
Kenneth J. Turner and Koon Leai Larry Tan. A Rigorous Approach to
orchestrating Grid Services. Computer Networks, 51(15):4421-4441,
Copyright Elsevier, Amsterdam, October 2007

A Rigorous Approach to Orchestrating Grid Services

Kenneth J. Turner, Koon Leai Larry Tan

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

Abstract

Although conceived for web services, it is shown how BPEL (Business Process Execu-
tion Language) can be used to orchestrate a collection of grid services. This is achieved us-
ing the technique of CRESS(Communication Representation Employing Systematic Spec-
ification) to describe the composition of grid services. CRESSdescriptions are automati-
cally translated into LOTOS(Language Of Temporal Ordering Specification), allowing sys-
tematic checks for interoperability and logical errors prior to implementation. MUSTARD

(Multiple-Use Scenario Test and Refusal Description) is used to validate the generated
specification against use case scenarios. The same CRESSdescriptions are then automati-
cally converted into BPEL/WSDL code for practical realisation of the composed services.
Grid services are executed by Globus Toolkit 4, while their orchestration is supported by
the ActiveBPEL engine. The MUSTARD scenarios are used again to evaluate the imple-
mentation. The overall approach therefore supports rigorous development and automated
creation of orchestrated grid services.

Key words: BPEL (Business Process Execution Language), Grid Service, LOTOS

(Language Of Temporal Ordering Specification), Service Orchestration

1 Introduction

Grid computing has emerged as a leading form of distributed computing. Service-
oriented architecture provides a framework for combining grid services into new
ones. This paper reports on work to orchestrate grid services. In particular, it il-
lustrates a method that allows the orchestration to be validated rigorously prior to
automated implementation.

CRESS(Communication Representation Employing Structured Specification) was
developed as a general-purpose graphical notation for services. Essentially, CRESS

Email addresses:kjt@cs.stir.ac.uk (Kenneth J. Turner),
klt@cs.stir.ac.uk (Koon Leai Larry Tan).

Preprint submitted to Elsevier 8 March 2010

describes the flow of actions in a service. It thus lends itself to describing flows that
combine grid services. CRESShas been used to specify and analyse services from
the Intelligent Network [23], Internet Telephony [24], Interactive Voice Response
[25], Call Processing, and web services [26]. In a new development, CRESS has
now been extended to grid services. Since grid services are similar to web services,
but certainly not the same, this paper focuses on the advances that have been nec-
essary for grid computing. The differences between web and grid computing are
discussed in section 2.1.

Service descriptions in CRESS are graphical and accessible to non-specialists. A
major advantage of CRESS descriptions is that they are automatically translated
into formal languages for analysis, as well as into implementation languages for
deployment. CRESSoffers benefits of comprehensibility, portability, rigorous anal-
ysis and automated implementation.

Grid computing has been enthusiastically adopted by many disciplines. Early uses
were in the physical sciences (e.g. particle physics, astrophysics). However, grid
computing has rapidly spread into other areas such as the life sciences (e.g. bioin-
formatics, genomics), engineering (e.g. electronics, photonics), the earth sciences
(e.g. environmental science, geoscience), and medicine (e.g. pharmacology, medi-
cal imaging).

Grid computing has now moved beyond scientific disciplines into ‘softer’ areas
such as the arts, business, economics and the humanities. Asa concrete illustration
of this, the paper uses an example that is taken from occupational data analysis in
the field of social science. Social scientists often work with large datasets such as
surveys that are evaluated with respect to occupational trends. There is a lack of
good technical means for accessing and manipulating such datasets in a distributed
manner. Grid services offer many advantages for this, but a rigorous approach is
desirable.

2 Background

The work reported here draws on a number of different technical areas. This section
provides some background information for the general reader.

2.1 Grid Computing

Grid computing is named by analogy with the electrical powergrid. Just as power
stations are linked into a universal electrical supply, so computational resources
can be linked into a computing grid. Distributed computing is hardly a new area.

2

But the architecture and software technologies behind the grid have captured the
attention of those who perform large-scale computing, e.g.those who work in the
sciences. Grid computing offers a number of distinctive advantages that include:

• support for virtual organisations that transcend conventional boundaries, and
may come together only for a particular task

• portals that provide ready access to grid-enabled resources
• single sign-on, whereby an authenticated user can make use of distributed re-

sources such as data repositories or computational servers
• security, including flexible mechanisms for delegating credentials to third parties

to act on behalf of the user
• distributed and parallel computing.

Open standards for the grid are being created by the GGF (Global Grid Forum,
www.gridforum.org) and the OGF (Open Grid Forum,www.ogf.org). Grid services
are governed by OGSA (Open Grid Services Architecture [10]).

Grid applications often make themselves available via services that are comparable
to web services – another area of vigorous development. For atime, grid services
and web services were not fully compatible. The major issue was the need for state-
ful services that have persistent state. A grid-specific solution to this was developed
initially, but this was clearly something that web servicescould also benefit from.

Web and grid developers therefore cooperated on a solution that exploited existing
web service standards but met the needs of grid computing forresource separation.
A harmonised solution was defined by WSRF (Web Services Resource Framework
[11]). This is a collection of interrelated standards such as WS-Resource and WS-
ResourceProperties. WSRF is implemented by several toolsets, including Globus
Toolkit version 4 (GT4 [22],www.globus.org) that is widely used in grid comput-
ing.

With WSRF, web and grid services now share a common technicalbasis. However,
web services have a more commercial focus while grid services have a more sci-
entific focus. As a result, different sets of supporting facilities are provided. OGSA
provides a rich superstructure of facilities that include security and authorisation,
job management and scheduling, data abstraction and indexing, and data access
and transfer. The work reported in this paper focuses on the basic concepts of grid
services and their orchestration. It does not address thesehigher-level facilities.

2.2 Service Orchestration

This paper emphasises thecompositionof grid services, not the description ofiso-
latedgrid services. Composing services has attracted considerable industrial inter-
est. This is achieved by defining abusiness processthat captures the logic of how
the individual services are combined. The termorchestrationis also used for this.

3

Historically, competing solutions were developed for orchestrating services. A ma-
jor advance was the multi-company specification for BPEL4WS (Business Process
Execution Language for Web Services [1]), which is being standardised as WS-
BPEL (Web Services Business Process Execution Language [2]). BPEL is now well
established as a way of composing web services. However, itsuse for composing
grid services has received only limited attention.

Orchestration defines the logic for combining a number of separate partner ser-
vices. A nice feature of the approach is that the compositionis a service in its own
right. BPEL was originally defined for web services, and is currently unaware of
the special characteristics of grid services. For example,resource and security as-
pects of grid services are not recognised. As a widely adopted standard, BPEL is
nonetheless likely to find increasing use for orchestratinggrid services. The work
reported here demonstrates its potential.

To avoid the reader having to be expert in BPEL and WSDL, only a high-level de-
scription is given in this paper. However, the CRESSrepresentation of orchestration
is intentionally similar to BPEL. This allows a service designer to make use of
CRESSwith minimal training.

2.3 Occupational Analysis

Many forms of social analysis use occupation as a significantfactor. For example,
Governments are interested in questions like the following. Is the number of school
teachers rising? How well are doctors being paid compared tofirefighters? Is the
gender imbalance in computing being addressed? Are better paid people moving to
rural areas?

Social scientists make wide use of aggregate occupational information databases
that contain summary data on particular occupational positions. Many approaches
are used, for example alternative taxonomies for occupations. However the distri-
bution and use of such classifications is rather limited in social science [16]. Ag-
gregate occupational information datasets are often just published via web pages
with informal instructions. The datasets are seldom annotated with metadata about
their structure and provenance. They are seldom available via repositories, which
inhibits their use by a wider community.

