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Abstract

Although conceived for web services, it is shown howeB (Business Process Execu-
tion Language) can be used to orchestrate a collection dkgrivices. This is achieved us-
ing the technique of Ess(Communication Representation Employing Systematic Spec
ification) to describe the composition of grid serviceRESSdescriptions are automati-
cally translated into bTtos(Language Of Temporal Ordering Specification), allowing-sy
tematic checks for interoperability and logical errorsoptio implementation. MSTARD
(Multiple-Use Scenario Test and Refusal Description) isdut validate the generated
specification against use case scenarios. The sames$escriptions are then automati-
cally converted into BEL/WsDL code for practical realisation of the composed services.
Grid services are executed by Globus Toolkit 4, while thedhestration is supported by
the ActiveBPEL engine. The MISTARD scenarios are used again to evaluate the imple-
mentation. The overall approach therefore supports rigodevelopment and automated
creation of orchestrated grid services.

Key words: BPEL (Business Process Execution Language), Grid Serviogpls
(Language Of Temporal Ordering Specification), Serviceh@stration

1 Introduction

Grid computing has emerged as a leading form of distributedputing. Service-
oriented architecture provides a framework for combining gervices into new
ones. This paper reports on work to orchestrate grid sesviceparticular, it il-

lustrates a method that allows the orchestration to be atadairigorously prior to
automated implementation.

CrEss(Communication Representation Employing Structured Bpation) was
developed as a general-purpose graphical notation foicesrnEssentially, fESS
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describes the flow of actions in a service. It thus lendsfitsalescribing flows that
combine grid services. RESsshas been used to specify and analyse services from
the Intelligent Network [23], Internet Telephony [24], én&ctive Voice Response
[25], Call Processing, and web services [26]. In a new dgraknt, GRESS has
now been extended to grid services. Since grid servicesrarasto web services,

but certainly not the same, this paper focuses on the adsdhathave been nec-
essary for grid computing. The differences between web aitdcpmputing are
discussed in section 2.1.

Service descriptions in REss are graphical and accessible to non-specialists. A
major advantage of REss descriptions is that they are automatically translated
into formal languages for analysis, as well as into impletagon languages for
deployment. @Essoffers benefits of comprehensibility, portability, rigomoanal-
ysis and automated implementation.

Grid computing has been enthusiastically adopted by masgigdines. Early uses

were in the physical sciences (e.g. particle physics, plysics). However, grid

computing has rapidly spread into other areas such as thediénces (e.g. bioin-
formatics, genomics), engineering (e.g. electronicstqfos), the earth sciences
(e.g. environmental science, geoscience), and medicigegearmacology, medi-

cal imaging).

Grid computing has now moved beyond scientific disciplirmés isofter’ areas
such as the arts, business, economics and the humanitiasagxrete illustration
of this, the paper uses an example that is taken from ocanadtiata analysis in
the field of social science. Social scientists often workhvédirge datasets such as
surveys that are evaluated with respect to occupationadi$teThere is a lack of
good technical means for accessing and manipulating sueketa in a distributed
manner. Grid services offer many advantages for this, bigaaus approach is
desirable.

2 Background

The work reported here draws on a number of different teethai@as. This section
provides some background information for the general neade

2.1 Grid Computing

Grid computing is named by analogy with the electrical pogréd. Just as power
stations are linked into a universal electrical supply, smputational resources
can be linked into a computing grid. Distributed computiadhardly a new area.



But the architecture and software technologies behind tliehgwve captured the
attention of those who perform large-scale computing, te@se who work in the
sciences. Grid computing offers a number of distinctivesaui@ges that include:

e support for virtual organisations that transcend coneerati boundaries, and
may come together only for a particular task

e portals that provide ready access to grid-enabled ressurce

¢ single sign-on, whereby an authenticated user can makefudistobuted re-
sources such as data repositories or computational servers

e security, including flexible mechanisms for delegatinglergials to third parties
to act on behalf of the user

e distributed and parallel computing.

Open standards for the grid are being created by the GGF &GBhd Forum,
www.gridforum.ory and the OGF (Open Grid Forumww.ogf.org. Grid services
are governed by OGSA (Open Grid Services Architecture [10])

Grid applications often make themselves available viaiseswthat are comparable
to web services — another area of vigorous development. Eorea grid services
and web services were not fully compatible. The major issaethve need for state-
ful services that have persistent state. A grid-specifiatgmi to this was developed
initially, but this was clearly something that web servicesld also benefit from.

Web and grid developers therefore cooperated on a solutairekploited existing
web service standards but met the needs of grid computimg$ource separation.
A harmonised solution was defined by WSRF (Web Services Resduamework
[11]). This is a collection of interrelated standards susé5-Resource and WS-
ResourceProperties. WSRF is implemented by several tspiseluding Globus
Toolkit version 4 (GT4 [22]www.globus.oryjthat is widely used in grid comput-

ing.

With WSRF, web and grid services now share a common techinésas. However,
web services have a more commercial focus while grid sesuie&e a more sci-
entific focus. As a result, different sets of supportinglfties are provided. OGSA
provides a rich superstructure of facilities that includelsity and authorisation,
job management and scheduling, data abstraction and mglexnd data access
and transfer. The work reported in this paper focuses ondkilzoncepts of grid
services and their orchestration. It does not address ttigser-level facilities.

2.2 Service Orchestration

This paper emphasises tbempositiorof grid services, not the description isb-
lated grid services. Composing services has attracted consigdaradustrial inter-
est. This is achieved by definingbaisiness proceghat captures the logic of how
the individual services are combined. The terrohestrations also used for this.



Historically, competing solutions were developed for @stnating services. A ma-
jor advance was the multi-company specification feeeB4ws (Business Process
Execution Language for Web Services [1]), which is beingdéadised as WS-
BPEL (Web Services Business Process Execution Language [RiL B now well
established as a way of composing web services. Howeverségor composing
grid services has received only limited attention.

Orchestration defines the logic for combining a nhumber ofisste partner ser-
vices. A nice feature of the approach is that the composisi@nservice in its own
right. BPEL was originally defined for web services, and is currentlywer@ of
the special characteristics of grid services. For exampBgurce and security as-
pects of grid services are not recognised. As a widely adogtizndard, BEL is
nonetheless likely to find increasing use for orchestraging services. The work
reported here demonstrates its potential.

To avoid the reader having to be expert iReEB and WsDL, only a high-level de-
scription is given in this paper. However, the€ssrepresentation of orchestration
is intentionally similar to BEL. This allows a service designer to make use of
CRESswith minimal training.

2.3 Occupational Analysis

Many forms of social analysis use occupation as a signifitzantbr. For example,
Governments are interested in questions like the followlsithe number of school
teachers rising? How well are doctors being paid comparduletiighters? Is the
gender imbalance in computing being addressed? Are betittppople moving to
rural areas?

Social scientists make wide use of aggregate occupatiof@imation databases
that contain summary data on particular occupational jposit Many approaches
are used, for example alternative taxonomies for occupstidowever the distri-

bution and use of such classifications is rather limited itiadscience [16]. Ag-

gregate occupational information datasets are often islighed via web pages
with informal instructions. The datasets are seldom anedtaith metadata about
their structure and provenance. They are seldom availahlespositories, which

inhibits their use by a wider community.

