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Abstract

Since their introduction, formal methods have been applied in various ways to different
standards. This paper gives an account of these applications, focusing on one application
in particular: the development of a framework for creating standards for Open Distributed
Processing (ODP). Following an introduction to ODP, the paper gives an insight into
the current work on formalising the architecture of the Reference Model of ODP (RM-
ODP), highlighting the advantages to be gained. The different approaches currently being
taken are shown, together with their associated advantages and disadvantages. The paper
concludes that there is no one all-purpose approach which can be used in preference to
all others, but that a combination of approaches is desirable to best fulfil the potential of
formal methods in developing an architectural semantics for ODP.
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1 Introduction

It is common knowledge that natural language is inadequate for giving precise specifications.

Indeed this was the initial motivation behind the development of several Formal Description

Techniques (FDTs) by the International Organization for Standardization (ISO) and the In-

ternational Consultative Committee for Telephony and Telegraphy (CCITT now ITU-T). The

standardised FDTs are LOTOS [9], ESTELLE [12] and SDL [11]. The aim of ISO was to pro-

duce precise and analyzable specifications of Open System Interconnection (OSI) standards

which could act as definitive references.

FDTs allow for the unambiguous representation of requirements. The main advantages of

their application with regard to standards development are in the improvement of quality and

the effectiveness with which standards are produced. For example, FDTs can help to ensure

that the concepts contained within the standard are well thought out and will not require

major revisions at some later date, thereby putting in jeopardy any work that was based on

these concepts.
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FDTs arrived a little too late to have a major impact on the development of OSI standards.

However, Open Distributed Processing (ODP) represents a fresh start in which the benefits

of the precision available from FDTs can be achieved.

This paper gives an account of the current work on formalising the architecture 1 of ODP.

Section 2 provides an outline of some of the past and present usage of FDTs in standards

work. Section 3 gives a brief introduction to ODP and to the reference model of ODP

(RM-ODP). Section 4 highlights the advantages to be gained in applying formal methods to

ODP to develop an architectural semantics and also identifies the pre-requisites for FDTs

to be used to develop an architectural semantics. Section 5 identifies the actual FDTs used

at present in ODP along with the subset of the ODP architecture which is currently being

formalised. Section 6 focuses on the formalisation of the basic modelling and specification

concepts. Section 7 focuses on the formalisation of the viewpoint languages, including the

different approaches possible and the advantages and disadvantages of each. Section 8 gives an

example of the architectural semantics work in formalising a computational language concept.

Finally section 9 draws some conclusions on the application of formal methods in standards

work, and the development of an architectural semantics for ODP in particular.

2 Background to Formal Methods in Standards

Before proceeding with an account of the application of formal methods in standards making

activities, it is worth considering what exactly is meant by the term “formal method”. Natural

language may be written in a semi-formal style through stylised English (or German, or...).

However, English is not a formal method.

A formal method may be regarded as the use of mathematical techniques to aid the design

of software or hardware. In particular, formal methods allow properties of a computer system

to be predicted from a mathematical model of the system. A formal method is based on a

formal language, i.e. a symbolic notation that uses unambiguous rules for developing legal

expressions in that language and for interpreting the semantics of these expressions.

The mathematical techniques used need not be similar. Labelled transition systems, set

theory, predicate logic, modal logics, algebra .... can all be used as the basis of formal methods.

Formal methods have been used, and are being used in varying degrees to aid the develop-

ment of standards. A full account of the previous application of formal methods in standards

may be found in [18]. An account of the application of formal methods generally may be

found in [45, 46, 47].

Besides OSI communication standards as a realm of application, other standards which

have, or are using/advocating formal methods, include many for safety [20], e.g. aviation [29],

safety-critical systems [26, 27], space [28], defence [22, 23], railways [21] and nuclear power

station software [24].

Formal methods have also been applied in attempts to understand graphics standards, e.g.

the Graphical Kernel System (ISO 7942), the Programmers Hierarchical Interactive Graphics

Standard (ISO 9592), Computer Graphics Metafile (ISO 8632), Computer Graphics Interface

(ISO 9636) and GKS-3D (ISO 8805). Some of the results of these formalisation attempts are

listed in [17].

1Rather a subset of the architecture is formalised. See section 5 for the identification of the parts of the

RM-ODP which are currently in the process of being formalised.
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Similarly, formal methods have been applied to Office Document Architecture [49]. This

is a multipart international standard (ISO 8613) which standardises the structure and content

elements of documents. A formal specification of the ODA (FODA) has been developed as

an addendum to the standard.

A few of the current standardisation activities which employ formal methods include

the following. Presentation Environments for Multimedia Objects (PREMO) [33] is using

Object-Z [55] as the primary FDT. Standardization of Managed Objects [31] is also using

formal methods to model a managed object’s behaviour [32].

In fact current ISO/IEC JTC1 directives request that subcommittees investigate the use

of formal methods in their work. These directives have resulted in further advocations of

FDTs by various subcommittees, e.g. SC24. This work is documented in part in [53] and

[50].

