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Abstract

The specification of digital logic in SDL (Specification and Description Language) is
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1. Introduction

1.1 Application of SDL

This paper addresses the specification and validation of digital logic components and
digital systems using SDL-92 (Specification and Description Language [1,2,3]). SDL was
developed by CCITT/ITU-T in the context of telecommunications. ETSI (European
Telecommunications Standards Institute) has defined a methodology for preparing standards
and reports that describe certain kinds of system (communications protocols or services)
whose behaviour is mainly discrete and consists of actions in response to signals or other
inputs. The main technique in this methodology for defining behaviour (and associated
structure) is SDL. Data is defined using SDL combined with ASN.1 (Abstract Syntax
Notation 1 [4]). An SDL description has companion descriptions using ASN.1 and MSCs
(Message Sequence Charts [5]). The result has no informal text and is consistent,
unambiguous and precise. A combined description can be validated with software tools.

SDL has been widely used to specify and validate communications protocols and
communications systems. Nonetheless, SDL is a general-purpose language that is appropriate
for many other applications. For example, it has been used in general software design and for
real-time systems. Surprisingly, the use of SDL to describe hardware seems to have been
rather limited. Hardware description with SDL has evolved in studies of hardware-software
co-design [6, 7].This paper investigates how SDL can be used for the specification and
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analysis of digital systems. In fact it is permissible to realise system components using
hardware or software, so co-design is also possible.

1.2 Digital Logic Design

Digital logic design is partly top-down and partly bottom-up. The general approach is top-
down, but designers exploit available components and designs. Components are specified and
manufactured to defined interfaces, or sometimes standards. A well-defined specification is
the basis of verification and validation. Such a specification should completely cover the
required functional behaviour, should quantify time delays inside components, and should
exhibit a clear structure of components and their interconnections.

Top-down logic design proceeds in the following way. The user begins by describing the
expected behaviour of a functional unit and its timing characteristics. This black-box
description is called a functional specification, and refers only to inputs and outputs. The user
now has to describe the proposed design structure using functional specifications of its
components and their interconnections. At this point the behaviour and properties of the
functional unit can be investigated, perhaps by simulation using sample input data sequences.
If the proposed design fulfils its requirements, the procedure can be repeated recursively for
the subsidiary components. The design process is complete when components are ready-made
ones with known characteristics. Design efficiency is improved when verified or validated
functional specifications are stored in a library for use by all designers.

1.3 Hardware Descr iption Languages

Digital logic and digital system design are well developed topics. Many textbooks explain
the operation of logic gates and other functional elements, and explain how to combine them
into larger circuits and systems. Digital logic design uses elements that are available as
hardware components from the manufacturer’s catalogue [8].

Hardware Description Languages have been extensively studied. Languages such as
VHDL (VLSI Hardware Description Language [9]), CIRCAL (Circuit Calculus [10]), CARS
[11] and many others have been used to specify and analyse digital hardware. Like SDL,
LOTOS (Language Of Temporal Ordering Specification [12]) was developed for describing
communications systems. The inspiration for the work reported in this paper was the
LOTOS-based approach called DILL (Digital Logic in LOTOS [13]).

DILL supports the hardware engineer when translating a circuit schematic into a LOTOS
specification. The DILL library contains a variety of pre-defined components such as might
be obtained off-the-shelf. Translation into DILL allows properties of a circuit to be
investigated. Once the specification has been verified or validated, it can be realised as actual
hardware. The designer must be familiar to some extent with LOTOS so as to combine
behaviour expressions, but this is reasonably straightforward and does not require an in-depth
knowledge of LOTOS.

The approach of this paper is named ANISEED (Analysis In SDL Enhancing Electronic
Design), somewhat similar to DILL, except that the specification language is SDL. Since
SDL is widely used in industry and is well supported by commercial tools, it is hoped that the
approach will be attractive to electronics engineers. The designer needs only a basic
knowledge of SDL in order to describe and analyse circuits. Libraries in the form of SDL
packages supply ready-made circuit components and design structures. These present
solutions in a form that is familiar to the electronics engineer.
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2. Digital Logic Specification with SDL

2.1 Descr iption of Behaviour

ANISEED approach deals only with discrete signals, but it models continuous signals
implicit by modelling discrete changes in them ( the edges ).

