
Kenneth J. Turner and Gavin A. Campbell. Goals and Conflicts in Telephony,
in Masahide Nakamura and Stephan Reiff-Marganiec (eds.),
Proc. 10th Int. Conf. on Feature Interactions in Software and Communications Systems,
pp. 3-18, IOS Press, Amsterdam, June 2009.

Goals and Conflicts in Telephony

Kenneth J. Turner and Gavin A. Campbell
Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

e-mail: kjt | gca @cs.stir.ac.uk

Abstract.
Goals are abstract, user-oriented objectives for how a system should behave. To

be made operational, they are refined into lower-level policies that are executed dy-
namically. It is explained how previous work on policy-based management has been
enhanced with a separate goal system that allows goals to be specified, analysed,
refined, and achieved. It is shown how conflicts can arise at several levels among
goals, and how these conflicts are detected and handled. Although the approach is
general, it is illustrated through an application to Internet telephony.

Keywords.
Call Control, Goal, Goal Conflict, Goal Refinement, Policy-Based Management

1. Introduction

Goals are introduced as a high-level, abstract way for usersto define system objectives
in a non-technical manner. The concept of goal refinement is explained. In contrast to
other work, which relies on static logical analysis, the approach here views refinement
as a dynamic optimisation task.

1.1. Background

The trend in communications is for people to be always contactable – in the office, at
home, or on the move. As a result, there is an increasing need for users to be able to man-
age their communications flexibly. Traditional telephony features are network-centric,
being designed by the network operator and supported in network equipment. Internet
telephony is becoming increasingly widespread. FollowingInternet philosophy, func-
tionality tends to be located at the edges of the network. In particular, this means that
customisation of call handling can be placed much more in thehands of end users.

The authors and their colleagues have exploited this trend by developing a policy-
based management system for Internet telephony (e.g. [11]). Policies operate at a higher
level than features, and offer many advantages such as orientation towards user needs,
flexibility, and customisability. A system called ACCENT (Advanced Component Con-
trol Enhancing Network Technologies,www.cs.stir.ac.uk/accent) has been developed for
supporting policy-based management. The ACCENT system was designed for end users,
e.g. policies are formulated through a wizard rather than requiring programming or de-
tailed technical knowledge. Although initially developedfor Internet telephony, the ap-
proach is general and has now been extended to other applications such as managing
sensor networks, wind farms and home care systems.

1

Although policies are higher-level and more user-orientedthan features, they are
still relatively imperative. What is required is a more abstract way for users to formulate
their needs. This has now been achieved through the design and implementation of a goal
system. Goals are persistent, abstract, user-oriented objectives for how a system should
behave. They are declarative statements of what is required, not operational statements
of how they should be achieved. In fact, they are sufficientlyabstract that they cannot
be realised directly. A process of refinement is needed to mapthe goals onto lower-level
policies that can then be used to achieve them.

The work in this paper describes how goals are specified and statically analysed
to create policies that realise them. Offline analysis is also concerned with appropriate
definition of goals. Support at run time is provided to choosethe most relevant policies
according to the dynamically changing state of the system. The approach allows users to
define high-level goals for how the system should behave (e.g. how calls are handled).
The details of how goals are achieved can be largely hidden from the users.

Feature interaction is a long-known phenomenon in telephony. The authors and their
colleagues have investigated policy conflict as the higher-level equivalent in policy-based
systems [10]. The new work reported here has raised the approach to a more abstract
level. Not surprisingly, conflicts also arise with the use ofgoals. As will be seen, such
conflicts manifest themselves at several levels.

1.2. Goals and Policies for System Management

Goals have a venerable history in artificial intelligence, where they are often used to
define desired states of a system. Goals are typically used bya planning system to build
sequences of actions that achieve them. A similar approach has been adopted in agent-
based systems.

Goals in the context of policy-based management have received little study. Here, the
notion of a goal is an objective for system behaviour. Refinement of goals into policies
is typically treated through logic: policies are identifiedto meet the goals through a
process of logical entailment. This is essentially a static(offline) analysis. In the work
reported here, goal refinement is viewed as a numerical optimisation problem. The main
advantage is that goals can be supported in a fully dynamic way: as the system and its
environment change, the policies that achieve goals are automatically evolved to give the
best match to current circumstances.

In the formulation adopted, goals are associated with numerical measures (e.g. ‘call
cost’ or ‘multimedia use’) for how well they are achieved. Ingeneral, such measures
are maximised (positive goals) or minimised (negative goals). Goal measures are arbi-
trary functions over system variables, though for practical and technical reasons they
are normally weighted sums. Since there are usually multiple (often conflicting) goals,
their measures are combined into an overall evaluation function that assesses how well a
candidate set of policies meets the full set of goals. The evaluation function is again an
arbitrary formula, though normally a weighted sum of goal measures.

