Kenneth J. Turner and Gavin A. Campbell. Goals and Conflicts in Telephony,
in Masahide Nakamura and Stephan Reiff-Marganiec (eds.),

Proc. 10th Int. Conf. on Feature Interactions in Software and Communications Systems,

pp. 3-18, 10S Press, Amsterdam, June 2009.

Goals and Conflicts in Telephony

Kenneth J. Turner and Gavin A. Campbell

Computing Science and Mathematics, University of Stirl8tiyling FK9 4LA, UK
e-mail: kjt| gca @cs.stir.ac.uk

Abstract.

Goals are abstract, user-oriented objectives for how @syshould behave. To
be made operational, they are refined into lower-level mdithat are executed dy-
namically. Itis explained how previous work on policy-bdseanagement has been
enhanced with a separate goal system that allows goals tpeuified, analysed,
refined, and achieved. It is shown how conflicts can arise\araklevels among
goals, and how these conflicts are detected and handledulththe approach is
general, it is illustrated through an application to Intgrtelephony.

Keywords.
Call Control, Goal, Goal Conflict, Goal Refinement, Policgs8d Management

1. Introduction

Goals are introduced as a high-level, abstract way for usesefine system objectives
in a non-technical manner. The concept of goal refinementpamed. In contrast to
other work, which relies on static logical analysis, therapgh here views refinement
as a dynamic optimisation task.

1.1. Background

The trend in communications is for people to be always cdabde — in the office, at
home, or on the move. As a result, there is an increasing meedérs to be able to man-
age their communications flexibly. Traditional telephoegtiires are network-centric,
being designed by the network operator and supported inanktequipment. Internet
telephony is becoming increasingly widespread. Followimgrnet philosophy, func-
tionality tends to be located at the edges of the network.almiqular, this means that
customisation of call handling can be placed much more imh#rels of end users.

The authors and their colleagues have exploited this trgrdeleloping a policy-
based management system for Internet telephony (e.g. Rdljries operate at a higher
level than features, and offer many advantages such agafintowards user needs,
flexibility, and customisability. A system calledcEENT (Advanced Component Con-
trol Enhancing Network Technologiesyww.cs.stir.ac.uk/accerhhas been developed for
supporting policy-based management. ThecANT system was designed for end users,
e.g. policies are formulated through a wizard rather thauireng programming or de-
tailed technical knowledge. Although initially developfed Internet telephony, the ap-
proach is general and has now been extended to other appigauch as managing
sensor networks, wind farms and home care systems.

Although policies are higher-level and more user-orieritezh features, they are
still relatively imperative. What is required is a more ast way for users to formulate
their needs. This has now been achieved through the desigmatementation of a goal
system. Goals are persistent, abstract, user-orientedtolgs for how a system should
behave. They are declarative statements of what is requitgdperational statements
of how they should be achieved. In fact, they are sufficieabgtract that they cannot
be realised directly. A process of refinement is needed tothmagoals onto lower-level
policies that can then be used to achieve them.

The work in this paper describes how goals are specified attalty analysed
to create policies that realise them. Offline analysis ie alsncerned with appropriate
definition of goals. Support at run time is provided to choibeemost relevant policies
according to the dynamically changing state of the systdm.approach allows users to
define high-level goals for how the system should behave @\ calls are handled).
The details of how goals are achieved can be largely hidaen the users.

Feature interaction is a long-known phenomenon in telephidre authors and their
colleagues have investigated policy conflict as the hiddnezt equivalent in policy-based
systems [10]. The new work reported here has raised the apipto a more abstract
level. Not surprisingly, conflicts also arise with the usegogls. As will be seen, such
conflicts manifest themselves at several levels.

1.2. Goals and Policies for System Management

Goals have a venerable history in artificial intelligencéeve they are often used to
define desired states of a system. Goals are typically usedotgnning system to build
sequences of actions that achieve them. A similar approasiéen adopted in agent-
based systems.

Goals in the context of policy-based management have reg éitle study. Here, the
notion of a goal is an objective for system behaviour. Refimrenof goals into policies
is typically treated through logic: policies are identifiemd meet the goals through a
process of logical entailment. This is essentially a staifline) analysis. In the work
reported here, goal refinement is viewed as a numerical agattimn problem. The main
advantage is that goals can be supported in a fully dynamyc asthe system and its
environment change, the policies that achieve goals ac#raiically evolved to give the
best match to current circumstances.

In the formulation adopted, goals are associated with nisaeneasures (e.g. ‘call
cost’ or ‘multimedia use’) for how well they are achieved.daneral, such measures
are maximised (positive goals) or minimised (negative glo&oal measures are arbi-
trary functions over system variables, though for prattioal technical reasons they
are normally weighted sums. Since there are usually mal{ipften conflicting) goals,
their measures are combined into an overall evaluatiortimthat assesses how well a
candidate set of policies meets the full set of goals. Th&uatian function is again an
arbitrary formula, though normally a weighted sum of goabswges.