With regard to this paper, the application of formal methods to be considered is to ODP

and in particular to Part 4 [4, 5] of the RM-ODP. Before proceeding to describe this work,

an overview of ODP generally and an introduction to the RM-ODP will be given.

3 Introduction to ODP and the RM-ODP

One definition of a distributed system [39] states that it: “consists of multiple processors

which do not share primary memory and which communicate by sending messages over a

communications network”. Inherent characteristics of a distributed system include properties

such as:

Remoteness: components may be spread over space with both local and remote interactions

possible;

Concurrency: components are likely to be executing in parallel;

Partial Failures: components may fail independently of others;

Asynchrony: global communications are not driven by a global clock;

Heterogeneity: different technologies may be used within the system;

Autonomy: different parts of the system may be owned and managed separately;

Evolution: the technologies in the system may change over time;

Mobility: sources of information in the system might be physically mobile.

The RM-ODP recognises that it cannot provide an infrastructure to meet all of the needs

of distribution. Different systems will almost certainly have different demands on the infras-

tructure. The RM-ODP does, however, provide a framework for describing these infrastruc-

ture components and their configuration. Given applications may then select the components

they need for their particular concerns. Thus in effect the RM-ODP is a framework for devel-

oping standards for distribution, where the standards to be developed reflect infrastructure

components needed to overcome problems inherent in distribution.

The RM-ODP itself is divided into four main parts:

Part 1: Contains an overview and guide to use of the RM-ODP.
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Part 2: Contains the definition of concepts and gives the framework for description of dis-

tributed systems 2. It also introduces the principles of conformance and the way they

may be applied to ODP. The modelling approach used in Part 2 — and the rest of the

RM-ODP — is object-oriented. The advantages of this with regard to systems devel-

opment generally are well documented in the literature, e.g. [34, 35, 36, 37]. There are

three main sets of concepts used in Part 2:

Basic Modelling Concepts: these introduce the term object and other related terms,

e.g. action, behaviour, interface, location in space/time, interaction point, object

state, environment of an object...

Specification Concepts: these place requirements on specification languages, e.g.

concepts such as composition, type/class, template, behaviour compatibility, cre-

ation/deletion, subtype/subclass...

Architectural Concepts: these may be seen as structuring concepts arising from con-

sidering issues of distribution and distributed systems, e.g. contracts, policies,

binding, causal relationships...

Hence Part 2 in effect provides the vocabulary with which distributed systems may be

reasoned about and developed, i.e. it is used as the basis for understanding the concepts

contained within Part 3 of the RM-ODP.

Part 3: Contains the specification of the required characteristics that qualify distributed

system as open, i.e. constraints to which ODP systems must conform. The main

features of Part 3 include the viewpoint languages, conformance issues, functions and

transparencies.

ODP uses the notion of a viewpoint as it recognises that it is not possible to capture

effectively all aspects of design in a single description. A given viewpoint captures

certain design facets of concern to a particular group involved in the design process. In

doing so the complexity involved in considering the system is reduced. ODP recognises

five viewpoints, each with its own associated language:

Enterprise Viewpoint: this focuses on the expression of purpose, policy and bound-

ary for a given ODP system;

Information Viewpoint: this focuses on the information and information processing

functions in a given ODP system;

Computational Viewpoint: this focuses on the expression of functional decompo-

sition of a given ODP system, and of the interworking and portability of ODP

functions;

Engineering Viewpoint: this focuses on the expression of the infrastructure required

to support distributed processing;

Technology Viewpoint: this focuses on the expression of suitable technologies to

support distributed processing.

Each viewpoint represents a different abstraction of same original system; however,

there is likely to be common ground between the viewpoints.

2As well as broader areas where a clear understanding of object-oriented concepts is required.
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Functions and transparencies help to overcome (hide) problems involved in distribu-

tion, e.g. hiding from users that their local application is interworking with remote

applications to provide a given service. Transparencies can be applied selectively. All

transparencies are realised in part (or totally) using the engineering viewpoint through

the application of stubs, binders and protocol objects.

Part 4: Contains a formalisation of a subset of the ODP concepts. This formalisation is

achieved through “interpreting” each concept in terms of the constructs of a given

FDT. This interpretation is termed an architectural semantics and is the focus of the

rest of this paper.

4 The Development of an Architectural Semantics

4.1 What is an Architectural Semantics?

It is often the case that writing specifications proves to be difficult due to poor initial choice

of specification structures. Thus having a good architecture upon which specifications can be

based removes many of the difficulties involved in the actual writing of specifications. By a

similar argument, specifications written without a well structured architecture tend to be not

only difficult to write but also hard to understand and difficult to modify and extend.

Having a good specification architecture is also very useful for problems that are not

well defined by requiring detailed consideration of the informal problem statements. Thus

attempting to formalise “messy” problems directly can lead to “messy” specifications.

As identified in [38, 40], the combination of formal methods and object-orientation are

complementary techniques in promoting understanding of the software development process.