Social scientists often wish to link aggregate occupatioriarmation with micro-

social survey datasets. The latter may be very large, arjd&ub strict controls on
access. Moreover their analysis through statistical nsodedften computationally
intensive. Although occupation is an important measure amynsocial science
analyses, social scientists rarely obtain the benefitsfettfe resource sharing.
This applies to aggregate occupational information, aed & analysis of micro-
social data using occupations. The overall result is thatatten difficult for social



scientists to collaborate. This is unfortunate becauseynagnantages could be
obtained by effective sharing of data and computing ressurc

The authors are working on theeGDE project (Grid-Enabled Occupational Data
Environmentwww.geode.stir.ac.)kThe premise of this project is that grid com-
puting is an effective solution to many of the problems fabgdsocial scientists

in using occupational data.E®DE has been the source of the research challenges
addressed in this paper. Occupationally-related seraicetherefore used here for
illustration.

2.4 LOTOS

LoTos (Language Of Temporal Ordering Specification [13]) was ddadised for
the specification of communications systems. It is, howevgeneral-purpose lan-
guage that has been used in other applications such as sfoe testing, embed-
ded systems, hardware design, and safety-critical systeom0s uses a process
algebra to specify behaviour, and algebraic data typesdoifypdata.

To avoid the reader having to be expert intos only the high-level structure
of generated specifications is given in this paper. A date typd its associated
operations are specified bytgpe Behaviour is described by grocess LoTOS
processes are parameterisedgayesat which communication takes place. Typi-
cally, behaviour is specified in a modular fashion as the asition of a number
of processes. Process may synchronise on specified gatesyobe interleaved
(i.e. operate independently in parallel). The whole speatifon has a top-levédle-
haviour.

25 CRESS

CRESsis extensible, with plug-in modules for each applicatioma@m and each

target language. Although support for web services hacdyrdbeen developed,
it has been necessary to extend this significantly for ush giitd services. In

addition, grid services have specialised characteristiasrequire corresponding
support in RESS

e A wider range of data types is now supported, including arayd arbitrarily
nested structured types. Specialised types have been &atdbshling with grid
services, such as certificates and endpoint references.

¢ Additional BPEL-compatible constructs have been included to make gridcgerv
orchestration more convenient.

e Support has been introduced for external partners sharedgsha number of
services. Special treatment is needed to merge their gésas from different
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Fig. 1. A Rigorous Approach to Composing Grid Services (f{@gi)

services.

External partners may need to communicate with other partra visible to the
orchestrating process. Support has been created for shahtgm partners’.
CRESsnhow has support for declaring and translating grid senaseurces.

As illustrated in figure 1, essoffers a formally-based approach for orchestrating
grid services. In the context of grid computing, the stepgerelopment are as
follows:

The desired composition of grid services is first describgdgiQRESS This
gives a high-level overview of the service interrelatidpsh Because the de-
scription is graphical, it is relatively accessible evemém-specialists.

The CREssdescriptions are then automatically translated into a &tanguage.
In general, REsssupports two formal approaches that have been standardised
for communications systems:dros and SDL (Specification and Description
Language [15]), though only @Tos is used in this paper. Obtaining a formal
specification of a composite grid service is useful in its eight: it gives precise
meaning to the services and their combination.

Although GRESscreates an outline formal specification for each partneficer
this defines just its interface. This is sufficient to checkibgroperties such
as interoperability. However for a fuller check of functadity, a more realis-
tic specification must be written manually for each partiiée automatically
generated interface helps to avoid simple but common mexstahdings. The
automated specification allows a rigorous analysis to bpeed prior to im-
plementation.

A competent designer can be expected to produce a satisfasvice imple-
mentation. Howevergcombiningservices often leads to unexpected problems.
The services may not have been designed to work togethemanaot interop-
erate properly. The issues may range from the coarse (eigagrdement over
the interface) to the subtle (e.g. interference due to mesocompetition). This
is akin to the feature interaction problem in telephony, rebg independently
designed features may conflict with each otherEES supports the rigorous
evaluation of composite services. Problems may need to tveated in either
the CREss descriptions or in the partner specifications. Severadtitens may
be required before the designer is satisfied that the contepgisd service meets



its requirements.

e The CRESSdescription is then automatically translated into an imatation.
The interface to each service is defined by the generatedlV{Web Services
Description Language [31]). The orchestration of partrewises is defined
by the generated BL. The partner implementations must be created indepen-
dently, using their formal specifications as a guide. Fin#fle scenarios used to
validate the specification can be re-used to check the ingriation.

Translating grid service orchestration is completelyed#ht for LoTos and for
BPELU/WsDL. The QRESStooIset has a common front-end but separate back-end
compilers. In theory, a properly validated and verified dpstion should lead to a
dependable implementation. However, practical issuels asgerformance might
require the implementation to be tuned.

2.6 Relationship to Other Work

A number of techniques have been developed for formaligieservices. Most
approaches use finite state methods or process algebras.

As an example of finite state methods for web services, [Mjga timed seman-
tics for XLANG that allows web services to be checked for interoperabditg also

to be implemented via transition systems. LTSA-WS (LalgeTleansition System
Analyzer for Web Services [9]) is a well-developed approidet allows composed
web services to be described in @®B-like manner. Service compositions and
workflow descriptions are automatically checked for saéetst liveness properties.
LTSA-WS models activities between a business process amaitners. It defines
a translation of BEL4ws to FSP (Finite State Processes) that is then used for ver-
ification and validation. In contrast,REssuses a higher-level representation for
automatic generation of a formal specificatioro@os) and of a deployable imple-
mentation (B EL, WsDL). CRESSiIs also a multi-purpose approach that works with
many different kinds of services and with different targetduages.

[8] describes an elaboration of the original LTSA-WS worknSce compositions
and workflow descriptions are described using MSCs (MesSaggience Charts
[14]). These are synthesised into state transition syséemiserified for safety and
liveness properties. Service implementations specified BPELAWS are used to
generate a second behavioural model (also a transitioaraysthich is analysed
in comparison to the MSC model.REss differs in using a more abstract and
language-independent notation for services of any var@®gss also automati-
cally integrates the specifications and implementationmaier services.

As an example of process algebraic methods for web senacésmated transla-
tion between BEL and LOTOS has been developed [5,7]. This has been used to
specify, analyse and implement a stock management systéralsm negotiation



through web services.kEssdiffers from this work in using more abstract descrip-
tions that are translated intoPBL and LoTOS. CRESSdescriptions are language-
independent, and can thus be used to create specificatiotiginformal languages
(e.g. SDL). REssalso offers a graphical notation that is more compreheasdbl
the non-specialist. This is important since service dgwekent often involves busi-
ness and marketing staff as well as technical experts.

Orchestration of web services has been well received insimguScientific work-
flow modelling has also been studied by a number of reseaogqgts. The MyGrid
project has prepared an overview of thelse// phoebus.cs.man.ac.uk/twiki/ bin/
view/ Mygrid. Only some of the better known workflow languages are mastio
below.

