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Abstract. CRESS (Chisel Representation Employing Systematic Specification)
is used for graphical behaviour description, underpinned by formal and imple-
mentation languages. Plug-in frameworks adapt it for particular application do-
mains such as Intelligent Networks, Internet Telephony and Interactive Voice
Response. The CRESS notation and its syntax are explained. The semantics of
CRESS is discussed with reference to its interpretation in LOTOS.
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1 Introduction

1.1 Background

Diagrammatic representations abound in science and engineering. For example, soft-
ware engineering uses flowcharts, entity-relationship diagrams, data-flow diagrams,
state diagrams, and various UML diagrams. In general, diagrams are valued because
they give a clear overview of a system. In industry, graphical representations are re-
garded as more accessible than textual ones (especially for more formal specifications).

This paper describes the basis of CRESS (Chisel Representation Employing Sys-
tematic Specification). Although CRESS was inspired by the need to represent voice
services, it is a general-purpose way to represent behaviour graphically. CRESS can
therefore be used for a variety of other applications. Unlike many diagrammatic forms,
CRESS is precise in that diagrams are interpreted by an underlying formal model.
CRESS diagrams can also be translated to implementation languages. CRESS supports:

– graphical behaviour description, open to non-specialists and industrial engineers
– a precise interpretation that allows rigorous analysis and development
– a portable toolset that facilitates specification, implementation, analysis and testing.

The same service diagrams can be used for multiple purposes. CRESS is neutral with
respect to the target language. For formal analysis, CRESS diagrams are automatically
translated to LOTOS (Language Of Temporal Ordering Specification [4]) and to SDL
(Specification and Description Language [6]). For implementation, CRESS diagrams
are automatically translated to Perl (for Internet Telephony services) or to VoiceXML
(for Interactive Voice Response services).

CRESS was initially based on the industrial notation Chisel developed by BellCore
[1]. However, CRESS has been considerably extended since its beginnings. For example,
it now supports the notion of plug-in domains: the vocabulary and concepts required
for each application area are defined separately. CRESS has been used in the domains
of Intelligent Networks, Internet Telephony and Interactive Voice Response.

Although other papers by the author have described the applicationsof CRESS, the
present paper considers the foundationsof CRESS, namely the composition, syntax and
semantics of CRESS diagrams. The CRESS philosophy focuses on two aspects:



– The graphical notation is of most interest and value to domain experts such as
communications engineers. Such users require a convenient and pragmatic way of
describing services.

– The rigorous analysis of formal specifications derived from diagrams is of most in-
terest and value to formalists. Such users require precise expression with the ability
to reason formally about the specifications.

The translation from diagrams to specifications is of limited interest to both categories
of user. Although the paper gives some indication of how translation is achieved, it is
a secondary issue. In particular, the translation procedure is not formalised though the
results of the translation are formal. The important point is that specifications generated
from CRESS are precise and can be reasoned about.

1.2 Relationship to Other Work

Diagrammatic notations, e.g. visual programming languages, are common in software
engineering. However few graphical approaches have a formal basis. Statecharts [3],
LSCs (Live Sequence Charts [7]), and UML all have graphical representations with a
formal basis. The following techniques are perhaps closest to CRESS:

– SDL has a graphical syntax and a formal interpretation. However SDL lacks com-
position mechanisms that are appropriate for building services. It is a specialised
notation that needs expert knowledge. SDL also does not have support for specific
application domains.

– MSCs (Message Sequence Charts [5]) are higher-level and more straightforward.
Several authors have given formal meaning to MSCs. Like SDL, MSCs are also
rather generic and lack composition mechanisms suitable for services.

– UCMs (Use Case Maps [2]) are useful for high-level descriptions of requirements.
UCMs have been represented using LOTOS and MSCs. However the formalisation
of UCMs is not complete, and they lack support for specific application domains.

CRESS aims to circumvent these problems:

– CRESS accepts plug-in domains that allow it to be readily adapted for use in a
variety of applications.

– CRESS supports the needs of voice services, though it is more widely applicable.
Specific mechanisms are provided in CRESS for service composition.