As a result of these considerations, ODP has identified the need for the development of an

architectural semantics. An architectural semantics 3 may be regarded as the interpretation

of given architectural concepts in a given FDT. For ODP the architecture may be regarded

as “parts of” (See section 5) the RM-ODP. The theory is that by interpreting the most basic

of concepts then more complex structures may be built. For example, interface, interaction,

etc. may be used to build services, protocols, etc. Through this formalisation, concepts are

no longer left open to interpretation. Thus, “intuitively clear” concepts which might be open

to different interpretations are made more precise and any ambiguities are removed.

4.2 Who will use an Architectural Semantics?

Ideally the architectural semantics work will be used by anybody interested in ODP and the

RM-ODP. These may include:

• developers of the RM-ODP themselves;

• developers of standards to be generated from the RM-ODP;

• implementers whose products comply with standards generated from the RM-ODP;

• testers of conformance to standards generated from the RM-ODP;

• end-users of products designed according to standards generated from the RM-ODP.

3This term was first used by Prof. Chris Vissers, University of Twente.
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The ideal scenario would be if the people using the RM-ODP used the formal definition

as given in Part 4, as opposed to the informal text given elsewhere in the RM-ODP. The

likelihood of this occurring, however, is small due to the limited formal method literacy even

within the computing science community generally.

4.3 Pre-requisites for FDTs

For a formal method to be used in developing an architectural semantics for ODP, certain

criteria have to be fulfilled. Firstly that the FDT must be widely known or standardised.

Thus the appropriateness of new FDTs are raised here, e.g. Object-Z [55] and RAISE [54].

It may be the case that the introduction of new FDTs is prohibited more by political reasons

than technical reasons. It may also be the case that it might be too late already for new

FDTs to be used in developing an architectural semantics for ODP, as the work is already

well advanced in the standards making process. It should be noted that there is no insistence

on a given FDT being able to model all (or any?) of the concepts of the RM-ODP. However, a

given FDT must also keep up with the scope of the architectural semantics work. For instance

when the documents, [2, 3], on which the architectural semantics are based are modified, then

the text of the architectural semantics should be modified also. Also if a given FDT is used

to describe a certain concept or viewpoint, then other FDTs should attempt to describe this

also. Thus there should be a consistency of application between the FDTs. This also helps in

identifying the FDT best suited to a particular problem, i.e. the best suited FDT to model

a given viewpoint or concept. The result of this is that considerable work is required to keep

an architectural semantics up to date.

4.4 What are the Advantages of an Architectural Semantics?

One of the main reasons for the development of an architectural semantics may be seen from

the problems incurred by OSI. Formal specifications of OSI standards gave scope for different

interpretations of architectural concepts. This was not in itself wrong, but simply reflected

the generality of the architecture. Interpreting informal concepts in FDTs requires attention

to how a given concept should be understood. Some of the problems identified included:

• Service primitives in OSI model interactions at services. Service primitives were not

defined in the OSI Reference Model (OSI-RM) [7] but OSI service conventions [8]. It was

not stated whether service primitives were atomic, instantaneous or synchronous. Thus

specifiers could regard service primitives as procedure calls or asynchronous requests

(in SDL [11], and ESTELLE [12]) or synchronous calls (LOTOS [9]). This was not

just hair-splitting but led to radically different behaviours being specified, i.e. different

implementations of the same standard.

• Service data units had different interpretations. It was not clear whether they were

atomic or not. Hence different behaviours were possible, e.g. protocol data units could

be sent off before a given service data unit was completely received by a protocol entity.

• Service access points had different interpretations.

* Did they reflect a structural concept, e.g. an interface between two protocol enti-

ties?
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* Were they active agents, e.g. did they have a dynamic aspect through which

connections could be established?

* Could they be represented by processes which could be further decomposed?

* Could connection-less and connection-mode services be supported at the same

service access point?

* Were endpoints necessarily associated with endpoints or were they a more general

concept?

A fuller account of the historical reasons for the development of an architectural semantics

for OSI may be found in [48].

4.5 Direct Advantages of an Architectural Semantics

An architectural semantics provides clear and concise statements in a given FDT – a formal-

isation of concepts which then acts as a more precise definition of the given ODP concepts.

In doing so it requires a more in-depth consideration of the textual definition of each concept

than might otherwise have been achieved.

Developing an architectural semantics also assists in the sound development of formal

descriptions of standards for ODP systems. That is, it offers a more structured approach

to specification of ODP systems (and standards), enabling software reuse to be achieved.

An analogy here would be an electronic engineer who works at an architectural level. The

engineer does not have to re-specify the most basic of components such as flip-flops and NAND

gates, but rather may use these as building blocks to create more complex components. An

approach using LOTOS to do exactly this may be found in [41] and [42].