JOpera [19] was conceived mainly for orchestrating webisesy though its appli-
cability for grid services has also been investigated. J®pkaims greater flexibil-
ity and convenience thanA&L. Taverna [18] was also developed for web services,
particularly for coordinating workflows in bioinformatiagsearch. The underly-
ing language BUFL (Simple Conceptual Unified Flow Language) is intended to
be multi-purpose, including applications in grid compgti\ philosophical dif-
ference is that Eessfocuses on use of standards like@. rather than research
languages.

[6] describes support for BEL being undertaken for the OMII (Open Middleware
Infrastructure Institute). Like the present work, this Iiscainvestigating the feasi-
bility of using BPEL to orchestrate grid services. Support has been developed fo
the modelling, enactment and monitoring of business arehstic workflows. A
plug-in for the ECLIPSE IDE provides design tools for workflow definition and sys-
tem configuration. The OMII-BEL environment incorporates a customised version
of ActiveBPEL to address the needs of large-scale scientific workflowserimg

of implementation capability, this work has similar covggato QRESS but has
been applied to much larger problems. HowevetE€saims at a higher-level de-
scription of service composition and is not exclusivelyfsed on grid services. In
addition, QRessoffers the advantage that formal analysis of workflows capdre
formed using the same service descriptions that define thkementation. Unlike
CRESS OMII-BPEL does not appear to deal with WS-Addressing (Web Services
Addressing [32]) for binding to grid service resources.

Formal methods have seen little use for compogind services. [33] uses pi-
calculus to define composition signatures for grid serviddss allows precise
models to be developed of grid service compositions — paatity of concurrency
aspects. Eesssimilarly supports formal specification of grid service loestra-

tion, but the specifications are automatically generatatithe focus is on stan-
dardised orchestration mechanisms. An interesting teeahpbint is whether pro-
cess mobility (in the sense of the pi-calculus) needs to ppatied. From a careful
study of BPEL, the authors concluded that this capability is not requitemrosis



therefore sufficiently powerful for composite grid sengce

CRrREssis designed for modelling composite services, but was notewed as a
workflow language. Eess serves this role only when orchestrating grid or web
services; its use in other domains is rather different. Apanant point is that
CREssfocuses on generating code in standard languages. Focsemghestra-
tion, this means BEL/WsDL. This allows GRESSto exploit industrially relevant
developments.

Several researchers have useREBto compose grid services. [4] discusses pro-
grammatic ways in which BEL can support grid computing. [21] examines how
extensibility mechanisms in 8L can be used to orchestrate grid services. How-
ever, the focus of such work is pragmatic. For example, grdises may be given

a web service wrapping for compatibility. (Semi-)autondateethods of compos-
ing grid services have also been investigated, e.g. worldaptang ideas from the
semantic web [17]. However, the formal aspects of this woekrather limited.

In summary, @Essis distinguished in a number of important respects fromrothe
approaches:

e CRESsSis a general-purpose notation for describing services lagid motations.
It is not restricted to one domain (e.g. web or grid servicas)l has in fact been
proven in six different areas.

e CRESSis a compact, graphical and versatile notation. Its geitgrabkes it ex-
tensible to new applications. Its relative simplicity a®many details of speci-
fication and implementation to be hidden. Indeed, it is gmedo specify, imple-
ment and validate services without any knowledge of the tyidg languages.
Other service development approaches often expose thelyingedetails, and
require more technical knowledge.

e CRESssupports automated formal specification and automateceimghtation,
allied to rigorous validation and verification. This allo@&ESsto be used for
systematic service development. Few other approachesviteaddoth specifica-
tion and implementation, and certainly not in the range ahdims supported by
CRESS

e CRESssupports multiple target languages, diagram editors, @tipg toolsets
and platforms. Other approaches are usually tied to their mative languages
and tools.

e CRESsis focused on standardised languages and standardisedwooations.
Other approaches may follow their own approach, which canlisrier to wider
uptake. With reference to standards for service orchéstraveb services have
been the main focus of others. Formal approaches often mavéhe more in-
tricate aspects of orchestration, such as full support&a tiyping, handling of
faults, and treatment of compensatiorRESs aims to provide comprehensive
(though not complete) coverage of these aspects.



3 Describing Composite Grid Services with @ESS

Figure 2 shows the subset oREssconstructs needed in this paper to orchestrate
grid services; ®Esssupports more than is described here. Look ahead to figures 3
and 4 for examples of RESS

3.1 RESWNotation for Grid Services

A CRressdiagram shows the flow among activities, drawn as ellipsashE&ctiv-
ity has a number, one or more actions, and some parametessbétween ellipses
shown the flow of behaviour. Note thaREss defines flows and not a state ma-
chine; state is implicit.

Normally a branch means an alternative choice, but follgnanfork activity it
means a parallel path. An arc may be labelled with a valuedhoiaan event guard
to control whether it is traversed. If a value guard holdd)yaweour may follow
that path. An event guard defines a possible path that is ethaiily once the
corresponding event occurs. Activity nodes and guards naa lassociated as-
signments.

A CRrREssrule-box, drawn as a rounded rectangle, defines variabtksasidiary
diagrams (among other things). Simple variables have t{igesNatural n or
String s. CRESSsalso supports grid computing types suchCastificate (a digital
security certificate)Name (a qualified hame) anBeference(an endpoint refer-
ence that characterises a service instance and its agsbrgburces).

Structured types can also be defined, using ‘[...]’ for esragd {...}" for records.
For example, the following defines two variablass andmissesTheir type is an
array of elements with typeldCount This in turn is a record with strinfield and
naturalcountas fields.

[ { String field Natural count} fieldCount ] hits, misses

Since array elements are accessed by index rather thanrbgmi¢ype, a typical
value might behits[3].count

3.2 Occupational Data Analysis using Grid Services

The extended example used in this paper typifies the kindsrefces being de-
veloped for occupational analysis on the @E project. Although it is simplified
for illustrative purposes, it shows many of the key ideasrlyrid services. The
example also shows most of the&REssconstructs used to orchestrate services. It
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CRESS Meaning

partner.port.operation | A fully qualified operation name.

name(.variable)? A fault with name and optional variable value, or with

| .variable variable value only.

/ variable <— value An assignment associated with a node or arc.

Catch fault A handler for the specified fault. A fault name or fault valuie

must match th&€atch name or variable type. A fault is
considered by the current and progressively higher-level
scopes until a matching handler is found.

Compensatescop@ Called after a fault to undo work. Giving no scope means
compensation handlers execute in reverse order of enabling

Compensation A handler that defines how to undo work after a fault.

Compensation is enabled only once the corresponding
activity completes successfully. When executed, it exped
to see the same process state as when it was enabled.

—

Empty No action, used as a place-holder.

Fork strictnes® Used to introduce parallel paths; further forks may be meste
to any depth. Normally, failure to complete parallel paths|a
expected leads to a fault. This is strict parallelistri€t,
the default). Matched byoin.

Join conditior? Ends parallel paths. An explicit join condition may be

defined over the termination status of parallel activitidss
gives the node numbers of immediately prior activities, e|g
1&&2 means these (and the prior ones) must succeed.

Invoke operation An asynchronous (one-way) invocation for output only, of a
output(input fault$)? | synchronous (two-way) invocation for output-input with &
partner service. Potential faults are declared statically
though their occurrence is dynamic.