The behaviour of a functional unit is given by an SDL description. Process types are used
to represent generic components; actual components are instances of these. Component
descriptions are stored in a library as SDL-92 named packages. When the generic definition
of a component is instantiated, its parameters are set to describe the characteristics of the
particular instance. Parameters will include the names of input and output signals, as well as
timing characteristics such as propagation delays.

It is highly desirable to have descriptions of logic designs at different levels of abstraction.
For example, a low-level description might be appropriate for fabrication or validation of a
component. However, once the low-level design has been proven it may be used as a building
brick in higher level designs. That is, it may be treated as black box whose internal structure
is unimportant at the chosen level of abstraction. A component may thus have several
descriptions in a library, to be selected by the designer as appropriate.

Hardware signals are modelled as SDL signals with two parameters: the time when the
signal is generated, and the binary logic value. The time value of an input signal records when
it was generated. The time value is used to determine the time of possible output signals
(according to the time delay inherent in a component). The logic value of a signal may be a
single bit, but for generality a vector of bits may be used. This caters for common situations
such as an address bus or control bus that is several bits wide. In a high-level description a
signal could even carry an SDL data structure, allowing for an abstract description of the
interface to a component.

Time delays are often significant in the design of digital logic – especially in asynchronous
circuits. It is important that the designer be able to state propagation delays and timing
restrictions explicitly. Timing information appears in process parameters and in signals. A
process type can be instantiated with different timing values to reflect technology variations
or differences due to fan-out of a component. The unit of time in an SDL description is at the
discretion of the specifier. Integer time values are used in this work, with a typical
interpretation being nanoseconds.

The wires of a circuit are normally considered to carry signals instantaneously between
components. Of course this is not strictly true, but the transmission time over a wire is usually
negligible compared to the reaction time of a component. In high-speed circuits, a wire can be
modelled as a delay if necessary. In digital hardware, the wires between components usually
carry signals only in one direction. However bidirectional signals are possible, for example
over a bus. The SDL processes representing components are connected by zero-delay
channels representing the wires. As usual, channels can be unidirectional or bidirectional.

Process types may have many input and output gates. Figure 1 shows a component
described as a functional unit by an SDL process. The input signals are IE1 to IEi and the
output signals are OEj to OEn. The signals carry a time (TIN or TOUT) and a value (V1 to Vn).
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Figure 1: Framework for  A Functional Specification

2.2 Descr iption of Structure

A circuit design usually employs a number of components. Processes are therefore
combined in an SDL block structure. As a block type, a structure can be stored in an SDL
package for use in its own right. Connections between processes go between the gates of
process types. This is necessary because in practice an output signal can be sent to the inputs
of several other components. The SDL gate construct allows an output gate to send a signal to
one or more input gates. The design structure embedded in a block can itself be stored in a
library for later use. This is important because components as well as combinations are then
available to the designer. An example structure is shown Figure 2, where a two-input NAND
gate, two-input AND gate and a D (Delay) flip-flop are combined in a higher-level design.
The components are represented as processes (instantiated process types) and the connections
are specified with signal routes (SR1-SR8). Block B1 has four inputs (g1-g4) and two outputs
(g5-g6).

block B1

SR1

SR2

SR3

SR4

NANDG(1,1):
NAND2

SR5

DFLIPFLOP
(1,1):DFF

SR6

ANDG(1,1):
AND2 SR7

SR8

g1

g2

g3

g4 g6

g5

g1

g1

g1

g2

g2

g2

g3

g3

g3

g4

Figure 2: Sample Design Structure

SDL-92 packages are used for design libraries. These can store functional specifications or
design structures. Packages are likely to be organised into groups recognisable to a hardware
designer. For example there will be packages containing different kinds of gates, latches, flip-
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flops, counters, registers and so on. Because package elements are parameterised, they
represent a variety of instances (implementations) of components and structures