– CRESS is intended as a front-end for formal representations. That is, CRESS is
translated into a formal language into order to give it precise meaning. The implied
semantic model of CRESS is reasonably straightforward, so there can be confidence
in the equivalence of different formal models.

Formally-based language translation has been studied for many decades. [9] is an
example of the state-of-the-art. Although such approaches might in principle be used for
CRESS, they would be a side interest. In addition, the scale and challenges of translating
CRESS to very different target languages cast doubt on the practicability of formally-
based translation. CRESS includes concurrent, nondeterministic and event-driven be-
haviour. CRESS descriptions may be cyclic and may contain context-sensitive expres-
sions. All these aspects would be challenging for a formal approach to translator design.
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Even if the problems could be overcome, proving the translation correct would be very
difficult and time-consuming. The outcome would also be of little benefit for the in-
tended purposes of CRESS (graphical description and formal analysis).

1.3 Overview of The Paper

As motivation for CRESS, section 2 briefly overviews the role of CRESS and how it
has been applied. Section 3 gives a condensed summary of the CRESS notation. An
overview is given in section 4 of the syntax and static semantics of diagrams. Section 5
deals with the semantics of diagrams by considering their interpretation in LOTOS.

2 CRESS Application

2.1 The Role of CRESS

Why not define system behaviour using some implementation technique used for pro-
gram development? Such a definition would naturally be rather low-level, language-
dependent, and possibly platform-dependent. It would be hard to analyse the defini-
tion rigorously. Historically, this is how communications services were defined. The
approach suffers from major problems such as incompatibility among vendors, incon-
sistency among features, lack of portability, and cost of testing.

A formally-based approach is therefore an obvious choice. Why not then just spec-
ify behaviour using a selected formal method? There are a number of problems that
CRESS aims to circumvent:

Acceptability: Formal methods have achieved only limited penetration into industry.
In general, engineers are not trained in formal methods and are hesitant to use them.
CRESS exploits the benefits of formal methods ‘behind the scenes’ without forcing
them on the user. As a graphical notation, CRESS is more accessible to the non-
specialist. Indeed, CRESS benefits from its origins in Chisel as a notation that can
be used by all stakeholders in system development.

Architecture: CRESS provides a framework and vocabulary for specifying applica-
tions in various domains. CRESS is therefore close to the architectural level at which
a domain specialist would normally think. If a plain formal language is used, it is
necessary to describe behaviour in terms of languageconcepts rather than in terms
of architecturalconcepts. This leads to specifications that are low-level (in archi-
tectural terms) and verbose.

Neutrality: CRESS is not oriented towards any particular domain, target language
or platform. It can therefore act as a front-end for creating formal specifications.
CRESS diagrams are currently translated into LOTOS and SDL, and could be trans-
lated into many constructive formal languages.

Implementation: Formal specifications are usually rather distant from implementa-
tion. As a result, the effort put into specification is often not exploited when imple-
mentation takes place – there is a discontinuity in development that risks introduc-
ing inconsistencies. CRESS is unusual in that the samediagrams can be translated
into both formal specifications and into implementations (in selected languages).
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So, when is CRESS applicable? In general it can be used to give a constructive
description of a system that has inputs, outputs, actions and events. That is, CRESS is
useful for reactive systems. Although CRESS can be used to describe the behaviour of
an entire system, its specialised capabilities come into their own when the system can
be considered as a base behaviour (service) modified by optional additional capabilities
(features). Such a situation is common in voice applications such as telephony, but
is also common in many other cases. For example, software applications frequently
have plug-in modules that are used to extend their abilities. CRESS is therefore most
appropriate for modular systems.

CRESS cannot be used for non-constructive (e.g. declarative, logical) descriptions.
Although CRESS descriptions are hierarchical in the sense of diagrams invoking other
diagrams, CRESS is not able to describe a system at multiple levels of abstraction.

CRESS scales reasonably well. Since systems are usually described by multiple di-
agrams, a complex system can be handled as long as its behaviour can be broken down
into manageable diagrams. When used for verification (proof), CRESS has the same
characteristics as the formal language in which CRESS is interpreted. In practice, this
usually places severe limits on what can be verified. When used for validation (testing),
CRESS is much more practical. As long as tests can be defined fairly independently, a
complex system can be validated without much regard to scale.

