Feng Wang and Kenneth J. Turner. An Ontology-Based Actuator Discovery and
Invocation Framework in Home Care Systems, in M. Mokhtari, 1. Khalil, J. Bauchet,

D. Zhang and C. Nugent, editors, Proc. 7th International Conference on

Smart Homes and Health Telematics, pp. 66-73, LNCS 5597, Sporinger, Berlin, June 2009

An Ontology-based Actuator Discovery and I nvocation
Framework in Home Car e Systems

Feng Wang, Kenneth J. Turner

Department of Computing Science, University oflBigy, Stirling, FK9 4LA, Scotland
{fw, kjt}@cs.stir.ac.uk

Abstract. Home care systems need to be personalised toinaatual needs,

and must be easily adjusted as the user's symptiewvedop. Care policies (i.e.
Event-Condition-Action rules) can be used to specire services, facilitating
changes in the behaviour of a home care systemteg@omodelling allows a

user to specify the trigger and conditions of aecpolicy, using high-level

context rather than raw sensor data. The actiorssaafre policy are, however,
still dependent on the implementations details ciua@ors. We propose a
framework that allows the actions of a care policybe specified abstractly
using human-understandable concepts. The framewaites care of

discovering and using specific actuators, hidirgy ldw-level home networking
details from ordinary users. It therefore makespealisation and modification
of home care systems more accessible to ordinaysusequiring very little

technical knowledge.

Keywords: Assisted Living, Home Care, Ontology, Service Disny, Service
Invocation.

1 Introduction

Increasingly, providing care at home is seen asaising alternative to traditional
approaches such as nursing homes or shelteredngosiilding and evolving home
care systems present significant research challerfgéone size fits all’ solution is
unsuitable. Home care systems are deployed onga krale, individual care needs
will differ, and conditions may change over timar kndividuals and for changing
circumstances, a home care system must therefoceidtemisable by non-technical
people such as care professionals. Existing home srutions do not address this
issue. In commercial off-the shelf telecare produftinctionality is often fixed in
special-purpose devices and is not easily custdn@is&esearch prototypes of home
care solutions are often hard-coded.

Policy (i.e. rule) based home care systems are iphognin making it easier for end
users to modify the behaviour of a home care systetypical care policy consists of
an event (i.e. trigger), conditions and actionfiéovise known as ECA). When some
event happens, if the conditions hold, then thastare performed. By changing the
rules, the behaviour of the home care system candubfied. Rule-based home care
has been investigated in various research projecgs 3].

In policy-based home care, the events and conditéwa often considered together
and are defined as context [4]. Home care systesually do not make use of raw
sensor data directly. Instead, raw sensor datatéspreted or aggregated to produce
high-level context. The behaviour of a home cargtesy can then be expressed as
rules that invoke actuators on context changesachieve interoperability among the
components of a home care system, an ontology doeldised as the basis of a
common understanding of context [5]. By using hlighel context, care policies need
not be affected by differences in specific seneohmologies.

The actions of a care policy, however, are stidtitto specific technologies and
configurations of the actuators. In a care polibg, actions must state which actuators
should perform what operations and with what patame The definitions of
operations and parameters will vary a lot sincdedght actuators with the same
functionality may use different protocols, and $e#8 developers may define
operations differently. As an example, a lamp cobél controlled by EIB/KNX
(European Installation Bus) or by X10; these haifferent APIs. And more complex
actuators have an even greater variability in Hosy tare controlled.