Social scientists often wish to link aggregate occupational information with micro-
social survey datasets. The latter may be very large, and subject to strict controls on
access. Moreover their analysis through statistical models is often computationally
intensive. Although occupation is an important measure in many social science
analyses, social scientists rarely obtain the benefits of effective resource sharing.
This applies to aggregate occupational information, and also to analysis of micro-
social data using occupations. The overall result is that itis often difficult for social

4

scientists to collaborate. This is unfortunate because many advantages could be
obtained by effective sharing of data and computing resources.

The authors are working on the GEODE project (Grid-Enabled Occupational Data
Environment,www.geode.stir.ac.uk). The premise of this project is that grid com-
puting is an effective solution to many of the problems facedby social scientists
in using occupational data. GEODE has been the source of the research challenges
addressed in this paper. Occupationally-related servicesare therefore used here for
illustration.

2.4 LOTOS

LOTOS (Language Of Temporal Ordering Specification [13]) was standardised for
the specification of communications systems. It is, however, a general-purpose lan-
guage that has been used in other applications such as conformance testing, embed-
ded systems, hardware design, and safety-critical systems. LOTOS uses a process
algebra to specify behaviour, and algebraic data types to specify data.

To avoid the reader having to be expert in LOTOS, only the high-level structure
of generated specifications is given in this paper. A data type and its associated
operations are specified by atype. Behaviour is described by aprocess. LOTOS

processes are parameterised bygatesat which communication takes place. Typi-
cally, behaviour is specified in a modular fashion as the composition of a number
of processes. Process may synchronise on specified gates, ormay be interleaved
(i.e. operate independently in parallel). The whole specification has a top-levelbe-
haviour.

2.5 CRESS

CRESS is extensible, with plug-in modules for each application domain and each
target language. Although support for web services had already been developed,
it has been necessary to extend this significantly for use with grid services. In
addition, grid services have specialised characteristicsthat require corresponding
support in CRESS:

• A wider range of data types is now supported, including arrays and arbitrarily
nested structured types. Specialised types have been addedfor dealing with grid
services, such as certificates and endpoint references.

• Additional BPEL-compatible constructs have been included to make grid service
orchestration more convenient.

• Support has been introduced for external partners shared amongst a number of
services. Special treatment is needed to merge their descriptions from different

5

CRESS Service

Description

Formal Service

Specification

BPEL/WSDL

Implementation

automatic

translation

verification/

validation

automatic

translation

Fig. 1. A Rigorous Approach to Composing Grid Services (from[28])

services.
• External partners may need to communicate with other partners not visible to the

orchestrating process. Support has been created for such ‘phantom partners’.
• CRESSnow has support for declaring and translating grid service resources.

As illustrated in figure 1, CRESSoffers a formally-based approach for orchestrating
grid services. In the context of grid computing, the steps indevelopment are as
follows:

• The desired composition of grid services is first described using CRESS. This
gives a high-level overview of the service interrelationships. Because the de-
scription is graphical, it is relatively accessible even tonon-specialists.

• The CRESSdescriptions are then automatically translated into a formal language.
In general, CRESSsupports two formal approaches that have been standardised
for communications systems: LOTOS and SDL (Specification and Description
Language [15]), though only LOTOS is used in this paper. Obtaining a formal
specification of a composite grid service is useful in its ownright: it gives precise
meaning to the services and their combination.

• Although CRESScreates an outline formal specification for each partner service,
this defines just its interface. This is sufficient to check basic properties such
as interoperability. However for a fuller check of functionality, a more realis-
tic specification must be written manually for each partner.The automatically
generated interface helps to avoid simple but common misunderstandings. The
automated specification allows a rigorous analysis to be performed prior to im-
plementation.

• A competent designer can be expected to produce a satisfactory service imple-
mentation. However,combiningservices often leads to unexpected problems.
The services may not have been designed to work together, andmay not interop-
erate properly. The issues may range from the coarse (e.g. a disagreement over
the interface) to the subtle (e.g. interference due to resource competition). This
is akin to the feature interaction problem in telephony, whereby independently
designed features may conflict with each other. CRESS supports the rigorous
evaluation of composite services. Problems may need to be corrected in either
the CRESS descriptions or in the partner specifications. Several iterations may
be required before the designer is satisfied that the composite grid service meets

6

its requirements.
• The CRESSdescription is then automatically translated into an implementation.

The interface to each service is defined by the generated WSDL (Web Services
Description Language [31]). The orchestration of partner services is defined
by the generated BPEL. The partner implementations must be created indepen-
dently, using their formal specifications as a guide. Finally, the scenarios used to
validate the specification can be re-used to check the implementation.

Translating grid service orchestration is completely different for LOTOS and for
BPEL/WSDL. The CRESS toolset has a common front-end but separate back-end
compilers. In theory, a properly validated and verified specification should lead to a
dependable implementation. However, practical issues such as performance might
require the implementation to be tuned.

2.6 Relationship to Other Work

A number of techniques have been developed for formalisingwebservices. Most
approaches use finite state methods or process algebras.

As an example of finite state methods for web services, [12] gives a timed seman-
tics for XLANG that allows web services to be checked for interoperability, and also
to be implemented via transition systems. LTSA-WS (Labelled Transition System
Analyzer for Web Services [9]) is a well-developed approachthat allows composed
web services to be described in a BPEL-like manner. Service compositions and
workflow descriptions are automatically checked for safetyand liveness properties.
LTSA-WS models activities between a business process and its partners. It defines
a translation of BPEL4WS to FSP (Finite State Processes) that is then used for ver-
ification and validation. In contrast, CRESSuses a higher-level representation for
automatic generation of a formal specification (LOTOS) and of a deployable imple-
mentation (BPEL, WSDL). CRESSis also a multi-purpose approach that works with
many different kinds of services and with different target languages.

[8] describes an elaboration of the original LTSA-WS work. Service compositions
and workflow descriptions are described using MSCs (MessageSequence Charts
[14]). These are synthesised into state transition systemsand verified for safety and
liveness properties. Service implementations specified with BPEL4WS are used to
generate a second behavioural model (also a transition system) which is analysed
in comparison to the MSC model. CRESS differs in using a more abstract and
language-independent notation for services of any variety. CRESS also automati-
cally integrates the specifications and implementations ofpartner services.

As an example of process algebraic methods for web services,automated transla-
tion between BPEL and LOTOS has been developed [5,7]. This has been used to
specify, analyse and implement a stock management system and also negotiation

7

through web services. CRESSdiffers from this work in using more abstract descrip-
tions that are translated into BPEL and LOTOS. CRESSdescriptions are language-
independent, and can thus be used to create specifications inother formal languages
(e.g. SDL). CRESSalso offers a graphical notation that is more comprehensible to
the non-specialist. This is important since service development often involves busi-
ness and marketing staff as well as technical experts.

Orchestration of web services has been well received in industry. Scientific work-
flow modelling has also been studied by a number of research projects. The MyGrid
project has prepared an overview of these (http://phoebus.cs.man.ac.uk/ twiki/bin/
view/Mygrid). Only some of the better known workflow languages are mentioned
below.

JOpera [19] was conceived mainly for orchestrating web services, though its appli-
cability for grid services has also been investigated. JOpera claims greater flexibil-
ity and convenience than BPEL. Taverna [18] was also developed for web services,
particularly for coordinating workflows in bioinformaticsresearch. The underly-
ing language SCUFL (Simple Conceptual Unified Flow Language) is intended to
be multi-purpose, including applications in grid computing. A philosophical dif-
ference is that CRESS focuses on use of standards like BPEL rather than research
languages.