Receiveoperation Typically used at the start to receive a request for service.
input An initial Receivecreates a new instance, usually matching
aReply for the same operation.

Reply operation output| Typically used at the end to provide an output response.

| fault Alternatively, a fault may be thrown.
Terminate Ends a business process abruptly.
While condition Loops as long as the condition is true.

Fig. 2. CREsSsNotation (? optional, * zero or moréalternative)
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makes use of grid service partners to perform commonly requiasks such as
data conversion and statistical calculations. As gridisesy these benefit from
distribution, parallel execution, and security. Thesdrmas are combined into two
orchestrated services: an analyser to convert and anatgsgational data, and a
splitter to perform a conditional frequency analysis adooy to some criterion.

The orchestration supplies the logic to create a new higékkervice for occupa-

tional data analysis.

Suppose a social scientist collects data in an occupatsumaey that records job,
address, age and gender of each person. A common requirerterperform a

conditional frequency analysis on such data. For examplajght be useful to

know the percentage of people aged over 50 for each type o jodre is often a
need to split the data on some criterion, e.g. the percemtagenale employees or
the percentage of plumbers in Scotland.

Survey data is often in many different formats. An exterrawerter service is
therefore used to convert data to a standard format. Thigsnake of embedded
metadata describing the format. As well as this, the coavatbres the converted
data as aesourceand makes it available via what is called @mdpoint reference
in grid computing. This identifies a resource that can begqzhss another service
for retrieval and processing.

Data security is often a major issue. The converter theeedothorises data use.
This is achieved by what grid computing callsextificate— an unforgeable digital
document that identifies the requester. This is Isavgle sign-ons achieved in a
grid environment. The same mechanism also supp@tegation whereby a user
(or application) passes authority to another to perfornageactions. The ease of
securely sharing and using data also makes it feasibleiffioral organisationgo
be established. These are collaborative groups of usdrgytheally cross organi-
sational boundaries. Virtual organisations may be set upddicular purposes, or
may be long-lived.

Survey data naturally requires considerable statistitalyais. A separate statistics
service is therefore used. The only statistical functioadsel in this paper is a
frequency analysis, using a criterion liteye>50’ or ‘gender >male’ (not male).

With these external services, an analyser service can nalefreed. This orches-
trates the converter and statistics services to providergkziely new service. The
analyser accepts a reference to survey data and, if awtdoristurns an analysis
based on a single criterion.

In turn, a more complex splitter service can be defined. Thésuhe converter to
normalise and store the data. It then calls the analysehéogitven criterion and its
inverse. For speed, both analyses are performed in parBiieke results are then
combined as percentages satisfying the criterion.

12



,
Uses 1 Receive

analyser.data.count

[
{ String field Natural count} fieldCount analysisData

]analysis
1
Certificate certificate String criterion Reference data IcheckData certificate <- analysisData.certificate
}analysisData . i . '
Boolean authorised / checkData.data <- analysisData.data

{

Certificate certificate Reference data
}checkData

2 Invoke
converter.data.authorise

. . . checkData authorised
String field String criterion Reference data

}countData -
L String reason authorised \
<" /countData field <- "job" Else

/countData.criterion <- analysisData.criterion /reason <- "unauthorised"
/ countData.data <- analysisData.data

3 Invoke
statistics.data.count
countData analysis
statisticsError.reason

6 Reply
analyser.data.count
analyserError.reason

N
Catch statisticsError.reason

4 Reply
analyser.data.count
analysis

5 Reply
analyser.data.count
analyserError.reason

Fig. 3. QREssDescription of The Analyser Service

3.3 (RESDescription of The Analyser Service

The analyser is an auxiliary service that supports the m@gfiGation. Its QRESS
description appears in figure 3. The rule-box at the topdéthe figure defines
types and variables. The raw dataaisalysisDatathe requester’s certificate, the
analysis criterion, and a reference to data to be analydesrdsult is aranalysis

a list of job-count pairs. For example, it might be deterrditieat there are 60
plumbers, 40 electricians, etc. that meet the criteriog. (eddress=Stirling’ or
‘~gender=male).

Initially the analyser receives a request to perforooantoperation on the analysis
data (node 1). The requester’s certificate and a referenite tata are copied for
checking authorisation (arc to node 2). The converter is #s&ed t@uthoriseuse
of this data (node 2). If permitted (arc to node 3), the infation for the statistics
service is set up. This defines the field to be counted (‘jab§,analysis criterion,
and a reference to the data. The statistics service canaajlyfield in the data,
though only thgob field is used in this example.

The statistics operatiorountis then invoked to make a conditional frequency anal-
ysis (node 3). Normally, this will lead to an analysis beiaturned to the requester
(node 4). However if the statistics service faults (nastagisticsErrot valuerea-
son), this is caught (arc to node 5) and returned as a fault byrth/ser (node 5).

If the converter does not authorise access (arc to nodedsatiit reason ‘unautho-

13



rised’ is set. The analyser then returns a fault to the requésode 6).

3.4 RESDescription of The Splitter Service

The splitter offers the primary service to the user. I®ESSs description appears

in figure 4. The rule-box at the top-left of the figure defingsety and variables.
The raw data isplitData the requester’s certificate, an analysis criterion, and a
list of entries giving job, address, age and gender. Theyaisayieldshits (entries
that match the given criterion) amlissegthose that do not). The final entry in the
rule-box, / ANALYSERiIndicates that the splitter depends on the analyser servic
For this reason, the splitter can also make use of the analyseiables.

Initially the splitter receives a request to perform tmaintoperation orsplitData
(node 1). The converter service is invoked to normalise &oe ¢his data, returning
astorereference to it (node 2). Now the splitter follows two pagbfiaths (node 3).
On each path, the certificate, analysis criterion and sedezence are set. The path
leading to node 4 is for the given criteriohi{Data), while that leading to node 5
is for its inverse hissDatg. A criterion is negated by prefixing it with~’. The
analyser service is executed twice in parallel with the esponding parameters
(nodes 4 and 5), resulting imts and missedor these paths. These paths join at
node 6, where it is required that both paths have led to a sefidgesult (4&&5).

Now the results of the two analyses have to be combined. Theesjpops through
the data (node 7). For each valuehits and missestheir relative percentage is
calculated (node 8)Percentis just a GRESS convenience function to make the
intention clearer. Suppose the splitter was called to aeelye male percentage for
jobs. If there are 60 male plumbers and 20 female plumbetsisarveyhits will

be set to-22_ or 75% as a percentage. This is repeated for every distibéhjthe

60-+20 3
dataset, storing the percentagenguiits.

At the end of the loop, the converted data has served its parpad is deleted
(node 9). Finally, job percentages are returned as theti@ghk analysis (node 10).