Goals are sufficiently high level that they cannot be used directly. Instead, goals are
realised through prototype policies (prototypes for short) that contribute to them. These
prototypes form a library of ‘building blocks’ for accomplishing goals. When goals are
first defined, they are statically analysed against the available prototypes. This identifies
the prototypes thatmaycontribute towards each goal. However, the actual selection is de-

2

ferred until run-time since the most appropriate policies are likely to depend on the actual
circumstances (e.g. the current bandwidth or the cost of a call). Prototypes are therefore
selected and instantiated dynamically as normal policies.In addition, prototypes may
have parameters that are dynamically optimised.

The benefit of this approach is that the existing ACCENT policy server is barely
affected by the new goal system. As far as the policy server isconcerned, it handles
policies as usual (except that some policies derive from goals). Other mechanisms such
as handling policy conflicts at run time can therefore operate as normal.

Policies are written in APPEL (Adaptable and Programmable Policy Environment
and Language,www.cs.stir.ac.uk/appel). This is designed to be extensible for new appli-
cation domains. The core policy language has extensions forregular policies and resolu-
tion policies. In turn, these are specialised for each domain: call control is currently one
of several rather different applications. Since policies are internally XML, extensibility
is achieved by defining APPEL through a hierarchy of schemas that build on each other.

Although these schemas define the formal structure of APPEL, this is not sufficient.
The schemas are therefore supplemented by ontologies that define the concepts and re-
lationships in each application domain. Again this is hierarchical, with a core ontology
that is extended for each application.

For the work reported here, the schemas and ontologies have been extended to sup-
port goals and prototypes. The latter are intentionally defined in a very similar way to
policies (both regular and resolution policies). This gives a consistent structure to the
language, and also allows common software support throughout all system components.

1.3. Related Work

Planning in artificial intelligence goes back about 40 years(e.g. the STRIPS system).
Much more recent is work on agent-based systems. As an example, 3APL (Agent Pro-
gramming Language,www.cs.uu.nl/3apl) defines goals and beliefs. Plan revision rules
allow plans to be created from predefined rules, using actions from an action base to
achieve goals. In agent-based approaches, goals are achieved through planning using var-
ious kinds of agents (goal-based, logical, knowledge-based). Goals have also been ad-
dressed in requirements engineering. Systems such as KAOS (originally Knowledge Ac-
quisition in autOmated Specification [12]) aim to build a formal proof that the require-
ments derived for a system meet its goals.

Goals in a policy context are interpreted rather differently. The notion of a policy
hierarchy was first identified in [8]. This led to the idea of refining higher-lever policies
into lower-level ones. [6] extended this notion into a continuum of policies, with goals
being policies at the highest level; however, this is currently just a framework without a
concrete implementation. A formal approach to goal refinement using Event Calculus is
described in [3]. This has been implemented using KAOS, with refinement patterns being
used to decompose goals into subgoals. As another formal approach, [9] uses temporal
logic in a two-stage refinement process from goals to subgoals, and subgoals to policies.

In the context of feature interaction, [7] identified the problem of goal conflict in
telephony. This approach uses agents to negotiate a plan on behalf of end users to avoid
conflicts. This is a different kind of problem from the one tackled in this paper. The User
Requirements Notation for goals [2] complements the current paper, and will be studied
for possible synergy in future. Fuzzy policies with weights[1] are reminiscent of the nu-

3

merical approach taken here. Although the work reported in this paper has concentrated
on goal refinement as a practical technique, issues of goal conflict have inevitably arisen.
These can be regarded as a high-level form of feature interaction. The related notion
of policy conflict has been investigated in [10]. As will be seen, goal conflicts arise at
various levels as the goals are achieved through refinement and execution.

The work in this paper differs in a number of important respects from other ap-
proaches. Although some offline analysis is performed, the bulk of the analysis happens
at run time. This is intentional as the choice of policies should depend on the prevail-
ing circumstances. Virtually all other work uses offline techniques, and hence cannot
anticipate changes in the system environment.

The approach is based on numerical rather than logical reasoning. This is more flex-
ible in that it does not require any absolute notion of fulfilling goals. Rather, it is possible
to satisfy goals only as far as is possible (which may be the only practical possibility).
Nearly all other approaches are based on strict logic.

A pragmatic rather than a theoretical approach is followed.Requiring use of formal
methods is a considerable barrier for most engineers and designers, and is inappropriate
for end users. The need to perform goal refinement at run time is a particular challenge,
since most formal techniques require considerable computation. Almost all other goal
refinement techniques are formal.

1.4. Paper Outline

Section 2 discusses the goal system architecture, how goalsand prototypes are formu-
lated, and the kinds of analysis that are performed to realise goals through policies.
In particular, the nature of goal conflict is investigated. Section 3 illustrates the ideas
through their application to telephony. Section 4 summarises the approach, and indicates
that it has been applied in other application domains.

2. The Goal System

APPELhas been extended to define goals and prototypes. Goal refinement has also been
implemented in a package called OGRE (Optimising Goal Refinement Engine). The new
goal capabilities have required only small changes in the existing policy system.