[6] describes support for BPEL being undertaken for the OMII (Open Middleware
Infrastructure Institute). Like the present work, this is also investigating the feasi-
bility of using BPEL to orchestrate grid services. Support has been developed for
the modelling, enactment and monitoring of business and scientific workflows. A
plug-in for the ECLIPSE IDE provides design tools for workflow definition and sys-
tem configuration. The OMII-BPEL environment incorporates a customised version
of ActiveBPEL to address the needs of large-scale scientific workflows. In terms
of implementation capability, this work has similar coverage to CRESS but has
been applied to much larger problems. However, CRESSaims at a higher-level de-
scription of service composition and is not exclusively focused on grid services. In
addition, CRESSoffers the advantage that formal analysis of workflows can beper-
formed using the same service descriptions that define the implementation. Unlike
CRESS, OMII-BPEL does not appear to deal with WS-Addressing (Web Services
Addressing [32]) for binding to grid service resources.

Formal methods have seen little use for composinggrid services. [33] uses pi-
calculus to define composition signatures for grid services. This allows precise
models to be developed of grid service compositions – particularly of concurrency
aspects. CRESS similarly supports formal specification of grid service orchestra-
tion, but the specifications are automatically generated and the focus is on stan-
dardised orchestration mechanisms. An interesting technical point is whether pro-
cess mobility (in the sense of the pi-calculus) needs to be supported. From a careful
study of BPEL, the authors concluded that this capability is not required. LOTOS is

8

therefore sufficiently powerful for composite grid services.

CRESS is designed for modelling composite services, but was not conceived as a
workflow language. CRESS serves this role only when orchestrating grid or web
services; its use in other domains is rather different. An important point is that
CRESS focuses on generating code in standard languages. For service orchestra-
tion, this means BPEL/WSDL. This allows CRESS to exploit industrially relevant
developments.

Several researchers have used BPEL to compose grid services. [4] discusses pro-
grammatic ways in which BPEL can support grid computing. [21] examines how
extensibility mechanisms in BPEL can be used to orchestrate grid services. How-
ever, the focus of such work is pragmatic. For example, grid services may be given
a web service wrapping for compatibility. (Semi-)automated methods of compos-
ing grid services have also been investigated, e.g. work on adapting ideas from the
semantic web [17]. However, the formal aspects of this work are rather limited.

In summary, CRESS is distinguished in a number of important respects from other
approaches:

• CRESSis a general-purpose notation for describing services and their notations.
It is not restricted to one domain (e.g. web or grid services), and has in fact been
proven in six different areas.

• CRESSis a compact, graphical and versatile notation. Its generality makes it ex-
tensible to new applications. Its relative simplicity allows many details of speci-
fication and implementation to be hidden. Indeed, it is possible to specify, imple-
ment and validate services without any knowledge of the underlying languages.
Other service development approaches often expose the underlying details, and
require more technical knowledge.

• CRESSsupports automated formal specification and automated implementation,
allied to rigorous validation and verification. This allowsCRESS to be used for
systematic service development. Few other approaches dealwith both specifica-
tion and implementation, and certainly not in the range of domains supported by
CRESS.

• CRESSsupports multiple target languages, diagram editors, supporting toolsets
and platforms. Other approaches are usually tied to their own native languages
and tools.

• CRESSis focused on standardised languages and standardised communications.
Other approaches may follow their own approach, which can bea barrier to wider
uptake. With reference to standards for service orchestration, web services have
been the main focus of others. Formal approaches often leaveout the more in-
tricate aspects of orchestration, such as full support for data typing, handling of
faults, and treatment of compensation. CRESS aims to provide comprehensive
(though not complete) coverage of these aspects.

9

3 Describing Composite Grid Services with CRESS

Figure 2 shows the subset of CRESSconstructs needed in this paper to orchestrate
grid services; CRESSsupports more than is described here. Look ahead to figures 3
and 4 for examples of CRESS.

3.1 CRESSNotation for Grid Services

A CRESSdiagram shows the flow among activities, drawn as ellipses. Each activ-
ity has a number, one or more actions, and some parameters. Arcs between ellipses
shown the flow of behaviour. Note that CRESS defines flows and not a state ma-
chine; state is implicit.

Normally a branch means an alternative choice, but following a fork activity it
means a parallel path. An arc may be labelled with a value guard or an event guard
to control whether it is traversed. If a value guard holds, behaviour may follow
that path. An event guard defines a possible path that is enabled only once the
corresponding event occurs. Activity nodes and guards may have associated as-
signments.

A CRESSrule-box, drawn as a rounded rectangle, defines variables and subsidiary
diagrams (among other things). Simple variables have typeslike Natural n or
String s. CRESSalso supports grid computing types such asCertificate (a digital
security certificate),Name (a qualified name) andReference(an endpoint refer-
ence that characterises a service instance and its associated resources).

Structured types can also be defined, using ‘[...]’ for arrays and ‘{...}’ for records.
For example, the following defines two variableshits andmisses. Their type is an
array of elements with typefieldCount. This in turn is a record with stringfieldand
naturalcountas fields.

[{ String field Natural count} fieldCount] hits, misses

Since array elements are accessed by index rather than by element type, a typical
value might behits[3].count.

3.2 Occupational Data Analysis using Grid Services

The extended example used in this paper typifies the kinds of services being de-
veloped for occupational analysis on the GEODE project. Although it is simplified
for illustrative purposes, it shows many of the key ideas behind grid services. The
example also shows most of the CRESSconstructs used to orchestrate services. It

10

CRESS Meaning

partner.port.operation A fully qualified operation name.

name(.variable)?
| .variable

A fault with name and optional variable value, or with
variable value only.

/ variable<− value An assignment associated with a node or arc.

Catch fault A handler for the specified fault. A fault name or fault value
must match theCatch name or variable type. A fault is
considered by the current and progressively higher-level
scopes until a matching handler is found.

Compensatescope? Called after a fault to undo work. Giving no scope means
compensation handlers execute in reverse order of enabling.

Compensation A handler that defines how to undo work after a fault.
Compensation is enabled only once the corresponding
activity completes successfully. When executed, it expects
to see the same process state as when it was enabled.

Empty No action, used as a place-holder.

Fork strictness? Used to introduce parallel paths; further forks may be nested
to any depth. Normally, failure to complete parallel paths as
expected leads to a fault. This is strict parallelism (strict ,
the default). Matched byJoin.

Join condition? Ends parallel paths. An explicit join condition may be
defined over the termination status of parallel activities.This
gives the node numbers of immediately prior activities, e.g.
1&&2 means these (and the prior ones) must succeed.

Invoke operation
output(input faults*)?

An asynchronous (one-way) invocation for output only, or a
synchronous (two-way) invocation for output-input with a
partner service. Potential faults are declared statically,
though their occurrence is dynamic.

Receiveoperation
input

Typically used at the start to receive a request for service.
An initial Receivecreates a new instance, usually matching
aReply for the same operation.

Reply operation output
| fault

Typically used at the end to provide an output response.
Alternatively, a fault may be thrown.

Terminate Ends a business process abruptly.

While condition Loops as long as the condition is true.

Fig. 2. CRESSNotation (? optional, * zero or more,| alternative)

11

makes use of grid service partners to perform commonly required tasks such as
data conversion and statistical calculations. As grid services, these benefit from
distribution, parallel execution, and security. These partners are combined into two
orchestrated services: an analyser to convert and analyse occupational data, and a
splitter to perform a conditional frequency analysis according to some criterion.
The orchestration supplies the logic to create a new high-level service for occupa-
tional data analysis.

Suppose a social scientist collects data in an occupationalsurvey that records job,
address, age and gender of each person. A common requirementis to perform a
conditional frequency analysis on such data. For example, it might be useful to
know the percentage of people aged over 50 for each type of job. There is often a
need to split the data on some criterion, e.g. the percentageof female employees or
the percentage of plumbers in Scotland.

Survey data is often in many different formats. An external converter service is
therefore used to convert data to a standard format. This makes use of embedded
metadata describing the format. As well as this, the converter stores the converted
data as aresourceand makes it available via what is called anendpoint reference
in grid computing. This identifies a resource that can be passed to another service
for retrieval and processing.

