain, whilerapgerty is a
named relationship between two classes. An indalidsl an
instance or member of a class, usually represeméaf data
B¥ntent within an ontology. Properties are defif@dclasses
in the form of restrictions. These specify the natof a
relationship between two classes.wiO also supports
inheritance within class and property structurebe TOnL
Reference [6] describes the full range of languagdities.

OwL supports the sharing and reuse of ontologies tffirou
an import mechanism. Using this, definitions of ssks,
properties and individuals within an imported ooty are
made available to the importing ontology. The omgatal
basis for APEL exploits this, using multiple documents for
different aspects of the core language and itsialation for

call control. The use of ontologies is discussedention Ill policies in general. It is used as a starting ptinspecialise
for call control policies, and in section IV forlcagonflict the policy language for any application domain. @g/L

resolution policies. supports the sharing and reuse of ontologies bynsed
ontology importation, all definitions of classespperties and
individuals within an ontology may be used by thgporter.
An implementation of the approach has been crea8¥g The wizpol ontology importsgenpol, extending it to provide
Java as the programming language, Protégé aswhhee@itor aqditional user interface facilities not directdfated to APEL

(http://protege.stanford.edu), Jena as the ontolpgyser Extending ontologies in this way results in thettdagy stack’
(http://jena.sourceforge.net) and Pellet as theology or |ayered model shown in Figure 3. On top of thisy

reasoning engine (http:/pellet.owidl.com). The kbas been gdomain-specific ontology may be defined and intesgtaith
integrated into the ACENT system. A major advantage hasihe AcCENT policy system.

been generalisation of policy handling, notabhjthie wizard,
allowing use of the same approach in a varietyppliaations.
The PROPPET system (Policy Ontology Parser Program — domain-specific.owl
Extensible Translation) has been designed to stigodology
integration. PPPET runs as a stand-alone server. When
invoked, it parses an ontology document at a giv&b and genpol.owl
reasons about its contents using the Pellet engimsodel of
the ontology is constructed and stored for queriés.
connecting application may then interrogate thisrest The ontology framework describes the core languiaga
ontology model using a variety of generic methodsasily extensible manner, as well as reflecting thser
Communication with the @CENT policy wizard is achieved interface support offered by the wizard. It defirmdy the
using Java RMI (Remote Method Invocation). Theretéon structure of policy-related knowledge and not acpdicies.

E. Implementation of Ontology Support

wizpol.owl

Figure 3. Policy Ontology Stack

between ACENT and PPPETappears in Figure 2. The ontologies therefore contain no individualsnstances of
ontology classes. Specific data values (e.g. trigge action
ACCENT owL parameter arguments, condition values) are defimgdhe

User Interface Ontology actual policies.

The ontologiesgenpol and wizpol are designed to be
generic and reusable for any domain. Due to thesitige
Policy POPPET nature of QvL imports, a domain-specific ontology need only
Wizard [RMI Server import wizpol — genpol is implicitly imported as well. The call
control ontology extends the class hierarchy wafpol to
define additional subclasses and properties, tegettith
v v applicable constraints. In particular, this inclsdiee definition
of domain-specific triggers, condition parametensd actions

\ 4

A A

Polic Pellet
y — for call processing in the application describede.
Server Reasoner . . .
To give a clearer understanding of the main comptene
defined by the policy language, each ontology witiie
ACCENT| POPPET

framework is described in the following subsections

B. Generic Policy Language Representation

. o . The generic policy language ontologgnpol, defines the core
Although implemented principally for use withCBENT, elements of the APEL policy description language [8]. This
PopPET is sufficiently generic that it may be used byesth ontology specifies a skeleton structure of classesl

Figure 2.0Ontology Integration usingd®PET

external applications that support RMI. properties; this can be imported and extended wihiomain-
specific ontology. Contained withigenpol is a definition of
I1l. PoLIcY LANGUAGE FRAMEWORK FORCALL CONTROL key language terms and how they relate to one anoftis

