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Abstract. Grid services and web services have similarities but algoifsgtant
differences. Although conceived for web services, it isxde@wv BPEL (Business
Process Execution Logic) can be used to orchestrate a toiiexf grid services.

It is explained how @Ess(Chisel Representation Employing Systematic Spec-
ification) has been extended to describe grid service coitqmasThe QRESS
descriptions are automatically converted intee/WsDL code for practical re-
alisation of the composed services. This achieves oratistrof grid services
deployed using the widely used Globus Toolkit and ActieeB interpreter. The
same RESsdescriptions are automatically translated intoTlos, allowing sys-
tematic checks for interoperability and logical erroropto implementation.

1 Introduction

1.1 Motivation

This paper presents a unique blend of ideas from differetinieal areas: distributed
computing, software engineering, service-oriented #&echire, and formal methods.
Grid computing has emerged as a leading form of distributedauting. However, grid
computing has largely focused on the development of istlafplications. Service-
oriented architecture provides a framework for combinirig gervices into new ones.

The emphasis of this paper is on integrating software eeging techniques (vi-
sual programming, formal methods) into an evolving appiicaarea of considerable
importance (grid computing). The aim has been to achieveddiate and practical ben-
efits from advanced software techniques. Grid computingcisnaparatively new field
that has so far focused mainly on pragmatic, programmatieas. The work presented
here offers a number of advantages:

— As with component-based approaches, grid services areinethimto new com-
posite services usingfEL as an emerging standard for web services.

— Grid service composition is described graphically, makingomprehensible to
less technical users. Compared to the automatically gestecade, the approach
is compact and much more attractive than writing the raw Xkt underlies it.

— A sound technique has been defined, benefiting from formahaoastbehind the
scenes yet supporting automated implementation.

The approach is therefore application-driven (orchesigajrid services), novel (com-
bining practice and theory), practical (automated impletagon and validation), and
integrated (complementing existing grid practice).



1.2 Background to Grid Computing

Grid computing is named by analogy with the electrical pogréd. Just as power sta-
tions are linked into a universal electrical supply, so catafional resources can be
linked into a computing grid. Distributed computing is hgra new area. But the archi-
tecture and software technologies behind the grid haveuoeghthe attention of those
who perform large-scale computing, e.g. in the scienceisl. @mputing offers a num-
ber of distinctive advantages that include:

support for virtual organisations that transcend coneerati boundaries, and may

come together only for a particular task

portals that provide ready access to grid-enabled ressurce

single sign-on, whereby an authenticated user can maked d&tributed resources

such as data repositories or computational servers

— security, including flexible mechanisms for delegatinglemrgials to third parties to
act on behalf of the user

— distributed and parallel computing.

Grid computing is governed by OGSA (Open Grid Services Aettture [8]). Open
standards for the grid are being created by the GGF (GlohdlFarum). Grid applica-
tions often make themselves available via services thatamparable to web services —
another area of vigorous development. For a time, grid sesvand web services did
not share compatible standards. The major issue was theforestdteful services that
have persistent state. A grid-specific solution to this wasetbped. However, this was
clearly something that web services could also benefit from.

A harmonised solution was defined in the form of WSRF (Web i8es/Resource
Framework [10]). This is a collection of interrelated staribs such as WS-Resource
and WS-ResourceProperties. WSRF is implemented by variamlsets for grid com-
puting such as GT4 (Globus Toolkit versionwyww.globus.ory

1.3 Background to Service Orchestration

This paper emphasises tbempositiorof grid services, not the description isblated
grid services. Composing services has attracted congigaradustrial interest. This is
achieved by defining ausiness procedhat captures the logic of how the individual
services are combined. The teorchestrationis also used for this. A nice feature of
the approach is that a composed service acts as a serviseinmritright.

Competing solutions were originally developed for orchasig web services. A
major advance was the multi-company specification feeBlws (Business Process
Execution Language for Web Services [1]), which is beingd#adised as WS-B=L
(Web Services Business Process Execution Language [2HL B now relatively well
established as the way of composing web services. Howévese for composing grid
services has received only limited attention. The work regubin this paper has used
ActiveBPEL (an open-source BEL interpreterywww.activebpel.org



1.4 Background to CRESS

CRreEss(Communication Representation Employing Structured Bpation) was de-
veloped as a general-purpose graphical notation for segsviessentially, €essde-
scribes the flow of actions in a service. It thus lends itsetféscribing flows that com-
bine grid services.