2.1. System Architecture

The overall system architecture to support goals and policies is shown in figure 1. For
historical reasons, and because the system primarily dealswith policies, a number of
components are labelled ‘Policy’. However, apart from regular policies, the system also
deals with goals, prototypes, resolution policies (that deal with conflicts), and variables
(that may be used in goals and policies). The major system components communicate
via socket connections (shown as grey arrows in the figure). This gives flexibility in
distributing them across processors, though they may all run on one physical machine.
The system components have the following functions:

Managed System:the system under control, e.g. a softswitch in Internet telephony [11].

Policy Store: an XML database that stores information about goals and policies [11].

4

Policy Server

Static
Analyser

Dynamic
Analyser

Ontology
Server

Policy
Manager

Policy
Interface

Policy
Store

Managed
System

Policy
Wizard

Policy
Selector

Conflict
Manager

Context
Manager

End
User

System
Admin

Conflict
Analyser

Goal Server

Figure 1. System Architecture

Policy Server: the heart of the policy system [11]. The policy manager is theinterface
to the policy store, isolating the rest of the system from theparticular choice of
database. It receives new or updated goals and policies fromthe policy wizard, and
also contextual information from the context manager. Whengoals or prototypes
are modified, the static analyser is notified. This may resultin changes to the gen-
erated policies. The policy manager is also asked to query the policy store when
event triggers are received. These arrive from the managed system and are passed
to the policy selector. This chooses relevant policies (i.e. those associated with this
trigger and whose conditions are met). If any triggered policies are derived from
goals, the dynamic analyser is notified. This produces an optimal set of policies
that are submitted to the conflict manager. Conflicts among policy actions are de-
tected and resolved. Finally, a compatible and optimal set of actions is sent via the
policy interface to the managed system.

Policy Wizard: a user-friendly interface for defining and editing goals andpolicies [11].
Besides the original near-natural language wizard, a second wizard has now been
created using interactive voice response, and a third usingdigital pen and paper.

Context Manager: an interface for providing additional information about the managed
system (e.g. user availability, schedule or work relationships) [11].

Conflict Analyser: a tool to analyse policies offline for conflict-prone interactions [5].

5

Ontology Server: a generic interface to ontology-based information about each applica-
tion domain [4]. A domain-specific ontology is used by the policy wizard to define
valid goals and policies, by the offline conflict analyser, and by the goal system
both statically and dynamically.

Goal Server: the heart of the goal system. The static analyser is invoked when goals or
prototypes are added, modified or deleted (see section 2.4).The dynamic analyser
is invoked when goal-derived policies are triggered (see section 2.5).

Although there have been extensions to the ontology server and the policy wizard
for the goal system, there has been little change to the othercomponents. The new work
has mainly been on the goal server. Besides this, the APPEL policy language and the
domain ontologies have been extended to support goal refinement.

2.2. Goals

Currently, all goals must be known locally; future work willhandle distributed goals.
A goal is a simplified form of policy. There is no trigger because goals always apply.
A goal may have a (compound) condition that uses general information like time of
day or an environment value. Unlike a policy, a goal has a single action of the form
‘maximise(measure)’ or ‘minimise(measure)’. The measure is a numerical assessment
of how well a goal is achieved. Positive goals aim to maximisetheir associated measure
(e.g. network use), while negative goals aim to minimise their measure (e.g. call cost).

A goal measure is like a sub-goal, but isdefinedrather thanrefined. A measure is
a formula over relevant system variables. Some variables are held per user (or entity),
while others are shared across the system.

Uncontrolled Variables: these are variables that are beyond the control of the policy
system, typically ‘environmental’ factors (e.g. the call cost per second, the fre-
quency of incoming calls).

Controlled Variables: these are variables controlled by the policy system (e.g. the allo-
cated bandwidth, the media used by a call).

Derived Variables: these are pseudo-variables defined in terms of (un)controlled vari-
ables (e.g. the call cost as cents/second× duration).

Goal measures and their associated variables are, of course, domain-dependent.
Since they are often relatively fixed for each domain, it makes sense to define them once
in the domain ontology rather than for each individual goal.A goal definition may there-
fore refer to these definitions as derived variables.

As a concrete example, the definition below gives a goal that minimises call cost.
The elements here are also found in policies. A goal has the following attributes: an iden-
tifier (a unique text string), whether it is enabled (allowing deactivation without deletion),
when it was changed (date and time in XML format), an owner (the user who defined it),
and to whom the goal applies (the stir.com domain here). Two goal conditions are given,
combined with ‘and’: the goal applies only on weekdays (1 = Monday, 5 = Friday) when
the call bandwidth exceeds 128 Kbps. At weekends or for low-bandwidth calls, the goal
does not apply. The goal action is to minimisecall cost – a derived variable that calcu-
lates the cost of a call. (XML schema rules require argumentsto be given as attributes
arg1, etc.) The following is the XML representation of this goal (omitting the obvious
closing tags for brevity):

6

<goal id=′′Minimise call cost′′ enabled=′′true′′ changed=′′2009-01-03T17:18:00′′

owner=′′admin@stir.com′′ applies to=′′@stir.com′′
>

<policy rule>

<conditions>

<and/>
<condition> <parameter>day <operator>in <value>1..5
<condition> <parameter>bandwidth <operator>gt <value>128

<action arg1=′′call cost′′>minimise(arg1)

2.3. Prototypes

Goals are not achievable directly as they are abstract. Instead they are realised through
sets of policies. Regular policies can contribute to goals.However, the need to manage
goal-related policies leads to defining special prototype policies. These are very similar
to regular policies, but are considered separately by the goal system: only prototypes are
considered in goal refinement. This gives flexibility in thatthe policy system may use
regular policies only, prototype policies only, or (typically) a combination of both.