The splitter has to take into account that its external gastmay fault due to some
error. For example, the converter service might fault bsedlie data is improperly
formatted. The analyser service might fault because atodbe data is unautho-
rised or because an invalid criterion has been given. Thacgedesigner must
carefully consider the consequences of faults. In padicainy changes that arose
during execution of the service must be undone. In this exanapy data created
and stored by the converter must be deleted if there is a fault

Faults caught by the splitter haveemsonvalue but no specific fault name€#étch
prior to node 12). This invokes compensation to undo anyastthat have been
taken (node 12). The splitter then reports the fault to tlygiester (node 13) and
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/hitData.certificate <- splitData.certificate
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/hitData.data <- store
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hitData hits
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analyser.data.count

analyserError.reason

11 Invoke
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I missData.certificate <- splitData.certificate

I missData.criterion <- Concat("~", splitData.criterion)
I missData.data <- store
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/hitsfind].count <- Percent(hits[ind].countmisses[ind].count)
/ind <-ind +1

9 Invoke
converter.data.delete
store

10 Reply
splitter.data.count
hits

Fig. 4. QREssDescription of The Splitter service

terminates abruptly (node 14). Compensation may be nedtirdravoking an ex-

ternal partner, as this is where work often needs to be undtire a fault. The
converter invocation to store data (node 2) has associategensation. A fault
leading to compensation will call this compensation han@lede 11). This deletes

the associated data and returns.

A business process may requaerrelationto relate a partner response to the in-
eds some relationshipréen the two, typically

a shared field such as a reference number. However, cooreiatnot required if
the underlying communication mechanism (e.g. a socketextion) automatically
relates responses to invocations. The splitter may simedtasly invoke two in-
and 5 in figure 4), so coorelziuld be required.
However the addition of correlation significantly comptesthe description, and

vocation that triggered it. This ne

stances of the analyser (nodes 4
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Deploys translator options / SPLITTER

ANALYSER anal  urn:JobLot localhost:8080/active-bpel
CONVERTER  conv  urn:AlterEgo localhost:8880/wsrf String dataName
SPLITTER splt urn:WorkMate localhost:8080/active-bpel
STATISTICS stat urn:HappyMean localhost:8880/wsrf

\

Fig. 5. QREssDescription of The Service Configuration

is not actually needed due to the nature of the specificahidriraplementation in
this case. For simplicity it has therefore been omitted.

As has been seen, the splitter service orchestrates tlems@f two partner ser-

vices: converter and analyser. In turn, the analyser semichestrates the con-
verter and statistics services. Although four services hawe to cooperate, the
user of the splitter service sees it as a whole. This is a nagjeaintage, because the
detailed design of the service does not then need to be &isibl

The major issue is whether the services work together srhoathwhether there
are interoperability problems. Even though this is a coapaely small example,
it will be appreciated that there are many possibilities daror. It is very easy
to make a mistake when calling a service, for example supglgifloating point
number where an integer is expected. Deadlocks are alsk. @y more subtle
problems can arise from semantic incompatibilities amdwgservices. For these
reasons, formalisation and rigorous analysis are higlgyraele.

3.5 The RESSService Configuration

Now that the various services have been introduced, tesS configuration di-
agram can be shown. Figure 5 shows how the services here scabdel. The
Deploysclause lists the €esstranslator options and, following ‘/’, the services to
be deployed. Although onIPLITTERS named, this implicitly includes all of the
other services because of the inferred dependencies. Tameters of each ser-
vice then follow in the configuration diagram. All servicesch asCONVERTER
have a namespace prefix (‘conv’), a namespace URI (UniforeotRee Name ‘Al-
terEgo’), and a base URI where they are deployed (‘localB880/wsrf’). As can
be seen, all the services were deployed on the local comphtegrid services
on port 8880, and the orchestrated services on port 8080etkwthey can be
deployed anywhere in the network.

Grid services may have resources. Declarations of thesdotlaw the other pa-
rameters. Only the converter here has a resourceddteNamehat identifies the
data it has stored. Every instance of the converter has aenagource value, iden-
tified by itsresource keyn grid terminology. As a grid service, statistics mightals
have a resource but in this case does not have one (showrraigure 5). A com-
posite service may also have resources. For example, ifrthiyser service were
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Target | Fixed Code Generated Code Partner Code | Total

Files | Types| Behaviour| Files | Behaviour

LoTos 850 1 560 360 2 190| 1960

BPEL/WsSDL 15 27| 2810 390 12 790 | 4010

Fig. 6. Comparison of bTosand BPEL/WsDL Translations (files, lines of code)

stateful then it too would have resource declarations.

3.6 Translation of The RES®Diagrams

The QREss diagrams (analyser, splitter, configuration) hold all théoimation
needed to automatically generate @Tos specification and a BeL implementa-
tion. Figure 6 compares the translations of the occupdtieta analysis example.
The figure shows non-comment lines of code for data types ahavour, and the
number of generated files:

e The fixed code is the framework common to all grid applicatiorhis is sub-
stantial in the case of@Tos because it contains many complex data types — 17
in total that cover numbers, strings, states, values anlikine

e The automatically generated code is shown for data typedeahdviour. The
LoTostranslation is a single file. TheHEL translation yields many files: one
BPEL file per service, one WbL file per service/partner, one Java file per data
type, and several deployment files.

e The code for the external partners (converter, statistias)o be manually writ-
ten. The Java coding conventions for grid services regewersl files per part-
ner.

e Figure 6 does not include the files used to validate the spatidh and the im-
plementation.

As would be expected, thedT0s specification is rather smaller than the corre-
sponding BPEL/WsDL implementation. bTOS is more noticeably compact when
used with larger examples, since there is a significant @athn LOTOS data
types. These support functions on numbers, strings, edt.atle standard in any
programming language. The most striking difference is enlinge number of files
that are required to supporrBL/WSDL.

4 Translating Grid Services to LOTOS

The translation of @essinto LoTosfor webservices is described in [26].dT0S
is a specialised language and the resulting specificatiensoanplex, so the details
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are unlikely to be of interest to the general reader. Thergegm here is there-
fore high level. A selection of grid service examples (intthg the one in this pa-
per) has been made available for download fnevaw.cs.stir.ac.uk/kjt/ software/
download/gs-examples.tar.gz

In fact, CRESSis designed so that the service designer doesieetito know any-
thing about the target languageqtoshere). A specification can be generated and
analysed without any knowledge of this. However, someoreeh@ps an external
party) must provide specifications of the partner servindsatos

4.1 Specification Structure

A simple command creates a service specification autonfigtiEggure 7 outlines
the generated specification structure for the occupatidat analysis example.
The fixed specification framework includes a variety of dgtees required for all
grid services (e.gArray is a generic arrayyalueis a generic value). Some of the
types are very complex. For exampleytosdoes not have built-in types for num-
bers or strings. These, and their associated operatious,thde specified from
scratch.

Partner services are often used by only one business praodhe LOTOS trans-
lation, this means they are hidden inside the definition efdbrresponding pro-
cesses. However, figures 3 and 4 raises two interestinggimshlThe converter
service is used by both the analyser and the splitter, and sleared. Translation
options in the configuration diagram identify the conveatgn ‘merge partner’ that
is shared by the services.

A more subtle problem arises because the converter andatistiss services must
communicate: the former stores the data that the latter angsiss. In a real imple-
mentation, this would be achieved by means of shared aazésayf) a database. In
LoTosterms, this communication has to be made visible. This iedyndefining
implicit partners in the translation options: here a dasab®f course, the function
of this ‘phantom partner’ is just to store data, so it needo@atpecified as an actual
database. Phantom partners exist at the top level of théisp&on.

