
Gemma A. Campbell and Kenneth J. Turner. Ontologies to support Call Control Policies.
In N. Meghanathan, D. Collange and Y. Takasaki, editors, Proc.
3rd. Advanced International Conference on Telecommunications (AICT’07),
pages 5.1-5.6, IEEE Computer Society, New York.

Gemma A. Campbell and Kenneth J. Turner. Ontologies to support Call Control Policies.
In N. Meghanathan, D. Collange and Y. Takasaki, editors, Proc.

Abstract—The topic of policy-based management is introduced.
Its specific application by the ACCENT project to call control is
then discussed. The APPEL policy language supports regular
policies as well as resolution policies that deal with conflict
handling. The core APPEL language can be specialised, e.g. for call
control. Ontologies are introduced as a means of capturing
domain-specific knowledge – here, about calls. It is seen how this
has allowed the ACCENT policy system to be generalised for use in
a variety of domains. This is supported by a stack of interrelated
ontologies: for generic policy aspects, for a policy definition
wizard, and for call control. The approach has been integrated
with the ACCENT system, allowing its extension for policy-based
management in new domains.

Index Terms—Call Control, Internet Telephony, Ontology,
OWL, Policy.

I. INTRODUCTION

This paper explores the use of new techniques in advanced
telecommunications. Policies are used to personalise control of
(Internet) telephony, while ontologies are used to define a
solid foundation for the application domain.

Traditional telephony services, such as call diversion, are
centralised and limited in their effectiveness. Their invocation
cannot take account of individual preference or the dynamic
context of the call. Policies have emerged as a promising
method of promoting and managing decentralised services in
networks to give end-users more control. Using policies, a user
may customise a service and define high-level goals for actions
a system should take depending on the circumstances in which
an event occurs. A policy defines how to modify the behaviour
of a system, depending on whether defined conditions (e.g.
time or user context) are detected.

This paper reports a specialisation of the policy-based
management system developed by the ACCENT project
(Advanced Call Control Enhancing Network Technologies
[1]). Although ACCENT focused on Internet call processing, it
developed a general approach for policy-based management of
any kind of service. The ACCENT system supports creation,
editing, deployment and execution of policies expressed in a
policy description language called APPEL (ACCENT Project
Policy Environment/Language [8]). The paper focuses on how
APPEL was modelled using a framework of ontologies which
separately encapsulate generic aspects of the policy language
and specialised aspects dealing with call control.

Using ontologies to describe the policy language and its
specialisation for call control goes beyond simple syntax, as it
allows a deeper knowledge of the application domain to be
expressed. The motivation for defining the APPEL language in
this way was to enable greater flexibility in support of the core
language structure and those of its specialisations.

Section II provides background on policy-based systems
and languages, together with an overview of the ACCENT
policy system. An introduction to ontologies and the Owl
ontology language is also given. Section III describes the
ontology framework developed for describing call control.
Support for policy conflict handling is discussed in section IV,
where the approach is extended for resolution policies. Section
V evaluates the approach and highlights future work.

II. CONTEXT AND BACKGROUND

A. Policy Languages

Policy-based management techniques have historically been
employed for purposes such as access control, quality of
service, and security. However, policy-based systems have
found much wider application. The work by ACCENT on
management of (Internet) call control is a novel application of
policies. A policy is defined by users in some high-level
language that specifies the syntax and semantics of the policy
constructs. Many policy languages have been developed.
However, this paper focuses on the ACCENT approach because
of the distinct advantages it offers, including its design for
users not programmers, extensibility of the core language, and
proven suitability for the unique requirements of call control.
The place of the ACCENT work in the general context of policy
systems is discussed in [11].

B. The ACCENT Policy System

The ACCENT policy-based management system [11] allows
users to specify high-level policies for how they wish calls to
be handled. The major components of the ACCENT system
have the three-layer structure as shown in Figure 1.