Prototypes have aneffect attribute that defines how they modify one or more system
variables (and thus how they contribute to goal measures). At definition time, this is used
to identify the relationships between goals and prototypes. At run time, this is used to
determine the set of policies that optimally satisfy the goals. Prototypes are also allowed
to have parameters (prefixed by ‘$’) that are chosen at run time by the goal system.

The effect of a prototype is an abstraction of the actions it can perform. More specif-
ically, an effect is defined in the same terms as a goal measure(both being described by
a domain ontology). As an example, adding video to a call has several effects: increasing
bandwidth, potentially increasing cost, decreasing privacy, etc. Which of these effects
needs to be stated depends on what a domain expert defines as important to goals. For
example, bandwidth and cost may be considered significant, but privacy (in the context
of company communications) may not.

An individual effect names a system variable, an operator, and an expression (e.g.
‘call bandwidth += 128’). The basic operators are ‘=’ (to set a variable), ‘+=’ (to increase
it) or ‘-=’ (to reduce it). These are the operators that have been found most useful, though
others would be possible (e.g. ‘*=’, ‘/=’).

An interesting situation arises when the effects of multiple prototypes on a goal
are considered. Most effects are independent and can be combined (e.g. adding video
increases bandwidth, as does adding a digital whiteboard).However, some effects can be
permitted only once per execution. For example, forwardingcalls reduces the number of
calls received, as does rejecting personal calls. If both ofthese were allowed to contribute
to a goal, the number of calls received would be incorrectly reduced twice. There are
therefore special ‘exclusive’ forms of the operators: ‘+~’and ‘-~’.

The validity of a set of prototypes is checked against a goal.If their effects are in
conflict, that particular combination is not allowed. For example, two prototypes may
not fix the same system variable in the same execution. Equally, a prototype making an
exclusive change to a system variable (e.g. ‘+~’) is incompatible with any other prototype
that affects the same variable. These conflicts are automatically detected by the goal
system and are handled by excluding these combinations.

As a concrete example, the definition below gives a parameterised prototype that
manages call duration. The elements here are also found in policies. The effect of the

7

policy is to limit call duration to the value of theduration parameter. Three policy rules
are tried in sequence until one with a matching trigger is found. On initial connection, a
call timer is started with lengthduration. On disconnection, the timer is stopped. When
the timer expires, the call is forcibly disconnected.

<prototype id=′′Call duration′′ enabled=′′true′′ changed=′′2009-01-03T17:18:00′′

owner=′′admin@stir.com′′ applies to=′′@stir.com′′

effect=′′duration = $duration′′
>

<policy rules>

<sequential/>
<policy rule>

<trigger>connect
<action arg1=′′call timer′′ arg2=′′$duration′′

>start timer(arg1,arg2)
<policy rules>

<sequential/>
<policy rule>

<trigger>disconnect
<action arg1=′′call timer′′>stop timer(arg1)

<policy rule>

<trigger arg1=′′call timer′′>timer expiry(arg1)
<action>disconnect

2.4. Static Analysis

Static analysis in the goal system is activated when a goal orprototype is created, mod-
ified or deleted. The policy server informs the static analyser of the relevant identifier.
When a new goal is defined, the static analyser retrieves existing prototypes and evaluates
their effects against the goal measure. (A new prototype is analysed similarly.)

Whether a prototype contributes to a goal is determined by comparing its effects
with how the goal measure is defined (i.e. which system variables it uses). A prototype
is considered to contribute to a goal if it affects one or moresystem variables involved
in the measure. The prototype effect may modify an arbitrarily complex measure. The
sense of the effect will therefore not be known until run time, when it may worsen or
improve the evaluation of including this prototype.

For each prototype, a set of the goals it contributes to is created. This makes use of
information in a domain-specific ontology about system variables. Typically a prototype
contributes to one or more goals. If this set is empty becausethere are no relevant goals,
this is not an error. A library of useful prototypes is normally created by a domain expert.
When goals are defined, only some prototypes may be relevant.But as future goals may
require other prototypes, they are all appropriate.

The prototype is then instantiated as a regular policy. Thisis a copy of the prototype,
with the<prototype> tag replaced by<policy>, and with a unique new identifier de-
rived from the original one. To the rest of the policy system,this generated policy looks
like any other. The policy server will therefore apply the policy at run time exactly as
normal. However, it is necessary to identify such policies through asupports goal at-
tribute that only goal-derived policies carry. This allowsthe static analyser to deal with
modification or deletion of a goal or prototype: the policiesgenerated from these may
need to be altered with regard to the goals they support, or may need to be deleted if
these goals no longer exist.