Using OvL, a framework of ontologies was designed tdncludes the concept of a policy document and @sious
describe the APEL policy language — both the core languagé&onstituent parts such as policy rules, events,ditions,
and its specialisations. The framework defines I#mguage actions, additional attributes, variables and ojpesa The
abstractly for generic policies and their use wille policy relationships between these concepts describe named

wizard. It also defines the specific extensionschalt control. associations, inheritance properties and cardyn@trictions.
. In outline,genpol defines the following main concepts and
A. Ontology Framework for Policies their relationships for call control policies:

Two common ontologies were developed usingLOThe o A PolicyDocument is the highest conceptual level of
first, named genpol (generic policies), defines the core AppEL Itis defined to have zero or mdvelicy instances.
constructs of APEL The second, namedizpol (wizard e A Policy is defined to have at least oRelicyRule, and

policies), extends this to capture specific faeiitof the policy must haveRequiredAttribute instances. It may also have
wizard. Crucially,genpol defines the concepts which describe any number oOptional Attribute instances.

A PolicyRule may have zero or mor@&riggerEvent or

Condition associations, but must have at leastActeon.

e A TriggerEvent may be linked with arigger Argument
using thehasTrigger Argument property restriction.

e A Condition must be associated with &ondition
Parameter, ConditionOperator and ConditionValue.
These are defined using the
hasConditionParameter, hasConditionOperator and
hasConditionValue, combined with a set of associate
cardinality restrictions.

e An Action may be linked with am\ctionArgument using
the hasActionArgument property restriction.

e There are two types of operators in a policy:
ConditionOperator used within a Condition, and a
CombinationOperator used to integrate two policy rules.

At the lowest levelgenpol defines the minimum classes an

properties required to create a domain-orientediajisation

of the policy language. In addition, automated gy
support is provided to the policy system. An intep

description ofgenpol is presented in [4].

The policy system has many useful facilities relate
policy definition, but which are not strictly paot the policy
language. These additional constructs are modefiethe
wizpol ontology as described in the next subsection.

C. Policy Wizard Representation

The ACCENT policy wizard supports a user-friendly means of

creating and editing policies. Such a facility igykin
supporting policy definition by non-technical uselike
ordinary subscribers. It is therefore an importaspect that
must be captured by the ontology framework. Theicpol
wizard incorporates a number of facilities that tconand
manipulate domain data prior to its display. Suatilities are
not part of the policy language itself, but arefuké any
domain-specific ontology intended for use with thelicy
system. This additional, wizard-related knowledgedéfined
in wizpol as a direct extension génpol, thus specialising the
core APPELlanguage for use with the policy wizard.
Examples of wizard-specific facilities include
categorisation of triggers, conditions, actions apdrators. In
addition, these are grouped by user level to mielsubset of

language functionality to the skill or authorisatitevel of a

user. For example, administrative users see thdewdfothe

language, while beginning users see a limited baaful
subset. In outline, the extensions supportedilzgol include:

e Subclasses within each class hierarchy for dgeepol
classesTriggerEvent, ConditionParameter and Action.
Four subclasses represent different user lewvadmin,
expert, intermediate, and novice. Another signifies
internal policy system use.

e SubclassedNamedTriggerEvent, NamedCondParam and
NamedAction for the genpol classes TriggerEvent,
ConditionParameter and Action respectively, to support
reasoning about the ontologies.

e Properties to associate categories
specialisations of triggers,
includinghasUserLevel andhasinternalUse.

the

e Extensions to the list of operators defined withempol
according to the user level. For example, certaile r
combination operators are relatively complex and ar
defined to be of use atimin or expert level only.

Collectively, genpol and wizpol form a base from which

domain specialisations of the policy language cadéfined.

propertie%_ Call Control Policy Language Specialisation
drhe call control ontology specialises the generid aizard

aspects of APEL In particular, the call control ontology
defines the specific triggers, condition parametard actions
associated with call processing. The ontology falt control
er\S described in detail by [3]. Figure 4 shows hgsapol and
wizpol classes are extended for call control.