Figure 1. ACCENT Policy System Architecture

Ontologies to support Call Control Policies
Gemma A. Campbell and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
Email gca | kjt @cs.stir.ac.uk

Policy
Store

Context
System

Communications
Network Server

User
Interface User

Interface
Layer

Policy
System
Layer

Communications
System
Layer

Policy
Wizard

Policy
Server

Policy
Database

At the lowest level is the Communications System Layer
that connects the system to its external environment. Policy
enforcement is handled by the Policy System Layer that
incorporates the Policy Server and Policy Stores. At the top
level is the User Interface Layer, where users create policies
and contextual information is obtained. Users define and edit
policies via the Policy Wizard [10]. This supports a familiar
web-based interface, which allows policies to be managed
irrespective of the user’s location. For a detailed explanation
of the ACCENT system architecture refer to [9].

The system supports rule-based policies in event-condition-
action (ECA) form. A policy rule broadly consists of three
main elements:
• a combination of triggers: events that potentially cause a

policy to be executed
• a combination of conditions: predicates over context

variables that determine whether a policy may execute
• a combination of actions: outputs dictated by a policy.

A policy is eligible for execution if its triggers occur
simultaneously and its conditions apply. Additional conditions
may be imposed, such as the period during which the policy
applies, or the profile to which the policy belongs. When the
policy system is informed of an event, the applicable policies
are retrieved, and applied if eligible. Multiple policies can be
triggered, which may lead to conflict if their actions clash. The
policy server automatically detects and resolves such conflicts.

A comprehensive policy description language called APPEL
[8] was designed to facilitate the creation of policies within the
ACCENT system. APPEL comprises a core language schema and
its specialisations for different application domains. For
example, there are specialisations for call control and for
conflict resolution. APPEL defines the overall structure of a
policy document, including regular policies, resolution
policies, and policy variables. A policy consists of one or more
policy rules. Each of these contains an optional trigger, an
optional condition, and a compulsory action. APPEL specifies
how compound triggers, conditions and actions can be defined.
Other core facilities of the language include a range of
operators for conditions.

To give a feel for the approach, the following are simple
examples of the kinds of policies that can be expressed. APPEL
is capable of describing much more complex or subtle policies.
• Calls to department staff must never be diverted to Mary.
• Ken is available for calls about policy languages.
• When Evan arrives, alert Ken by email to call him.
• Calls for Gemma should be sent to voicemail if she is

busy. However, calls from Bob must continue to ring.
• Calls from French speakers should be answered by

Solange or Michel.
• International calls must not be forwarded.

C. Handling Policy Conflicts

Policy conflict resembles the well-known feature interaction
problem in traditional telephony. Conflicts in a policy-based
environment are caused by the simultaneous execution of
policies with contradictory actions. The ACCENT approach is
described in [12]. Run-time conflict detection and resolution is
carried out during policy execution. Conflict handling is

defined by resolution policies that are distinct from regular
policies. This gives considerable flexibility in that conflict
handling is not hard-coded into the policy system – it is
defined externally, and can be domain-specific.

Resolution policies express when and how the system
should respond to conflicts. Their effect is to filter a set of
proposed policy actions, selecting those that are compatible
and in accordance with the stated conflict handling rules. As
an example, the caller may wish to use video while the callee
does not. Their respective policies propose ‘add video’ and
‘avoid video’ actions that are obviously contradictory. This
will be determined as a conflict and resolved, e.g. the caller (as
the bill payer) may be given priority.

Resolution policies are specified as an extension of the
core APPEL language, and therefore use the same syntax as
policies themselves. However, resolution policies use a
different vocabulary because they govern different things.
When (domain-specific) actions are proposed by regular
policies, these become the triggers of resolution policies.
Resolution policies can dictate generic outcomes (selecting
among the proposed actions) or specific outcomes (dictating
domain-specific actions, e.g. for call control).