3. Modelling Functional Units

The behaviour of functional units is given by process types. In general, signals carry time
and value parameters. As a degenerate case, the time parameter of a signal may be omitted
when timing characteristics are not significant. This is appropriate for synchronous logic,
where output signals are enabled by clock pulses. In synchronous circuits, component delays
can be ignored since it is assumed that the reaction time of a component is faster than the
clock rate. But in an asynchronous (unclocked) circuit, exact knowledge of component delays
may be necessary to avoid race conditions. Correct operation in the presence of timing
constraints may be checked through simulation or through proof of correctness. For adequate
modelling it should be possible to:

•  give a functional specification of behaviour at any level of abstraction

•  define a design structure as a collection of components (process types given in
packages) and their interconnection

•  have multi-level descriptions, i.e. to treat a component as a black box or as a structure
containing a finer level of detail

•  specify timing characteristics at any level of abstraction.

3.1 Logic Sources and Sinks

Some aspects of logic design require special process types in the SDL. Sometimes it is
necessary to specify a source of logic 0 or 1, say to tie an input to a specific level. This is a
nullary logic function, specified by process types ZERO and ONE that provide logic 0 and 1
respectively. It may also be necessary to specify a source of other constant values (e.g. some
binary input vector). The CONSTANT process type provides a constant output given by its
parameter value. Logic sources generate their constants signals at simulation time zero.

If the output of a component is not connected to anything, process output signals have to
be consumed but not used. The ABSORB process type is ready to accept and absorb any
signal. Note that this differs from standard hardware design: if an output of a component is
unused, the engineer simply does not connect anything to it. However, the corresponding
SDL process must have a route for output signals to follow (even if nothing is done with
them). With a little pre-processing, this can be made invisible to the specifier. Nonetheless, it
could be argued that it is desirable to force an explicit choice of what to do with each output.
If an output is accidentally left unconnected, it is useful that a check of the corresponding
SDL should point out the error.

3.2 Basic Logic Gates

Logic gates are specified as process types with signal names and gate delays as
parameters. Logic gates carry signals that are simple binary (bit) values. A real logic gate
exhibits a propagation delay from a change in input to the subsequent output; this reflects the
physical processes involved in moving charges into or out of the gate.

Figure 3 illustrates a two-input AND gate. Figure 3 (a) shows the conventional logic
symbol for AND2 and its idealised timing diagram. Transitions between logic 0 (low) and
logic 1 (high) are imagined to take place instantaneously. In practice, electrical signals never
have a sharp edge so Figure 3 (b) is more typical of what happens. Transitions between logic
levels are shown as sloping lines here since they are never instantaneous in reality. In Figure
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3 (b), TPD1 is the delay for the output C to become valid level 1 after input A changes to 1.
TPD0 is the delay taken for the output C to become valid level 0 after input B changes to 0.
In real devices, these delays may be different because they require charges to flow in opposite
directions. If the engineer does not require to make this distinction, a single delay could be
used for output of a 1 or a 0.

A

B
C A

B

C

Figure 3 (a): Symbol for  AND2 Gate and Idealised Timing Diagram

TPD1 TPD0

A

B

C

Figure 3 (b): Realistic Timing Diagram for  AND2 Gate

An SDL/GR representation of the AND2 gate is given in Figure 4, using timers to specify
the propagation delays. The variable OUTN represents the computed value that will be output
following the delay time. Only if this differs from the current gate output OUT is it necessary
to generate a signal. The delays TPD1 and TPD0 are given actual parameter values during
instantiation. Inside the process, delays are handled by timers. When the relevant timer
expires, the new output value (OUT) and the time when it is generated (TOUT) are carried by
the output signal. An interesting case arises if a further input occurs while the delay timer is
running. This corresponds to an input changing before the gate can react to a previous change
of input. In such a case, the new output value is calculated. If this differs from the output that
is pending, the revised output is scheduled instead after the required delay.
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process type AND2

idle

IN1(TIN,V1) IN2(TIN,V2)

OUTN:=V1 and V2

OUTN=OUT
(true)

idle

OUTN
(1)

(false)

(0)