In defining an architectural semantics, the developers of the architecture itself may have

confidence in their architecture if it can be interpreted in an FDT. The architectural semantics

acts as a bridge between the concepts of a given architecture and the semantic model of a given

FDT. It should not be assumed, however, that because a given concept cannot be interpreted

in a given FDT then it is necessarily wrong. It might simply mean that this concept is not

well matched by the semantic model of the given FDT.

An architectural semantics also offers the basis for comparison of different FDTs when

used to provide formal descriptions of the same standard. Hence it also helps in identifying

which FDT is most suitable for a given problem domain.

Notions such as conformance, consistency and compliance may also be addressed through

the architectural semantics work. Advantage can be taken of existing tool support, e.g.

[13, 14, 15], to check these aspects for specifications developed from the architectural semantics

work.

4.6 Indirect Advantages of an Architectural Semantics

There are several indirect advantages that arise out of the development of an architectural

semantics. Perhaps the most important of these is in clearing up the text of the architecture

under consideration. In the case of the RM-ODP this means removing any ambiguities or

misleading text contained within the relevant standards. It could even be argued that this

is one of the main direct (visible) advantages of applying FDTs to develop an architectural

semantics for ODP.
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By developing an architectural semantics the limitations of the FDTs used are also iden-

tified and documented. These can then be used by FDT developers to extend and improve

existing FDTs. Taking the work of Part 4 specifically, useful extensions identified for the

FDTs LOTOS and Z include object-oriented concepts, temporal logic for Z, and dynamic

configuration and time for LOTOS.

4.7 What an Architectural Semantics is Not!

It should be pointed out that an architectural semantics is not about showing that two

arbitrary specifications written in different FDTs are the same (though, of course, the equiva-

lences defined for the specification language should help here). It is also not about redefining

architectural concepts in a form more suitable for FDTs, or adding/removing architectural

concepts that can/cannot be interpreted in given FDTs. An architectural semantics might,

however, result in the last of these three by making the architecture developers reconsider the

existing concepts.

Having identified the need for an architectural semantics, the rest of this paper will focus

in detail on the practical realities of developing one for ODP.

5 Developing an Architectural Semantics for ODP

The first questions that arise when considering an architectural semantics for ODP are: what

parts of the reference model should be formalised, and what FDTs should be used? So

far the FDTs considered have been LOTOS [9], SDL’92 [11], Z [10], ESTELLE [12] and a

direct formalisation in mathematics, all of which have their own particular advantages and

disadvantages in formalising the architecture of ODP. All of these FDTs also satisfy the pre-

requisites identified in section 4.3. Almost as important as the choice of FDTs is the expertise

that is immediately available in these FDTs. With regard to the work on the architectural

semantics, the international community draws on a rich vein of expertise in all of the chosen

FDTs.

Ideally the architectural semantics work should cover all of the RM-ODP. This is not

feasible, however, due to time limitations 4 (and possibly technical limitations). The original

scope of the architectural semantics work was the basic modelling and specification concepts

of Part 2 5. Whilst this brought a more thorough understanding of the more elementary 6

concepts, it was identified that an architectural semantics could be more useful than in just

this role. It was identified that formalising the viewpoint languages would be useful also.

In effect this extends the basic idea of interpreting the elementary concepts to create more

complex components. That is, by interpreting the viewpoint languages it is not simply the

basic building blocks that are being formalised, but the more prescriptive building blocks of

the viewpoint languages; the level of prescription required to interpret a given concept is thus

increased. In doing this the development of an architectural semantics requires much more

work. However, the benefits of the architectural semantics are increased dramatically also;

some of these benefits are listed in section 7.

4The architectural semantics work for the basic modelling and specification concepts is expected to become

an international standard by October 1996. The architectural semantics for the viewpoint languages is expected
to become an international standard by June 1997.

5Much of this work tended to be of a tutorial nature and can now be found in [51, 52].
6This term does not imply the concepts are trivial, but that they are more fundamental.
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The immediate question which now arises is: what viewpoint languages should be for-

malised? Once again, all of them should ideally be formalised although it is unlikely that

some, e.g. the technology viewpoint, may be realistically formalised. So far, initial work

has been carried out on formalising: the computational viewpoint [56] and information view-

points [57] in LOTOS; the information language in Z [60]; and the computational language in

ESTELLE [61], SDL’92 [62] and a direct formalisation in mathematics [64]. Recent work has

also been carried out on formalising the enterprise viewpoint language in LOTOS [58] and

Z [59]. Work was done previously [63] using LOTOS to develop an architectural semantics

for the viewpoint languages — including the engineering viewpoint language. However, this

is now out of date with regard to the technical content of the RM-ODP. This due to the

relatively fluid condition of Parts 2 and 3 especially of the RM-ODP.

It should be pointed out that in formalising the viewpoint languages, more formalisations

from Part 2 of the RM-ODP are required, particularly those concepts dealing with architec-

tural and organisational issues, e.g. policy, binding, etc. As a result of this the architectural

semantics work has been extended further to cover more of the RM-ODP. Care has been

taken to ensure that the scope of the architectural semantics work is not extended so far that

it is not practicable to complete the work before the intended deadlines.