Existing solutions to specifying actions often rely developer-defined service
interfaces [6], assume a set of predefined servidds or consider that an
administrator can somehow pass the low-level padtepecific parameters to the
ordinary user who can supply them when editingrthes [2]. None of these is a good
solution with regard to deployment of home caretesys. For the first approach,
actuator developers may define service interfatfésrently. For example, two UPnP
alarms may be controlled through completely différaterfaces. For the second
approach, having predefined services limits thdajepent of new actuators. For the
third approach, the users have to understand somdelel networking protocols.
This is because various home network technologedifferent operation names and
require different sets of parameters for the sammectionality. These protocol
variations are not hidden from the users. For exangwitching on a lamp may use
the On command in X10, supplying the house code and desicle of the lamp as
parameters. UPnP may require the methSetDeviceSate with parameter
DeviceState=on. Changes in the configuration of actuators (e.gthad of connection
or setting) may require changes in care policiddés Thakes adjustment of home care
systems unnecessarily cumbersome and difficult.

We propose an ontology-based framework for actudismovery and use to enable
protocol-independent action specification. Ordinasgrs have a mental model how
an actuator should operate, much as they viewrdyigi car. The user should not have
to bother with the technical details of the carstéad just performing standard
operations. This concept of common operations shaldo apply to actuators in
home care. The operations of actuators shouldftrerée modelled in an ontology.
Based on this, actuators can register themselvis avsemantic service discovery
module. Actions in a policy rule can be specifiesing abstract operations and
parameters. At run-time, the semantic discovery utedsearches for concrete
actuator instances. Mapping from abstract actiosparameters to protocol-specific
actions and parameters can then take place befeceiing the actions.

The purpose of our framework is to support end-ggegramming of home care
systems by hiding the technical details of actisatdust like developers need to write
code to infer high-level context, developers alsed to write protocol-specific

handler code to deal with the mapping of abstratbas and parameters. However,
only high-level context and abstract actions asible to end users.

Section 2 of the paper presents an ontology ofadmts for home care. Section 3
describes the design of a system to support actdétoovery and invocation, while
section 4 discusses the implementation. Secticeviews related work on this topic.
Section 6 concludes the paper and describes futoirie

2 An Ontology for Actuator Discovery and I nvocation

Actuator operations are modelled using the follawzoncepts:Actuator, Service,
Operation and Parameter, as shown in Fig. 1. An actuator provides some iofi
services. A given service could be also providedaltgrnative actuator designs. A
service supports one or more abstract operatioash Bperation has zero, one or
more parameters. These concepts are part of arléigme care ontology. For
example,Actuator is a subclass dDevice class, which haSensor as a subclass. A
device can have properties sucH.asation.

provides
| Actuator |—>| Service |
has "supports
| Par ameter |<—| Oper ation |

Fig. 1. Core Concepts of The Actuator Ontology

We represent our ontology using OWL (the Web Omgglbanguage), with each
concept represented as an OWL Class. A hierarclhgtofators has also been defined.
Subclasses oActuator include Alarm, DVDPlayer, Light, MobilePhone, and TV.
Some subclasses are further divided. For exanijilamableLight is a subclass of
Light. A hierarchy of services is defined similarly. Fotample LightingService and
DimmableLightingService are defined, corresponding to services providedthzy
Light andDimmableLight.

Since only the abstract operations supported hyadmts are relevant, operations
are modelled usind@peration class and parameters using tRarameter class.
Specific actions supported by the actuators atamees (individuals in OWL terms)
of the Operation class. For examplesendSMSTextAction is an individual of the
Operation class. RecipientNumber and TextContent are both individuals of the
Parameter class that could be used SsndSMSTextAction.

An OWL class can also have properties, typicalpa@aType property or an
Object property. The first links an individual with datalues while the second links
one individual with another individual. For examplee Object propertiiasLocation
links aDevice individual with a specifit_ocation individual.

To encode low-level protocol details about how riwoke a specific actuator, a
DataType property is defined for adctuator class. ThehasRAl property links an

Actuator individual with a string that represent the reseuaccess identifier (RAI) to
access the service provided by an actuator. Tlipepty defines the protocol and
device (or service) identifier, separated by colophis identifier uniquely
distinguishes actuators using the same protocoinihdorrespond to different values
in various home networks. For example, the RAI ofXd.0 living room light might
be ‘X10:b1’, identifying the house code and dewicele. The RAI of a UPnP alarm
might be “UPnP:fallAlarm”, identifying its UDN (Unue Device Name).