Goals are sufficiently high level that they cannot be useelcdly. Instead, goals are
realised through prototype policies (prototypes for shitwt contribute to them. These
prototypes form a library of ‘building blocks’ for accomsliing goals. When goals are
first defined, they are statically analysed against the @vialprototypes. This identifies
the prototypes thahaycontribute towards each goal. However, the actual seledide-

ferred until run-time since the most appropriate policieslikely to depend on the actual
circumstances (e.g. the current bandwidth or the cost ol Baototypes are therefore
selected and instantiated dynamically as normal polidiresiddition, prototypes may
have parameters that are dynamically optimised.

The benefit of this approach is that the existing@&NT policy server is barely
affected by the new goal system. As far as the policy serveoigerned, it handles
policies as usual (except that some policies derive frontsjo@ther mechanisms such
as handling policy conflicts at run time can therefore omeastnormal.

Policies are written in RPEL (Adaptable and Programmable Policy Environment
and Languageyww.cs.stir.ac.uk/appglThis is designed to be extensible for new appli-
cation domains. The core policy language has extensionsdaitar policies and resolu-
tion policies. In turn, these are specialised for each dongaill control is currently one
of several rather different applications. Since policiesiaternally XML, extensibility
is achieved by defining APELthrough a hierarchy of schemas that build on each other.

Although these schemas define the formal structurerdf#, this is not sufficient.
The schemas are therefore supplemented by ontologiesdfiaédhe concepts and re-
lationships in each application domain. Again this is hieéal, with a core ontology
that is extended for each application.

For the work reported here, the schemas and ontologies learedxtended to sup-
port goals and prototypes. The latter are intentionallyreefiin a very similar way to
policies (both regular and resolution policies). This gieconsistent structure to the
language, and also allows common software support thrattgiicsystem components.

1.3. Related Work

Planning in artificial intelligence goes back about 40 ydarg. the SRIPS system).
Much more recent is work on agent-based systems. As an egaB%PL (Agent Pro-
gramming Languageyww.cs.uu.nl/3apldefines goals and beliefs. Plan revision rules
allow plans to be created from predefined rules, using astioom an action base to
achieve goals. In agent-based approaches, goals areedthegugh planning using var-
ious kinds of agents (goal-based, logical, knowledge-dhasgoals have also been ad-
dressed in requirements engineering. Systems suchas toriginally Knowledge Ac-
quisition in autOmated Specification [12]) aim to build arf@l proof that the require-
ments derived for a system meet its goals.

Goals in a policy context are interpreted rather diffenerithe notion of a policy
hierarchy was first identified in [8]. This led to the idea dimang higher-lever policies
into lower-level ones. [6] extended this notion into a coatim of policies, with goals
being policies at the highest level; however, this is cuiygnst a framework without a
concrete implementation. A formal approach to goal refinrgmeing Event Calculus is
described in [3]. This has been implemented usir@K, with refinement patterns being
used to decompose goals into subgoals. As another formebagm [9] uses temporal
logic in a two-stage refinement process from goals to sulsgaatl subgoals to policies.

In the context of feature interaction, [7] identified the Iplem of goal conflict in
telephony. This approach uses agents to negotiate a plaelaiflof end users to avoid
conflicts. This is a different kind of problem from the onekiac in this paper. The User
Requirements Notation for goals [2] complements the ctipaper, and will be studied
for possible synergy in future. Fuzzy policies with weigktkare reminiscent of the nu-

3

merical approach taken here. Although the work reportetlimmgaper has concentrated
on goal refinement as a practical technique, issues of gaéliatdave inevitably arisen.
These can be regarded as a high-level form of feature iritenacThe related notion
of policy conflict has been investigated in [10]. As will beesg goal conflicts arise at
various levels as the goals are achieved through refinemdrexaecution.

The work in this paper differs in a number of important respdom other ap-
proaches. Although some offline analysis is performed, thle &f the analysis happens
at run time. This is intentional as the choice of policiesudtdalepend on the prevail-
ing circumstances. Virtually all other work uses offlineheijues, and hence cannot
anticipate changes in the system environment.

The approach is based on numerical rather than logical ngasar his is more flex-
ible in that it does not require any absolute notion of fulfglgoals. Rather, it is possible
to satisfy goals only as far as is possible (which may be thg ractical possibility).
Nearly all other approaches are based on strict logic.

A pragmatic rather than a theoretical approach is folloviReyuiring use of formal
methods is a considerable barrier for most engineers angreies, and is inappropriate
for end users. The need to perform goal refinement at run 8ragarticular challenge,
since most formal techniques require considerable cortipntaAlmost all other goal
refinement techniques are formal.

1.4. Paper Outline

Section 2 discusses the goal system architecture, how goédlgrototypes are formu-
lated, and the kinds of analysis that are performed to regwals through policies.
In particular, the nature of goal conflict is investigatedct®on 3 illustrates the ideas
through their application to telephony. Section 4 sumnearthe approach, and indicates
that it has been applied in other application domains.

2. The Goal System

APPELhas been extended to define goals and prototypes. Goal refimidias also been
implemented in a package calleas®E (Optimising Goal Refinement Engine). The new
goal capabilities have required only small changes in th&tiag policy system.