In relation to specific extensions for trigger, ddion

Jarameter and action classes, the call controll@goalso

defines trigger and action arguments, status Vi@saland unit
types (e.g. for cost or bandwidth). Whereas argtsnand
status variables are explicit language elements,types are
intended for wizard display purposes. By incorpiogatunit
type classes into the ontology, it is possible ésalibe how a
value can be interpreted for the user. For exangptmndition
value such as bandwidth is measured usfbgsUnitType.
Additionally, each trigger, condition and action assigned
various properties previously identified genpol andwizpol
for categorisation:

The property wizpol:hasUserLevel associates each
trigger, condition parameter and action with one or
more user levels froradmin, expert, intermediate and
novice.

The property wizpol:hasinternalUse defines certain
triggers or actions as internal to the policy syst&he
LogEvent andSendMessage actions are examples.

The propertiesgenpol: hasPermissibleParameter and
genpol: hasPermissibleAction are associated with each
trigger to define which condition parameters and
actions can be used in conjunction with the trigger
question within a policy rule. This ensures comsisy

of a trigger with its condition and action. For eyae,
only a call trigger may have conditions on the arall
and actions involving forwarding.

The effect of property restrictions on classeshiat tthe
categorisation of certain triggers, conditions antlons can be
automatically inferred. As an example, the polidgasd can
query the ontology to determine various triggefssets: those
available to expert users, those with a parametemaent, or
those for use in conjunction with tiRegjectCall action. The
ability to interrogate an ontology in this way ofemore
detailed knowledge than using a structural marlamguliage
like XML Schema to model the policy language.

Although the call control ontology is primarily értded to
extend policy language constructs, unlimited addal
knowledge can be included to describe aspects df ca
processing indirectly related to the policy languag wizard.

with domafgonsequently, the ontology includes a variety oflitohal
conditions and action§lasses and properties to describe general telgphon

terminology. This includes the high-level concepfsCall,
CallAttribute (e.g. topic, cost, type, priorityfzallType (e.g.

international, emergency, conference,
Calllnitiator Address andCallDestinationAddress. Such details
also provide further insight into the call contd@main when
processed by non-policy system applications.

Generic Ontology Class | Call Control Ontology Clas$

genpol:TriggerEvent AddressAbsent,
wizpol:NamedTriggerEvent| AddressAvailable,
AddressPresent,

AddressUnavailable,
BandwidthRequest, Connect,
ConnectincomingCall,
ConnectOutgoingCall,
Disconnect,
DisconnectincomingCall,
DisconnectOutgoingCall,
ExternalGeneralEvent,
NoAnswer,
NoAnswerlncoming,
NoAnswerOutgoing,
Register, Registerincoming,
RegisterOutgoing,
StatusAway, StatusBusy,
StatusFree, StatusHere

genpol:ConditionParameter,
wizpol:NamedCondParam

ActiveContent, Bandwidth,
CallContent, CallCost,
CallerCapability,
CallerCapabilitySet, Callee,
Caller, CallerDevice,
CallerLocation,
CallMedium,CallPriority,
CallQuality, CallerRole,
CallTopic, CallType, Date,
Day, DestinationAddress,
NetworkType,
SignallingAddress,
SourceAddress, Time,

TrafficLoad
genpol:Action AddCaller, AddMedium,
wizpol:NamedAction AddParty,

ConfirmBandwidth,

ConnectTo, ForkTo,
ForwardTo, LogEvent,
NoteAbsent, NoteAvailable,
NoteAvailability,
NotePresence, NotePresent,
NoteUnavailable,
PlayAudioClip,
RejectBandwidth, RejectCall,
RemoveMedium,
RemoveParty, SendMessage

Figure 4.Trigger, Condition Parameter and Action Classes

IV. PoLicy CONFLICT DETECTION ANDRESOLUTION
Section 1.B gave an overview of policy conflict general.

standard)here follows a description of how ontologies supgonflict

handling within A°PEL It will be seen how this is modelled
generically, and also specifically for call contpallicies.