CRrEsshas been used to specify and analyse voice services froomtbligent
Network, Internet Telephony, and Interactive Voice Reggofit has also been used to
orchestrate web services [19]. In the new work reported, i@éresshas been extended
to the composition of grid services. The present paper dssihow the same approach
can be used for practical but formally-assisted developmiegrid services. Formally-
based investigation of composite grid services will be regabin a future paper.

The work reported in this paper has been undertaken in theexioof the GEODE
project (Grid Enabled Occupational Data Environmemyw.geode.stir.ac.Jk This
project is researching the use of grid computing in socigree®, specifically grid ser-
vices for occupational data analysis. The authors havesiigated how services from
this domain can be composed, formalised and rigorouslyaedl

Service descriptions in =ssare graphical and accessible to non-specialists. A
major gain is that descriptions are automatically traesldahto implementation lan-
guages for deployment, and also into formal languages falyais. GREssoffers ben-
efits of comprehensibility, portability, automated impkemtation and rigorous analysis.

CRESssis extensible, with plug-in modules for application donsaamnd target lan-
guages. Although web service support had already beenajmafor GRESS it has
been necessary to extend this significantly for use with ggidices. In addition, grid
services have specialised characteristics that requiresmonding support in RESS

CRESssis intended as part of a formally-based method for devefpparvices. In
the context of grid computing, the steps are as follows:

— The desired composition of grid services is first descrit@dgiORESS This gives
a high-level overview of the service interrelationshipscBuse the description is
graphical, it is relatively accessible even to non-spéetil

— The GREssdescriptions are then automatically translated into a &danguage.
CRrREsssupports standardised formal languages suchoa®is (Language Of Tem-
poral Ordering Specification [11]) and SDL (Specificatior dbescription Lan-
guage [12]), though this paper uses onlyTos Obtaining a formal specification
of a composite service is useful in its own right: it givesgise meaning to the
services and their combination.

— Although CrRESsscreates an outline formal specification for each of the gartn
services being combined, it defines just their basic funetity. This is sufficient
to check basic properties such as interoperability. Howéwea fuller check of
composite functionality, a more realistic specificatiomaguired of each partner.
This allows a rigorous analysis to be performed prior to inpéntation.

— A competent designer can be expected to produce a satisfagovice imple-
mentation. However, combining services often leads to peeted problems. The
services may not have been designed to work together, anchotapteroperate
properly. The issues may range from the coarse (e.g. a éisagmt over the inter-
face) to the subtle (e.g. interference due to resource ctitiopg. This is akin to the



feature interaction problem in telephony, whereby indeleely designed features
may conflict with each other. REsssupports the rigorous evaluation of composite
services. Problems may need to be corrected in either #Es&descriptions or in
the partner specifications. Several iterations may be rediefore the designer is
satisfied that the composite grid service meets its req@nesn

— The CREssdescriptions are then automatically translated into arlémpntation
language. The interface to each service is defined by thergiedeWspL (Web
Services Description Language [22]). The orchestratiothefservices is defined
by the generated BL. The partner implementations must be created indepen-
dently, hopefully using the formal specifications alreaditten. However, RESS
can generate outline code that is then completed by the imggiger. This avoids
simple causes of errors such as failing to respect the seiniierface.

1.5 Relationship to Other Work

As noted already, orchestration of web services has beenregdived in industry.
Scientific workflow modelling has been studied by a numberrojgets. The MyGrid
project has given an overview of thedattp://phoebus.cs.man.ac.uk/twiki/bin/view/
Mygrid). Only some of the better known workflow languages are maptidoelow.

JOpera [16] was conceived mainly for orchestrating webisesy though its appli-
cability for grid services has also been investigated. d®pkims greater flexibility
and convenience thanFL. Taverna [15] was also developed for web services, partic-
ularly for coordinating workflows in bioinformatics resebr The underlying language
ScuFL (Simple Conceptual Unified Flow Language) is intended to b#étirpurpose,
including applications in grid computing.

CREssis designed for modelling composite services, but was noteived as a
workflow language. Eessserves this role only when orchestrating grid or web ser-
vices; its use in other domains is rather different. An int@ot point is that ®ESS
focuses on generating code in standard languages. Focsenghestration, this means
BPEL/WsDL. This allows GRessto exploit industrially relevant developments.