2.1. System Architecture

The overall system architecture to support goals and galid shown in figure 1. For
historical reasons, and because the system primarily a@#ispolicies, a number of
components are labelled ‘Policy’. However, apart from tagpolicies, the system also
deals with goals, prototypes, resolution policies (thatl @ath conflicts), and variables
(that may be used in goals and policies). The major systenpoaents communicate
via socket connections (shown as grey arrows in the figures gives flexibility in
distributing them across processors, though they may albruone physical machine.
The system components have the following functions:

Managed System:the system under control, e.g. a softswitch in Internepteday [11].
Policy Store: an XML database that stores information about goals andipsI[11].

4

End System

User Admin
Ontology Policy Conflict Context
Server Wizard Analyser Manager
Static Policy Policy
Analyser Manager Store
Dynamic Policy } Conflict
Analyser Selector Manager
Goal Server \ K
Policy
Interface
Policy Server
Managed
System

Figure 1. System Architecture

Policy Server: the heart of the policy system [11]. The policy manager isitierface
to the policy store, isolating the rest of the system frompheticular choice of
database. It receives new or updated goals and policiestfrepolicy wizard, and
also contextual information from the context manager. Wipeals or prototypes
are modified, the static analyser is notified. This may reésudhanges to the gen-
erated policies. The policy manager is also asked to querpdiicy store when
event triggers are received. These arrive from the manages and are passed
to the policy selector. This chooses relevant policies tfi@se associated with this
trigger and whose conditions are met). If any triggeredgiedi are derived from
goals, the dynamic analyser is notified. This produces aimapset of policies
that are submitted to the conflict manager. Conflicts amottigypactions are de-
tected and resolved. Finally, a compatible and optimal sattions is sent via the
policy interface to the managed system.

Policy Wizard: a user-friendly interface for defining and editing goals palicies [11].
Besides the original near-natural language wizard, a skadrard has now been
created using interactive voice response, and a third wbgital pen and paper.

Context Manager: an interface for providing additional information about thanaged
system (e.g. user availability, schedule or work relatimos) [11].

Conflict Analyser: a tool to analyse policies offline for conflict-prone intdians [5].

5

Ontology Server: a generic interface to ontology-based information abocit @@plica-
tion domain [4]. A domain-specific ontology is used by theipoWwizard to define
valid goals and policies, by the offline conflict analyser &y the goal system
both statically and dynamically.

Goal Server: the heart of the goal system. The static analyser is invokezhvgoals or
prototypes are added, modified or deleted (see sectionThd)dynamic analyser
is invoked when goal-derived policies are triggered (set@e2.5).

Although there have been extensions to the ontology senette policy wizard
for the goal system, there has been little change to the otmponents. The new work
has mainly been on the goal server. Besides this, theeA policy language and the
domain ontologies have been extended to support goal redimem

2.2. Goals

Currently, all goals must be known locally; future work wlilandle distributed goals.
A goal is a simplified form of policy. There is no trigger besawoals always apply.
A goal may have a (compound) condition that uses generatnrdtion like time of
day or an environment value. Unlike a policy, a goal has alsiagtion of the form
‘maximisefneasure)’ or ‘minimise(measure)’. The measure is a numerical assessment
of how well a goal is achieved. Positive goals aim to maxinttiedr associated measure
(e.g. network use), while negative goals aim to minimisér tmeasure (e.g. call cost).

A goal measure is like a sub-goal, butdsfinedrather tharrefined A measure is
a formula over relevant system variables. Some variabke$eld per user (or entity),
while others are shared across the system.

Uncontrolled Variables: these are variables that are beyond the control of the policy
system, typically ‘environmental’ factors (e.g. the caiist per second, the fre-
quency of incoming calls).

Controlled Variables: these are variables controlled by the policy system (eegalio-
cated bandwidth, the media used by a call).

Derived Variables: these are pseudo-variables defined in terms of (un)coattotiri-
ables (e.g. the call cost as cents/secamdlration).

Goal measures and their associated variables are, of caloesin-dependent.
Since they are often relatively fixed for each domain, it nsad@nse to define them once
in the domain ontology rather than for each individual géaoal definition may there-
fore refer to these definitions as derived variables.

As a concrete example, the definition below gives a goal thainmises call cost.
The elements here are also found in policies. A goal has tleving attributes: an iden-
tifier (a unique text string), whether it is enabled (allogrteactivation without deletion),
when it was changed (date and time in XML format), an ownes (ther who defined it),
and to whom the goal applies (the stir.com domain here). Toa gonditions are given,
combined with ‘and’; the goal applies only on weekdays (1 =nillay, 5 = Friday) when
the call bandwidth exceeds 128 Kbps. At weekends or for lawdwidth calls, the goal
does not apply. The goal action is to minimtsél_cost — a derived variable that calcu-
lates the cost of a call. (XML schema rules require argumienk® given as attributes
argl, etc.) The following is the XML representation of this goahritting the obvious
closing tags for brevity):

<goal id=""Minimise call cost” enabled="true”’ changed="2009-01-03T17:18:00”
owner="admin@stir.com” applies_to="@stir.com” >
<policy_rule>

<conditions>
<and/>
<condition> <parameter>day <operator>in <value>1..5
<condition> <parameter>bandwidth <operator>gt <value>128

<action argl="call_cost”>minimise(argl)

2.3. Prototypes

Goals are not achievable directly as they are abstraceddghey are realised through
sets of policies. Regular policies can contribute to gddtsvever, the need to manage
goal-related policies leads to defining special prototyplieies. These are very similar
to regular policies, but are considered separately by thésystem: only prototypes are
considered in goal refinement. This gives flexibility in thia policy system may use
regular policies only, prototype policies only, or (typlgaa combination of both.