6 Formalising the Basic Modelling and Specification Con-

cepts

Formalising the basic modelling and specification concepts of Part 2 gives a precise under-

standing of the basic concepts used in the RM-ODP. This formalisation is achieved by taking

a given definition from Part 2 of the RM-ODP and writing in English how that definition

may be represented in a given FDT. The approach to formalising the basic modelling and

specification concepts is not prescriptive.

It is often the case that there might be more than one way in which a given concept can

be represented. For example, an object is defined in Part 2 of the RM-ODP as: “A model of

an entity. An object is characterised by its behaviour and, dually, by its state. An object is

distinct from any other object. An object is encapsulated, i.e. any change in its state can only

occur as a result of an internal action or as a result of an interaction with its environment”.

The terms behaviour, state, interaction and environment are defined elsewhere in Part 2 of

the RM-ODP.

The foregoing is a general definition of an object which allows for several choices to be

made when modelled in a given FDT. For example, for LOTOS the interpretation given in

the architectural semantics work is: “An instantiation of a LOTOS process definition which

can be uniquely referenced”.

It may be seen that the interpretation in the Part 4 work is still very general. For

instance, it states nothing about the way in which the unique identity of an object can be

established. This might be when the process is instantiated through some ACT ONE 7 data

type in the value parameter list associated with the process definition which is used in all

object interactions. Alternatively it might be through some global data type modelled in ACT

ONE used directly in the behaviour expression associated with the object template (process

definition). Another possible choice is through the object having some initial behaviour

7See [9, 43, 44] for more information on ACT ONE and LOTOS generally.
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which establishes its identity. Thus the specifier is left with choices as to the best way to

model an object in LOTOS. The choice that is made should, however, be consistent with the

architectural semantics work.

In effect the formalisation of the Part 2 concepts offers guidance to the specifier as to how

to specify a given concept. In some cases, a concept may be modelled only through being

very prescriptive in the style of LOTOS used. For example, inheritance may be modelled in

LOTOS provided a restrictive style of specification is used, i.e. one in which the inherited

process has exit functionality. This means that any process having noexit functionality

may never be inherited from. This is a severe restriction upon the specifier and one which is

clearly not scalable. An account of the modifications necessary to the LOTOS language to

enable inheritance to be dealt with in all cases is given in [65]. As an example, therefore, the

architectural semantics work should provide guidance on how specifiers may specify concepts

such as inheritance. It should also provide warnings of the problems that the specification of

these concepts may induce.

As the approach to modelling taken in the RM-ODP is an object-oriented one, the for-

malisation of many of the concepts becomes a task in formalising object-oriented concepts in

FDTs that may not be object-oriented. This requires that an object-oriented style of spec-

ification is imposed. The question might be asked as to whether it is valid to restrict the

users of the architectural semantics work to a certain style of specification. This will have

repercussions in that it may not be easy to take an arbitrary specification and identify the

architectural concepts contained within it. This can be countered, however, since it is up to

the specifiers of ODP systems to use the architectural semantics work. Hence the restriction

to a particular style of specification may be seen as a valid restriction.

7 Formalising the Viewpoint Languages

The relationship between Part 2 and Part 3 of the RM-ODP may be seen as specialisation.

That is, Part 2 gives a basic interpretation of a given concept and Part 3 gives a more

specialised version. For example, Part 2 introduces the concept of an interface and Part

3 specialises this basic concept into stream, operational and signal interfaces. Thus one

way of considering this specialisation relationship is that Part 2 provides the vocabulary for

consideration of Part 3 concepts. Whilst it is essential to have a precise definition in Part

2, it is likely that ODP systems developers and standards writers will, in practice, use the

viewpoint languages of Part 3 to develop their systems. Hence FDTs should be applied —

where possible — to the viewpoint languages.

In formalising the viewpoint languages three main approaches have been put forward:

• a direct formal semantics in mathematics [64].

• an approach based on interpretation [56, 57, 58, 59, 60].

• an approach based on providing specification templates [63].

Each of these approaches has both advantages and disadvantages which will now be discussed.

7.1 Direct Formal Semantics in Mathematics

This approach is based on giving a direct mathematical interpretation of ODP concepts.

This mathematical interpretation takes the form of transition rules which characterise valid
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behaviours of configurations of computational objects. Doing this realises several advantages:

• it enables the semantics of ODP concepts to be defined directly with mathematics, as

opposed to an FDT meta-language based on mathematics.

• it is claimed 8 to offer a means to compare the consistency of different FDTs when

used to compare the same computational behaviour. This may be achieved through a

mapping of the semantics of a given FDT onto this direct formal semantics. In doing so,

problem areas such as ensuring when different FDTs represent the “same” behaviour

are alleviated. This has repercussions on notions such as ODP conformance.

• it also captures the genericity of the computational language.

The approach is not without its drawbacks however. The greatest drawback is that it

is very (overly?) mathematical and hence might tend to scare away possible users of the

architectural semantics work. Formal methods often offer a symbolic meta-language which

to a great extent hide their mathematical foundations. With this approach, however, the

mathematical foundations are blatantly visible and hence not as accessible to people with a

non-formal background.