Several researchers have usetEBto compose grid services. [5] describes a graph-
ical plug-in for Eclipse that allows BEL service compositions to be generated automat-
ically. This work is notable for dealing with large-scaléestific applications. [3] dis-
cusses programmatic ways in whicl®B. can support grid computing. [18] examines
how extensibility mechanisms inf&L can be used to orchestrate grid services. How-
ever, the focus of such work is pragmatic. For example, gridises may be given a
web service wrapping for compatibility. (Semi-)automateethods of composing grid
services have been investigated, e.g. work on adapting ileen the semantic web
[14].

An important advantage of RESSis that practical development is combined with
a formal underpinning. Specifically, the samegssdescriptions are used to derive
implementations as well as formal specifications. The fdigaton permits rigorous
analysis through verification and validation. A number gbayaches have been devel-
oped by others for formalisingebservices. However, the authors are unaware of any
published work on formal methods for composarif services.



As an example of finite state methods for web services, LTS3{abelled Tran-
sition System Analyzer for Web Services [7]) allows compmbsesb services to be
described in a BEL-like manner. Service compositions and workflow descriggiare
automatically checked for safety and liveness properéSAT (Web Service Analy-
sis Tool [9]) models the interactions of composite web smwiin terms of the global
sequences of message they exchange. For verification,rtieasels are translated into
Promela and verified withi8N. The Crc (Orchestration) language has also been used
to model the orchestration of web services. [17] discudsdsanslation into coloured
Petri nets. Both this and the alternative translation imtoiela support formal analysis
of composed web servicesRESS however, is a multi-purpose approach that works
with many kinds of services and with many target languages.

As an example of process algebraic methods for web senacésmated transla-
tion between BEL and LoToshas been developed [4, 6]. This has been used to specify,
analyse and implement a stock management system and aaiegosiervice. RESS
differs from this work in using more abstract descriptidmattare translateitito BPEL
and LoTos there is no interconversion among these represental@resssdescrip-
tions are language-independent, and can thus be used te spifications in other
formal languages (e.g. SDL).REssalso offers a graphical notation that is more com-
prehensible to the non-specialist. This is important siseriice development often
involves non-computer scientists as well as technical #gpe

The CREssnotation has been previously been described in other paders re-
cently, [19] has shown how web services can be modelledAsysa Since grid services
are similar, but certainly not the same, this paper focusdéb@advances that have been
necessary to model and analyse the composition of gridcesvi

2 Describing Composite Grid Services with @ESS

CRESsis a general-purpose notation for describing servicesurgig shows the subset
of constructs needed in this paper for grid servicesg €ssupports more than this.

2.1 CressNotation for Grid Services

External services are considered tgiagtners They offer their services gibrtswhere
operationamay be performed. Invoking a service may give rise faudt.

A Cressdiagram shows the flow among activities, drawn as ellipsesklahead
to figures 2 and 3 for examples ofREssdiagrams. Each activity has a number, an
action and some parameters. Arcs between ellipses showlothef behaviour. Note
that ORessdefines flows and not a state machine; state is implicit.

Normally a branch means an alternative, but followingaek activity it means a
parallel path. An arc may be labelled with a value guard onamtguard to control
whether it is traversed. If a value guard holds, behaviour folkow that path. An event
guard defines a possible path that is enabled only once thespanding event occurs.

In CRESS operation names have the fopartner.port.operation Fault names have
the formfault.variable, the fault name or variable being optional.



|CRESS [Meaning |

/ variable <— value assignment associated with a node or an arc

Catch fault A handler for the specified fault. A fault with name and value
requires a matchinGatch name and variable type. A fault with
only a value requires a matchi@atch variable type. A fault is
considered by the current scope and progressively higivet-I
scopes until a matching handler is found.

Compensatescop& Called after a fault to undo work. Giving no scope means
compensation handlers execute in reverse order of beirijezhp
Compensation A handler that defines how to undo work after a fault. A

compensation handler is enabled only once the correspgpndin
activity completes successfully. When executed, it exptxsee
the same process state as when it was enabled.

Fork strictnes® Used to introduce parallel paths; further forks may be mktte
any depth. Normally, failure to complete parallel paths as
expected leads to a fault. This is strict parallelisti¢t, the
default). Matched byoin.

Join conditior? Ends parallel paths. An explicit join condition may be define
over the termination status of parallel activities. Thigegithe
node numbers of immediately prior activities, e.g. ‘1 && 2’
means these (and the prior ones) must succeed.

Invoke operation output |An asynchronous (one-way) invocation for output only, or a
(input faultg)? synchronous (two-way) invocation for output-input withaime
service. Potential faults are declared statically, thotigtr
occurrence is dynamic.