D. Ontologies

An ontology is the set of terms used to describe and represent
an area of knowledge, together with the logical relationships
among these. It provides a common vocabulary to share
information in a domain, including the key terms, their
semantic interconnections, and some rules of inference.
Ontologies confer the ability to share a common understanding
of how information is structured in a particular domain.
Ontologies also enable separation of domain knowledge from
common operational knowledge in a system. A more in-depth
review of ontologies can be found in [5].

A variety of specialised languages are used to define
ontologies. OWL (Web Ontology Language [7]) is an XML-
based language that was standardised by the World Wide Web
Consortium in 2004. Due to its standards status, OWL gains
through widely available software support, as well as
compatibility with other techniques that can be integrated with
it. In addition, OWL provides a larger function range than any
other ontology language to date. For these reasons, OWL was
used to define the ontologies described in this paper.

Using OWL, an ontology is created by defining various
classes, properties and individuals. A class represents a
particular term or concept in the domain, while a property is a
named relationship between two classes. An individual is an
instance or member of a class, usually representing real data
content within an ontology. Properties are defined for classes
in the form of restrictions. These specify the nature of a
relationship between two classes. OWL also supports
inheritance within class and property structures. The OWL
Reference [6] describes the full range of language facilities.

OWL supports the sharing and reuse of ontologies through
an import mechanism. Using this, definitions of classes,
properties and individuals within an imported ontology are
made available to the importing ontology. The ontological
basis for APPEL exploits this, using multiple documents for
different aspects of the core language and its specialisation for

call control. The use of ontologies is discussed in section III
for call control policies, and in section IV for call conflict
resolution policies.

E. Implementation of Ontology Support

An implementation of the approach has been created using
Java as the programming language, Protégé as the OWL editor
(http://protege.stanford.edu), Jena as the ontology parser
(http://jena.sourceforge.net) and Pellet as the ontology
reasoning engine (http://pellet.owldl.com). The work has been
integrated into the ACCENT system. A major advantage has
been generalisation of policy handling, notably in the wizard,
allowing use of the same approach in a variety of applications.

The POPPET system (Policy Ontology Parser Program –
Extensible Translation) has been designed to support ontology
integration. POPPET runs as a stand-alone server. When
invoked, it parses an ontology document at a given URL and
reasons about its contents using the Pellet engine. A model of
the ontology is constructed and stored for queries. A
connecting application may then interrogate this stored
ontology model using a variety of generic methods.
Communication with the ACCENT policy wizard is achieved
using Java RMI (Remote Method Invocation). The interaction
between ACCENT and POPPET appears in Figure 2.

POPPET
Server

Pellet
Reasoner

POPPET

Policy
Wizard

Policy
Server

 ACCENT

RMI

ACCENT
User Interface

OWL
Ontology

Figure 2. Ontology Integration using POPPET

Although implemented principally for use with ACCENT,
POPPET is sufficiently generic that it may be used by other
external applications that support RMI.

III. POLICY LANGUAGE FRAMEWORK FOR CALL CONTROL

Using OWL, a framework of ontologies was designed to
describe the APPEL policy language – both the core language
and its specialisations. The framework defines the language
abstractly for generic policies and their use with the policy
wizard. It also defines the specific extensions for call control.

A. Ontology Framework for Policies

Two common ontologies were developed using OWL. The
first, named genpol (generic policies), defines the core
constructs of APPEL. The second, named wizpol (wizard
policies), extends this to capture specific facilities of the policy
wizard. Crucially, genpol defines the concepts which describe

policies in general. It is used as a starting point to specialise
the policy language for any application domain. As OWL
supports the sharing and reuse of ontologies by means of
ontology importation, all definitions of classes, properties and
individuals within an ontology may be used by the importer.
The wizpol ontology imports genpol, extending it to provide
additional user interface facilities not directly related to APPEL.
Extending ontologies in this way results in the ‘ontology stack’
or layered model shown in Figure 3. On top of this, any
domain-specific ontology may be defined and integrated with
the ACCENT policy system.

 domain-specific.owl

wizpol.owl

genpol.owl
Figure 3. Policy Ontology Stack

The ontology framework describes the core language in an
easily extensible manner, as well as reflecting the user
interface support offered by the wizard. It defines only the
structure of policy-related knowledge and not actual policies.
The ontologies therefore contain no individuals or instances of
ontology classes. Specific data values (e.g. trigger and action
parameter arguments, condition values) are defined by the
actual policies.