Prototypes have aatfect attribute that defines how they modify one or more system
variables (and thus how they contribute to goal measuras)efnition time, this is used
to identify the relationships between goals and prototypésun time, this is used to
determine the set of policies that optimally satisfy thelgd@rototypes are also allowed
to have parameters (prefixed by ‘$’) that are chosen at rua loynthe goal system.

The effect of a prototype is an abstraction of the actionaritgerform. More specif-
ically, an effect is defined in the same terms as a goal me#satie being described by
a domain ontology). As an example, adding video to a call basral effects: increasing
bandwidth, potentially increasing cost, decreasing pgivatc. Which of these effects
needs to be stated depends on what a domain expert definep@sant to goals. For
example, bandwidth and cost may be considered significahprivacy (in the context
of company communications) may not.

An individual effect names a system variable, an operatat,an expression (e.g.
‘call_bandwidth +=128’). The basic operators are ‘=" (to set aalkalg), ‘+=’ (to increase
it) or ‘-=" (to reduce it). These are the operators that haaerbfound most useful, though
others would be possible (e.g. *=', ‘/=').

An interesting situation arises when the effects of mudtiptototypes on a goal
are considered. Most effects are independent and can beimednfe.g. adding video
increases bandwidth, as does adding a digital whitebodmyever, some effects can be
permitted only once per execution. For example, forwardaits reduces the number of
calls received, as does rejecting personal calls. If bothexfe were allowed to contribute
to a goal, the number of calls received would be incorrechuced twice. There are
therefore special ‘exclusive’ forms of the operators: “and ‘-~'.

The validity of a set of prototypes is checked against a gbé#heir effects are in
conflict, that particular combination is not allowed. Foample, two prototypes may
not fix the same system variable in the same execution. Bgagtirototype making an
exclusive change to a system variable (e.g. ‘+~') is incotibpe@with any other prototype
that affects the same variable. These conflicts are autoafigtidetected by the goal
system and are handled by excluding these combinations.

As a concrete example, the definition below gives a paraiseteprototype that
manages call duration. The elements here are also foundinigso The effect of the

policy is to limit call duration to the value of thuration parameter. Three policy rules
are tried in sequence until one with a matching trigger isitbuwOn initial connection, a
call timer is started with lengthuration. On disconnection, the timer is stopped. When
the timer expires, the call is forcibly disconnected.

<prototype id="Call duration” enabled="true’” changed="2009-01-03T17:18:00”
owner="admin@stir.com” applies_to="@stir.com”
effect=""duration = $duration’’>
<policy_rules>
<sequential/>
<policy_rule>
<trigger>connect
<action argl="call_timer” arg2="$duration” >start_timer(argl,arg2)
<policy_rules>
<sequential/>
<policy_rule>
<trigger>disconnect
<action argl="call_timer”>stop_timer(argl)
<policy_rule>
<trigger argl="call_timer” >timer_expiry(argl)
<action>disconnect

2.4. Static Analysis

Static analysis in the goal system is activated when a goadaiotype is created, mod-
ified or deleted. The policy server informs the static arayaf the relevant identifier.
When a new goal is defined, the static analyser retrievesmxjsrototypes and evaluates
their effects against the goal measure. (A new prototypeasyaed similarly.)

Whether a prototype contributes to a goal is determined bypawing its effects
with how the goal measure is defined (i.e. which system vhasaib uses). A prototype
is considered to contribute to a goal if it affects one or meystem variables involved
in the measure. The prototype effect may modify an arbifr@aemplex measure. The
sense of the effect will therefore not be known until run tindaen it may worsen or
improve the evaluation of including this prototype.

For each prototype, a set of the goals it contributes to iatetk This makes use of
information in a domain-specific ontology about systemafalgs. Typically a prototype
contributes to one or more goals. If this set is empty becthee are no relevant goals,
this is not an error. A library of useful prototypes is noripalreated by a domain expert.
When goals are defined, only some prototypes may be reldyanas future goals may
require other prototypes, they are all appropriate.

The prototype is then instantiated as a regular policy. iBrascopy of the prototype,
with the <prototype> tag replaced bypolicy>, and with a unique new identifier de-
rived from the original one. To the rest of the policy systéinis generated policy looks
like any other. The policy server will therefore apply thdippat run time exactly as
normal. However, it is necessary to identify such policle®tigh asupports_goal at-
tribute that only goal-derived policies carry. This allothe static analyser to deal with
modification or deletion of a goal or prototype: the policggnerated from these may
need to be altered with regard to the goals they support, grmead to be deleted if
these goals no longer exist.