TOUT:=TIN+TPD0 TOUT:=TIN+TPD1

set(now+TPD0,T0) set(now+TPD1,T1)

wait

IN1(TIN,V1) IN2(TIN,V2) T0 T1

OUT:=OUTN

OEV(TOUT,OUT)

idle

timer T1, T0;

fpar TPD0, TPD1 Duration;

dcl   V1, V2, OUT, OUTN Boolean:= False,
TIN, TOUT Time;

Reset  T0

Reset  T1

Figure 4: SDL/GR Descr iption of AND2 Gate
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Many gates can be modelled in the same way as AND2; a different number of inputs
would simply require an alteration to the input signals in the idle and wait states. To compute
the new output value, the standard Boolean type and its operators are used. Most of the
operators likely to be needed are available in SDL (or , xor , and, not, arithmetic operators,
relational operators). However, new operators such as nand could be defined using the
normal data typing features of SDL. In fact it is possible to define a generic logic gate where
the number of inputs and the Boolean function are determined by parameters. A generic gate
is simply a process type with extra parameters that allow it to become a specific kind of gate
– a two-input AND, four-input NOR or whatever.

The initial state of real hardware may be indefinite following power-on. This is not
modelled explicitly in the SDL description, since no outputs are generated until inputs occur.
However, this is not a limitation since in practice the circuit designer is forced to ensure a
well-defined initial state by explicit sequences of signals. For the SDL description, this
simply means that the processes will be initialised by specific input signals.

Real logic gates have a fan-out (the maximum number of other gates that can be connected
to an output). Real logic gates also have a fan-in (the maximum number of inputs). These are
component limitations that can be checked by static analysis of the SDL description. Since
fan-out and fan-in have an effect on the delays introduced by gates, the designer can take
them into account by choosing appropriate values for the process parameters TPD1 and
TDP0.

The wires connecting components introduce a propagation delay that is usually
insignificant but can be critical in high-speed circuits. The wires can be considered as
components as well, represented by simple delay elements. A process type DELAY is defined
for this purpose, with actual transmission delay as a parameter.

3.3 Specification of Delay Flip-Flop

A D (Delay) flip-flop stores its input (D) when a clock pulse occurs. The data will appear
on the output (Q) after the next clock pulse. A D flip-flop is thus like a single-bit memory. It
is useful for data storage and similar applications. Other kinds of flip-flop include the RS
(Reset-Set) and JK types. Figure 5 (a) shows the logic symbol for a D flip-flop and its
idealised timing diagram. At point A the D input rises to logic 1. At point B the flip-flop is
clocked, so the D input is latched and transferred to the Q output.

D

CLKIN
D flip-flop

Q

D

CLKIN

Q

A B

Q

Figure 5 (a): Symbol for  D Flip-Flop and Idealised Timing Diagram

Figure 5 (b) illustrates the likely timing behaviour of a real D flip-flop. The time between
points A and B (tAB) is called the data setup time. This is measured from the point at which
the D input reaches logic 1 and the point at which the clock reaches logic 1. The time is the
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minimum for which data must be stable at the input of the flip-flop before it is clocked. At
point C, the logic 1 input has started to go low. The time between B and C (tBC) is called the
data hold time. It is the minimum time for which the data must be held stable after the flip-
flop has been clocked. As a result of clocking the flip-flop, its Q output changes state at point
D. The time tBD is the maximum time taken for the output to become valid following a clock
pulse, and is assumed to be greater than tBC.

D

CLKIN

Q
A B C D

tAB tBC

t BD

data setup
time

data hold
time

delay time

Figure 5 (b): Realistic Timing Diagram for  D Flip-Flop

An SDL description of a D flip-flop is given in Figure 6. This follows a similar pattern to
the AND2 gate given Figure 4, except that the delays are those particular to a D flip-flop.

3.4 Higher-Level Functional Units

Higher level functional units are frequently used in the top-down design process. These
functional units are black-boxes with inputs and outputs and no internal structure. Complex
functions can easily be described using the ADT facilities of SDL. Interestingly, it is
unimportant whether such functions are realised as hardware or software. This makes it
possible to describe mixed hardware-software systems within the same framework. If the
designer wishes to specify functional behaviour at an abstract level, it is usually irrelevant
whether the realisation is in hardware or software.