Receiveoperation input |Typically used at the start to receive a request for serfice.
initial Receivecreates a new process instance. Usually matched
by aReply for the same operation.

Reply operation output |Typically used at the end to provide an output response.
fault Alternatively, a fault may be thrown.

Terminate Ends a process abruptly.

Fig. 1. CRESSNotation (using BNF)

A CRESssrule-box, drawn as a rounded rectangle, defines variabkksatsidiary
diagrams (among other things). Simple variables have tiiked$-loat f or String s.
CRESsalso supports grid computing types suclCastificate (a digital security certifi-
cate) Name(a qualified name) andeference(an endpoint reference that characterises
a service instance and its associated resources).

Structured types are defined using [...] for arrays ahd}’ for records. For exam-
ple, the following defines the variabseores This is a record with fields: flodéngth
and string arrayrequencyA typical value would be the stringcores.frequency[2]

{ Float length [String word] frequency} scores

2.2 Content Analysis using Grid Services

The examples in this paper are drawn from the field of documemtent analysis (e.g.
[13]). This is used for many purposes such as investigatiggutied authorship of a



document, analysing different versions of a document tatiflelikely antecedents,
or comparing two documents for plagiarism. This is a richdfielo only a simplified
version is described in order to illustrate how orchesttgiéd services can be used.

In the example of this paper, documents are compared folasitgiusing the fol-
lowing two metrics that lie in the range [0, 1]. For both of¢beidentical documents
have a ‘distance’ of 0. Documents with a ‘distance’ of 1 areimally different.

Clause Length:The average number of words per clause is computed for eaai do
ment. Suppose the numbers are 6 and 8. The ‘distance’ betiveelocuments is
the difference between these divided by the larger vaﬂg@; i.e. 0.25.

Word Frequency:ithe instances of each word are counted (disregarding comroiats)
and the words are placed in order of decreasing frequencygites an ordered list
of words for each document (truncated to some practicat konéh as 50 words).
The ‘distance’ between the two word lists is then computedfthe relative po-
sitions of each word in the two lists (counting the first asS))ppose ‘grid’ is the
second most frequent word in one list (i.e. position 1) betfthurth most frequent
in the other (i.e. position 3). The distance for this wordhs tlifference between
their positions3 — 1, i.e. 2. If a word does not appear in the other list, its poaiti
there is notionally the length of that list. Thus if ‘grid’dinot appear in the second
list (of size 50), the distance would 58 — 1 or 49. This ensures that if a more
frequent word is missing, it has a greater distance. Théd@tnce between two
word vectors is the sum of the distances for all the individuads, normalised to
yield a value between 0 and 1.

The content analysis example makes use of two externalgragtid services that
could exist already or should be developed separately sethay are generally useful:

Counter: This calculates various measures over a documentlBlaseoperation com-
putes the average clause length. Tiard operation determines the words in de-
creasing frequency. Thidistanceoperation computes the metrics explained above
from the raw clause and word information.

Parser: This handles word lists for a document. Trerseoperation takes a document
as a string of text and splits it up into words (consecutivete and possibly dig-
its), disregarding white space. Consecutive punctuatiarke(e.g. ‘:-') are also
grouped as ‘words’. Like many grid services, the parserfid&lresults in persis-
tent storage and just returns an endpoint reference for tind ligt. This reference
can be used by other services to perform further analysesd&leteoperation
removes a stored word list.

2.3 CressDescription of The Scorer Service

The scorer is an auxiliary service that supports the mainecdranalysis application.
Its CRESSsdescription appears in figure 2. The rule-box to the bottgintrof the figure
defines types and variables. The raw datadsds— a reference to the word list being
analysed. The result &ores- the average clause length and word frequency list.
Initially the scorer receives a request to perforstareoperation on the words list
(node 1). Since calculating the two distance metrics mayrbe-tonsuming, each is



Start

~N
Catch counterError.reason

7 Reply
scorer.fextscore
scorerError.reason

1 Receive
scorer.textscore
words

‘

4 Invoke
counter.textword
words frequency

counterError.reason

3 Invoke
counter.textclause
words length
counterError.reason

K
5 Join
3884
' Uses

/ scores.length <- length [ String word] frequency

Iscores.frequency <- frequency | Floatlength
String reason

6 Reply
scorer.text.score
scores

{

Float length [String word] frequency
} scores
Reference words

Fig. 2. CREssDescription of The Scorer Service

computed concurrently (node 2). In one parallel branchcthenter service is invoked
to calculate the average clause length (node 3). In ano#ratl@l branch, a different
instance of the counter service is invoked to determine warddecreasing order of
frequency (node 4). Where both paths converge at node 5ntinisy have produced a
successful result (‘3 && 4"). The two metrics are combinetbinne record (arc leading
to node 6). Finally, the scores are returned by the scorés taller (node 6).