8

Prototype and goal conditions are normally copied into a policy in a form such as:
prototype condition and (goal condition 1 or goal condition 2). This ensures that the
generated policy will be triggered only if the prototype conditions are satisfiedand also
the associated goal conditions. Some goals that a prototypecontributes to may not have
conditions; these have conditions that are implicitlytrue. Absence of a goal condition
therefore means that the whole set of goal conditions will always hold. In such a case,
the goal conditions are not added to the prototype as they aresuperfluous.

When a prototype is instantiated as a policy, it retains any prototype parameters.
These become relevant only during dynamic analysis.

2.5. Dynamic Analysis

Dynamic analysis in the goal system is activated when an event trigger leads to a set
of policies, i.e. those whose triggers match the event and whose conditions are satis-
fied. This set may contain goal-derived policies (identifiedthrough theirsupports goal
attribute). If no policies are goal-derived, the policy server continues policy execution
as normal. However if there are such policies, their identifiers are sent to the dynamic
analyser.

The dynamic analyser now chooses the subset of these policies that optimises the
overall goal evaluation function. This function can refer to any system variables, includ-
ing those that vary dynamically (such as the current call bandwidth or the number of
calls received so far). This means that the most appropriateset of policies can be selected
for the current circumstances. It also means that the selection of policies may vary as the
system evolves over time. For example, if the system load increases significantly or the
call cost changes on entering a different time period, the goal system will automatically
adapt to the changed circumstances. The dynamic approach ismuch more flexible than
the offline, logic-based techniques used in most other approaches.

At this point, any optimisation algorithm can be used (e.g. hill-climbing, the simplex
algorithm, a genetic algorithm). In optimisation terminology, the evaluation function is
the objective or fitness function. The goal system is designed to use any optimisation
algorithm that conforms to a defined interface.

It is possible during optimisation to discover that more than one combination of poli-
cies leads to the same optimal value. Typically this happenswhen two prototypes have
exactly the same exclusive effect: choosing either gives the same numerical evaluation.
In fact this is a kind of conflict, and the dynamic analysis reports it as a probable error. A
more subtle issue is when the optimal solution is unique, buta number of near-optimal
solutions are also available. This is considered further insection 3.5.

Currently, and for practical reasons, a simple optimisation algorithm is used: the
overall evaluation function is calculated for all possiblecombinations of policies. This
algorithm is exponential in the number of policies, and so isimpracticable if there are
many policies. However, in practice this has not been found to be a problem. The pol-
icy system can handle hundreds or thousands of policies. Even if these are all derived
from goals, that is not in itself problematic. What matters is how many such policies are
triggeredat the same time.

From the potentially large number of policies, triggering typically selects only about
half a dozen policies. This happens because eligible policies must be for the relevant
user (or entity), must have a matching trigger, and must havesatisfied conditions. In

9

telephony, for example, only caller and callee policies areselected (plus those for the
domain they belong to); this substantially reduces the number of eligible policies. Tele-
phony policies are triggered only on call setup, mid-call, or on call clear-down; again,
this significantly cuts down on relevant policies. Finally,telephony policies usually have
conditions (e.g. time of day, who the caller is) that furtherrestrict the selection. Other
domains (e.g. home care, sensor networks) work with similarly reduced sets of policies.

The result is that the dynamic analyser usually has to optimise only a modest set of
policies. For up to a dozen policies, say, the simple exhaustive algorithm is more efficient
than more elaborate algorithms that are best for large optimisation problems. However,
if other application domains lead to the need for optimisinglarge sets of policies, then a
different optimisation algorithm could readily be slottedin.

Optimisation deals with one other aspect: prototype parameters. These are left unin-
stantiated when policies are created from prototypes. At run time, the dynamic anal-
yser considers optimal choices for parameters as well as forpolicies. Exactly the same
mechanism applies: the choice of parameters modifies the effects and therefore the over-
all evaluation. However, parameters have to be optimised ina different way. Given rea-
sonable restrictions on the evaluation function (monotonicity), only the extremal values
of parameters need be considered. If call bandwidth is a parameter, for example, then
only the minimum and maximum permissible bandwidths shouldbe tried: one or other
will achieve the optimal value. The optimisation also allows for parameters being drawn
from a discrete but ordered set (e.g. audio, whiteboard, video) rather than from a range.
Knowledge about extreme values is domain-specific, and is defined in a domain ontology.

Instantiating the parameters of a policy leads to a new temporary policy that ap-
plies only during processing of the current trigger. This policy is created by copying the
parameterised policy, substituting the optimal parametervalues, and giving the policy a
unique identifier.

The selection of policies (and parameters) with the highestevaluation determines the
identifiers returned to the policy server for execution. Typically only a subset of the goal-
derived policies is eligible. The subset is combined with the eligible regular policies and
processed as normal by the policy server. This requires the set of actions dictated by these
policies to be checked for conflict. Resolution policies detect conflicts and determine a
compatible set of actions (e.g. disregarding lower-priority policies) [10].