Consider, for example, a floating point arithmetic unit. This could be realised as hardware
(a co-processor) or as software (by emulation of missing hardware instructions). The designer
merely has to specify the interfaces of the functional unit, including input and output data
(structures) and timing constraints. At this level of abstraction, a functional unit can be a
hardware or software element (and indeed both realisations may be available).
Hardware/software functional units can cooperate through signals sent via channels and
signal routes. For an abstract description, a signal could carry a data structure such as the
content of a data register or address register. Timing characteristics can be given even if the
realisation will be in software.
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process type DFF

idle

DIN(TIN,D) CLKIN(TIN,CLK)

idle

set (now+TAB,T0)

waitsetup

CLK (0)

(1)

DIN(TIN,D) T0

idle

TOUT=TIN+TBD

set(now+TBD,T1)

set(now+TBC,T2)

waithold

DIN(TIN,D) T2

reset(T1) OUTN:=D

waittpd

DIN(TIN,D) T1 T0

set(now+TAB,T0) OUT:=OUTN

OEV(TOUT,OUT)

idle

fpar TAB, TBC, TBD Duration;

 signal DIN, CLKIN, OEV;

dcl   TIN, TOUT Time,
  CLK, D, OUT, OUTN Boolean:=False;

timer T0, T1, T2;

reset(T2)

Yes

No

D = OUT

Figure 6: SDL/GR Descr iption of D Flip-Flop
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As a concrete example, Figure 7 shows a BCD (Binary Coded Decimal) full adder as a
high-level functional unit. AIN and BIN each convey four input bits representing BCD digits
from 0 to 9. CIN and COUT are one-bit carry-in and carry-out signals. SOUT conveys BCD
output in four bits.

AIN

BIN

CIN

SOUT

COUT

BCD  full
adder

Figure 7: BCD Full Adder as A Black Box

The functional behaviour of this high-level description is given in Figure 8. The value
TPDS is the addition delay time – the time from an input change to the change in SOUT. The
value TPDCO is the carry delay time for a change in COUT, and is assumed to be greater
than TPDS.

The BCD full adder could easily be realised as software, but a hardware implementation
will be considered here. The design (internal details of the black box) can be found in any
standard textbook on computer logic. Readers unfamiliar with the conventional design should
note that it uses the ‘ trick’  of adding 6 (binary 0110) to the first input A. The BCDF block in
Figure 9 comprises processes connected via channels between the gates. A, B and SOUT are
four-bit hexadecimal values, while CIN and COUT are just one bit. ADD1, ADD2 and ADD3
are instances of the ADDER four-bit binary full adder. INV1 is an instance of the FINV four-
bit output special inverter. (Of course, ADDER and FINV would be found in the component
libraries.) The design also requires the special ZERO, ABSORB and CONSTANT process
types introduced in Section 3.1. Z1 is used to feed logic 0 to the carry input of ADD1 and
ADD2. SIX is used to feed the constant bit vector 0110 to the second input of ADD1. Since
the carry outputs of ADD1 and ADD3 are not required, they are absorbed by A1.

4. Validation and Simulation

Validation of a circuit design represented in SDL is conducted through simulation.
Although SDL has a formal basis and could thus be used for verification, in practice it is
usual to treat verification of SDL descriptions as being exhaustive simulation. Simulation
may be an interactive walk through every significant path in order to gain confidence in the
design. Step-by-step simulation allows concentration on fewer signals. Another method is to
store pre-defined input sequences in a file that is read by the simulator. This is particularly
suitable for regression testing, when a design change must be shown to have respected
previous behaviour. Simulation results can be presented using MSC sequences, which gives
the designer a convenient graphical overview of the behaviour.
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process type BCDF

idle

AIN(A,TIN) BIN(B,TIN)

wait

CIN(C,TIN)

SN:=(A+B+C)mod10

set(now+TPDS,T)

A+B+C

idle

T T 1

SOUT(TSO, S) COUT(TCO, CO)

set(now+TPDCO,T1)

TCO:=TIN+TPDCO

CON:=1 CON:=0

(>9)