2.2 Domain Frameworks

In themselves, CRESS diagrams have no meaning. In fact, CRESS is deliberately open-
ended as far as applications are concerned. Although CRESS defines a structure for
diagrams, diagram content is governed by plug-in domains that define the syntax and
semantics of diagram contents. As will be seen, CRESS has been used in three domains
with four target languages.

Some aspects are domain-specific but language-independent. For example, a do-
main defines the names and parameter types of input signals, output signals, actions
and event conditions. The sources and destinations are given for signals. To resolve cer-
tain kinds of composition problems, diagrams may be given priorities that control the
order in which they are applied.

Some aspects are both domain-specific and language-specific. A specification ar-
chitecture gives an outline specification in the chosen target language. This identifies
the communicating subsystems and the domain-independent data types. When CRESS

diagrams in this domain are translated to this language, the generated code is embedded
in the specification architecture. Most of the generated code deals with behaviour, but
some of it defines domain-specific data types.

2.3 Tool Support

The CRESS toolset is written largely in Perl for portability. About 14,000 lines of code
in numerous modules are used to support seven main tools. The major CRESS tool re-
sembles a conventional compiler. However CRESS is unusual in interpreting a graphical
description. In addition, the possibly cyclic nature of graphs requires special treatment.
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The CRESS lexer reads each diagram and turns it into a directed graph. The CRESS

parser combines all the graphs into one, and checks the syntax and static semantics
of the resulting graph. A CRESS code generator for each target language translates
the graph into this language. These tools are invoked by a preprocessor that is used
with a specification architecture. This determines the configuration and deployment of
diagrams, and embeds their translation into the specification framework.

When CRESS is interpreted in a formal language, verification and validation are ob-
vious choices. [15] describes how these can be performed. In general, CRESS is open
to any verification technique that would normally be used with the formal language.
However, CRESS is accompanied by its culinary counterpart MUSTARD (Multiple-Use
Scenario Test And Refusal Description) as a practical means of validating behaviour.
The MUSTARD tool translates validation scenarios into the target language and automat-
ically checks them against the system specification. This is used to establish confidence
in the CRESS description, and also to check for incompatibilities among features.

As far as possible, the toolset is automated so that the user is unaware of it. For
example, a LOTOS user issues a TOPO toolset command to process a given specification.
This invokes the CRESS toolset, creates a new specification from the CRESS diagrams,
and uses MUSTARD to validate it. Similarly, an SDL user clicks on a button in the
Telelogic TAU toolset to perform comparable actions.

2.4 Applications of CRESS

The following is a brief overview of CRESS in selected domains. Refer to the cited
papers for more details.

IN: The Intelligent Network is an architecture for telephony networks that separates
call routing (service switching) from call processing (service control). In particu-
lar, dedicated network elements handle complex services. The IN supports a flexi-
ble range of services such as Call Forwarding, Call Screening, Credit Card Calling,
and FreePhone. IN services are complemented by ones that reside in switches (ex-
changes), e.g. Call Waiting or Conference Calling. The major issues in defining IN
services are vendor-independence and mutual compatibility.
CRESS has been used to model a range of typical services from the IN [10, 12].
Such descriptions are independent of vendor, platform and language. The CRESS

descriptions are interpreted in LOTOS or SDL, allowing rigorous analysis in isola-
tion (checking correctness) and in combination (checking mutual compatibility).

Internet Telephony: Voice calls can be supported over an Internet-like network. This
may be the Internet proper, though voice traffic is increasingly being carried over
private networks that follow Internet standards. H.323 is a well-established set of
standards for digital telephony. However SIP (Session Initiation Protocol [8]) is
a simpler and more flexible alternative that is rapidly gaining in popularity. For
example, SIP is being widely used to replace conventional telephony, and has been
adopted for the new generation (3G) of mobile telephones.
CRESS has been used to model SIP and its associated services. In fact, SIP is suffi-
ciently new that there is not yet a consensus on what a SIP service is. An important
aspect of the CRESS work has therefore been to define a SIP service architecture
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[11–13]. For formal analysis, a range of SIP services has been described in CRESS

and interpreted in LOTOS and SDL. This part of the work has had similar goals to
the IN study. To gain practical benefits, the same service diagrams are also trans-
lated into Perl for use with SIP CGI (Common Gateway Interface).