The top-level behaviour shows the analyser and splitteradipg) independently in
parallel because each is a service in its own right. Howerey, synchronise with
their shared partners. The converter is explicitly shargdhle analyser and the
splitter, while the database is implicitly shared by alMsegs. The statistics partner
is used only by the splitter and so appears lower in the streict

The top-level behaviour is followed by data types that areegated from the partic-
ular services in use (e.gventdescribes service even®yrt describes the service
ports). Other generated types reflect the specificatioabks (e.gAnalysisfrom
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SpecificationGSSystem...
Library ...
Type Array...

Type Value...

Behaviour
Hide converter,databade
DATABASE...
|[databasé
CONVERTER...
|[convertel]
ANALYSER...

i
SPLITTER...

Type Event...
Type Port...
Type Analysis...
Type SplitData...
ProcessANALYSER...
Hide statisticsin
STATISTICS...

|[statistic|
ANALYSER_1...

Type ANALYSER_RESULT...

ProcessANALYSER_N...
ProcessCONVERTER...
ProcessDATABASE...

ProcessSPLITTER...
Hide analysein
ANALYSER...
[analyse}
SPLITTER 1...

Type SPLITTER RESULT...

ProcessSPLITTER N...

ProcessSTATISTICS...

(* Grid Service system *)
(* library type imports *)
(* array *)

(* value *)

(* overall behaviour *)
(* hide internal gates *)
(* DATABASE partner *)
(* synchronised with services *)
(* CONVERTER partner *)
(* synchronised with services *)
(* ANALYSER service *)
(* interleaved with *)
(* SPLITTER service *)

(* event *)

(* port name *)

(* analysis array *)

(* splitData record *)

(* ANALYSER service *)
(* hide internal gates *)
(* statistics partner *)

(* synchronised with *)

(* ANALYSER main process *)

(* ANALYSER result values *)
(* ANALYSER processes *)

(* CONVERTER partner *)
(* DATABASE partner *)

(* SPLITTER service *)

(* hide internal gates *)
(* ANALYSER service *)
(* synchronised with *)

(* SPLITTER main process *)

(* SPLITTER result values *)
(* SPLITTER processes *)

(* STATISTICS partner *)

Fig. 7. LoTOs Specification Structure



figure 3,SplitDatafrom figure 4).

The process definitions for partners and services now folldve analyser and
splitter specifications are generated automatically froeM@REssdiagrams. The
converter, database and statistics partners are normrallygecified by hand; their
definitions are automatically included in the complete gmetion.

The analyser specification includes a local statisticsaimst, while the splitter
specification includes a local analyser instance. A numbeanalyser and split-
ter processes are generated, numb&teatcording to the corresponding diagram
node.

4.2 Data

CRresshas been extended for grid services to handle arbitrariyptex structured

types, including arrays and records. As part of the traizslathese types are flat-
tened so that only a single level of structuring is specifigd bype. The flattening

process also identifies common types that are shared amaagles.

Apart from service-specific types,RESS supports standard XML types and the
specialised types needed for grid services. A certificasm XML document, and
is treated as a string. A qualified name is also a string. Eintlpeferences are more
complex. In grid terms, they are XML documents with the URkdfervice and a
unique resource key. This could be problematic forca@stranslation because an
endpoint reference can be used by any service to accesgthsmunding resource.
From a formal point of view, this would seem to need mobilecesses in the
style of pi-calculus. However, the usage of endpoint refees in B>EL means that
the service being invoked is always explicit. An endpoiriérence can therefore
be translated as an opaque value that uniquely identifieseiwairce; the current
translation uses a natural number.

Some additional XRrH functions are now supported by th@Esstranslators (e.g.
count position percenj} due to the particular requirements of grid services.

4.3 Behaviour

An activity sequence in aREssdiagram becomes a sequence omos However,

parts of a @Essdiagram often have to be translated as separateols processes.
This happens, for example, when part of a diagram can be eddof different

paths or is invoked as an event handler.

Although not visible in the outline of figure 7, processes @aeameterised by the
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variables introduced in the service definitions (euglysis analysisDatdrom fig-
ure 3). REssalso adds internal parameters to keep track of the busimessgs
state and the termination status of partner calls. Gridieemesources are repre-
sented as process parameters too.

A BPEL activity results in successful termination or failureotos behaviours
therefore exit with true or false. For simple behaviourss th the only result of a
process. A fuller description of state is required when idgalvith compensation
handling or with concurrency. Forks and compensation, ed bg the splitter, are
particularly complex to translate intodros Essentially, they require thedTos
processes to carry state along parallel paths and to relwestdte history for com-
pensation. (This is what theNALYSERRESULTandSPLITTERRESULTtypes
in figure 7 support.) For space reasons, the reader is rdftor26] for details of
the translation.

For each grid service, theREsstranslator statically discovers where event han-
dlers are defined and the scopes where these apply (glokedsociated with an
Invoke). An event dispatcher process is then generated with refere these han-
dlers according to their scopes. If a fault handler doesxist for the current scope,
the global handler (if any) is tried. Faults have to be maddgainst handlers in a
particular orderCatch with a matching fault nameCatch with a matching fault
name and value typ€&atch with a matching value typeSatchAll.

A Compensateaction, aThrow action or a fault invokes the event dispatcher with
information about the scope, event name and value type. dilieHandling rules
of BPEL require fault values to be coerced into a singleTbs type Value This

is needed so that the kind of value can be matched agaatsh. For example, a
fault handler expecting a string must check if the value dead a string; another
handler for the same fault name might deal with floating pfaintt values.

4.4 Rigorous Analysis of Grid Services

Translating orchestrated grid services intoTlosis valuable in its own right. For
example, a number of errors, omissions and ambiguities fwarel in the the BEL
standards (mainly in complex areas such as event handlothdat@a handling).

In implementation practice, grid services are manuallyugeled. The generated
LoTos can, of course, be manually simulated as well. However, amnejvan-
tage of the formalisation is that it supports a wide varietyigorous analyses.
An important issue in orchestrating grid services is to emsheir interoperabil-
ity. Problems arise from simple misinterpretation of ifaees or from more subtle
semantic incompatibility. Such problems often lead to tteadin LoTosterms.

In principle, the LoTOS specification can be formally verified. For example, the
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splitter service must not fault (a safety property), and mrocation of it must

eventually receive a response (a liveness property). tinfately the complex data
types and infinite data values make model checking ratheraatigable. For this

reason, the authors favour the use of rigorous validati@n (esting) instead of
verification (e.g. model checking).

MUSTARD (Multiple-Use Scenario Test and Refusal Description [2¥d¥s been
developed as a language-independent and tool-indepeapprdach for express-
ing use case scenarios. These are automatically trangtébeitie chosen language
(LoTos here) and automatically validated against the specifinafidis is useful
for initial validation of a specification, and also for lategression testing follow-
ing a change in the service description.