This approach does not offer any means to develop specifications. It simply represents

the generic mathematical interpretation of a subset of the computational language behaviour.

Specifically, it deals with the operational interactions of the computational language. It is

unlikely that such an approach could be extended to other viewpoint languages, e.g. the

information viewpoint language, due to the lack of prescription in defining concepts in these

languages.

7.2 An Approach Based on Interpretation in an FDT

This approach is a continuation of the one taken in formalising the concepts of Part 2 of the

RM-ODP. That is the formalisation is based on interpreting given concepts in FDTs.

The advantages in taking such an approach are that it enables an in depth comparison of

all ODP viewpoint language concepts in all FDTs. Thus the semantics of all of the concepts

may be checked against the semantic models of the FDTs. In doing so, it brings more under-

standing of the ODP concepts to users of the RM-ODP. The approach also gives specifiers

guidance without being prescriptive as to how they should specify certain ODP concepts.

This approach is not without its drawbacks, however. For instance, as it not prescriptive

it is not possible to identify immediately whether any given specification is ODP compliant.

With this approach, notions such as cross viewpoint consistency may also not be established

directly.

7.3 An Approach Based on Providing Specification Templates

This approach is based on providing specification templates for ODP concepts. At present

this work has been done only in LOTOS. Through this approach, a structuring of concepts

can be achieved which can then be used to build ODP compliant specifications. It should be

pointed out that the specification templates given in [63] only represent a structuring of the

8So far, little work has been done in showing that this pivotal mapping exists, even for simplistic
specifications.

11



computational viewpoint language concepts, as opposed to a direct behavioural specification

of the concepts. This is because the computational viewpoint language is too generic to be

directly formalised in a constructive FDT such as LOTOS.

The approach is very prescriptive, however. It is also not possible to provide templates for

all concepts in a given FDT for a given viewpoint language. It is unlikely that a similar style

of specification could be adopted in different kinds of FDT, e.g. Z, due to their fundamen-

tally different natures. It is also unlikely that this approach can be taken for all viewpoint

languages, e.g. information, enterprise or technology, as it is only really in the computational

and engineering viewpoint languages that the RM-ODP is prescriptive enough to be able to

support specification templates. One other drawback with this approach is that it is not

possible to take any arbitrary specification and check whether it is ODP compliant or not.

7.4 Conclusion on Approaches

The best possible approach that could be taken in developing an architectural semantics for

ODP would consist of:

• providing (behavioural) templates for all of the concepts contained within all of the

viewpoint languages in all relevant FDTs;

• being able to show (or prove) consistency between different (all?) viewpoints;

• being able to check arbitrary specifications for ODP compliance.

In reality, however, this is not the case. There is no one all-purpose FDT. Different FDTs

are suited for different viewpoint languages. Templates are only possible to a limited extent,

i.e. not all concepts can be interpreted (modelled) through a template. It is also not possible

to provide templates for the information, enterprise or technology viewpoint languages due

to their very nature, i.e. they place very few prescriptive constraints on the modellers.

As a result of this, the best solution with regard to developing an architectural semantics is

through a combination of all of the above approaches. That is, templates should be provided

where possible. These should be accompanied by an approach based on interpretation. The

limitations of the template based approach should be identified and documented. Finally,

(if possible) a complete direct formal semantics should be made of the viewpoint languages

where possible and transformation (mapping) rules supplied to enable consistency of FDTs

to be determined.

Much of this work remains to be done. So far the approaches have been made predomi-

nantly in isolation; however, it is clear that a composite approach is beneficial. The following

section illustrates briefly in some detail one of these approaches: the interpretation based ap-

proach. This in turn leads in a natural way to an approach based on specification templates.

8 Example of the Architectural Semantics

The RM-ODP uses a hierarchical approach in defining its concepts. Indeed this is one of the

main reasons that an architectural semantics is so useful: through defining formally the more

basic concepts, the more complex concepts can be developed. One of the consequences of this,

however, is that attempting to show even a simple example of the architectural semantics work
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is quite a laborious task. Hence the example chosen to illustrate the architectural semantics

work is amongst the simplest possible: that of an invocation 9.

An invocation is defined in Part 3 of the RM-ODP as: “a sequence of actions comprising

two signals:

• the first, called invocation submit, between a client object and a binding object, followed

by

• the second, called invocation deliver, between the same binding object and a server ob-

ject.”

The term signal used here is defined in Part 3 as: “an atomic interaction consisting of a single

atomic action between a basic computational object and a binding object.”

A signal itself has a signature defined as: “an action template for a signal comprising

• a name for the signal;

• the number, names and types of parameters for the signal;

• an indication of causality.”

The term template (action template) used here is defined in Part 2 of the RM-ODP as:

“the specification of the common features of a collection of < X >’s in sufficient detail that

an < X > can be instantiated using it.” Here an < X > may be an object, interface or action.