The scorer must allow for the counter process faulting. kanle, the word list
may be empty or may contain only punctuation. Both invocetiof the counter stat-
ically declare that @ounterErrormay occur (node 3 and 4). If this happens, the fault
is caught (arc leading to node 7). The scorer then returnfatiiereason to its caller
(node 7) and terminates (node 8).

2.4 CressDescription of The Matcher Service

The matcher offers the primary content analysis servickdaiser. Its @essdescrip-
tion appears in figure 3. The rule-box at the bottom right mgiafines types and vari-
ables. The raw data texts— text strings containing the two documents. The analysis
yieldsmetrics— the clause length and word frequency distances. The fitgl enthe
rule-box / SCORERindicates that the matcher depends on the scorer service.
Initially the matcher receives a request to performnietchoperation on the texts
(node 1). Since the documents are independent and may ke taejr metrics are
computed separately on two parallel paths (node 2). Eacfs &iya setting the relevant
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scorerError.reason

7 Invoke
scorer.textscore
words?2 scores2

scorerError.reason

5 Invoke
parser.textdelete
words1

8 Invoke
parser.textdelete
words2

9 Invoke
parser.textdelete
words1

10 Invoke
parser.textdelete -
words2 Uses

{
Float clause,frequency
11 Join 9&&10 } metrics
{

{
Iresults.scores1 <- scores1 Float length [String word] frequency
/results.scores2 <- scores2 } scores1,scores2
}results

12 Invoke
counter.textdistance
results metrics

Float length [String word] frequency
} scores1,scores2
String text1 text2

{
String text1, text2

Hexts
B Reference words1,words2
metrics L )

Fig. 3. CREssDescription of The Matcher service

text (textl/text2on the arc leading to node 3/4). The parser is invoked to er@atord

list from a document (node 3/4). The word lists are held bygheser, and returned
as endpoint referencesv¢rdsl/words® The scorer is then invoked to compute the
metrics gcoresl/scoresth node 6/7). The word lists have now served their purpose
and are deleted (node 9/10). The converging paths must leathdressful (‘9 && 10’

in node 11). The separately computed scores are combirektéaling to node 12) and
passed the counter to compute distances (node 12). The enasthrns the resulting
metrics to its caller (node 13).

The matcher allows for faults in the services it calls: aitbtwo invocations of
the parser or the scorer may fail. Any such fault is cauglttlading to node 14). The
use of a fault variableréasor) without a fault name means that only a fault value is
required: eitheparserErroror scorerErroris caught. Compensation is invoked by the



fault handler to undo any actions that have been taken (négdérhe matcher returns
the fault to its caller (node 15) and terminates (node 16).

Compensation may be needed after invoking an external gradimce this is of-
ten where work needs to be undone after a fault. The parsecatons to store data
(node 3/4) make permanent changes and so have associatpérsation: the cor-
responding word list is deleted (node 5/8). A compensatimdler is enabled once
its associated activity completes. If compensation is kedowithout an explicit scope
(node 14), compensation handlers are invoked in reverss @ribst recent first). If one
parser invocation succeeds but the other fails, only theéomill be compensated.

As has been seen, the matcher service orchestrates thesaafivo external part-
ner services (counter and parser) as well as the scorecedffigure 2). In turn, the
scorer service orchestrates further operations of theteopartner. Although four ser-
vices now have to cooperate, the user of the matcher semtceisas a whole. This is
a major advantage, because the detailed design of the sés\ttoen hidden.

The major issue is whether the services work together sroathwhether there
are interoperability problems. Even though this is a comataly small example, it
will be appreciated that there are many possibilities foorett is very easy to make a
mistake when calling a service, for example supplying aegat where a float is ex-
pected. Deadlocks are also a risk. Many more subtle probdamsirise from semantic
incompatibilities among the services. For these reasbisshighly desirable to embed
grid service development within a rigorous methodology.