Data security is often a major issue. The converter therefore authorises data use.
This is achieved by what grid computing calls acertificate– an unforgeable digital
document that identifies the requester. This is howsingle sign-onis achieved in a
grid environment. The same mechanism also supportsdelegation, whereby a user
(or application) passes authority to another to perform certain actions. The ease of
securely sharing and using data also makes it feasible forvirtual organisationsto
be established. These are collaborative groups of users that typically cross organi-
sational boundaries. Virtual organisations may be set up for particular purposes, or
may be long-lived.

Survey data naturally requires considerable statistical analysis. A separate statistics
service is therefore used. The only statistical function needed in this paper is a
frequency analysis, using a criterion like‘age>50’ or ‘gender<>male’ (not male).

With these external services, an analyser service can now bedefined. This orches-
trates the converter and statistics services to provide a completely new service. The
analyser accepts a reference to survey data and, if authorised, returns an analysis
based on a single criterion.

In turn, a more complex splitter service can be defined. This uses the converter to
normalise and store the data. It then calls the analyser for the given criterion and its
inverse. For speed, both analyses are performed in parallel. These results are then
combined as percentages satisfying the criterion.

12

Fig. 3. CRESSDescription of The Analyser Service

3.3 CRESSDescription of The Analyser Service

The analyser is an auxiliary service that supports the main application. Its CRESS

description appears in figure 3. The rule-box at the top-leftof the figure defines
types and variables. The raw data isanalysisData: the requester’s certificate, the
analysis criterion, and a reference to data to be analysed. The result is ananalysis:
a list of job-count pairs. For example, it might be determined that there are 60
plumbers, 40 electricians, etc. that meet the criterion (e.g. ‘address=Stirling’ or
‘∼gender=male’).

Initially the analyser receives a request to perform acountoperation on the analysis
data (node 1). The requester’s certificate and a reference tothe data are copied for
checking authorisation (arc to node 2). The converter is then asked toauthoriseuse
of this data (node 2). If permitted (arc to node 3), the information for the statistics
service is set up. This defines the field to be counted (‘job’),the analysis criterion,
and a reference to the data. The statistics service can tallyany field in the data,
though only thejob field is used in this example.

The statistics operationcountis then invoked to make a conditional frequency anal-
ysis (node 3). Normally, this will lead to an analysis being returned to the requester
(node 4). However if the statistics service faults (namestatisticsError, valuerea-
son), this is caught (arc to node 5) and returned as a fault by the analyser (node 5).

If the converter does not authorise access (arc to node 6), the fault reason ‘unautho-

13

rised’ is set. The analyser then returns a fault to the requester (node 6).

3.4 CRESSDescription of The Splitter Service

The splitter offers the primary service to the user. Its CRESS description appears
in figure 4. The rule-box at the top-left of the figure defines types and variables.
The raw data issplitData: the requester’s certificate, an analysis criterion, and a
list of entries giving job, address, age and gender. The analysis yieldshits (entries
that match the given criterion) andmisses(those that do not). The final entry in the
rule-box, ‘/ ANALYSER’ indicates that the splitter depends on the analyser service.
For this reason, the splitter can also make use of the analyser’s variables.

Initially the splitter receives a request to perform thecountoperation onsplitData
(node 1). The converter service is invoked to normalise and store this data, returning
astorereference to it (node 2). Now the splitter follows two parallel paths (node 3).
On each path, the certificate, analysis criterion and store reference are set. The path
leading to node 4 is for the given criterion (hitData), while that leading to node 5
is for its inverse (missData). A criterion is negated by prefixing it with ‘∼’. The
analyser service is executed twice in parallel with the corresponding parameters
(nodes 4 and 5), resulting inhits andmissesfor these paths. These paths join at
node 6, where it is required that both paths have led to a successful result (4&&5).

Now the results of the two analyses have to be combined. The splitter loops through
the data (node 7). For each value inhits and misses, their relative percentage is
calculated (node 8).Percent is just a CRESS convenience function to make the
intention clearer. Suppose the splitter was called to analyse the male percentage for
jobs. If there are 60 male plumbers and 20 female plumbers in the survey,hits will
be set to 60

60+20
or 75% as a percentage. This is repeated for every distinct job in the

dataset, storing the percentages inhits.

At the end of the loop, the converted data has served its purpose and is deleted
(node 9). Finally, job percentages are returned as the result of the analysis (node 10).

The splitter has to take into account that its external partners may fault due to some
error. For example, the converter service might fault because the data is improperly
formatted. The analyser service might fault because accessto the data is unautho-
rised or because an invalid criterion has been given. The service designer must
carefully consider the consequences of faults. In particular, any changes that arose
during execution of the service must be undone. In this example, any data created
and stored by the converter must be deleted if there is a fault.

Faults caught by the splitter have areasonvalue but no specific fault name (Catch
prior to node 12). This invokes compensation to undo any actions that have been
taken (node 12). The splitter then reports the fault to the requester (node 13) and

14

Kenneth J. Turner and Koon Leai Larry Tan. A Rigorous Approach to
orchestrating Grid Services. Computer Networks, 51(15):4421-4441,
Copyright Elsevier, Amsterdam, October 2007

Fig. 4. CRESSDescription of The Splitter service

terminates abruptly (node 14). Compensation may be needed after invoking an ex-
ternal partner, as this is where work often needs to be undoneafter a fault. The
converter invocation to store data (node 2) has associated compensation. A fault
leading to compensation will call this compensation handler (node 11). This deletes
the associated data and returns.

A business process may requirecorrelation to relate a partner response to the in-
vocation that triggered it. This needs some relationship between the two, typically
a shared field such as a reference number. However, correlation is not required if
the underlying communication mechanism (e.g. a socket connection) automatically
relates responses to invocations. The splitter may simultaneously invoke two in-
stances of the analyser (nodes 4 and 5 in figure 4), so correlation could be required.
However the addition of correlation significantly complicates the description, and

15

Fig. 5. CRESSDescription of The Service Configuration

is not actually needed due to the nature of the specification and implementation in
this case. For simplicity it has therefore been omitted.

As has been seen, the splitter service orchestrates the actions of two partner ser-
vices: converter and analyser. In turn, the analyser service orchestrates the con-
verter and statistics services. Although four services nowhave to cooperate, the
user of the splitter service sees it as a whole. This is a majoradvantage, because the
detailed design of the service does not then need to be visible.

The major issue is whether the services work together smoothly, or whether there
are interoperability problems. Even though this is a comparatively small example,
it will be appreciated that there are many possibilities forerror. It is very easy
to make a mistake when calling a service, for example supplying a floating point
number where an integer is expected. Deadlocks are also a risk. Many more subtle
problems can arise from semantic incompatibilities among the services. For these
reasons, formalisation and rigorous analysis are highly desirable.

3.5 The CRESSService Configuration

Now that the various services have been introduced, the CRESSconfiguration di-
agram can be shown. Figure 5 shows how the services here are described. The
Deploysclause lists the CRESStranslator options and, following ‘/’, the services to
be deployed. Although onlySPLITTERis named, this implicitly includes all of the
other services because of the inferred dependencies. The parameters of each ser-
vice then follow in the configuration diagram. All services,such asCONVERTER,
have a namespace prefix (‘conv’), a namespace URI (Uniform Resource Name ‘Al-
terEgo’), and a base URI where they are deployed (‘localhost:8880/wsrf’). As can
be seen, all the services were deployed on the local computer: the grid services
on port 8880, and the orchestrated services on port 8080. However, they can be
deployed anywhere in the network.

Grid services may have resources. Declarations of these mayfollow the other pa-
rameters. Only the converter here has a resource: thedataNamethat identifies the
data it has stored. Every instance of the converter has a unique resource value, iden-
tified by itsresource keyin grid terminology. As a grid service, statistics might also
have a resource but in this case does not have one (shown as ‘-’in figure 5). A com-
posite service may also have resources. For example, if the analyser service were

16

Target Fixed Code Generated Code Partner Code Total

Files Types Behaviour Files Behaviour

LOTOS 850 1 560 360 2 190 1960

BPEL/WSDL 15 27 2810 390 12 790 4010

Fig. 6. Comparison of LOTOSand BPEL/WSDL Translations (files, lines of code)

stateful then it too would have resource declarations.