Prototype and goal conditions are normally copied into acgah a form such as:
prototype_condition and (goal_condition_1 or goal_condition_2). This ensures that the
generated policy will be triggered only if the prototype didions are satisfiednd also
the associated goal conditions. Some goals that a prototypeibutes to may not have
conditions; these have conditions that are implicitlye. Absence of a goal condition
therefore means that the whole set of goal conditions wilbgk hold. In such a case,
the goal conditions are not added to the prototype as thesugerfluous.

When a prototype is instantiated as a policy, it retains aiyopype parameters.
These become relevant only during dynamic analysis.

2.5. Dynamic Analysis

Dynamic analysis in the goal system is activated when antevigger leads to a set
of policies, i.e. those whose triggers match the event anose/ftonditions are satis-
fied. This set may contain goal-derived policies (identifte@ugh theirsupports_goal
attribute). If no policies are goal-derived, the policy\sgrcontinues policy execution
as normal. However if there are such policies, their ideartifiare sent to the dynamic
analyser.

The dynamic analyser now chooses the subset of these pali@e optimises the
overall goal evaluation function. This function can refeany system variables, includ-
ing those that vary dynamically (such as the current caldbadth or the number of
calls received so far). This means that the most appromédief policies can be selected
for the current circumstances. It also means that the $ateat policies may vary as the
system evolves over time. For example, if the system loagtases significantly or the
call cost changes on entering a different time period, tha ggstem will automatically
adapt to the changed circumstances. The dynamic approaulncis more flexible than
the offline, logic-based techniques used in most other ames.

At this point, any optimisation algorithm can be used (eikydfimbing, the simplex
algorithm, a genetic algorithm). In optimisation termingy, the evaluation function is
the objective or fitness function. The goal system is designeuse any optimisation
algorithm that conforms to a defined interface.

Itis possible during optimisation to discover that moretbae combination of poli-
cies leads to the same optimal value. Typically this happéren two prototypes have
exactly the same exclusive effect: choosing either givessttime numerical evaluation.
In fact this is a kind of conflict, and the dynamic analysisompit as a probable error. A
more subtle issue is when the optimal solution is uniqueabuimber of near-optimal
solutions are also available. This is considered furthseition 3.5.

Currently, and for practical reasons, a simple optimisatitgorithm is used: the
overall evaluation function is calculated for all possibtambinations of policies. This
algorithm is exponential in the number of policies, and sonpracticable if there are
many policies. However, in practice this has not been fowrlget a problem. The pol-
icy system can handle hundreds or thousands of policies Evkese are all derived
from goals, that is not in itself problematic. What matteredéw many such policies are
triggeredat the same time

From the potentially large number of policies, triggerippitally selects only about
half a dozen policies. This happens because eligible jgsliniust be for the relevant
user (or entity), must have a matching trigger, and must Isatisfied conditions. In

telephony, for example, only caller and callee policiessakected (plus those for the
domain they belong to); this substantially reduces the rermbeligible policies. Tele-
phony policies are triggered only on call setup, mid-callpo call clear-down; again,
this significantly cuts down on relevant policies. Finalglephony policies usually have
conditions (e.g. time of day, who the caller is) that furthestrict the selection. Other
domains (e.g. home care, sensor networks) work with siipitaduced sets of policies.

The result is that the dynamic analyser usually has to opéiranly a modest set of
policies. For up to a dozen policies, say, the simple exhaalgorithm is more efficient
than more elaborate algorithms that are best for large @gstion problems. However,
if other application domains lead to the need for optimidarge sets of policies, then a
different optimisation algorithm could readily be slotied

Optimisation deals with one other aspect: prototype patarsel hese are left unin-
stantiated when policies are created from prototypes. Attime, the dynamic anal-
yser considers optimal choices for parameters as well gsdiicies. Exactly the same
mechanism applies: the choice of parameters modifies theteffind therefore the over-
all evaluation. However, parameters have to be optimiseddifferent way. Given rea-
sonable restrictions on the evaluation function (mondaity)i, only the extremal values
of parameters need be considered. If call bandwidth is anpetex, for example, then
only the minimum and maximum permissible bandwidths shbeldried: one or other
will achieve the optimal value. The optimisation also akofer parameters being drawn
from a discrete but ordered set (e.g. audio, whiteboareo)idather than from a range.
Knowledge about extreme values is domain-specific, andiisatein a domain ontology.

Instantiating the parameters of a policy leads to a new tearp@olicy that ap-
plies only during processing of the current trigger. Thigois created by copying the
parameterised policy, substituting the optimal paramedtres, and giving the policy a
unique identifier.

The selection of policies (and parameters) with the higlxesiuation determines the
identifiers returned to the policy server for execution.i®afly only a subset of the goal-
derived policies is eligible. The subset is combined wineligible regular policies and
processed as normal by the policy server. This requirestief actions dictated by these
policies to be checked for conflict. Resolution policiesedgétonflicts and determine a
compatible set of actions (e.g. disregarding lower-ptyquolicies) [10].