3 Architectureof Actuator Discovery and I nvocation

The overall architecture of policy-based home éauidepicted in Fig. 2. Users specify
care policies using &olicy Wizard. Sensor wrappers gather raw sensor data from
sensors, convert them into entity properties (sintd the sensor wrappers in [7]), and
store them into a knowledge base. The context sgregforms further reasoning
based on facts in the knowledge base, and gendriggedevel context information.
Changes in entity properties (i.e. context changes)sent through an event service to
the policy server. The policy server checks incain@vents and environment state
against the triggers and conditions of the rulbis tlecides whether to execute the
policy actions. If execution is required, the pgliserver sends commands through
event services to invoke actuators. (The policywesernlso performs other tasks as
such refining high-level goals into policies anahéiing conflicts among policies.)

Movemen \
— —p-|Sensor Poli
> olic
Wrapper Context Wizar)(/j

J— Smoke Server |[*
- — pDetector |]
\Wrapper ¢

y I
I GPRS Event Policy < >
@ < - -Modem l¢lepiService [*®|Server <>
<4 Handler Knowledge
¢ i Base
v Infrared

) "¢ - -|Control e | [Semantid [Configur]
Handler : < :
Service [®Pation
Discovery Manager

X10
@ <« - |Appliance [4—
Handler j

Fig. 2. System Architecture for Policy-Based Home Care

Y

To discover specific actuators and protocol-spegfirameters, the policy server
consults the configuration manager and the semaetizice discovery module. The
event-based communication paradigm decouples senaotuators and the policy
servers, so that changes in one of them will nfetcafothers. The following section
describes actuator discovery and invocation iniddising an ontology in service
discovery and invocation involves the following pge registering actuators,
specifying actions in a policy rule, and run-timgacation of actuators.

3.1 Registering Actuators

When an actuator is installed in a home care systesntapabilities are registered
with the semantic service discovery module andeston the knowledge base. The
latter represents actuators as individuals of $igedlasses. For example, the
description of a lamp in the living room includdsetactuator class it belong to
(DimmableLight), its location LivingRoom), its RAI (X10:b1), its manufacturer and
other information.

Actuators may use different types of home netwoiame network technologies
have built-in discovery mechanism. For example, RRefines how devices can be
discovered and controlled programmatically usingA&h. Software agents can listen
for UPnP discovery events and automatically registeegister actuator capabilities
in the semantic service discovery module. For dotsauising home networks without
a service discovery mechanism, a graphical toolatknw users to manually register
devices in the knowledge base.

3.2 Specifying Actions

The policy wizard makes it easy to specify careiged. To specify an action, the
following elements need to be specified: actuadotion and parameters. Specifying
an actuator using a concrete RAIl value essentialyl-codes which specific one is
used. Instead, a set of conditions is specifietl dhaactuator must satisfy. Currently
the conditions are stored in a device variable Hidhe policy system. A device
variable has a name and a definition that acts pla@eholder for a specific value.
The name of the variable is referred to in a poécyion. The conditions include the
class that the specific actuator belongs to aret afgproperty restrictions.

A SPARQL query string is generated to representctireitions specified by the
user. (SPARQL, http://mwww.w3.org/TR/rdf-sparql-quelis the language used to
query RDF-based documents.) Below is a sample SRAR®@ry to find the RAI of a
living room light that can be dimmed:

SELECT ?RAI
VHERE {
?ins a configuration: Di mmabl eLi ght .
?ins configuration: hasLocation
configuration:Livi ngRoom
?ins configuration: hasRAl ?RAl.

}

Based on the class of the desired actuator, thieypwolizard retrieves from the
ontology the supported abstract operations andceded parameters. These are
presented for the user to make a choice. This makes that only actions and
parameters supported by an actuator are specifittki policies. This helps to avoid
errors and reduces the user’s learning burden.