3.6 Translation of The CRESSDiagrams

The CRESS diagrams (analyser, splitter, configuration) hold all the information
needed to automatically generate a LOTOS specification and a BPEL implementa-
tion. Figure 6 compares the translations of the occupational data analysis example.
The figure shows non-comment lines of code for data types and behaviour, and the
number of generated files:

• The fixed code is the framework common to all grid applications. This is sub-
stantial in the case of LOTOS because it contains many complex data types – 17
in total that cover numbers, strings, states, values and thelike.

• The automatically generated code is shown for data types andbehaviour. The
LOTOS translation is a single file. The BPEL translation yields many files: one
BPEL file per service, one WSDL file per service/partner, one Java file per data
type, and several deployment files.

• The code for the external partners (converter, statistics)has to be manually writ-
ten. The Java coding conventions for grid services require several files per part-
ner.

• Figure 6 does not include the files used to validate the specification and the im-
plementation.

As would be expected, the LOTOS specification is rather smaller than the corre-
sponding BPEL/WSDL implementation. LOTOS is more noticeably compact when
used with larger examples, since there is a significant overhead in LOTOS data
types. These support functions on numbers, strings, etc. that are standard in any
programming language. The most striking difference is in the large number of files
that are required to support BPEL/WSDL.

4 Translating Grid Services to LOTOS

The translation of CRESSinto LOTOS for webservices is described in [26]. LOTOS

is a specialised language and the resulting specifications are complex, so the details

17

are unlikely to be of interest to the general reader. The description here is there-
fore high level. A selection of grid service examples (including the one in this pa-
per) has been made available for download fromwww.cs.stir.ac.uk/∼kjt/software/
download/gs-examples.tar.gz.

In fact, CRESSis designed so that the service designer does notneedto know any-
thing about the target language (LOTOShere). A specification can be generated and
analysed without any knowledge of this. However, someone (perhaps an external
party) must provide specifications of the partner services in LOTOS.

4.1 Specification Structure

A simple command creates a service specification automatically. Figure 7 outlines
the generated specification structure for the occupationaldata analysis example.
The fixed specification framework includes a variety of data types required for all
grid services (e.g.Array is a generic array,Valueis a generic value). Some of the
types are very complex. For example, LOTOSdoes not have built-in types for num-
bers or strings. These, and their associated operations, have to be specified from
scratch.

Partner services are often used by only one business process. In the LOTOS trans-
lation, this means they are hidden inside the definition of the corresponding pro-
cesses. However, figures 3 and 4 raises two interesting problems. The converter
service is used by both the analyser and the splitter, and so is shared. Translation
options in the configuration diagram identify the converteras a ‘merge partner’ that
is shared by the services.

A more subtle problem arises because the converter and the statistics services must
communicate: the former stores the data that the latter mustaccess. In a real imple-
mentation, this would be achieved by means of shared access to (say) a database. In
LOTOS terms, this communication has to be made visible. This is done by defining
implicit partners in the translation options: here a database. Of course, the function
of this ‘phantom partner’ is just to store data, so it need notbe specified as an actual
database. Phantom partners exist at the top level of the specification.

The top-level behaviour shows the analyser and splitter operating independently in
parallel because each is a service in its own right. However,they synchronise with
their shared partners. The converter is explicitly shared by the analyser and the
splitter, while the database is implicitly shared by all services. The statistics partner
is used only by the splitter and so appears lower in the structure.

The top-level behaviour is followed by data types that are generated from the partic-
ular services in use (e.g.Eventdescribes service events,Port describes the service
ports). Other generated types reflect the specification variables (e.g.Analysisfrom

18

SpecificationGSSystem... (* Grid Service system *)
Library ... (* library type imports *)
Type Array... (* array *)
...
Type Value... (* value *)

Behaviour (* overall behaviour *)
Hide converter,databaseIn (* hide internal gates *)

DATABASE... (* DATABASE partner *)
|[database]| (* synchronised with services *)

CONVERTER... (* CONVERTER partner *)
|[converter]| (* synchronised with services *)

ANALYSER... (* ANALYSER service *)
||| (* interleaved with *)

SPLITTER... (* SPLITTER service *)

Type Event... (* event *)
...
Type Port... (* port name *)

Type Analysis... (* analysis array *)
...
Type SplitData... (* splitData record *)

ProcessANALYSER... (* ANALYSER service *)
Hide statisticsIn (* hide internal gates *)

STATISTICS... (* statistics partner *)
|[statistics]| (* synchronised with *)

ANALYSER 1... (* ANALYSER main process *)

Type ANALYSER RESULT... (* ANALYSER result values *)
ProcessANALYSER N... (* ANALYSER processes *)

ProcessCONVERTER... (* CONVERTER partner *)

ProcessDATABASE... (* DATABASE partner *)

ProcessSPLITTER... (* SPLITTER service *)
Hide analyserIn (* hide internal gates *)

ANALYSER... (* ANALYSER service *)
|[analyser]| (* synchronised with *)

SPLITTER 1... (* SPLITTER main process *)

Type SPLITTER RESULT... (* SPLITTER result values *)
ProcessSPLITTER N... (* SPLITTER processes *)

ProcessSTATISTICS... (* STATISTICS partner *)

Fig. 7. LOTOSSpecification Structure

19

figure 3,SplitDatafrom figure 4).

The process definitions for partners and services now follow. The analyser and
splitter specifications are generated automatically from the CRESSdiagrams. The
converter, database and statistics partners are normally pre-specified by hand; their
definitions are automatically included in the complete specification.

The analyser specification includes a local statistics instance, while the splitter
specification includes a local analyser instance. A number of analyser and split-
ter processes are generated, numberedN according to the corresponding diagram
node.

4.2 Data

CRESShas been extended for grid services to handle arbitrarily complex structured
types, including arrays and records. As part of the translation, these types are flat-
tened so that only a single level of structuring is specified by a type. The flattening
process also identifies common types that are shared among variables.

Apart from service-specific types, CRESS supports standard XML types and the
specialised types needed for grid services. A certificate isan XML document, and
is treated as a string. A qualified name is also a string. Endpoint references are more
complex. In grid terms, they are XML documents with the URI ofa service and a
unique resource key. This could be problematic for a LOTOS translation because an
endpoint reference can be used by any service to access the corresponding resource.
From a formal point of view, this would seem to need mobile processes in the
style of pi-calculus. However, the usage of endpoint references in BPEL means that
the service being invoked is always explicit. An endpoint reference can therefore
be translated as an opaque value that uniquely identifies theresource; the current
translation uses a natural number.

Some additional XPATH functions are now supported by the CRESStranslators (e.g.
count, position, percent) due to the particular requirements of grid services.

4.3 Behaviour

An activity sequence in a CRESSdiagram becomes a sequence in LOTOS. However,
parts of a CRESSdiagram often have to be translated as separate LOTOSprocesses.
This happens, for example, when part of a diagram can be reached by different
paths or is invoked as an event handler.

Although not visible in the outline of figure 7, processes areparameterised by the

20

variables introduced in the service definitions (e.g.analysis, analysisDatafrom fig-
ure 3). CRESSalso adds internal parameters to keep track of the business process
state and the termination status of partner calls. Grid service resources are repre-
sented as process parameters too.

A BPEL activity results in successful termination or failure. LOTOS behaviours
therefore exit with true or false. For simple behaviours, this is the only result of a
process. A fuller description of state is required when dealing with compensation
handling or with concurrency. Forks and compensation, as used by the splitter, are
particularly complex to translate into LOTOS. Essentially, they require the LOTOS

processes to carry state along parallel paths and to record the state history for com-
pensation. (This is what theANALYSERRESULTandSPLITTERRESULTtypes
in figure 7 support.) For space reasons, the reader is referred to [26] for details of
the translation.