IVR: Interactive Voice Response systems are used to provide callers with a voice
interface. Speech recognition allows natural language enquiries, and speech syn-
thesis gives fixed or generated voice responses. IVR systems are a major growth
area, largely because of customer dissatisfaction with touch-tone enquiry systems.
Among competing standards, VoiceXML [16] has gained a dominant position.
CRESS has been used to model VoiceXML and its associated services [12–15].
In fact, VoiceXML does not recognise the concepts of service or feature. Part of
the CRESS work has therefore been to investigate the value of these ideas in an
IVR setting. For formal analysis, a range of IVR services has been described in
CRESS and interpreted in LOTOS and SDL. This part of the work has had similar
goals to the IN study. For practical deployment, the same service diagrams are also
translated into VoiceXML for deployment in an IVR server.

3 CRESS Notation

CRESS may appear to define state diagrams. However, state is intentionally implicit in
CRESS because this allows more abstract descriptions to be given. CRESS has explicit
support for defining and composing features. Plug-in domains adapt the notation for
selected application areas. Sample diagrams from the domains mentioned earlier are
used to illustrate the notation.

3.1 Diagram Expressions

CRESS expressions offer the usual logical, arithmetic and comparison operators. String
and set operators are also supported. Assignment is indicated by ‘<−’. Since CRESS

acts as a front-end for a variety of target languages, it does not itself define operator
precedences. Complex expressions are therefore parenthesised as necessary.

3.2 Diagram Types

A CRESS diagram is a directed, possibly cyclic, graph. Ultimately, CRESS deals with a
single diagram. However it is convenient to construct diagrams from smaller pieces. A
multi-page diagram, for example, is linked through connectors. More usefully, CRESS

supports the notion of feature diagrams that extend or modify other diagrams. This is
especially useful for systems that have a base functionality plus additional capabilities.
CRESS supports three similar kinds of diagrams:

Root Diagrams describe the fundamental behaviour of a system. An extract from a
sample root diagram appears in figure 1. This describes POTS (Plain Old Telephone
Service, i.e. an ordinary telephone call). For example the subscriber may go off-
hook and dial a number, resulting in both telephones ringing.
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1 Off-hook A

2 DialTone A

3 Dial A B 18 On-hook A

4 StartRinging B A |||
StartAudibleRinging A B

Free A B

Uses Address A,B

Off-hook P / Busy P <- True
Free P Q <- P != Any && ~Busy Q

A is the calling number
B is the called number

15 UnobtainableTone A

Unobtainable A B

Null

Else

Fig. 1. CRESS Root Diagram (Incomplete) for the Plain Old Telephone Service

Spliced (Cut-and-Paste) Feature Diagramsare applied to matching behaviour in an-
other diagram. The feature is copied and used to replace the matching behaviour.
Note that this is a static, syntactic operation. A modified diagram is created by the
process of composition. A spliced feature has a unique entry node. It has one or
more exit nodes that indicate how it flows back to the diagram being modified. A
spliced feature can be used to replace, extend or modify behaviour in the original
diagram. A sample spliced feature appears in figure 2 that describes the Calling
Number Delivery feature in Intelligent Networks. This matches node POTS 4 that
follows node POTS 3 via the Free A Barc. If the called number B has subscribed to
the CallingNumberfeature, the caller’s number A is displayed. The feature contin-
ues from nodes POTS 5 or POTS 13.