The ontologies genpol and wizpol are designed to be
generic and reusable for any domain. Due to the transitive
nature of OWL imports, a domain-specific ontology need only
import wizpol – genpol is implicitly imported as well. The call
control ontology extends the class hierarchy of wizpol to
define additional subclasses and properties, together with
applicable constraints. In particular, this includes the definition
of domain-specific triggers, condition parameters, and actions
– for call processing in the application described here.

To give a clearer understanding of the main components
defined by the policy language, each ontology within the
framework is described in the following subsections.

B. Generic Policy Language Representation

The generic policy language ontology, genpol, defines the core
elements of the APPEL policy description language [8]. This
ontology specifies a skeleton structure of classes and
properties; this can be imported and extended within a domain-
specific ontology. Contained within genpol is a definition of
key language terms and how they relate to one another. This
includes the concept of a policy document and its various
constituent parts such as policy rules, events, conditions,
actions, additional attributes, variables and operators. The
relationships between these concepts describe named
associations, inheritance properties and cardinality restrictions.

In outline, genpol defines the following main concepts and
their relationships for call control policies:
• A PolicyDocument is the highest conceptual level of

APPEL. It is defined to have zero or more Policy instances.
• A Policy is defined to have at least one PolicyRule, and

must have RequiredAttribute instances. It may also have
any number of OptionalAttribute instances.

• A PolicyRule may have zero or more TriggerEvent or
Condition associations, but must have at least one Action.

• A TriggerEvent may be linked with a TriggerArgument
using the hasTriggerArgument property restriction.

• A Condition must be associated with a Condition
Parameter, ConditionOperator and ConditionValue.
These are defined using the properties
hasConditionParameter, hasConditionOperator and
hasConditionValue, combined with a set of associated
cardinality restrictions.

• An Action may be linked with an ActionArgument using
the hasActionArgument property restriction.

• There are two types of operators in a policy: a
ConditionOperator used within a Condition, and a
CombinationOperator used to integrate two policy rules.

At the lowest level, genpol defines the minimum classes and
properties required to create a domain-oriented specialisation
of the policy language. In addition, automated ontology
support is provided to the policy system. An in-depth
description of genpol is presented in [4].

The policy system has many useful facilities related to
policy definition, but which are not strictly part of the policy
language. These additional constructs are modelled in the
wizpol ontology as described in the next subsection.

C. Policy Wizard Representation

The ACCENT policy wizard supports a user-friendly means of
creating and editing policies. Such a facility is key in
supporting policy definition by non-technical users like
ordinary subscribers. It is therefore an important aspect that
must be captured by the ontology framework. The policy
wizard incorporates a number of facilities that control and
manipulate domain data prior to its display. Such facilities are
not part of the policy language itself, but are useful in any
domain-specific ontology intended for use with the policy
system. This additional, wizard-related knowledge is defined
in wizpol as a direct extension of genpol, thus specialising the
core APPEL language for use with the policy wizard.

Examples of wizard-specific facilities include the
categorisation of triggers, conditions, actions and operators. In
addition, these are grouped by user level to match the subset of
language functionality to the skill or authorisation level of a
user. For example, administrative users see the whole of the
language, while beginning users see a limited but useful
subset. In outline, the extensions supported by wizpol include:
• Subclasses within each class hierarchy for the genpol

classes TriggerEvent, ConditionParameter and Action.
Four subclasses represent different user levels: admin,
expert, intermediate, and novice. Another signifies
internal policy system use.

• Subclasses NamedTriggerEvent, NamedCondParam and
NamedAction for the genpol classes TriggerEvent,
ConditionParameter and Action respectively, to support
reasoning about the ontologies.