2.6. Ildentifying Goal Conflicts

Now that the basis of goal refinement has been explained pibssible to be precise
about the ways in which goals can conflict with each othehdlgh these have been
mentioned in passing, they are collected here for reference

Conflicts do not really arise during static goal analyss. {ivhen goals are defined).
However, it is possible to find that a goal cannot be achiewedry prototype (or can
be only partially satisfied). This happens if prototypesnmdrbe found to affect all the
controlled variables in a goal measure. This is probabharoanflict, though it reflects an
inconsistency between the goals and the prototypes alaiialchieve them. However
it is an error, and is reported by the static analyser.

Conflicts do arise during dynamic goal analysis (i.e. wheal-gierived policies are
processed). It may be found that certain goal-derived @slicannot be considered in
combination (because they affect system variables instargly, or they make exclusive

10

changes to a system variable). This is a conflict that is vesidby excluding the imper-

missible combinations. It may also be found that differesmhbinations of goal-derived
policies yield the same optimal value. This indicates thatgrototypes are too weakly
characterised in their effects and cannot be distinguishied is a kind of conflict, and

is reported by the dynamic analyser.

Following dynamic goal analysis, the resulting policiesymba found to have con-
flicting actions. Although this is part of the standard canflietection performed by
the policy server, it is a consequence of goal refinement eftects an indirect conflict
among the goals. The authors have developed a techniquealrfartfiltering conflict-
prone policies [5]. In future work, this will be adapted tdliofe analysis of goals and
prototypes as well as policies.

There is an interesting relationship among conflicts foumdugh offline filtering,
through dynamic goal analysis, and through online deteaifcaction conflicts. Essen-
tially all three techniques look for incompatibilitiesistpossible to detect the same kinds
of conflicts at all three levels. However, this is not normaeésirable because it would
require effects to be considered at a low level of abstradiie. the level of individual
policy actions). Both filtering rules and goal measures &hbe formulated more ab-
stractly, implying that action conflicts will usually be id@ition to the kinds of conflicts
detected at higher levels.

3. Application to Internet Telephony

To illustrate how goals are supported, this section givesxcie examples of how
a hypothetical company might wish to optimise its voice caminations. For this
application, the managed system is a softswitch such as SHR Express Router,
www.iptel.org/sey. The XML representation of goals and prototypes was ilatstd in
sections 2.2 and 2.3. This section uses pseudo-code fabibid(and is similar to the
web-based wizard). Triggers are indicatedddyen, conditions byif, and actions byo.

3.1. Goals

For the telephony system, suppose that the uncontrolladblas arerate (call cost,
cents/second) angliality (a subjective measure, 1 = poor to 10 = best). The controlled
variables arebandwidth (Kbps), duration (typical call length, secondshandled (calls
handled by the user, per day), ardeived (calls received by the user, per day).

The company is presumed to have the communications goalgnshmotable 1.
This is a subset of a larger set of goals that may deal withrd#wtors such as avail-
ability, reliability, security, etc. The textual desciiuis of the goals are high-level and
rather woolly. To make them operational, they need to beadle the system variables.
Whether the company’s goals are appropriately formulaézd fs not relevant. What is
important is that the interpretation of each goal is maddiegkpnd precise.

Each goal is associated with a numerical measure (netwerkeisg split into sub-
measures for bandwidth use and call handling). The goalumesiare defined as derived
variables. These are combined into an overall evaluatinatfon that is a weighted sum
of the goal measures, again treating network use as twodiabsimeasures. Note that
measures to be minimised are preceded by a minus sign. Fecasdion of where the
scaling factors and weights here come from, see section 3.5.

11

| Goal | Description

1 the company is keen to promote the use of multimedia in itsnsanications
if it is a weekday

do maximise multimedia use

measure 0.03 xbandwidth x quality

2 the company wishes to use its communications network touthe f
do maximise network use
measure 0.0008 x bandwidth x duration and 6.0 x handled

3 call cost can become important so the company wishes toatdhis
if it is a weekday and the call bandwidth exceeds 128 Kbps
do minimise call cost

measure rate x duration

4 the company wishes to minimise interruptions to staff dytimch breaks
if itis 1IPM-2PM

do minimise interruption time

measure 0.02 xreceived x duration

Table 1. Sample Goals

3.2. Prototypes

The prototype library will include a wide range of policiesrheet the company’s likely
goals. For the sake of example, suppose that the prototgreable 2 are those relevant
to a call arriving or a call being made.