POTS 3

POTS 4
4 StartRinging B A |||

StartAudibleRinging A B

POTS 13

~CallingNumber B

Free A B

POTS 5

17 Display B A

CallingNumber B
~CallingNumber B

Uses / POTS

Fig. 2. CRESS Spliced Feature Diagram for Calling Number Delivery

7



Template (Macro) Feature Diagrams are similar but are parameterised. The actual
parameters are determined by pattern matching the triggering node to the template.
A template feature may have several exit nodes, but only one of these (Finish) con-
tinues with the original behaviour. A template is instantiated and applied statically
when diagrams are composed. Sample template features appear in figures 3, 4 and
5. Figure 3 describes an Intelligent Networks feature to check if the called number
Q is busy; if so and the callee has subscribed to call forwarding, the call is diverted
to the selected ForwardBusynumber. Figure 4 describes an Internet Telephony fea-
ture that blocks a caller P who appears in the screening list ScreenInfor callee Q.
Figure 5 describes an Interactive Voice Response feature for charity donations. It
asks the user whether to start again after a request to clear all inputs. Unless the
user re-confirms clearing, the donation details are submitted to a server.

It is normally preferable to use template features rather than spliced features. This is
because the latter often have to repeat large pieces of the matching diagram. If a feature
loops back to its initial node, this is interpreted as meaning a loop back to the triggering
node. This allows a chain of features to be triggered by the same node; the instantiated
features are combined in sequence.

3.3 Diagram Nodes

Diagrams contain several kinds of nodes, distinguished by shapes that are arbitrary but
known: comments, behaviour nodes, labels and rule boxes.

Comments (parallel lines, figure 1) contain explanatory text. Some diagram editors
used with CRESS allow hyperlinks to be added as comments, e.g. links to an audio
commentary, document or figure.

Behaviour Nodes (ovals) contain behaviours and their parameters. A node is identified
by a number, optionally followed by one or more symbols to indicate its kind:

– ‘<’, ‘>’ (figure 4 nodes 1 and 2) means the node contains input, output signals
(used if a signal can be sent in both directions)

– ‘+’, ‘–’, ‘=’ (figure 3 node 1, figure 5 node 1) means a template is appended,
prefixed, substituted (relative to the triggering node)

– ‘!’ (figure 5 node 3) means a node will not be matched by a template (used to
prevent unintended or recursive substitution).

A behaviour node contains signals (inputs or outputs, figure 1 nodes 1 and 2) or
actions (like programming language statements, figure 5 node 3). Behaviours may
carry variables or expressions as parameters (figure 1 node 1, figure 5 node 2)
Several behaviours may occur in parallel (‘|||’, figure 1 node 4). Each behaviour
may be followed by variable assignments separated by ‘/ ’.

Labels (plain text or ovals) are used as connectors to join parts of a diagram. A source
label cites the diagram name (optional, meaning the same diagram) and node num-
ber (figure 2 node POTS 3). A destination label (figure 2 node POTS 5) may define
variable assignments much as a behaviour node does.
Special labels are also used. A Start node (figure 3) is the initial one of a graph.
It is required when a graph is cyclic so the initial node is ambiguous; it is implicit
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Uses / POTS

1+ Dial P Q

Finish

Busy Q &&
ForwardBusy Q != Any /

Q <- ForwardBusy Q

Else

Start

Fig. 3. CRESS Template Feature Diagram for Call Forward on Busy Line

1<+ Invite P QUses / PROXY

2> Response Q P Decline

Finish

ElseP In ScreenIn Q

3< Ack P Q

Fig. 4. CRESS Template Feature Diagram for Call Screening

2 Request restart
"Start over again?"

Boolean

Filled

3! Submit donate.jsp
"amount charity"

Else

Uses Value restart 1- Clear

Finish

restart

Catch "NoInput NoMatch"

Fig. 5. CRESS Template Feature Diagram for Restarting A Charity Donation
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when the initial node is well-defined (e.g. figure 1). A Null node (figure 1) does
nothing. It may be used as a shorthand to join a number of nodes to a number of
other nodes. A Finish node (figure 3) is used to indicate the exit of a template. In
fact, labels can be left empty for these special nodes (e.g. a Null label is normally
omitted, figures 3 and 4).