A note is added indicating that action instantiation is deprecated and should be replaced by

action occurrence.

Action (and interaction) themselves are defined in Part 2 of the RM-ODP as: “something

which happens. Every action of interest for modelling purposes is associated with at least one

object. The set of actions associated with an object is partitioned into internal actions and

interactions. An internal action always takes place without the participation of the environ-

ment of the object. An interaction takes place with the participation of the environment of

the object.”

The environment of an object is defined in Part 2 of the RM-ODP as: “the part of a model

that is not part of that object.”

As may be seen, even in this very basic concept of an invocation there is a large collection

of sub-concepts required in its definition. Specifically, the concepts required in formalising

the notion of an invocation are: action, template (action), object, environment of an object,

signal and signal signature.

Further concepts which are used in the definition of invocation are type, atomicity, causal-

ity, name, model, instantiation, signature, basic computational object, binding object, client

object and server object. For the sake of simplicity in this example, i.e. limiting the explosion

of concepts required to define invocation, these terms will not be formally defined here; their

formal definition may be found in [4, 5].

8.1 Formalising “Invocation” in LOTOS

To formalise the concept of invocation as given here requires that all of the subconcepts are

also defined. Each of the above identified concepts may be interpreted in LOTOS, either

9The following italicised text represents text taken directly from Parts 2 and 3 of the RM-ODP.
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directly in the semantics of LOTOS, or through imposing a specification style as will be

shown. Architecturally, the most basic concept represented here is that of an action. The

following definitions are taken from Part 4 of the RM-ODP.

8.1.1 Action

An internal or observable event. All events in LOTOS are atomic. An internal action may be

given explicitly by the internal event symbol, i, or by an event occurrence whose associated

gate is hidden from the environment.

An interaction is represented in LOTOS by a synchronisation between two or more be-

haviour expressions associated with objects at a common interaction point (gate). Interactions

may be of the kind:

• pure synchronisation on a common gate with no offer: no passing of values between

objects occurs;

• ! and ! for pure synchronisation: no values are exchanged between the objects;

• ! and ? for value passing provided the ? event contains the ! event: another way

of considering this is that the ! event selects a value from a choice of values for the ?

event;

• ? and ? for value establishment: here the effect is an agreement on a value from the

intersection of the set of values. If the intersection of the values is the empty set then

no synchronisation and hence no interaction occurs.

8.1.2 Object

The definition of an object is given in section 6.

8.1.3 Environment of an Object

The environment of an object within a LOTOS specification at a given time is given by the

environment of the specification and the other behaviour expressions that are composed with

that object in the specification at that time.

8.1.4 Action Template

An action denotation which may be either an internal-event-symbol, a gate-identifier or a

gate-identifier followed by a finite sequence of value and/or variable declarations. It should

also be pointed out that the definition of an action template is not really supported in LOTOS.

That is, in LOTOS possible behaviours are specified by giving action denotations combined in

some form. To relate a template to an action denotation is the closest that can be achieved in

LOTOS. However, the text of Part 2 requires an action template to group the characteristics

of actions. This is not part of LOTOS as event offers (action denotations) exist in isolation

and it is not possible to collect them and apply a template to characterise them.
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8.1.5 Signal Signature

An event offer which consists of a name for the signal; the number, names and types of

parameters for the signal; and an indication of causality.

Thus one example of a signal in LOTOS which might be offered by a basic computational

object to a binding object is: g !sig id !parameter list !initiate. The sort sig id gives the signal

name; parameter list gives the details of the number, name and type of the parameters of the

signal which includes the identifiers for the basic computational object and binding objects

involved in the interaction amongst other things; and initiate gives an idea of the causality

of the signal. Here LOTOS is being used in a stylised way to represent signals. For example,

the sort initiate which is used to represent causality can only do so informally. There is no

notion of this event offer causing the signal event to occur, i.e. there are just two event offers

from the basic computational object and the binding object. The two event offers enter into

the signal event simultaneously, or not at all. Thus in reality there is no causality associated

with either event offer.

It should also be pointed out here that a signal must be represented by two event offers

in LOTOS, i.e. an event offer associated with the basic computational object and an event

offer associated with the binding object. Thus a single event offer which may occur without

participation from the environment is not a signal. Two event offers which might occur

through synchronisation will only represent a signal if the event offers are associated with

a basic computational object and a binding object. It should be noted that this should

never happen if the interaction rules for computational structuring are followed. That is,

computational objects cannot simply interact with one another directly, as this will cause an

infrastructure failure. They may interact only after being bound.

8.1.6 Signal

There is no inherent feature of LOTOS which can be used to distinguish between a signal, a

stream and an operation; they all use LOTOS events. Consider an arbitrary LOTOS event

without some idea of the context in which it occurs, i.e. which objects were involved in the

synchronisation and what other events have occurred through synchronisations between the

same objects. Without having some sort of restrictions on the modelling of event offers, it is

not possible to state that it was a signal or one part of an operation or stream. It may be the

case, however, that a style of LOTOS can be used to distinguish between signals, streams and

operations. Thus all signals might have similar formats for their event offers. An example of

one possible format is given in section 8.1.5.