2.5 The CrREssService Configuration

Now that the various services have been introduced, tkesSconfiguration diagram
can be shown. Figure 4 shows how the services here are dascfibeDeploysclause
lists the tool options and, following /', the services to Heployed. Although only
MATCHERIs named, this implicitly includes all of the other servidescause of the
inferred dependencies. The parameters of each servicédtmm in the configuration
diagram. All services, such &0OUNTER have a namespace prefix (‘cntr’), a names-
pace URI (Uniform Resource Name, ‘CounterPoint’), and a&HlaRI| where they are
deployed (‘localhost:8880/wsrf’). As can be seen, in tlasecthe services were de-
ployed on the local computer. However, they can be deploggdhere in the network.

Deploys tool options | MATCHER

COUNTER cntr urn:CounterPoint localhost:8880/wsrf

MATCHER mtch  urn:MatchMaker localhost:8080/active-bpel

PARSER pars  urn:WordSmith localhost:8880/wsrf String textName
SCORER scor  urn:UnderScore localhost:8080/active-bpel

Fig. 4. CREssDescription of The Service Configuration

Grid services (counter, parser here) may have resourcelaree after the other
parameters. The counter has no resources (shown as ‘-"pdiser has a resource: the



word list it stores, identified byextName Every instance of the parser has a unique
resource value, identified by itesource keyn grid terminology. A composite service
may also have resources. For example, if the matcher seméoe stateful then it too
would have resource declarations.

2.6 Translation of The CREssDiagrams

Translating the @eEssrepresentation ofveb services has been described previously
for BPEL [20]. However, the work reported in this paper has constilgrextended and
specialised this to handtgid services:

— A wider range of data types is now supported, including aragd arbitrarily
nested structured types. Specialised types have been &ldéealing with grid
services, such as certificates and endpoint references.

— Additional orchestration constructs have been added tomBe#EL better.

— Support has been introduced for external partners sharedgsha number of ser-
vices. Special treatment is needed to merge such desasptialifferent diagrams.

— Grid service resources are now handled.

The GREssdiagrams (scorer, matcher, configuration) hold all thaeisded to au-
tomatically generate afEL implementation and ahTosspecification. Figure 5 com-
pares translations of the content analysis example in figite 4:

— The fixed code is the framework common to all grid applicatidrhis is substantial
in the case of bTosbecause it contains many complex data types.

— The automatically generated code is shown for data typebelnaviour. The BEL
translation yields many files: onePBL file per service, one WbL file per ser-
vice/partner, and several deployment files. In additioa WsDL files are automat-
ically converted into Java. ThedTostranslation is a single file.

— The code for the external partners (counter, parser) haswritten manually. The
Java coding conventions for grid services require sevéeslfier partner.

Target|Fixed Code Generated Code | Partner Code | Total
Fileg TypegBehavioufFilesBehaviou
BPEL | 20| 5114570 1640 10 28301906

LOTOS| 840 1 530 400 2 290 2060

Fig. 5. Comparison of BEL and LoTosTranslationglines of code except for Files columns)

The BPEL implementation is substantially larger than thetlos specification, de-
spite the fact that the dToshas a significant common overhead in data typestads
has to explicitly specify functions on numbers, strings, #tat would be expected in
an implementation language. With larger examplestsis even more compact com-
pared to BPEL. The most striking difference is in the large number of fileguired to
support BPEL.
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3 Translating Web Services to BEL

Once the @Essservice diagrams have been created, their translatiomBipEa/WsSDL
is automatic. The principles behind translatimgbservices are outlined in [20]. Only
a high-level description is given here, particularly congmwheregrid services differ.

3.1 Service Creation

Orchestrating grid services require a considerable amouKML that is generated
automatically by @Ess Translation and deployment of aREssdiagram is entirely
automated, except for the one-off implementation of pargniel services. Partner ser-
vices are automatically deployed using GT4 (Globus Toalkision 4), while the or-
chestrating process is automatically deployed using ASREL.

The most important generated code is ttreBthat describes the orchestration. A
WsbL definition is created for this process since it is a grid s&nmn its own right.
A WsbpL file is also created for message and type definitions that@rermon to the
process and its partners.

The translation from €essto BPEL is complex, partly becausergL needs to be
defined in a particular order, and partly because a lot ofimédion has to be inferred.