2.6. Identifying Goal Conflicts

Now that the basis of goal refinement has been explained, it ispossible to be precise
about the ways in which goals can conflict with each other. Although these have been
mentioned in passing, they are collected here for reference.

Conflicts do not really arise during static goal analysis (i.e. when goals are defined).
However, it is possible to find that a goal cannot be achieved by any prototype (or can
be only partially satisfied). This happens if prototypes cannot be found to affect all the
controlled variables in a goal measure. This is probably nota conflict, though it reflects an
inconsistency between the goals and the prototypes available to achieve them. However
it is an error, and is reported by the static analyser.

Conflicts do arise during dynamic goal analysis (i.e. when goal-derived policies are
processed). It may be found that certain goal-derived policies cannot be considered in
combination (because they affect system variables inconsistently, or they make exclusive

10

changes to a system variable). This is a conflict that is resolved by excluding the imper-
missible combinations. It may also be found that different combinations of goal-derived
policies yield the same optimal value. This indicates that the prototypes are too weakly
characterised in their effects and cannot be distinguished. This is a kind of conflict, and
is reported by the dynamic analyser.

Following dynamic goal analysis, the resulting policies may be found to have con-
flicting actions. Although this is part of the standard conflict detection performed by
the policy server, it is a consequence of goal refinement and reflects an indirect conflict
among the goals. The authors have developed a technique and tool for filtering conflict-
prone policies [5]. In future work, this will be adapted to offline analysis of goals and
prototypes as well as policies.

There is an interesting relationship among conflicts found through offline filtering,
through dynamic goal analysis, and through online detection of action conflicts. Essen-
tially all three techniques look for incompatibilities. Itis possible to detect the same kinds
of conflicts at all three levels. However, this is not normally desirable because it would
require effects to be considered at a low level of abstraction (i.e. the level of individual
policy actions). Both filtering rules and goal measures should be formulated more ab-
stractly, implying that action conflicts will usually be in addition to the kinds of conflicts
detected at higher levels.

3. Application to Internet Telephony

To illustrate how goals are supported, this section gives concrete examples of how
a hypothetical company might wish to optimise its voice communications. For this
application, the managed system is a softswitch such as SER (SIP Express Router,
www.iptel.org/ser). The XML representation of goals and prototypes was illustrated in
sections 2.2 and 2.3. This section uses pseudo-code for readability (and is similar to the
web-based wizard). Triggers are indicated bywhen, conditions byif, and actions bydo.

3.1. Goals

For the telephony system, suppose that the uncontrolled variables arerate (call cost,
cents/second) andquality (a subjective measure, 1 = poor to 10 = best). The controlled
variables arebandwidth (Kbps), duration (typical call length, seconds),handled (calls
handled by the user, per day), andreceived (calls received by the user, per day).

The company is presumed to have the communications goals shown in table 1.
This is a subset of a larger set of goals that may deal with other factors such as avail-
ability, reliability, security, etc. The textual descriptions of the goals are high-level and
rather woolly. To make them operational, they need to be related to the system variables.
Whether the company’s goals are appropriately formulated here is not relevant. What is
important is that the interpretation of each goal is made explicit and precise.

Each goal is associated with a numerical measure (network use being split into sub-
measures for bandwidth use and call handling). The goal measures are defined as derived
variables. These are combined into an overall evaluation function that is a weighted sum
of the goal measures, again treating network use as two subsidiary measures. Note that
measures to be minimised are preceded by a minus sign. For a discussion of where the
scaling factors and weights here come from, see section 3.5.

11

Goal Description

1 the company is keen to promote the use of multimedia in its communications
if it is a weekday
do maximise multimedia use
measure 0.03×bandwidth×quality

2 the company wishes to use its communications network to the full
do maximise network use
measure 0.0008×bandwidth×duration and 6.0×handled

3 call cost can become important so the company wishes to control this
if it is a weekday and the call bandwidth exceeds 128 Kbps
do minimise call cost
measure rate×duration

4 the company wishes to minimise interruptions to staff during lunch breaks
if it is 1PM–2PM
do minimise interruption time
measure 0.02×received×duration

Table 1. Sample Goals

3.2. Prototypes

The prototype library will include a wide range of policies to meet the company’s likely
goals. For the sake of example, suppose that the prototypes in table 2 are those relevant
to a call arriving or a call being made.

3.3. Static Analysis

As each of the goals in section 3.1 is defined, the prototypes that contribute to it are
determined. The prototypes in section 3.2 are a subset of thefull library; the table below
shows their static analysis. The information in such a tableis used to create a goal-derived
policy for each prototype, stating which goals a policy contributes to:

Prototype
Goal 1 2 3 4 5 6 7

1 ! ! !
2 ! ! ! ! ! !
3 ! !
4 ! ! ! !

3.4. Dynamic Analysis

As telephony events are received from the softswitch, they trigger the selection of regular
policies as well as those generated during static analysis of goals. Suppose that there are
only the policies derived from the prototypes in table 2. Theweight associated with each
goal measure is taken as 1.0 (see later discussion in section3.5).