3.3. Static Analysis

As each of the goals in section 3.1 is defined, the prototyipaisdontribute to it are
determined. The prototypes in section 3.2 are a subset dfiliHérary; the table below
shows their static analysis. The information in such a teksed to create a goal-derived
policy for each prototype, stating which goals a policy cimites to:

Prototype
[Goal | 1 [23] 4][5]6]7
1
2 [V [V VIV
3 v |V
4 VIV

3.4. Dynamic Analysis

As telephony events are received from the softswitch, thggér the selection of regular
policies as well as those generated during static analygisals. Suppose that there are
only the policies derived from the prototypes in table 2. Wegght associated with each
goal measure is taken as 1.0 (see later discussion in s&c&hn

Imagine that a long-distance call now arrives about a coptthat the call band-
width is low, and that the callee is available. The policywsewill determine that poli-
cies 1 (add lawyer), 2 (add video), 4 (5 minute limit), 5 (paeterised limit) and 7 (re-
move whiteboard) are eligible for execution. This will bdified to the dynamic anal-

12

Prototype | Description

1 a lawyer must be conferenced into calls about contracts
when a call arrives

if it is about contracts

do conference in a company lawyer

effect bandwidth += 64

2 low-bandwidth calls should make use of video

when a call arrives

if the bandwidth is less than 1 Mbps and the call has no video
do add video

effect bandwidth += 512

3 if the callee is busy, forward the call to a secretary (notéfer an exclusive change)
when a call arrives and the callee is busy

do forward the call to a secretary

effect received -~1

4 expensive calls should be limited to 5 minutes
when a call is made

if the cost exceeds 0.2 cents/sec

do start a timer to limit the call to 300 sec
effect duration = 300

5 calls should be limited by a duration parameter that is dyoalfy optimised
when there is a call

do start a timer that limits the call to $duration seconds

effect duration = $duration

6 if the callee is busy for a personal call, reject the call vaitsuitable message
when a call arrives and the callee is busy

if itis a personal call

do reject the call and play a busy message

effect handled -~1 and received -~1

7 remove a digital whiteboard if it is in use
when there is a call

if a whiteboard is in use

do remove whiteboard

effect bandwidth -~96

Table 2. Sample Prototypes

yser, which will retrieve the current values of the systemalades. Suppose these are
bandwidth 64, duration 300,handled 5, quality 8, rate 0.1, andreceived 5.

The dynamic analyser will then report that the optimal sepadlicies is 1 (add
lawyer), 2 (add video) and 5 (duration parameter 600 seqoitie actions from these
policies are then checked for conflicts. A resolution pofitgy determine that conferenc-
ing in a third party (policy 1) conflicts with also adding véoolicy 2). This is because
use of video on an external call may compromise the confidigtof the workplace.
The resolution is to conference in a manager to monitor vdwaeiwed. The actions sent
to the softswitch are therefore: include a lawyer (from ty aideo (from 2), run a call
timer for 600 seconds (from 5), and include a manager (framdisolution).

As can be seen, a substantial number of things happen fordesevent like a call
arriving. The entire procedure of selecting policies, mging goals, resolving conflicts,

13

and dictating actions takes about two seconds: one secahd policy server, and one
second in the goal server. If goals are not used, only theyeérver is involved. As a
once-off overhead on call setup, this is believed to be dabép— especially given the
considerable flexibility and control that goals and pobaidfer.

However, the authors expect to be able to reduce this ovéiheanumber of ways.
The entire system is written in interpreted Java. Profilinig identify key methods that
can be made more efficient (and possibly implemented in Cfemia JNI). The system
could also cache key system variables, triggers and regutitions to learn responses
to particular circumstances. This would allow a cachedaasp to be used instead of
invoking the entire analysis procedure. Ontology querasgaalso be cached.

3.5. Defining Goal Weights

The goal measures given in table 1 are defensible,bavgdwidth xduration is a good
measure of bandwidth use, arate x duration is a good measure of call cost. Equally, the
prototype effects given in table 2 are defensible as thepased on domain knowledge,
e.g. of how different media are handled.

What is much less obvious is what scaling factors and weigtgsappropriate. At
first sight, factors like 0.03 or weights like 1.0 might seesmpletely arbitrary. The ab-
solute value of the overall evaluation function is not, oficse, important — only relative
values determine the outcome of optimisation.

Scaling factors are used because the units used for systéablea are very differ-
ent:bandwidth in Kbps,duration in seconds, etc. Without scaling factors, goal measures
would yield widely varying numerical values. Instead, egolal measure is associated
with a scaling factor. This can be chosen automatically ab different measures have
similar values for a typical set of system variables (e.gséhassumed in section 3.4).

Each goal measure is then given a weight relative to othdms.gbal analysis de-
pends on these weights. The question is whether it depeitidally on these weights. If
it did, then the choice of weights would be difficult. The cantee of goal analysis could
also be unstable: small changes in weights might have a di@eftect on the selected
policies. The goal system therefore includes an automatesitévity analysis to help the
designer investigate what ranges of weights give stabldtseg here is also a simulator
for the policy system that allows key test cases to be evedu@at check for unexpected
surprises in how the system behaves.

Figure 2 shows part of the automated sensitivity analys@kihg at the effect of a
system variable on the evaluation function. Here, the eddl is varied over quite a wide
range: from 0.05 to 1.0 cents/second. A sample situationceasidered in section 3.4,
where the call rate was 0.1. It was found that the optimal §etoticies was 1 (add
lawyer), 2 (add video) and 5 (call limit parameterised fob @conds). From figure 2,
it will be seen that these remain the optimal policies uid tall rate rises to 0.4. For
higher rate values the same policies remain optimal, but#tidimit should be made
short (60 seconds). Such call rates might be typical of dlisateall, where goal 3 (min-
imise cost) becomes predominant. The goal analysis thidsyéestable set of results
with respect to call rate, differentiated only in duratiamit for very high call rates.