For each grid service, the CRESS translator statically discovers where event han-
dlers are defined and the scopes where these apply (global, orassociated with an
Invoke). An event dispatcher process is then generated with reference to these han-
dlers according to their scopes. If a fault handler does not exist for the current scope,
the global handler (if any) is tried. Faults have to be matched against handlers in a
particular order:Catch with a matching fault name,Catch with a matching fault
name and value type,Catch with a matching value type,CatchAll .

A Compensateaction, aThrow action or a fault invokes the event dispatcher with
information about the scope, event name and value type. The fault handling rules
of BPEL require fault values to be coerced into a single LOTOS type Value. This
is needed so that the kind of value can be matched againstCatch. For example, a
fault handler expecting a string must check if the value is indeed a string; another
handler for the same fault name might deal with floating pointfault values.

4.4 Rigorous Analysis of Grid Services

Translating orchestrated grid services into LOTOS is valuable in its own right. For
example, a number of errors, omissions and ambiguities werefound in the the BPEL

standards (mainly in complex areas such as event handling and data handling).

In implementation practice, grid services are manually debugged. The generated
LOTOS can, of course, be manually simulated as well. However, a major advan-
tage of the formalisation is that it supports a wide variety of rigorous analyses.
An important issue in orchestrating grid services is to ensure their interoperabil-
ity. Problems arise from simple misinterpretation of interfaces or from more subtle
semantic incompatibility. Such problems often lead to deadlock in LOTOS terms.

In principle, the LOTOS specification can be formally verified. For example, the

21

splitter service must not fault (a safety property), and an invocation of it must
eventually receive a response (a liveness property). Unfortunately the complex data
types and infinite data values make model checking rather impracticable. For this
reason, the authors favour the use of rigorous validation (i.e. testing) instead of
verification (e.g. model checking).

MUSTARD (Multiple-Use Scenario Test and Refusal Description [27])has been
developed as a language-independent and tool-independentapproach for express-
ing use case scenarios. These are automatically translatedinto the chosen language
(LOTOS here) and automatically validated against the specification. This is useful
for initial validation of a specification, and also for laterregression testing follow-
ing a change in the service description.

Validation checks only some aspects of a specification and sois far from complete.
However, carefully chosen scenarios will exercise the mostcritical characteristics.
In fact, the same criticism could be made of model checking. At best, it can ver-
ify only the properties it is given for a specification. The major difference is that
validation is practicable: a specification is validated by MUSTARD in a matter of
minutes, whereas verification is typically much lengthier or cannot be performed in
practice. Another advantage of validation is that the same scenarios can be used to
check both the specification and the implementation.

Scenario-based validation is also a useful way of checking for interference among
supposedly independent services. This is the well-known feature interaction prob-
lem (e.g. [3]) that has been extensively studied in telephony. This has received
little attention in other domains, though [30] discusses feature interactions in web
services. Interactions may arise for technical reasons (e.g. conflicting services are
activated by the same input) or for resource reasons (e.g. services have a shared
resource or external partner). One way of interpreting service interaction is that a
service behaves differently in the presence of some other service.

Grid services are formally validated by MUSTARD scenarios that check critical
aspects of their behaviour. It then becomes possible to check services in isola-
tion as well as in combination. This can effectively and efficiently detect service
interactions, though failure to detect interactions does not mean the services are
interaction-free.

MUSTARD supports scenarios with sequences, alternatives, non-determinism, con-
currency and service dependencies. In addition, both acceptance tests and refusal
tests may be formulated. There is insufficient space here to explain MUSTARD fully,
so reference to [27] and a few examples must suffice.

A M USTARD scenario names a test and a behaviour that must succeed. Scenarios
for occupational data analysis provide data to be split on some criterion; a digital
certificate (not shown here) is also defined. The data includes entries about individ-
uals that state their job, address, age and gender (typesplitData in figure 4). The

22

splitter normally produces an analysis as a list of job-percentage pairs (typehitsor
missesin figure 4). For convenience the split data and the expected analysis have
been defined separately, though these may also be used directly as parameters.

The example in figure 8 provides data on one plumber aged 23. (Strings in MUS-
TARD are preceded by a single quote.) Analysing this data for plumbers under 20
should determine that 0% of plumbers satisfy this criterion.

MUSTARD can also check that faults are reported when expected. In thescenario
of figure 9, the analysis criterion ‘Age!30’ is wrong and mustyield asplitterError
fault with reason ‘malformed’. (‘<>’ in this example is an empty list.)

It is also desirable to check scenarios that require concurrent execution. Figure 10
shows two instances of the splitter being called concurrently for different datasets
(not shown) and different criteria.

All the scenarios so far are acceptance tests: the specification must perform as de-
scribed. It is also important to include refusal tests that check the specification does
not have extra behaviour. A refusal sequence in MUSTARD starts with legitimate be-
haviour and ends with behaviour that must not happen. (Both the initial behaviour
and the refused behaviour may be composite.) Figure 11 showsa simple example.
Since a criterion may be arbitrarily negated, ‘∼∼∼Age>30’ is in fact valid. The
specification must therefore not throw a ‘malformed’ fault.

5 Translating Web Services to BPEL

The translation of CRESS into BPEL/WSDL for grid services is outlined in [29].
BPEL and WSDL are specialised languages and the resulting implementations are
complex, so they are unlikely to be of interest to the generalreader. The description
here is therefore high level. However, a selection of grid service examples (includ-
ing the one in this paper) has been made available for download from www.cs.stir.
ac.uk/∼kjt/software/download/gs-examples.tar.gz.

In fact, CRESS is designed so that the service designer does notneedto know
anything about the target languages (BPEL/WSDL here). An implementation can be
generated without any knowledge of these. However, someone(perhaps an external
party) must provide implementations of the partner services in Java. It is also worth
emphasising that thesameCRESSdescriptions are translated into LOTOS and into
BPEL/WSDL.

23

define(No PlumbersData, % individual data to check
list(% list of values

Entry(′Plumber,′1 Rose Lane Stirling,23,True))) % sample individual

define(No PlumbersAnalysis, % analysis expected of individuals
list(% list of values

FieldCount(′Plumber,0))) % 0 percent are plumbers

test(No Plumbers, % no plumbers scenario
succeed(% test must succeed

send(splitter.data.count, % ask for job percentages
SplitData(Certificate,′Age<20,No PlumbersData)), % get under 20s

read(splitter.data.count,NoPlumbersAnalysis))) % expect this analysis

Fig. 8. Scenario for A Simple Dataset

test(Invalid Query, % invalid query scenario
succeed(% test must succeed

send(splitter.data.count, % ask for job percentages
SplitData(Certificate,′Age!30,<>)), % invalid criterion

read(splitter.data.count,SplitterError,′Malformed))) % expect this fault

Fig. 9. Scenario yielding A Fault

test(Concurrent, % concurrency scenario
succeed(% test must succeed

interleave(% interleaved sequences
sequence(% sequence of behaviour

send(splitter.data.count, % ask for job percentages
SplitData(Certificate,′Age<20,ConcurrentData1)), % get under 20s

read(splitter.data.count,ConcurrentAnalysis1)), % expect this analysis
sequence(% sequence of behaviour

send(splitter.data.count, % ask for job percentages
SplitData(Certificate,′Gender=Female,ConcurrentData2)), % get females

read(splitter.data.count,ConcurrentAnalysis2))))) % expect this analysis

Fig. 10. Scenario with Concurrent Behaviour

test(Valid Query, % refusal scenario
refuse(% behaviour to be refused

send(splitter.data.count, % ask for job percentages
SplitData(Certificate,′ ∼∼∼Age>30,<>)), % get not not not over 30s

read(splitter.data.count,SplitterError,′Malformed))) % this fault must not occur

Fig. 11. Scenario with Refused Behaviour

24

Globus Toolkit 4 ActiveBPEL

Splitter

Analyser

Statistics

Converter

Fig. 12. Deployment of Occupational Data Analysis Services

5.1 Implementation Structure

A simple command creates a service implementation automatically. The normal
GT4 build procedure is rather restrictive and requires particular naming conven-
tions to be followed. Instead, CRESSuses its own simpler and more flexible build
procedure (though some utilities from GT4 are part of this).