Imagine that a long-distance call now arrives about a contract, that the call band-
width is low, and that the callee is available. The policy server will determine that poli-
cies 1 (add lawyer), 2 (add video), 4 (5 minute limit), 5 (parameterised limit) and 7 (re-
move whiteboard) are eligible for execution. This will be notified to the dynamic anal-

12

Prototype Description

1 a lawyer must be conferenced into calls about contracts
when a call arrives
if it is about contracts
do conference in a company lawyer
effect bandwidth += 64

2 low-bandwidth calls should make use of video
when a call arrives
if the bandwidth is less than 1 Mbps and the call has no video
do add video
effect bandwidth += 512

3 if the callee is busy, forward the call to a secretary (note ‘-~’ for an exclusive change)
when a call arrives and the callee is busy
do forward the call to a secretary
effect received -~1

4 expensive calls should be limited to 5 minutes
when a call is made
if the cost exceeds 0.2 cents/sec
do start a timer to limit the call to 300 sec
effect duration = 300

5 calls should be limited by a duration parameter that is dynamically optimised
when there is a call
do start a timer that limits the call to $duration seconds
effect duration = $duration

6 if the callee is busy for a personal call, reject the call witha suitable message
when a call arrives and the callee is busy
if it is a personal call
do reject the call and play a busy message
effect handled -~1 and received -~1

7 remove a digital whiteboard if it is in use
when there is a call
if a whiteboard is in use
do remove whiteboard
effect bandwidth -~96

Table 2. Sample Prototypes

yser, which will retrieve the current values of the system variables. Suppose these are
bandwidth 64,duration 300,handled 5, quality 8, rate 0.1, andreceived 5.

The dynamic analyser will then report that the optimal set ofpolicies is 1 (add
lawyer), 2 (add video) and 5 (duration parameter 600 seconds). The actions from these
policies are then checked for conflicts. A resolution policymay determine that conferenc-
ing in a third party (policy 1) conflicts with also adding video (policy 2). This is because
use of video on an external call may compromise the confidentiality of the workplace.
The resolution is to conference in a manager to monitor what is viewed. The actions sent
to the softswitch are therefore: include a lawyer (from 1), add video (from 2), run a call
timer for 600 seconds (from 5), and include a manager (from the resolution).

As can be seen, a substantial number of things happen for a simple event like a call
arriving. The entire procedure of selecting policies, optimising goals, resolving conflicts,

13

and dictating actions takes about two seconds: one second inthe policy server, and one
second in the goal server. If goals are not used, only the policy server is involved. As a
once-off overhead on call setup, this is believed to be acceptable – especially given the
considerable flexibility and control that goals and policies offer.

However, the authors expect to be able to reduce this overhead in a number of ways.
The entire system is written in interpreted Java. Profiling will identify key methods that
can be made more efficient (and possibly implemented in C for use via JNI). The system
could also cache key system variables, triggers and resulting actions to learn responses
to particular circumstances. This would allow a cached response to be used instead of
invoking the entire analysis procedure. Ontology queries could also be cached.

3.5. Defining Goal Weights

The goal measures given in table 1 are defensible, e.g.bandwidth×duration is a good
measure of bandwidth use, andrate×duration is a good measure of call cost. Equally, the
prototype effects given in table 2 are defensible as they arebased on domain knowledge,
e.g. of how different media are handled.

What is much less obvious is what scaling factors and weightsare appropriate. At
first sight, factors like 0.03 or weights like 1.0 might seem completely arbitrary. The ab-
solute value of the overall evaluation function is not, of course, important – only relative
values determine the outcome of optimisation.

Scaling factors are used because the units used for system variables are very differ-
ent:bandwidth in Kbps,duration in seconds, etc. Without scaling factors, goal measures
would yield widely varying numerical values. Instead, eachgoal measure is associated
with a scaling factor. This can be chosen automatically so that different measures have
similar values for a typical set of system variables (e.g. those assumed in section 3.4).

Each goal measure is then given a weight relative to others. The goal analysis de-
pends on these weights. The question is whether it dependscritically on these weights. If
it did, then the choice of weights would be difficult. The outcome of goal analysis could
also be unstable: small changes in weights might have a dramatic effect on the selected
policies. The goal system therefore includes an automated sensitivity analysis to help the
designer investigate what ranges of weights give stable results. There is also a simulator
for the policy system that allows key test cases to be evaluated to check for unexpected
surprises in how the system behaves.

Figure 2 shows part of the automated sensitivity analysis, looking at the effect of a
system variable on the evaluation function. Here, the call rate is varied over quite a wide
range: from 0.05 to 1.0 cents/second. A sample situation wasconsidered in section 3.4,
where the call rate was 0.1. It was found that the optimal set of policies was 1 (add
lawyer), 2 (add video) and 5 (call limit parameterised for 600 seconds). From figure 2,
it will be seen that these remain the optimal policies until the call rate rises to 0.4. For
higher rate values the same policies remain optimal, but thecall limit should be made
short (60 seconds). Such call rates might be typical of a satellite call, where goal 3 (min-
imise cost) becomes predominant. The goal analysis thus yields a stable set of results
with respect to call rate, differentiated only in duration limit for very high call rates.