3.2 Service Deployment

The deployment architecture is shown in figure 6. The gridises (counter, parser) are
executed with GT4. Their orchestration (matcher, scosdrandled by ActiveBEL 2.0.
Both GT4 and ActiveBEL deploy services within a container that usexi#\ (the
Apache SOAP engine). In principle, GT4 and ActiveR could be executed within
the same Apache Tomcat container. In practice, this is radiliée with the current
versions. GT4 presently uses an older version @fsAthat is incompatible with Ac-
tiveBPEL; an updated version of GT4 is required before this can bdwedoFor now,
GT4 and ActiveBPEL are run in separate containers. Actually, this is reasensibte
BPEL can coordinate grid services running on completely difieimmputers. This
would be quite likely in a realistic deployment of the coritanalysis example de-
scribed in this paper.

GT4 currently imposes another limitation on the orcheistredf grid services. The
most desirable form of security is the so-called WS-Secane€rsation that allows
credential delegatiorin grid terminology. Unfortunately the current implemetiga



of GT4 requires all services to use the same container fargad¢ibn to work. The
authors have developed a solution combining GT4 and ActxaBbut the current
AXIs incompatibilities mean this cannot be used yet. A newerioaref GT4 will
allow credential delegation to be realised.

Current limitations of ActiveBEL mean resources have to be treated transparently.
It is intended to make resources directly available to thehestrating process. End-
point references cannot be used directly by ActiveB It is planned to make BEL
processes behave more like grid services and less like weicas

3.3 Service Flow

BPEL may use a variety of constructs to describe the flow: conutid, switch), se-
quencesgequenck loops (vhile), arbitrary parallel flowsf{ow), and several kinds of
handlers (event, fault, compensation, correlatiorRe€ssimplifies this to conditions
(expression guards), arbitrary flows, and one kind of har(ékent guard). A number
of constructs used by®:L are intentionally hidden by Ress For example scopes are
implicit, and specialised constructs suchoad/essagas opposed teeceiveare used
implicitly by CRESSas required.

CRressautomatically determines and declares the links amongitesi, which are
then chained using BEL sourceandtargetelements. The BEL functiongetLinkStatus
is used withJoin to check whether a linked activity has terminated succégsfu

A Cresshandler is translated into the corresponding type E Bhandler. For ex-
ample,Catch andCatchAll introduce a fault handler, whilompensationintroduces
a compensation handler. In principle, handlers may be d&fimany scope including
the global one. In fact, WS-BEL does not allow global compensation handlerseSs
regularises this situation by allowing handlers at two lev&lobal handlers are trans-
lated as part of the top-level flow. The other place where €sallows handlers is in
association withnvoke. Although this is a restriction compared t®BL, it is where a
handler is mostly likely to be required anyway.

3.4 Supporting Orchestration

Data types in @essare either simple ones defined by XML schemas (e.g. floatggtri
or are arbitrarily nested structures of records and arBy#t-in types are used for the
former, while complex types are generated for the lattere €sautomatically handles
the rather different ways in whichfEL uses variables: as message variables (input,
output) or as data variables (assignment, expression).

BPEL processes orchestrate external partner services. Irhiest may be web ser-
vices or grid services (more precisely, stateless or sttéfhe WspL for partners is
automatically generated from ther€ssdiagrams, along with service deployment de-
scriptors. If a partner service already exists, it can be déectly. The GRESSview is
likely to be a subset of the partnerdtiL, since an orchestrating process is likely to use
only certain ports and operations of an already defined eaitra partner web service
does not already exist, its 8L is translated into Java using the GT4 tewdI2java
The skeleton partner service must then be implemented rignua



3.5 Compatibility of ActiveBPEL and GT4

Resource addressing is a key issue for grid services. Sffatgriation is handled sepa-
rately from the service itself. A WS-Resource pair (seryiles state) is encoded in an
endpoint reference, as defined by the WS-Addressing scl@&mbhandles this implic-
itly, meaning that the ports used by clients are bound todaeand resource. To use
another resource with the same service, a separate endef@rgnce is created with
the relevant resource key.

However, ActiveB’EL is not able to handle such a resource implicitly. Endpoifat re
erences thus have to be passed explicitly as parameteid segvice partners, allowing
them to infer resource pairs. This requires compatibilftthe WS-Addressing used by
GT4 and ActiveBEL. Unfortunately, the endpoint references generated by GTod
currently conform to the usual schema. Instead a variargreehwith aReferencePa-
rameterselement is used, leading to incompatibility. By altering $chemas in use,
it is possible share endpoint references consistently.dtew work remains to allow
ActiveBPEL to use resources directly.