• Properties to associate categories with domain
specialisations of triggers, conditions and actions,
including hasUserLevel and hasInternalUse.

• Extensions to the list of operators defined within genpol
according to the user level. For example, certain rule
combination operators are relatively complex and are
defined to be of use at admin or expert level only.

Collectively, genpol and wizpol form a base from which
domain specialisations of the policy language can be defined.

D. Call Control Policy Language Specialisation

The call control ontology specialises the generic and wizard
aspects of APPEL. In particular, the call control ontology
defines the specific triggers, condition parameters and actions
associated with call processing. The ontology for call control
is described in detail by [3]. Figure 4 shows how genpol and
wizpol classes are extended for call control.

In relation to specific extensions for trigger, condition
parameter and action classes, the call control ontology also
defines trigger and action arguments, status variables, and unit
types (e.g. for cost or bandwidth). Whereas arguments and
status variables are explicit language elements, unit types are
intended for wizard display purposes. By incorporating unit
type classes into the ontology, it is possible to describe how a
value can be interpreted for the user. For example, a condition
value such as bandwidth is measured using KbpsUnitType.
Additionally, each trigger, condition and action is assigned
various properties previously identified in genpol and wizpol
for categorisation:

• The property wizpol:hasUserLevel associates each
trigger, condition parameter and action with one or
more user levels from admin, expert, intermediate and
novice.

• The property wizpol:hasInternalUse defines certain
triggers or actions as internal to the policy system. The
LogEvent and SendMessage actions are examples.

• The properties genpol:hasPermissibleParameter and
genpol:hasPermissibleAction are associated with each
trigger to define which condition parameters and
actions can be used in conjunction with the trigger in
question within a policy rule. This ensures consistency
of a trigger with its condition and action. For example,
only a call trigger may have conditions on the caller
and actions involving forwarding.

The effect of property restrictions on classes is that the
categorisation of certain triggers, conditions and actions can be
automatically inferred. As an example, the policy wizard can
query the ontology to determine various triggers subsets: those
available to expert users, those with a parameter argument, or
those for use in conjunction with the RejectCall action. The
ability to interrogate an ontology in this way offers more
detailed knowledge than using a structural markup language
like XML Schema to model the policy language.

Although the call control ontology is primarily intended to
extend policy language constructs, unlimited additional
knowledge can be included to describe aspects of call
processing indirectly related to the policy language or wizard.
Consequently, the ontology includes a variety of additional
classes and properties to describe general telephony
terminology. This includes the high-level concepts of Call,
CallAttribute (e.g. topic, cost, type, priority), CallType (e.g.

international, emergency, conference, standard),
CallInitiatorAddress and CallDestinationAddress. Such details
also provide further insight into the call control domain when
processed by non-policy system applications.

Generic Ontology Class Call Control Ontology Class

genpol:TriggerEvent
wizpol:NamedTriggerEvent

AddressAbsent,
AddressAvailable,
AddressPresent,
AddressUnavailable,
BandwidthRequest, Connect,
ConnectIncomingCall,
ConnectOutgoingCall,
Disconnect,
DisconnectIncomingCall,
DisconnectOutgoingCall,
ExternalGeneralEvent,
NoAnswer,
NoAnswerIncoming,
NoAnswerOutgoing,
Register, RegisterIncoming,
RegisterOutgoing,
StatusAway, StatusBusy,
StatusFree, StatusHere

genpol:ConditionParameter
wizpol:NamedCondParam

ActiveContent, Bandwidth,
CallContent, CallCost,
CallerCapability,
CallerCapabilitySet, Callee,
Caller, CallerDevice,
CallerLocation,
CallMedium,CallPriority,
CallQuality, CallerRole,
CallTopic, CallType, Date,
Day, DestinationAddress,
NetworkType,
SignallingAddress,
SourceAddress, Time,
TrafficLoad

genpol:Action
wizpol:NamedAction

AddCaller, AddMedium,
AddParty,
ConfirmBandwidth,
ConnectTo, ForkTo,
ForwardTo, LogEvent,
NoteAbsent, NoteAvailable,
NoteAvailability,
NotePresence, NotePresent,
NoteUnavailable,
PlayAudioClip,
RejectBandwidth, RejectCall,
RemoveMedium,
RemoveParty, SendMessage

Figure 4. Trigger, Condition Parameter and Action Classes

IV. POLICY CONFLICT DETECTION AND RESOLUTION

Section II.B gave an overview of policy conflict in general.