Figure 2 shows another part of the automated sensitivity analysis, looking at the
effect of a weight on the evaluation function. Here, the bandwidth weight is varied over
quite a wide range: from 0.05 to 10.0. Again, the same optimalpolicies are generated

14

0

100

200

300

400

500

0.00 0.20 0.40 0.60 0.80 1.00 1.20

rate

e
v

a
lu

a
ti

o
n

policy 1, 2, 5 (600 sec) policy 1, 2, 5 (60 sec)

Figure 2. Evaluation of Different Call Rates

in almost all cases. Only for very low weights (below 0.35) isanother optimal choice
made – and again this differs only in having a short call timer. It can be concluded that
the goal analysis yields a stable set of results with respectto bandwidth weight. A range
of bandwidth weights could be used, but 1.0 is satisfactory.

0

500

1000

1500

2000

2500

3000

3500

0.00 2.00 4.00 6.00 8.00 10.00 12.00

bandwidth weight

e
v

a
lu

a
ti

o
n

policy 1, 2, 5 (60 sec) policy 1, 2, 5 (600 sec)

Figure 3. Evaluation of Different Bandwidth Weights

The sensitivity analysis also investigates changing multiple factors. For example,
the weights for call cost and interruption time goals were separately and automatically
varied over the range 0.05 to 10.0. The same optimal solutionis generated as long as
the call cost weight is less than 1.3; above this, a short calltimer is imposed. Overall,
the automated sensitivity analysis confirms that the scaling factors, the weights, and the
stability of the goal analysis are appropriate. What might have appeared to be arbitrary
choices are therefore defensible.

4. Conclusion

It has been seen how goal refinement into policies can be formulated as a numerical op-
timisation problem. The achievement of goals is assessed through measures that are de-

15

fined in terms of system variables (uncontrolled, controlled and derived). The contribu-
tion of prototypes to goals is made through their effects on system variables. When goals
and prototypes are defined or altered, static analysis determines the relationship among
these. This creates regular policies that are linked to the goals they support.

When events trigger the selection of policies, an optimal selection is generated of
goal-derived policies. The dynamic nature of the analysis means that goals are achieved
according to the current circumstances, and not to meet purely static criteria.

Goal conflict arises at a number of levels. Errors may arise during static analysis,
dynamic analysis, or action analysis. Automated sensitivity analysis shows the approach
yields stable results, with values readily chosen for scaling factors and goal weights.

The approach has been illustrated in the telephony domain. However, the techniques
and tools are multi-purpose. For example, they have also been used to support goals
and policies for managing sensor networks, wind farms, and home care systems. It is
therefore believed that the approach is general and will findvalue in many domains.

Acknowledgements

The authors thank their colleagues on the PROSEN project for discussions that helped
mould the approach. Gavin Campbell created goal support forPROSEN, supported by
grant C014804 from the UK Engineering and Physical SciencesResearch Council.

References

[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Featureinteraction resolution using fuzzy policies.
Proc. 6th ICFI, pages 94–112. IOS Press, May 2000.

[2] D. Amyot. Goal-oriented requirement language (GRL) andits applications. InProc. 31st Int. Conf. on
Software Engineering. IEEE, May 2009.

[3] A. K. Bandara, E. C. Lupu, J. D. Moffett, and A. Russo. A goal-based approach to policy refinement.
In Proc. Policy Workshop, pages 229–239. IEEE, 2004.

[4] G. A. Campbell and K. J. Turner. Ontologies to support call control policies. Proc. 3rd Advanced Int.
Conf. on Telecomms., pages 5.1–5.6. IEEE, May 2007.

[5] G. A. Campbell and K. J. Turner. Policy conflict filtering for call control.Proc. 9th ICFI, pages 93–108,
IOS Press, May 2008.

[6] S. Davy, B. Jennings, and J. Strassner. The policy continuum – Policy authoring and conflict analysis.
Computer Communications, 2008.

[7] N. D. Griffeth and H. Velthuijsen. Reasoning about goalsto resolve conflicts. InInt. Conf. on Intelligent
and Cooperative Information Systems, pages 1–14, May 1993.

[8] J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed systems management.IEEE JSAC,
11(9):1404–1414, 1993.

[9] J. Rubio-Loyolaet al. Using linear temporal model checking for goal-oriented policy refinement frame-
works. InProc. Policy Workshop, pages 181–190. IEEE, 2005.

[10] K. J. Turner and L. Blair. Policies and conflicts in call control. Computer Networks, 51(2):496–514,
Feb. 2007.

[11] K. J. Turneret al. Policy support for call control.Computer Standards and Interfaces, 28(6):635–649,
June 2006.

[12] A. van Lamsweerde and E. Letier. From object orientation to goal orientation. InProc. Radical Innova-
tions of Software and Systems Engineering in The Future, LNCS 2941, pages 153–166, Mar. 2003.

16