Validation checks only some aspects of a specification anmsifan from complete.
However, carefully chosen scenarios will exercise the raostal characteristics.
In fact, the same criticism could be made of model checkirtgodst, it can ver-
ify only the properties it is given for a specification. Thejoradifference is that
validation is practicable: a specification is validated by$tARD in a matter of
minutes, whereas verification is typically much lengthiecannot be performed in
practice. Another advantage of validation is that the sateeaios can be used to
check both the specification and the implementation.

Scenario-based validation is also a useful way of checlongnterference among
supposedly independent services. This is the well-knowatufe interaction prob-
lem (e.g. [3]) that has been extensively studied in telegh®his has received
little attention in other domains, though [30] discusseduee interactions in web
services. Interactions may arise for technical reasogs ¢enflicting services are
activated by the same input) or for resource reasons (engicee have a shared
resource or external partner). One way of interpretingisemnteraction is that a
service behaves differently in the presence of some otheicse

Grid services are formally validated by WMTARD scenarios that check critical
aspects of their behaviour. It then becomes possible tokckervices in isola-
tion as well as in combination. This can effectively and é&fitly detect service
interactions, though failure to detect interactions doaesmean the services are
interaction-free.

MUSTARD supports scenarios with sequences, alternatives, nanrdi@ism, con-
currency and service dependencies. In addition, both texcep tests and refusal
tests may be formulated. There is insufficient space hengiiai@ MUSTARD fully,
so reference to [27] and a few examples must suffice.

A MUSTARD scenario names a test and a behaviour that must succeedriSsen
for occupational data analysis provide data to be split anesoriterion; a digital
certificate (not shown here) is also defined. The data insledé&ies about individ-
uals that state their job, address, age and gender gpi®atain figure 4). The
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splitter normally produces an analysis as a list of job-petage pairs (typkits or
missesdn figure 4). For convenience the split data and the expectatysis have
been defined separately, though these may also be usedyda®plarameters.

The example in figure 8 provides data on one plumber aged 2&hdSin Mus-
TARD are preceded by a single quote.) Analysing this data for pemiunder 20
should determine that 0% of plumbers satisfy this criterion

MUSTARD can also check that faults are reported when expected. Isciwario
of figure 9, the analysis criterion ‘Age!30’ is wrong and myiid asplitterError
fault with reason ‘malformed’. &>’ in this example is an empty list.)

It is also desirable to check scenarios that require coantigxecution. Figure 10
shows two instances of the splitter being called conculrdat different datasets
(not shown) and different criteria.

All the scenarios so far are acceptance tests: the speidficatust perform as de-
scribed. It is also important to include refusal tests thaiok the specification does
not have extra behaviour. A refusal sequence waVIARD starts with legitimate be-
haviour and ends with behaviour that must not happen. (Bahnitial behaviour
and the refused behaviour may be composite.) Figure 11 sa@ivsple example.
Since a criterion may be arbitrarily negated~~Age>30’ is in fact valid. The
specification must therefore not throw a ‘malformed’ fault.

5 Translating Web Services to BEL

The translation of @essinto BPEU/WsDL for grid services is outlined in [29].
BPEL and WsDL are specialised languages and the resulting implemensasice
complex, so they are unlikely to be of interest to the geneder. The description
here is therefore high level. However, a selection of gridise examples (includ-
ing the one in this paper) has been made available for dowrifoan www.cs.stir.
ac.ukrkjt/ software/ download/ gs-examples.tar.gz

In fact, ORESsis designed so that the service designer doesneetito know
anything about the target languages@8/WsbDL here). An implementation can be
generated without any knowledge of these. However, somigamkaps an external
party) must provide implementations of the partner sesvindava. It is also worth
emphasising that theameCRESSsdescriptions are translated intatfosand into
BPELU/WSDL.
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defing(No_ PlumbersData, % individual data to check

list( % list of values
Entry(Plumber,1 Rose Lane Stirling,23,True))) % sample individual
defing(No_ Plumbers Analysis, % analysis expected of individuals
list( % list of values
FieldCount(Plumber,0))) % 0 percent are plumbers
test(No_ Plumbers, % no plumbers scenario
succeed % test must succeed
sendsplitter.data.count, % ask for job percentages
SplitData(CertificatéAge<20,Na Plumbers Data)), % get under 20s
read(splitter.data.count,NdPlumbers Analysis))) % expect this analysis

Fig. 8. Scenario for A Simple Dataset

test(Invalid_ Query, % invalid query scenario
succeed % test must succeed
sendsplitter.data.count, % ask for job percentages
SplitData(CertificatéAge!30<>)), % invalid criterion
read(splitter.data.count,SplitterErrt¥jalformed))) % expect this fault

Fig. 9. Scenario yielding A Fault

test(Concurrent, % concurrency scenario
succeed % test must succeed
interleave( % interleaved sequences
sequencé % sequence of behaviour
sendsplitter.data.count, % ask for job percentages
SplitData(CertificatéAge<20,ConcurrentDatal)), % get under 20s
read(splitter.data.count,Concurrertnalysisl)), % expect this analysis
sequencé % sequence of behaviour
sendsplitter.data.count, % ask for job percentages
SplitData(CertificatéGender=Female,ConcurreMata2)), % get females
read(splitter.data.count,Concurremtnalysis2))))) % expect this analysis

Fig. 10. Scenario with Concurrent Behaviour

test(Valid_ Query, % refusal scenario
refusg( % behaviour to be refused
sendsplitter.data.count, % ask for job percentages
SplitData(Certificaté,~~~Age>30,<>)), % get not not not over 30s
read(splitter.data.count,SplitterErrtijalformed))) % this fault must not occur

Fig. 11. Scenario with Refused Behaviour
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Fig. 12. Deployment of Occupational Data Analysis Services

5.1 Implementation Structure

A simple command creates a service implementation autoaiigti The normal
GT4 build procedure is rather restrictive and requiresi@aer naming conven-
tions to be followed. Instead,KEssuses its own simpler and more flexible build
procedure (though some utilities from GT4 are part of this).

The end result of the automated implementation is a set oicgefiles. Grid
services are deployed to the GT4 platform for grid compugimgw.globus.ory
BPEL processes are deployed to the ActiveR platform for service orchestration
(www.activebpel.org As shown in figure 12, these are distinct platforms that run
their own kinds of services. GT4 and ActiveBL communicate to allow BEL
processes to call grid services. In principle, it should besgble to run GT4 within
the same Tomcat container as ActivieR. However this is currently not possible
due to incompatibilities in the underlying packages (niytdiioe Axis package for
SoAP messaging). As GT4 evolves, this problem will disappeaprhrctice any-
way, BPEL is likely to coordinate services running on a number of systever a
network.

In comparison to the work on OMII-BEL [6], CRESShas similar goals for prac-
tical grid service orchestration — though there are sonferdifices. OMII-BEL is
focused on pragmatic support for modelling, enactment amwitoring large-scale
scientific workflows. @Essis more concerned with high-level models that can be
verified and validated as well as implemented. So fag €shas not been evaluated
on large problems. However, this is not a limitation ¢f&€5s Rather, it reflects on
the support of process execution. In fact, it should be pts$o combine the use
of CRESS (particularly its formal support of analysis) with the OMBIPEL work
(particularly its run-time support).