There follows a description of how ontologies support conflict
handling within APPEL. It will be seen how this is modelled
generically, and also specifically for call control policies.

A. Generic Policy Conflict Resolution

Conflicts among policies occur at run-time when
simultaneously triggered policies propose conflicting actions.
The process of detecting conflicts can be carried out statically
(offline) or dynamically (online). Rather than hard-code policy
conflict detection and resolution into the ACCENT system,
APPEL deals with conflicts dynamically using resolution
policies. This approach is far more complex and rigorous than
any static, offline technique as it captures conflicts by
analysing policies at run-time as they become eligible for
execution. However, static handling of conflicts (such as at
definition time within the policy wizard) is entirely feasible,
although not currently implemented.

Detecting and resolving conflicts are separate steps, though
they are both defined by resolution policies. A resolution
policy is similar in structure to but different in content from a
regular control policy. This subsection outlines ontology
modelling of generic resolution policies, while subsection B
demonstrates how this is extended for call control.

A resolution policy specifies what may trigger a conflict,
any optional conditions, and resolving actions. The language
for resolution policies follows the same structure as a regular
policy, but with some small differences. Core resolution policy
concepts are therefore defined within genpol (section III.B). In
outline, a resolution policy is modelled as follows:
• A ResPolicy has zero or more PolicyRule instances.
• Each PolicyRule must have two or more TriggerEvent

instances, zero or more Condition instances, and one or
more Action instances.

• TriggerEvent instances in a resolution policy must be the
Action instances of a regular policy, since conflict
handling is triggered by the actions of regular policies.

Resolution policy actions can be generic or specific in nature.
Generic actions apply to any domain. They resolve a conflict
by choosing one of the conflicting actions, e.g. that of the
superior user or of the earlier-defined policy. The policy server
has in-built support for generic resolution actions such as
ApplySuperior or ApplyNewer.

To help with conflict detection, genpol specifies a top-level
class called ActionEffect. Subclasses in domain-specific
ontologies (e.g. for call control) categorise regular policy
actions using the restriction hasActionEffect.

B. Modelling Call Control Resolution Policies

The call control ontology specialises resolution policies
through an extension of classes defined in genpol. In
particular, it extends the list of resolution policy actions to
include specific resolution actions for call control, e.g.
ApplyCaller and ApplyCallee. In the event of conflict, these
actions give priority to the policy associated with the caller or
callee respectively. Specific resolution actions also include
those of the application domain, e.g. forwarding or blocking
for call control.

As resolution policy triggers are a combination of call
control actions, the ontology creates subclasses of the

genpol:ActionEffect class to define specific categories for
conflict handling. Each call control action is associated with
one or more effect categories via the property restriction
genpol:hasActionEffect. As an example, consider the actions
and effects shown in Figure 5.

Action Effect
AddCaller PartyEffect, PrivacyEffect
AddMedium MediumEffect, PrivacyEffect

Figure 5. Sample Effects in Call Control

Both the AddCaller and the AddMedium actions have a
restriction linking them with PrivacyEffect. Therefore, it can
be determined these actions may conflict as they share a
common effect on the call environment. In separate work not
reported here, this is used for automatic determination of
conflict-prone policies.

V. CONCLUSION

The paper has outlined a novel approach to policy language
definition using a framework of ontologies to model generic
language constructs, as well as those specific to an application
domain – call control. The approach has been used to support
the ACCENT policy-based management system for handling
call preferences. An ontology framework using OWL was
designed to model APPEL, the policy description language used
by the ACCENT system. The framework consists of two base
ontologies, genpol and wizpol, together with a third ontology
specific to call control.