3.3 Run-time Execution of Actions

Three steps are followed when a policy action iggumed: find the specific actuator
to execute the action, map the action and param#éteprotocol-specific ones, and
finally execute the action.

The semantic service discovery module executesSSBRRQL query defined by
the device variable. The RAI property of the aatudbund is extracted. The policy
server then constructs a system event using the fRAlabstract operation and the
parameters. The protocol and the actuator identifithe RAI are stored in the event
properties. Finally the policy sends out this exbnbugh the event service.

Each home network protocol handler registers isr@st in certain type of events
by supplying an event filter to the event servitke event filter includes a condition
on the protocol property of an event, so an indigidhandler receives only events
associated with its protocol (e.protocol=UPnP). Thedevice identifier property of
an actuator event is used by the handler to firdsiecific actuator to execute the
action.

Individual actuator handlers also map abstracbastand parameters to protocol-
specific ones before execution. Although these leadhave the same interface
structure, the complexity of mapping the action pacameters varies a lot according
to the network technology. For home networks sushXd0, the semantics of
operations are straightforward, so the mappingasy eFor other home networks, an
automatic mapping may be difficult. For examplerimas developers may define
differently the operations to activate an UPnPralafhey may give different names
to the action and may also use different stateabées as parameters. Furthermore,
one abstract operation may map to several UPnBractlt is therefore necessary to
rely on a protocol-specific actuator event handier perform these mappings.
Developers need to write specific code for thise Ttsers of policy wizard do not
need to be aware of this mapping. In order to $pebe rules, they only need to
know the abstract concepts present in the commtoiagy. Architecturally, when an
actuator is installed into a home care systemctigesponding actuator event handler
needs to register with the event service and beyréar the execution of protocol-
specific actions.

4 Implementation and Evaluation

The policy-based home care system has been desigg the OSGi platform as the
basis (http://www.osgi.org). Knopflerfish (http:Mw.knopflerfish.org) has been used
as the implementation of OSGi 4. Communication leetwthe policy server, sensors
and actuators is supported by an event servicen{Bdenin), provided by OSGi.
Wireless sensors from Visonic (http://www.vison@ant) are used to detect conditions
such as movement, flooding, smoke, bed occupandydaor opening. A standard
wireless receiver has been interfaced to a PC @sli§B adapter.

The ontology has been developed using Protégé :/(ptitege.stanford.edu).
Semantic service discovery and invocation has beglemented using the Jena
semantic web framework (http://jena.sourceforg@.aetl integrated with the existing

policy server. The following protocol-specific evdmandlers have been created for

mapping abstract to protocol-specific levels, amrdefkecuting actions:

» X10 for controlling home appliances using an X10 nekvo

» UPNP for controlling devices in a UPnP network

» |RTrans for controlling audio and video equipment suchT®s and DVD players
using the IRTrans® infrared control system

» SMSfor sending and receiving text messages usingRSaRodem.

The policy wizard has been enhanced to suppottasctions using concepts in
the ontology. By using SPARQL queries to searchrsgahe knowledge base, the
policy wizard can make use of the following infortina:
 the actuator classes available
 the properties of each actuator class
 the individuals in an actuator class that satigfitain conditions over properties
 the operations supported by an actuator
 the parameters used by a given action.

To specify the actuator required, the user firttde a specific actuator class and
then specifies conditions on properties of thasgldor actions, the user chooses
from the list supported by that actuator. Similapggrameters are selected from those
applicable to an action.

The built-in OSGi service discovery mechanism useact type matching. The
semantic discovery module described here can fittdators based on subtype-
supertype relations. Thus the search result faviddals of theLight class will also
include those of thBimmableLight class.

By making use of the ontology, policy creation bees easier because users can
select alternatives rather than input them manu8blicy editing also uses familiar
concepts such as ‘living room light' rather tharfamiliar ones such as an X10 or
UPNP address. Since the actuator can readily nded with new definitions, the
ontology-based specification of policy actions nsttee approach more extensible.