Since ActiveBEL was designed for web services, it is not surprising that web
services can be run in the same container aslBIn fact it is possible for the
same BEL process to orchestrate a mixture of web and grid services.

As will have been seen from figure 6, implementing grid sesicequires many
files in different languages. Figure 13 gives one examplelwdtvs involved. The
designer createsKEssdiagrams for the services, usually wittrREsss own di-

agram editor though others can be used. Each service diagr@amslated into a
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Analyser
CRESS Description

Converter WSDL ar?gl(z.‘,l-atalo e Statistics
WSDL 9 WsDL
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i Definitions WSDL i

Java Implementation Java Implementation
Deployment Descriptor Deployment Descriptor
Grid Service Archive BPEL Archive Grid Service Archive

Fig. 13. Translation of The Analyser and Its Partner Sesvice

BPEL description, the VBDL interface to this, and various ancillary files 8L
catalogue, deployment descriptorSWL for shared definitions). All these files are
bundled as a BEL archive and deployed into Activet&L.

The translation also generates code for the converter atidtgts partners. RESS
creates a \WDL interface to each partner, a Java implementation, and aylagint
descriptor. However, RESs uses a Java implementation if one has already been
written. All these files are bundled as a grid service archive deployed into GT4.

5.2 Data

The translation of @Essdata types into BEUWSsDL is intricate but reasonably
straightforward. Simple Resstypes become XML simple types, while structured
CRESs types become XML complex types. Accessing fields in a compleer
requires XRTH queries.

Unfortunately, BPEL defines and uses variables differently depending on whether
they appear in messages or just in expressiorgsSS handles this automatically,
creating different definitions and code depending on howtreble is actually
employed.

Assignments associated witrREss arcs require careful treatment. Consider the
arc between nodes 2 and 3 in figure 3. Since paths with diff@agsignments may
lead to the same node, such assignments have to be assogtatéte immediately
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prior node. If this occurs in the context of a choice, thegssients must be made
dependent on the condition. Thus the assignments followode 2 in figure 3
depend on the value aluthorised A different situation arises with the assignments
following node 3 infigure 4. These lie on parallel paths, ambave to be associated
with the following nodes (4 and 5).

5.3 Behaviour

CREssdeals with the differing uses ofd\P by service orchestration and by grid
services. BEL processes often use an ‘rpc/encodeda8 style (though other
styles are possible). Grid services always use a ‘docutiterdl’ SOAP style. An
unfortunate consequence of this is that operations withstimee parameter type
cannot be distinguished.REssdetects this as an error, and requires the designer
to adopt a ‘wrapped’ SAP style to distinguish them.

GT4 currently imposes a limitation on the orchestrationrid gervices. The most
desirable form of security is the so-called WS-SecureCaaton that allowsre-
dential delegatiorn grid terminology. Unfortunately the current implemetrda of

GT4 requires all services to use the same container for atbegto work. As long

as GT4 and ActiveBEL cannot coexist in the same container, this is not feasible —
but this problem will disappear in time.

The authors have also made use of OrackEBProcess Managemvw.oracle.
com/technology/ products/ias/bjpeUnlike ActiveBPEL, this does not have the
possibility of coexistence in the same container as GT4 atlierefore even more
remote from an integrated security solution.

An orchestrated process currently behaves like a web sefiie authors are work-
ing to overcome limitations of ActiveBeL that mean resources have to be treated
outside the orchestration. Ideally grid service resoustesild be accessible to the
orchestrating process, and this should be allowed to haairees as well.

ActiveBPEL version 2.0 and Globus Toolkit 4.0.0 were originally usedtbs au-
thors for grid service orchestration. This version of AeBPEL conforms to the
BPEL4ws standard, and therefore does not support the version of \Bessing
(Web Services Addressing [32]) that is compatibile with W.SRVeb Services Re-
source Framework [11]). The absence of this support regj@reork-around to
orchestrate grid services. Instead of assigning an entpefierence to a partner
link, this information must be sent as a service invocatiarameter. An additional
problem was that GT4 support of endpoint addressing wasripatible with the
version of WS-Addressing that it claimed to handle. As a ltegmdpoint refer-
ences failed to deserialise. It was necessary to change $1addressing schema
used by GT4 for this to work properly.
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With the recent introduction of Active=L version 3.0 and Globus Toolkit 4.0.4,
these problems have been eased. ActreBnow supports WS-BEL [2], which
uses an appropriate version of WS-Addressing. This hawetl CRESSto support
endpoint references properly. These can now be assignedittepservices so that
service resources can be used. However, this is not quitegbnfor orchestrat-
ing grid services with resources. When invoking a grid servising the assigned
partner link endpoint reference, ActiveBL uses additional attributes (e.g. the ser-
vice actor). This results in GT4 not being able to identifg gervice resource even
though the required information is present. Even thoughrtfeemation complies
with the standards, GT4 is unable to extract the correct Vd8réssing informa-
tion. This has required the authors to modify the messagdl@anhain used by
GT4 so that resource information can be properly handled.

With the resolution of security and resource issues, otcites! grid services will
become true grid services in their own right. However, elengresent limitations
do not detract from the value of grid service orchestration.

6 Conclusions

It has been seen howRESS has been adapted to support orchestration of grid
services. This offers the advantage that new compositécesrgan be constructed
from existing ones. As a realistic example, occupation&h denalysis by social
scientists has been used to explain how orchestrating grniices is achieved.

The CREssdescription of composite grid services is automaticabiyslated into
LoTosfor rigorous validation with MUSTARD (and also, in principle, through ver-
ification). This allows a range of errors to be eliminatedopefcommitting to im-
plementation. The authors did in fact discover some sulptlelpms by this means:

e Job percentages are rounded to whole numbers. The vahdstenarios ex-
pected that this would be done by rounding to the nearestevhohber, whereas
the specification rounds by truncation. Although this wasraor in the scenarios
rather than the specification, it drew attention to somettiat needed attention
in the implementation.

e A concurrency issue was discovered. Two instances of thiysaraare created
by the splitter (nodes 4 and 5 in figure 4). If one of these fute associated
compensation deletes the corresponding data store (naddigdre 4). Depend-
ing on the exact sequence, it is possible for the data stdoe tieleted by one
parallel branch while the other is still executing. This wasrected by changing
the specification of the converter.

e An even more complex situation arises because deletion ata store is not
confirmed (nodes 9 and 11 in figure 4). As a result, deletion beagrbitrarily
delayed. A new instance of the splitter may therefore enmyun‘half deleted’
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data store. The original version of the converter specifoadid not handle this
properly.

As a result of the rigorous validation, the authors havearalle confidence that
the CRESsdescriptions are correct. The finaREss orchestration was automati-
cally implemented and run using ActiveBL and GT4. The implementation was
checked using JUnit tests based on thesWARD scenarios for validating the spec-
ification. There is thus a double re-use: the same& €5 descriptions are used for
specification and implementation, and the samesWARD scenarios are also used
for both.

The whole development process is highly automated. Onlyeitiernal partner

services have to be translated manually. TiEEStoolset is very portable, being
written in Perl. It has been run on four different operatiggtems. The toolset also
supports four target languages and five application dom&orgyrid services, it has
hopefully been demonstrated thakEssis a useful approach for orchestration.
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