The end result of the automated implementation is a set of service files. Grid
services are deployed to the GT4 platform for grid computing(www.globus.org).
BPEL processes are deployed to the ActiveBPEL platform for service orchestration
(www.activebpel.org). As shown in figure 12, these are distinct platforms that run
their own kinds of services. GT4 and ActiveBPEL communicate to allow BPEL

processes to call grid services. In principle, it should be possible to run GT4 within
the same Tomcat container as ActiveBPEL. However this is currently not possible
due to incompatibilities in the underlying packages (notably the AXIS package for
SOAP messaging). As GT4 evolves, this problem will disappear. Inpractice any-
way, BPEL is likely to coordinate services running on a number of systems over a
network.

In comparison to the work on OMII-BPEL [6], CRESShas similar goals for prac-
tical grid service orchestration – though there are some differences. OMII-BPEL is
focused on pragmatic support for modelling, enactment and monitoring large-scale
scientific workflows. CRESSis more concerned with high-level models that can be
verified and validated as well as implemented. So far, CRESShas not been evaluated
on large problems. However, this is not a limitation of CRESS. Rather, it reflects on
the support of process execution. In fact, it should be possible to combine the use
of CRESS (particularly its formal support of analysis) with the OMII-BPEL work
(particularly its run-time support).

Since ActiveBPEL was designed for web services, it is not surprising that web
services can be run in the same container as BPEL. In fact it is possible for the
same BPEL process to orchestrate a mixture of web and grid services.

As will have been seen from figure 6, implementing grid services requires many
files in different languages. Figure 13 gives one example of what is involved. The
designer creates CRESSdiagrams for the services, usually with CRESS’s own di-
agram editor though others can be used. Each service diagramis translated into a

25

Analyser

CRESS Description

Converter

WSDL

Java Implementation

Deployment Descriptor

Grid Service Archive

Analyser

BPEL

WSDL and Catalogue

Deployment Descriptor

Definitions WSDL

Statistics

WSDL

Java Implementation

Deployment Descriptor

Grid Service ArchiveBPEL Archive

Fig. 13. Translation of The Analyser and Its Partner Services

BPEL description, the WSDL interface to this, and various ancillary files (WSDL

catalogue, deployment descriptor, WSDL for shared definitions). All these files are
bundled as a BPEL archive and deployed into ActiveBPEL.

The translation also generates code for the converter and statistics partners. CRESS

creates a WSDL interface to each partner, a Java implementation, and a deployment
descriptor. However, CRESS uses a Java implementation if one has already been
written. All these files are bundled as a grid service archiveand deployed into GT4.

5.2 Data

The translation of CRESSdata types into BPEL/WSDL is intricate but reasonably
straightforward. Simple CRESStypes become XML simple types, while structured
CRESS types become XML complex types. Accessing fields in a complextype
requires XPATH queries.

Unfortunately, BPEL defines and uses variables differently depending on whether
they appear in messages or just in expressions. CRESShandles this automatically,
creating different definitions and code depending on how thevariable is actually
employed.

Assignments associated with CRESS arcs require careful treatment. Consider the
arc between nodes 2 and 3 in figure 3. Since paths with different assignments may
lead to the same node, such assignments have to be associatedwith the immediately

26

prior node. If this occurs in the context of a choice, the assignments must be made
dependent on the condition. Thus the assignments followingnode 2 in figure 3
depend on the value ofauthorised. A different situation arises with the assignments
following node 3 in figure 4. These lie on parallel paths, and so have to be associated
with the following nodes (4 and 5).

5.3 Behaviour

CRESSdeals with the differing uses of SOAP by service orchestration and by grid
services. BPEL processes often use an ‘rpc/encoded’ SOAP style (though other
styles are possible). Grid services always use a ‘document/literal’ SOAP style. An
unfortunate consequence of this is that operations with thesame parameter type
cannot be distinguished. CRESSdetects this as an error, and requires the designer
to adopt a ‘wrapped’ SOAP style to distinguish them.

GT4 currently imposes a limitation on the orchestration of grid services. The most
desirable form of security is the so-called WS-SecureConversation that allowscre-
dential delegationin grid terminology. Unfortunately the current implementation of
GT4 requires all services to use the same container for delegation to work. As long
as GT4 and ActiveBPEL cannot coexist in the same container, this is not feasible –
but this problem will disappear in time.

The authors have also made use of Oracle BPEL Process Manager (www.oracle.
com/ technology/products/ ias/bpel). Unlike ActiveBPEL, this does not have the
possibility of coexistence in the same container as GT4 and is therefore even more
remote from an integrated security solution.

An orchestrated process currently behaves like a web service. The authors are work-
ing to overcome limitations of ActiveBPEL that mean resources have to be treated
outside the orchestration. Ideally grid service resourcesshould be accessible to the
orchestrating process, and this should be allowed to have resources as well.

ActiveBPEL version 2.0 and Globus Toolkit 4.0.0 were originally used bythe au-
thors for grid service orchestration. This version of ActiveBPEL conforms to the
BPEL4WS standard, and therefore does not support the version of WS-Addressing
(Web Services Addressing [32]) that is compatibile with WSRF (Web Services Re-
source Framework [11]). The absence of this support requires a work-around to
orchestrate grid services. Instead of assigning an endpoint reference to a partner
link, this information must be sent as a service invocation parameter. An additional
problem was that GT4 support of endpoint addressing was incompatible with the
version of WS-Addressing that it claimed to handle. As a result, endpoint refer-
ences failed to deserialise. It was necessary to change the WS-Addressing schema
used by GT4 for this to work properly.

27

With the recent introduction of ActiveBPEL version 3.0 and Globus Toolkit 4.0.4,
these problems have been eased. ActiveBPEL now supports WS-BPEL [2], which
uses an appropriate version of WS-Addressing. This has allowed CRESSto support
endpoint references properly. These can now be assigned to partner services so that
service resources can be used. However, this is not quite enough for orchestrat-
ing grid services with resources. When invoking a grid service using the assigned
partner link endpoint reference, ActiveBPEL uses additional attributes (e.g. the ser-
vice actor). This results in GT4 not being able to identify the service resource even
though the required information is present. Even though theinformation complies
with the standards, GT4 is unable to extract the correct WS-Addressing informa-
tion. This has required the authors to modify the message handler chain used by
GT4 so that resource information can be properly handled.

With the resolution of security and resource issues, orchestrated grid services will
become true grid services in their own right. However, even the present limitations
do not detract from the value of grid service orchestration.

6 Conclusions

It has been seen how CRESS has been adapted to support orchestration of grid
services. This offers the advantage that new composite services can be constructed
from existing ones. As a realistic example, occupational data analysis by social
scientists has been used to explain how orchestrating grid services is achieved.

The CRESSdescription of composite grid services is automatically translated into
LOTOS for rigorous validation with MUSTARD (and also, in principle, through ver-
ification). This allows a range of errors to be eliminated before committing to im-
plementation. The authors did in fact discover some subtle problems by this means:

• Job percentages are rounded to whole numbers. The validation scenarios ex-
pected that this would be done by rounding to the nearest whole number, whereas
the specification rounds by truncation. Although this was anerror in the scenarios
rather than the specification, it drew attention to something that needed attention
in the implementation.