5 Rdated Work

There have some efforts towards rule-based home sgstems. [1] proposes a
framework to integrate smart home technology withrent care practices, focusing
on temporal reasoning and spatial reasoning. [i8¢udses a three-tier general
architecture to support end-user programming of di@are systems. Both work do
not address actuator integration and discovery. Gamr [6] platform treats sensors
and actuators as service objects, providing devedop environment to programmers,
unlike our approach which is designed for the teshnically minded. In addition, the
Gator work does not consider dynamic aspects ofitimee care environment.

Semantic web technologies have been applied in aga® computing
environments to achieve interoperability among ftogfeneous systems. In particular,
ontologies have been used to model context andomeas pervasive computing
environments [7, 5, 8]. [11] presents a user iamflevel context model for assistive
living. However, its focus is on context modellimmt on actuator part.

6 Conclusion and Future Work

A framework has been presented for actuator disgoaed invocation in home care

systems. By making use of an ontology to model sbevices and operations of

actuators, policy actions are made protocol-inddpah and are not affected by

changes in home network configuration due to th@uton of home care systems.
Future work will extend the implementation to loatkthe following issues:

» Tools will be created to register devices as irdlials in the knowledge base.
Currently, adding/removing devices requires mamipoh of OWL documents.
For actuators with no associated service discomseghanism, a simple solution
would be a graphical tool for registering actuatoenually. However, a promising
approach could be using the smart-plug conceptd@utomatically register the
functionality of actuators.

» The existing context ontology will be integratediwihe actuator ontology, so that
the user can specify both the situations and gooreding actions abstractly. The
framework would automatically take care of mappargl execution. This would
hide from users the uninteresting low-level confagion details of sensors and
actuators. Evaluation of usability and acceptari¢his approach will follow.

Acknowledgments. The authors gratefully acknowledge the supporthef Scottish
Funding Council SRDG MATCH project HR04016.

References

1. J. C. Augusto. Towards personalization of sewiand an integrated service model for
smart homes applied to elderly,fnoc. Int. Conf. on Smart Homes and Health Telematics,
pp- 151-158, Sherbrooke, Québec, Canada, Jul.@0GST 2005).

2. F. Wanget al. Towards Personalised Home Care SystemBraa. Int. Conf. on Pervasive
Technologies related to Assistive Environments, pp. L2.1-L2.7, ACM, July 2008.

3. K. Duet al. HYCARE: A hybrid context-aware reminding framewdor elders with mild
dementia, ICOST 2008.

4. A. K. Dey, D. Salber and G. D. Abowd. A conteetsed infrastructure for smart
environments. IiProc. 1st Int. Workshop on Managing Interactionsin Smart Environments,
pp. 114-128, Dublin, Dec. 1999.

5. X Wanget al. Semantic Space: An infrastructure for smart spdeervasive Computing,
3(3): 32—39, 2004.

6. A. Helal, W. Mann, H. Elzabadani, J. King, Y.d¢tourah and E. Jansen. Gator Tech Smart
House: A programmable pervasive sp&aamputer, 38(3):50-60, March 2005.

7. A. Ranganathan et al., A middleware for contextire agents in ubiquitous computing
environments, ifProc. Int. Middleware Conference, Rio de Janeiro, Brazil, Jun. 2003.

8. H. Cheret al. An ontology for a context aware pervasive compugnvironment, ifProc.
Workshop on Ontologies and Distributed Systems, Acapulco, MX, Aug. 2003.

9. H. Elzabadani et al., Self-sensing spaces: Sphags for smart environments, ICOST 2005.

10. T. Zhanget al. Empowering the user to build smart home applicatidCOST 2004.

11. M. Wojciechowskit al. A user interface level context model for ambiesgisted living,
ICOST2008.