Figure 2 shows another part of the automated sensitivityyaisa looking at the
effect of a weight on the evaluation function. Here, the lyeidth weight is varied over
quite a wide range: from 0.05 to 10.0. Again, the same optjmoéities are generated

14

== policy 1,2,5 (600 sec) policy 1,2,5 (60 sec)
500 -

400 n
N

300 —

200

evaluation

100

0 ‘
0.00 0.20 0.40 0.60 0.80 1.00 1.20

rate
Figure 2. Evaluation of Different Call Rates

in almost all cases. Only for very low weights (below 0.35aither optimal choice
made — and again this differs only in having a short call tirftesan be concluded that
the goal analysis yields a stable set of results with regpdzandwidth weight. A range
of bandwidth weights could be used, but 1.0 is satisfactory.

policy 1, 2,5 (60 sec) = policy 1, 2,5 (600 sec)

3500 -

3000 -~

2500

2000 /

1500 >
1000 //
500 +—

0 ‘

0.00 2.00 4.00 6.00 8.00 10.00 12.00

bandwidth weight

evaluation

Figure 3. Evaluation of Different Bandwidth Weights

The sensitivity analysis also investigates changing pleltfactors. For example,
the weights for call cost and interruption time goals wengasately and automatically
varied over the range 0.05 to 10.0. The same optimal soligiggenerated as long as
the call cost weight is less than 1.3; above this, a shortticadlr is imposed. Overall,
the automated sensitivity analysis confirms that the sgd#intors, the weights, and the
stability of the goal analysis are appropriate. What mightehappeared to be arbitrary
choices are therefore defensible.

4. Conclusion

It has been seen how goal refinement into policies can be fatedias a numerical op-
timisation problem. The achievement of goals is assesseddgh measures that are de-

15

fined in terms of system variables (uncontrolled, contcbfied derived). The contribu-
tion of prototypes to goals is made through their effectsyatesn variables. When goals
and prototypes are defined or altered, static analysisrdates the relationship among
these. This creates regular policies that are linked to tiaésghey support.

When events trigger the selection of policies, an optimbdct®n is generated of
goal-derived policies. The dynamic nature of the analysams that goals are achieved
according to the current circumstances, and not to meetypstatic criteria.

Goal conflict arises at a number of levels. Errors may arigengdistatic analysis,
dynamic analysis, or action analysis. Automated sensitanalysis shows the approach
yields stable results, with values readily chosen for ageflactors and goal weights.

The approach has been illustrated in the telephony domaineker, the techniques
and tools are multi-purpose. For example, they have alsa heed to support goals
and policies for managing sensor networks, wind farms, andencare systems. It is
therefore believed that the approach is general and willaide in many domains.

Acknowledgements

The authors thank their colleagues on theoBEN project for discussions that helped
mould the approach. Gavin Campbell created goal suppofPfkarseN supported by
grant C014804 from the UK Engineering and Physical ScieResgarch Council.

References

[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Featurraction resolution using fuzzy policies.
Proc. 6th ICF| pages 94-112. 10S Press, May 2000.
[2] D. Amyot. Goal-oriented requirement language (GRL) @&sdpplications. IrProc. 31st Int. Conf. on
Software EngineerindEEE, May 2009.
[3] A. K. Bandara, E. C. Lupu, J. D. Moffett, and A. Russo. A gbased approach to policy refinement.
In Proc. Policy Workshoppages 229-239. IEEE, 2004.
[4] G. A. Campbell and K. J. Turner. Ontologies to support cahtrol policies. Proc. 3rd Advanced Int.
Conf. on Telecommgpages 5.1-5.6. IEEE, May 2007.
[5] G.A.Campbell and K. J. Turner. Policy conflict filteringrfcall control.Proc. 9th ICF| pages 93-108,
10S Press, May 2008.
[6] S. Davy, B. Jennings, and J. Strassner. The policy contin— Policy authoring and conflict analysis.
Computer Communication2008.
[7]1 N.D. Griffeth and H. Velthuijsen. Reasoning about gdalsesolve conflicts. Iint. Conf. on Intelligent
and Cooperative Information Systempages 1-14, May 1993.
[8] J.D. Moffett and M. S. Sloman. Policy hierarchies fortdilsuted systems managemenEEE JSAC
11(9):1404-1414, 1993.
[9] J. Rubio-Loyolaet al. Using linear temporal model checking for goal-orientetiggaefinement frame-
works. InProc. Policy Workshoppages 181-190. IEEE, 2005.
[10] K. J. Turner and L. Blair. Policies and conflicts in catintrol. Computer Networks51(2):496-514,
Feb. 2007.
[11] K. J. Turneret al. Policy support for call controlComputer Standards and Interfac@8(6):635—-649,
June 2006.
[12] A.van Lamsweerde and E. Letier. From object orientatmgoal orientation. IfProc. Radical Innova-
tions of Software and Systems Engineering in The FUllMES 2941, pages 153-166, Mar. 2003.

16