(<=9)

fpar TPDS, TPDC0 Duration;

signal AIN, BIN, CIN, SOUT, COUT;

dcl TIN, TCO, TSO Time,
 A, B, C, S, CO, SN, CON  Natural:=0;

timer T, T1;

TSO:=TIN+TPDS

w1

T

S:=SON CO:=CON

Figure 8: SDL/GR High-Level Descr iption of BCDF Process Type



13

ADD2(1,1): S

CO
CI

A B

S
ADD1(1,1):

CI CO
A B

Z1(1,1):
ZERO

SIX(1,1):
CONSTANT

A1(1,1):
ABSORB

CIN A B

X

Y

INV1(1,1):
FINV

CI
ADD3(1,1): S

CO
A B

COUT

SOUT

block BCDF

ADDER ADDER

ADDER

Figure 9: Structure of BCDF Adder

Commercial simulators such as SDT [14] and ObjectGeode [15] can be used for functional
analysis of a circuit design. However, they are unsuitable for simulation of timing
characteristics because of the special need for event scheduling. A timing simulator has to
deal properly with the time parameter in signals. In particular, incoming signals have to be
stored in input queues in increasing order of the times at which the signals were generated.
This requires the following approach that is rather similar to discrete event simulation:

•  Each process needs one input event queue, but events are stored in these queues in
increasing order of time parameter.

•  Channels have zero delay.

•  Initially all input events are evaluated for simulator time zero. This applies especially to
process types like ZERO and ONE that generate their constant signals at this point.

•  The simulator clock is now set for the next significant event – the earliest time for
which any signal is scheduled. All events that are due at this time are evaluated at this
point. Note that the order in which events are scheduled is irrelevant because real
hardware always exhibits a non-zero delay. This guards against an incorrect order of
scheduling events.

•  Simulation ceases when no more signals in queues need to be scheduled or when some
predefined stop condition is met.

Figure 10 summarises the timed simulation algorithm. As with a standard SDL simulator,
inputs could come from a file, outputs could be stored in a file, and outputs could be
represented in MSC form. However, the point of simulation is to investigate timing
characteristics of a circuit design. This might include the study of race conditions, the
determination of minimum and maximum reaction times, and the construction of time
sequence diagrams such as those found in Figure 3 (b) and Figure 5 (b).
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start

Simulation Clock Time
(SCT) = 0

Put input signals from input
files to input queues of processes

Evaluate Logic
Source Processes

Process input signals
sheduled for actual SCT

Find next minimum time
scheduled input signal

Is there
any more signal

No

Yes

Set  SCT

SCT > = 
Stop Time

No

Yes

Stop

Figure 10: General Overview of Timing Simulator  Algor ithm

scheduled for  actual SCT
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5. Conclusions

An approach for describing digital logic in SDL has been given. From the point of view of
the circuit designer, minimal knowledge of SDL is required in order to describe and analyse
circuits. Libraries in the form of SDL packages supply ready-made circuit elements and
design structures. These present solutions in a form that is familiar to the electronics engineer.
Components may be described at several levels of abstraction, and may even be realised as
hardware or software.

The approach allows behaviour to be described at several levels from the component level
up to the system level. Signals carry values that may be simply bits but could be data
structures (vectors of bits). Especially for asynchronous logic, signals may also carry time
values that reflect when they were generated. This allows description and analysis of the
timing characteristics of a design. A strategy for discrete event simulation of timed circuits
has been proposed, allowing timed behaviour to be investigated as well as functional
behaviour. Timed simulation can also produce timing diagrams and allow critical time
constraints to be checked.

Advantages of this approach are: precise design notation, automated analysis of design,
checking equivalences of high/low level designs, use of design component library, use of a
formal design notation.

The work so far shows promise, and has demonstrated that digital logic design in SDL is
feasible and follows standard engineering practice. Future work will include:

•  developing extended libraries of components and design structures

•  equivalence checking between different levels of description

•  analysing performance issues

•  validating timing constraints

•  investigating automatic derivation of tests from descriptions

•  studying hardware-software co-design in more depth

•  constructing tools to support circuit description and analysis, particularly the simulation
of timed behaviour.
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