8.1.7 Invocation

An invocation is modelled in LOTOS as a sequence of interactions between a client object

and a binding object and the same binding object and a server object. These interactions

consist of two events with signal signatures. In order to distinguish between an invocation

and any other LOTOS event, it may be useful in LOTOS to use a special label to note it

as such. This may take the form of a gate name or a sort used in the action denotation of

the signal signature. Thus the events g !sig id !parameter list !invocation submit and g !sig id

!parameter list !invocation deliver could represent a given invocation between a client and a

binder object and a binder and a server object respectively. Here the sorts invocation submit
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and invocation deliver represent both the causality of the signal and the label used to identify

it as an invocation (within the limitations of LOTOS as put forward in section 8.1.5.)

8.2 Discussion

Subsection 8.1 illustrates all aspects of the architectural semantics work. For example, a

comparison of the semantic basis of the ODP concepts to the LOTOS model is discussed,

and an outline of the more prescriptive modelling choices required to reflect a given concept

is given. There is a close semantic relationship between the informal text and the formalised

LOTOS text. That is, as LOTOS is based on a labelled transition system the notion of an

action is provided for directly.

When the more prescriptive concepts are modelled, however, such as signals, it is necessary

for the architectural semantics to provide guidance as to how the concept may best be speci-

fied. This may be by providing specification fragments — in this case an event offer consisting

of several parameters identified as being necessary from the informal text of the RM-ODP.

It is also possible for this guidance to be more prescriptive, i.e. explicitly give specification

templates to prescribe the form of a signal, say, as opposed to simply offering suggestions to

the specifier. This is a natural follow on from the interpretation based approach, however,

and hence the two approaches are, in many respects quite similar. It should also be pointed

out that not being prescriptive gives specifiers more room for their own style of specification.

For example, instead of having parameter list as given in section 8.1.5 represent the details of

the number, name and type of the parameters of the signal, these might be given individually

in a single event offer. This might be done with: e.g. g !sig id !1 !myNumber !myNat !initiate

where myNumber represents the name of the parameter and myNat its sort.

Another advantage in not being prescriptive too early on in the development of an archi-

tectural semantics is that the limitations of the different approaches may be highlighted and

comments given which may help the specifier to model a particular concept.

The issue of a template based approach becomes more convincing when higher levels of

prescriptivity are given as is the case in this example, e.g. identifying all of the parameters

for a given event offer (signal). This is not always the case though and so the application of

specification templates in ODP is limited. Similarly, even when all of the required concepts

are identified it may not always be possible to model them, e.g. an environmental contract

may not be modelled fully in LOTOS.

9 Conclusions

Formal methods have a very important role to play in ODP with the development of an archi-

tectural semantics for the RM-ODP. Apart from the advantage of clearing up any ambiguous

(or incorrect) text, formal methods offer guidance to specifiers or systems developers using

the RM-ODP.

Formal methods themselves benefit from their application to ODP. The usage and pub-

licity they gain from the ODP work as well as the identification of possible limitations and

hence suggestions for improvements of the methods themselves are all additional advantages

following from the ODP work.

It could be argued that the first real test of the RM-ODP is through the development of an

architectural semantics. That is, the development of an architectural semantics represents a

thorough “work-out” of the architecture of the RM-ODP. Through this approach, notions such
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as consistency between viewpoints can be assessed and conformance of distributed systems

developed using the RM-ODP checked.

Work on the formalisation of the viewpoint languages has identified that formalisation of

more of Part 2 of the RM-ODP is necessary, i.e. concepts other than the basic modelling

and specification concepts. As a result of this the workload on formalising the RM-ODP has

increased further. Whilst the architectural semantics work is currently having a boom time

with many contributions from many of the member bodies involved in the standards making

process, more work is required in the international community to develop a full architectural

semantics for the RM-ODP.

There is no all-round FDT or approach best suited for the work on formalising the ar-

chitecture of ODP. It seems that the best approach is through a composite approach which

uses all of the techniques suggested so far. Hence it is likely that future contributions on

formalising the viewpoint languages should proceed along these lines.

The success or failure of the architectural semantics work also depends to a large extent

on its tutorial nature. At present the Part 4 work is very terse and difficult to read. Hence

the need exists for many small examples illustrating the concepts being modelled. Similarly,

the need exists for a large example illustrating the application of the architectural semantics

work. It is likely that this work can only be attempted when the formalisation of the viewpoint

languages is more mature.

Time and politics may play a large role in the success or failure of this application of FDTs.

If this is not going to be a case of FDTs yet again not being fully exploited, then further

collaborative international work is required immediately to provide a sound and apposite

architectural semantics for ODP.

To help speed up the progress of developing an architectural semantics for ODP an email

discussion group has been set up. Interested readers should contact the first named author.
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