Rule Boxes (rounded rectangles) have multiple purposes. They give a variety of rules
to define variables, diagram interdependencies, assignments, macros, signal trans-
formations, and configurations. A Usesclause may begin by optionally declaring
the variables local to a diagram (figure 1). This is optionally followed by ‘/ ’ and a
list of other diagrams that the diagram depends on (figure 3). For example, a feature
diagram lists the root (or other) diagrams that it may modify. The explicit depen-
dencies among diagrams are used to determine the full set of diagrams needed.
A variable initialisation (not illustrated) assigns a value at the start of behaviour.
Variables may also be assigned when a certain behaviour occurs. For example in
the first rule of figure 1, the occurrence of Off-hookfor any telephone P causes that
telephone to be marked as busy. Parameterised macros and their expansion may
be defined. In the second rule of figure 1, Free P Qexpands to a check that P is a
defined telephone number and Q is not busy. Signal transformations (not illustrated)
are macros that allow one signal and its parameters to be replaced by another.
Rule boxes may also be used to define a system configuration (not illustrated). A
Deploysclause lists the behaviour diagrams that apply. In addition, feature para-
meters may be defined (e.g. the forwarding number for a telephone).

3.4 Diagram Arcs

The arcs between nodes indicate the flow of control. Arcs may be unlabelled (figure 1
node 1 to 2) or may be labelled with guards. These may define value conditions (im-
posing a restriction on progress, figure 1 node 3 to 4). Else means the complement of
other value conditions (figure 1 node 3 to Null ). The use of Else is not obligatory, but
if it is omitted then a dynamic check can be performed for all guards being unfulfilled.

Guards may also define event conditions that are activated by dynamic occurrence
of an event (figure 5 node 2 to 3). Event conditions are distinguished by their names (e.g.
Filled, Catch). Since events may be intercepted at several levels in a CRESS description,
there is no equivalent of Elsefor event conditions.

A guard may be followed by assignments separated by ‘/’ (figure 3 empty node to 1).
This can be necessary to change system state without executing other behaviour. Some-
times it is convenient to have an empty guard condition but associated assignments, i.e.
the progression to a new behaviour node changes the system state.

4 CRESS Syntax and Static Semantics

The syntax and static semantics of CRESS are handled by a preprocessor, a lexical
analyser and a parser.
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4.1 Specification Architecture Preprocessor

CRESS is driven by a specification architecture for a given domain and target language.
This may contain preprocesssor calls that invoke the CRESS tools:

Cress(Options,Diagrams): generates code for the diagrams to be included. Translator
options may optionally be given. The diagrams may be listed explicitly, but nor-
mally the keyword Featuresis used to mean those diagrams defined by the system
configuration. To deal with the situation that a domain may have multiple root dia-
grams (e.g. Internet Telephony), all diagrams with a certain prefix may be included.
For example, Cress(PROXY) will include all SIP Proxy Server diagrams.

Cress(Profiles): generates code for domain-specific user profiles, e.g. the features and
their parameters that subscribers have selected.

Cress(Types): generates code for domain-specific data types.

The preprocessor calls the CRESS lexical analyser and subsequent tools.

4.2 Diagram Lexical Analysis

A graph editor is the most obvious tool to create CRESS diagrams. In fact, the require-
ments of CRESS are modest. The graph editor must be able to create a small number of
node shapes, and must be able to associate multi-line labels with nodes and arcs. For
practical reasons, the graph editor must also be multi-platform. A surprising number of
graph editors fail to meet these criteria (e.g. Graphlet, GraphMaker, JGraphPad, Open-
JGraph, W3Pal). One of the few appropriate graph editors is yEd from yWorks GmbH;
this is free and, being Java-based, is multi-platform. It is hoped to use the DiaGen tool
in future to create a CRESS-specific editor. Graph editors usually provide analysis fea-
tures that are irrelevant to CRESS (e.g. finding the minimum spanning tree of a graph).
They also tend to draw rather visually plain graphs.

An obvious alternative is a drawing package, but again many of these do not meet
the CRESS criteria (e.g. Corel Draw, Dia, jfig, xfig). One of the few suitable drawing
packages is Diagram! from Lighthouse Design; the figures in this paper were drawn us-
ing this tool. Although Diagram! runs on four different platforms and is free, it requires
NEXTSTEP/OPENSTEP which limits its portability.