The ontology framework describes the policy language in
abstract terms. It has proven useful for two reasons. Firstly,
modelling generic language aspects separately allows for easy
extension of policy support for call handling, e.g. adding
further triggers or actions without altering the core language.
This saves time, promotes effective reuse, and gives greater
scope for policy language revision. Secondly, the approach
allows the policy system to be extended for new domains. The
common ontologies (genpol and wizpol) may be readily used
to create custom ontologies for new application areas.

The ontology framework also permits specialisation of
conflict handling. Generic aspects of resolution policies are
given by genpol, while domain-specific knowledge of conflicts
is defined in specialisations of this – for call control here.

There are several ways the ontologies for call control may
be used or extended, both within their intended field of policy-
based call management and in other telecommunications
contexts. The call control ontology includes call processing
knowledge not directly related to the policy language. This
information could be used in the ACCENT system by
components other than the policy wizard, such as the policy
server or the context system.

Due to the abstraction created by the ontology framework,
generic aspects of the policy language and their specialisation
can be developed independently. This enables greater scope
for extension to both the policy wizard (within wizpol) and
also to call control itself.

In related work by the authors and their colleagues, the
approach is being extended to policy-based control of wind

farms (http://www.prosen.org.uk), and to policy-based control
of home care delivery (http://www.match-project.org.uk).

The call control ontology may also be used by other
applications unconnected with the ACCENT system or even
policies in general. OWL ontologies can be made available via
a URL (http://www.cs.stir.ac.uk/schemas for the work reported
here). As a result, the ontologies can be exploited by any
application that can benefit from knowledge of call control.

ACKNOWLEDGEMENTS

Gemma Campbell was supported in this work by a studentship
from the UK Engineering and Physical Sciences Research
Council under grant C014804. The authors thank their
colleagues on the PROSEN project for discussions that helped
to shape the approach. Thanks are also due to the developers
of the Protégé, Jena, Pellet and Racer Pro tools used in this
work.

REFERENCES

[1] ACCENT Policy-Based System. ACCENT project description
http://www.cs.stir.ac.uk/accent, Nov. 2006.

[2] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell and K. Nahrstedt. A Middleware Infrastructure to
Enable Active Spaces, IEEE Pervasive Computing, 1(4):74–83,
Oct.–Dec 2002.

[3] G. A. Campbell. Ontology for Call Control, Technical Report
CSM-170, CompSci & Maths, University of Stirling, Jun. 2006.

[4] G. A. Campbell. Ontology Stack for a Policy Wizard. Technical
Report CSM-169, CompSci & Maths, University of Stirling, Jun.
2006.

[5] N. F. Noy and D. L. McGuinness. Ontology Development 101:
A Guide to Creating Your First Ontology, Technical Report
KSL-01-05, Stanford Knowledge Systems Laboratory, Mar.
2001.

[6] World-Wide Web Consortium. OWL Web Ontology Language
Reference, Feb. 2004.

[7] World-Wide Web Consortium. Web Ontology Language
Summary, Feb. 2004.

[8] S. Reiff-Marganiec and K .J. Turner. APPEL: The ACCENT Project
Policy Environment/Language, Technical Report CSM-161,
CompSci & Maths, University of Stirling, Jun. 2005.

[9] S. Reiff-Marganiec and K. J. Turner. The ACCENT Policy Server.
Technical Report CSM-164, CompSci & Maths, University of
Stirling, May 2005.

[10] K. J. Turner. The ACCENT Policy Wizard, Technical Report
CSM-166, CompSci & Maths, University of Stirling, May 2005.

[11] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P.
Perry and J. Ireland. Policy Support for Call Control, Computer
Standards and Interfaces, 28(6):635–649, Jun. 2006.

[12] K. J. Turner and L. Blair. Policies and Conflicts in Call Control,
Computer Networks, 51(2):496–514, Feb. 2007.