• A concurrency issue was discovered. Two instances of the analyser are created
by the splitter (nodes 4 and 5 in figure 4). If one of these faults, the associated
compensation deletes the corresponding data store (node 11in figure 4). Depend-
ing on the exact sequence, it is possible for the data store tobe deleted by one
parallel branch while the other is still executing. This wascorrected by changing
the specification of the converter.

• An even more complex situation arises because deletion of a data store is not
confirmed (nodes 9 and 11 in figure 4). As a result, deletion maybe arbitrarily
delayed. A new instance of the splitter may therefore encounter a ‘half deleted’

28

data store. The original version of the converter specification did not handle this
properly.

As a result of the rigorous validation, the authors have reasonable confidence that
the CRESSdescriptions are correct. The final CRESSorchestration was automati-
cally implemented and run using ActiveBPEL and GT4. The implementation was
checked using JUnit tests based on the MUSTARD scenarios for validating the spec-
ification. There is thus a double re-use: the same CRESSdescriptions are used for
specification and implementation, and the same MUSTARD scenarios are also used
for both.

The whole development process is highly automated. Only theexternal partner
services have to be translated manually. The CRESStoolset is very portable, being
written in Perl. It has been run on four different operating systems. The toolset also
supports four target languages and five application domains. For grid services, it has
hopefully been demonstrated that CRESSis a useful approach for orchestration.

Acknowledgements

The authors thank their co-workers on GEODE for their insights, particularly Paul
Lambert (University of Stirling), Vernon Gayle (University of Stirling) and Richard
Sinnott (University of Glasgow). Larry Tan’s work was supported by the UK Eco-
nomic and Social Research Council under grant RES-149-25-1015.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, editors.Business
Process Execution Language for Web Services. Version 1.1. BEA, IBM, Microsoft,
SAP, Siebel, May 2003.

[2] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Lie, S. Thatte,
P. Yendluri, and A. Yiu, editors.Web Services Business Process Execution Language.
Version 2.0. Organization for The Advancement of Structured Information Standards,
Billerica, Massachusetts, USA, Apr. 2007.

[3] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and
H. Velthuijsen. A feature-interaction benchmark for IN andbeyond. IEEE
Communications Magazine, 31(8):18–23, Aug. 1993.

[4] K.-M. Chao, M. Younas, N. Griffiths, I. Awan, R. Anane, andC.-F. Tsai. Analysis
of grid service composition with BPEL4WS. In Y. Shibata and J. Ma, editors,Proc.
18th. Advanced Information Networking and Applications, volume 1, pages 284–289.
Institution of Electrical and Electronic Engineers Press,New York, USA, 2004.

29

[5] A. Chirichiello and G. Salaün. Encoding abstract descriptions into executable web
services: Towards A formal development. InProc. Web Intelligence 2005. Institution
of Electrical and Electronic Engineers Press, New York, USA, Dec. 2005.

[6] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid service
orchestration using the business process execution language (BPEL).Grid Computing,
3(3-4):283–304, Sept. 2005.

[7] A. Ferrara. Web services: A process algebra approach. InProc. 2nd. International
Conference on Service-Oriented Computing, pages 242–251. ACM Press, New York,
USA, Nov. 2004.

[8] H. Foster. A Rigorous Approach to Engineering Web Service Compositions. PhD
thesis, Imperial College, London, Jan. 2006.

[9] H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility verification for web
service choreography. In M. Aiello, editor,Proc. 2nd. International Conference on
Service-Oriented Computing, New York, USA, Nov. 2004. ACM Press.

[10] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system
integration.Supercomputer Applications, 35(6), 2002.

[11] S. Graham, A. Marmakar, J. Mischinsky, I. Robinson, andI. Sedukhin, editors.Web
Services Resource. Version 1.2. Organization for The Advancement of Structured
Information Standards, Billerica, Massachusetts, USA, Apr. 2006.

[12] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. A dense time semantics for web
services specification languages. InFirst International Conference on Information
and Communication Technologies. Institution of Electrical and Electronic Engineers
Press, New York, USA, Apr. 2004.

[13] ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS
– A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva,
Switzerland, 1989.

[14] ITU. SDL combined with ASN.1. ITU-T Z.105. International Telecommunications
Union, Geneva, Switzerland, 1995.

[15] ITU. Specification and Description Language. ITU-T Z.100. International
Telecommunications Union, Geneva, Switzerland, Aug. 2002.

[16] P. S. Lambert. Handling occupational information.Building Research Capacity, 4:9–
12, 2002.

[17] S. Majithia, D. W. Walker, and W. A. Gray. Automated composition of semantic grid
services. InProc. 3rd. UK e-Science All Hands Meeting. University of Nottingham,
UK, Aug. 2004.

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composition and
enactment of bioinformatics workflows.Bioinformatics, 20(17):3045–3054, 2004.

30

[19] C. Pautasso. JOpera: An agile environment for web service composition with visual
unit testing and refactoring. InProc. IEEE Symposium on Visual Languages and
Human Centric Computing. Institution of Electrical and Electronic Engineers Press,
New York, USA, Nov. 2005.

[20] G. Salaün, L. Bordeaux, and M. Schaerf. Describing andreasoning on web services
using process algebra. InProc. International Conference on Web Services, pages 43–
51. Institution of Electrical and Electronic Engineers Press, New York, USA, June
2004.

[21] A. Slomiski. On using BPEL extensibility to implement OGSI and WSRF grid
workflows. InProc. Global Grid Forum 10, Berlin, Germany, Mar. 2005. Humboldt
University.

[22] B. Sotomayor and L. Childers.Globus Toolkit 4: Programming Java Services. Morgan
Kaufmann, San Francisco, USA, Mar. 2006.

[23] K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H.
Magill, editors,Proc. 6th. Feature Interactions in Telecommunications andSoftware
Systems, pages 241–256. IOS Press, Amsterdam, Netherlands, May 2000.

[24] K. J. Turner. Modelling SIP services using CRESS. In D. A. Peled and M. Y. Vardi,
editors,Proc. Formal Techniques for Networked and Distributed Systems (FORTE
XV), number 2529 in Lecture Notes in Computer Science, pages 162–177. Springer,
Berlin, Germany, Nov. 2002.

[25] K. J. Turner. Analysing interactive voice services.Computer Networks, 45(5):665–
685, Aug. 2004.

[26] K. J. Turner. Formalising web services. In F. Wang, editor, Proc. Formal Techniques
for Networked and Distributed Systems (FORTE XVIII), number 3731 in Lecture
Notes in Computer Science, pages 473–488. Springer, Berlin, Germany, Oct. 2005.

[27] K. J. Turner. Validating feature-based specifications. Software Practice and
Experience, 36(10):999–1027, Aug. 2006.

[28] K. J. Turner. Representing and analysing composed web services using CRESS.
Network and Computer Applications, 30(2):541–562, Apr. 2007.

[29] K. J. Turner and K. L. L. Tan. Graphical composition of grid services. In D. Buchs
and N. Guelfi, editors,Rapid Introduction of Software Engineering Techniques, pages
1–16, Switzerland, Sept. 2006. University of Geneva.

[30] M. Weiss and B. Esfandari. On feature interactions in web services. InProc. IEEE
International Conference on Web Services, pages 88–95, San Diego, California, July
2004.

[31] World Wide Web Consortium.Web Services Description Language (WSDL). Version
1.1. World Wide Web Consortium, Geneva, Switzerland, Mar. 2001.

[32] World Wide Web Consortium.Web Services Addressing (WS-Addressing). World
Wide Web Consortium, Geneva, Switzerland, Aug. 2004.

31

[33] J. Zhou and G. Zeng. Describing and reasoning on the composition of grid services
using pi-calculus. In S. An and D. Wei, editors,Proc. 6th. International Conference
on Computer and Information Technology. Institution of Electrical and Electronic
Engineers Press, New York, USA, Sept. 2006.

32