A. Generic Policy Conflict Resolution

Conflicts among policies occur at run-time when
simultaneously triggered policies propose confiigtactions.
The process of detecting conflicts can be carrigidstatically
(offline) or dynamically (online). Rather than hardde policy
conflict detection and resolution into theCZeNT system,
APPEL deals with conflicts dynamically using resolution
policies. This approach is far more complex andnigs than
any static, offline technique as it captures caotdli by
analysing policies at run-time as they become Hhgifor
execution. However, static handling of conflictaidls as at
definition time within the policy wizard) is entlyefeasible,
although not currently implemented.

Detecting and resolving conflicts are separatesstiqpugh
they are both defined by resolution policies. Aotagon
policy is similar in structure to but different @ontent from a
regular control policy. This subsection outlinestadogy
modelling of generic resolution policies, while sabtion B
demonstrates how this is extended for call control.

A resolution policy specifies what may trigger anfliot,
any optional conditions, and resolving actions. Tdrguage
for resolution policies follows the same structasea regular
policy, but with some small differences. Core ratoh policy
concepts are therefore defined witginpol (section 111.B). In
outline, a resolution policy is modelled as follows
e A ResPolicy has zero or moreolicyRule instances.

e Each PolicyRule must have two or mord&riggerEvent
instances, zero or mot@ondition instances, and one or
moreAction instances.

e TriggerEvent instances in a resolution policy must be the
Action instances of a regular policy, since conflict
handling is triggered by the actions of regulaiges.

Resolution policy actions can be generic or spedifinature.

Generic actions apply to any domain. They resolwerlict

by choosing one of the conflicting actions, e.cattbf the

superior user or of the earlier-defined policy. Padicy server
has in-built support for generic resolution actissigch as

ApplySuperior or ApplyNewer.

To help with conflict detectiorgenpol specifies a top-level
class called ActionEffect. Subclasses in domain-specific
ontologies (e.g. for call control) categorise regupolicy
actions using the restrictidrasActionEffect.

B. Modelling Call Control Resolution Policies

The call control ontology specialises resolutionligies
through an extension of classes defined genpol. In
particular, it extends the list of resolution pgliactions to
include specific resolution actions for call coftree.g.
ApplyCaller and ApplyCallee. In the event of conflict, these
actions give priority to the policy associated wiitie caller or
callee respectively. Specific resolution actionsoalnclude
those of the application domain, e.g. forwardingbtcking
for call control.

As resolution policy triggers are a combination azfll
control actions, the ontology creates subclassesthef

genpol: ActionEffect class to define specific categories forfarms (http://www.prosen.org.uk), and to policy-easontrol
conflict handling. Each call control action is asated with of home care delivery (http://www.match-project.oitg.

one or more effect categories via the propertyrictistn The call control ontology may also be used by other
genpol: hasActionEffect. As an example, consider the actionspplications unconnected with theC@eNT system or even

and effects shown in Figure 5.

Action Effect
AddCaller PartyEffect, PrivacyEffect
AddMedium MediumEffect, PrivacyEffect

Figure 5. Sample Effects in Call Control

Both the AddCaller and theAddMedium actions have a
restriction linking them withPrivacyEffect. Therefore, it can
be determined these actions may conflict as theyreska
common effect on the call environment. In sepavatek not
reported here, this is used for automatic detenioinaof
conflict-prone policies.

V. CONCLUSION

The paper has outlined a novel approach to pohoguage
definition using a framework of ontologies to modgneric
language constructs, as well as those specifio @palication
domain — call control. The approach has been usatdigport

the ACCENT policy-based management system for handling

call preferences. An ontology framework usingviOwas

policies in general. @L ontologies can be made available via
a URL (http://www.cs.stir.ac.uk/schemas for the kvaported
here). As a result, the ontologies can be exploligdany
application that can benefit from knowledge of calhtrol.