Grid services supported by GT4 requirelacument/literalSoAp binding. This is
one of the binding styles that complies with the WS-Interapdity standard. However,
this binding does not convey the operation name. Insteadstitucture of the S8ap
message body must be used implicitly to identify the operakieing invoked. This
causes ambiguity when a service has several operationsheittame input signature,
forcing use of distinct message parts even though they drlegioally necessary.

4 Translating Grid Services to LOTOS

CRrEssalso translates grid services iiLos. Only the rigorous analysis this permits is
discussed here.@Toswas originally standardised for specifying and analysioge
munications standards (Open Systems Interconnectiomjektr, LOTOSis a general-
purpose language that supports precise specification bfdmtaviour and data: it is a
process algebra supplemented by algebraic data types.

A L oTosspecification is automatically generated from saneCRESsdiagrams
that are translated into=L/WsDL. A default specification is provided for external
partner services, though this just respects their operatierfaces. For more detailed
analysis, the partners are specified manually.

Because @Essis graphical, it is more understandable and compact thaodire-
sponding code. Although this paper is focused on practieatidpment of composite
grid services, the use of a formal method is an importantdtegi in their design. Apart
from giving a precise definition of what orchestration medradlows rigorous analysis
of services prior to implementation. The use of formal mdghis thus integrated into
more conventional development techniques.

In practice, grid services are manually debugged. The gée@loTOS can, of
course, be manually simulated as well. However, an impbhktanefit of the formalisa-
tion is that it supports a wide variety of automated analyses

An important issue in orchestrating grid services is to emsioeir interoperability.
Problems arise from simple misinterpretation of interfamefrom more subtle semantic



incompatibility. Such problems often lead to deadlock mmiosterms, as determined
by automated behaviour exploration or through model chregki

Service properties can also be model checked. Safety atkids properties of grid
services can be formulated in ACTL (Action-based Compateti Temporal Logic).
For example, the matcher service must not fault (safety,aaminvocation of it must
eventually receive a response (liveness). Unfortunategbmplex data types and infi-
nite data sorts make model checking somewhat impractioathiis reason, the authors
favour the use of rigorous validation instead of verificatio

MusSTARD (Multiple-Use Scenario Test and Refusal Description [2H3 been de-
veloped as a language-independent and tool-independprdagh for expressing use
case scenarios. These scenarios are automatically teshéhto the chosen language
(here, LoTo9) for automatic validation against the specification. Thigseful for initial
validation of a specification, and also for later ‘regressasting’ following a change in
the service description. Scenario-based validation sgd®d for checking interference
among supposedly independent services — the so-calledddateraction problem. In-
teractions may arise for technical reasons (e.g. confljct@mvices activated by the same
input) or for resource reasons (e.g. services sharing airesor external partner).

A major advantage of MSTARD is that the use of an underlying formal method is
entirely hidden from the user. An automated procedurelatasGRESSand MUSTARD
into LoToS validates the scenarios, and reports the analysis in Egeindependent
terms. In other words, the use oblLos (or any other formal language) is invisible. In
fact, the tool user merely draws diagrams and clicks a butt@heck their integrity.

Grid services are formally validated by TARD scenarios that check critical as-
pects of their behaviour. It is possible to check servicdsatation as well as in com-
bination. This can effectively and efficiently detect seevinteractions, though failure
to find interactions does not mean the services are interaftée. MUSTARD supports
scenarios with sequences, alternatives, non-determimignturrency and service de-
pendencies. In addition, both acceptance tests and rééstalmay be formulated.

5 Conclusions

It has been seen howRE sshas been adapted to support orchestration of grid services.
This offers the advantage that new composite services caarstructed from existing
ones. As a realistic example, document content analysibdms used to explain how
grid services can be orchestrated.

CRrREssdescriptions of composite grid services are translatexdBmte L/\WWSDL for
implementation. The orchestration is performed by ActireB while the partner grid
services are executed by GT4. The sanrEEsdescriptions are also translated into
LoTos for rigorous validation and verification. The whole devetamnt process is
highly automated. The use of advanced software enginetgaitmiques (visual pro-
gramming, formal methods) has thus been integrated intedhent grid computing
practice.

Content analysis has been used as an example of how ordluestian be useful in
grid computing. This is a realistic problem, although thasilration is a small one. The
authors have also researched the use of grid computing ial smience, specifically



grid services for occupational data analysis. Services tiis domain are much more
complex, and yet can be formalised and analysed rigorosshguORESS

It has hopefully been demonstrated thatESsis valuable in orchestrating grid

services, implementing and analysing them.
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