ACKNOWLEDGEMENTS

Gemma Campbell was supported in this work by aesttstip
from the UK Engineering and Physical Sciences Rebkea
Council under grant C014804. The authors thankr thei
colleagues on theR®SEN project for discussions that helped
to shape the approach. Thanks are also due toetielapers

of the Protégé, Jena, Pellet and Racer Pro to@d imsthis
work.

REFERENCES
(1]

(2]

AccenT Policy-Based System.Accent project description
http://www.cs.stir.ac.uk/accent, Nov. 2006.

M. Roman, C. K. Hess, R. Cerqueira, A. Ranganatfant.
Campbell and K. Nahrstedt. A Middleware Infrastuuret to
Enable Active Spaces$EEE Pervasive Computing, 1(4):74-83,
Oct.—Dec 2002.

designed to model #eEL the policy description language used[3]
by the ACCENT system. The framework consists of two base
ontologies,genpol andwizpol, together with a third ontology [4]
specific to call control.

The ontology framework describes the policy languay

abstract terms. It has proven useful for two ressdirstly, [5]
modelling generic language aspects separately slfoweasy
extension of policy support for call handling, eagdding
further triggers or actions without altering theedanguage. [6]
This saves time, promotes effective reuse, andsggreater
scope for policy language revision. Secondly, tperaach [7]

allows the policy system to be extended for new aiom The
common ontologiesgenpol andwizpol) may be readily used [8]
to create custom ontologies for new applicatiomsre

The ontology framework also permits specialisatimi
conflict handling. Generic aspects of resolutiorigies are
given bygenpol, while domain-specific knowledge of conflicts
is defined in specialisations of this — for calhtrol here.

There are several ways the ontologies for call robmbay
be used or extended, both within their intendeld! & policy-
based call management and in other telecommunitatio
contexts. The call control ontology includes calbgessing
knowledge not directly related to the policy langeaThis
information could be used in the CAENT system by
components other than the policy wizard, such aspiblicy
server or the context system.

Due to the abstraction created by the ontology émwark,
generic aspects of the policy language and theiciapsation
can be developed independently. This enables greatsme
for extension to both the policy wizard (withimzpol) and
also to call control itself.

In related work by the authors and their colleaguks
approach is being extended to policy-based comtfolind

G. A. Campbell. Ontology for Call Control, Techrid@eport
CSM-170, CompSci & Maths, University of Stirlingjnl 2006.
G. A. Campbell. Ontology Stack for a Policy Wizafachnical
Report CSM-169, CompSci & Maths, University of Btig, Jun.
2006.

N. F. Noy and D. L. McGuinness. Ontology Developm&dl.:
A Guide to Creating Your First Ontology, Techniddéport
KSL-01-05, Stanford Knowledge Systems LaboratoryarM
2001.

World-Wide Web ConsortiumowL Web Ontology Language
Reference, Feb. 2004.

World-Wide Web Consortium.Web Ontology Language
Summary, Feb. 2004.

S. Reiff-Marganiec and K .J. TurnerpPeL TheAccenT Project
Policy Environment/Language, Technical Report CSh4;1
CompSci & Maths, University of Stirling, Jun. 2005.

S. Reiff-Marganiec and K. J. Turner. Thecent Policy Server.
Technical Report CSM-164, CompSci & Maths, Univgrsif
Stirling, May 2005.

[10] K. J. Turner. TheAccent Policy Wizard, Technical Report

CSM-166, CompSci & Maths, University of Stirling,ayl 2005.

[11] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pafig Gray, P.

Perry and J. Ireland. Policy Support for Call Coht€omputer
Sandards and Interfaces, 28(6):635-649, Jun. 2006.

[12] K. J. Turner and L. Blair. Policies and ConfliatsCGall Control,

Computer Networks, 51(2):496-514, Feb. 2007.