Another issue is the file representation of graphs. There are many competing for-
mats, a number of which fail to represent the basic graph topology required by CRESS.
GML (Graph Modeling Language) and XGMML (eXtensible Graph Markup and Mod-
eling Language) are both suitable. In principle, GraphML (Graph Markup Language)
would also be suitable but in practice it is used with proprietary extensions. Support for
standard formats among graph editors is rather patchy. CRESS therefore accepts graphs
in GML or XGMML format as well as the format created by the Diagram! tool.

The CRESS lexical analyser parses the file representation of a diagram and reduces
it to a common internal format. In fact this is tricky, partly because nodes and arcs may
appear in any order in the file, and partly because the graph may be cyclic. The gener-
ated graph is handed off to the CRESS parser for syntax and static semantic checking.
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4.3 Diagram Syntactic Analysis

A list of CRESS diagrams is considered at the same time. There must be at most one root
diagram. The other diagrams constitute a hierarchy of features that modify each other or
the root diagram. Feature interaction is a well-known problem whereby independently
defined features may interfere with each other. A common solution is to prioritise fea-
tures. In CRESS, feature diagrams have priorities that ensure a well-defined order of
application. Each feature in turn is combined with another or with the root diagram. If
it is a spliced feature, the feature nodes are cut and pasted into the root diagram. If it
is a template feature, the current root diagram is scanned for matching nodes. Each of
these is then modified by the instantiated template. The final result is a single diagram.
Various manipulations are carried out as this diagram is created:

– Source and destination labels are paired up, joining subgraphs.
– Event names are normalised. CRESS allows some latitude in naming for readability

(e.g. Start Audible Ringingvs. StartAudibleRinging) and for British vs. American
English (e.g. Dialling vs. Dialing).

– ‘<’ and ‘>’ labels on nodes are used to disambiguate signal directions and are then
removed. A ‘!’ label preventing template matching is removed after all templates
substitutions have been handled.

– The successor nodes of each node are ordered by signal name. This simplifies in-
terpretation in some languages (e.g. SDL).

– Null nodes are removed where possible to reduce the size of the graph. This cannot
always be done (e.g. in a recursive loop, figure 3).

– Nodes that are reached via an Else or an event condition are moved to the end of
the node successor list. This simplifies error-checking.

– Since a graph may be cyclic, nodes that appear earlier or later in the graph are
specially marked.

The consistency of the final diagram is then checked for syntactic and static seman-
tic correctness. More than 50 checks are applied, including the following as examples:

– A graph must have at most one Start node and one Finish node.
– Behaviour node labels must be unique.
– A behaviour node must contain events of the same type (input, output, action).
– A branch cannot lead to multiple output behaviour nodes. Non-deterministic inputs

are allowed, but not non-deterministic outputs.
– A Null node cannot cycle back to itself.
– Expressions must be well-formed and have the correct parameter types for events

and operators.
– At most one Elsemay appear in a list of value conditions, and Elsecannot appear

as the only such condition.

The CRESS parser performs the diagram composition, manipulation and checking
described above. The result is a graph stored in an internal format. This is handed off to a
CRESS code generator for translation to some specification or implementation language.
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5 CRESS Dynamic Semantics

For space reasons, the formal interpretation of CRESS is explained here with reference
to just one language – LOTOS. The interpretation using SDL is broadly similar, though
restrictions on SDL inputs and outputs considerably complicate translation. Code for
SDL is generated in SDL/PR (program-like) format.

5.1 Specification Architecture using LOTOS

As an example of what a specification architecture looks like, the following is an outline
for Intelligent Network services and LOTOS. There are comparable LOTOS specifica-
tions for Internet Telephony and Interactive Voice Response. Domain-defined specifi-
cation architectures are also defined for SDL, Perl and VoiceXML as appropriate.

SpecificationINSystem [User] : NoExit (* Intelligent Network *)
Library (* library types *)
Type Address (* address operations *)
Type Addresses (* addresses *)
Type BooleanOperations (* boolean operations *)
Type Digit (* digits *)
Type Number (* numbers *)
Type Statuses (* call statuses *)
Type StatusResult (* call status results *)
Cress(Types) (* generate types *)
Behaviour INStructure [User] (* overall behaviour *)

Where (* local definition *)
ProcessINStructure [User] (* IN network structure *)

Hide Bill,Stat,Scp In (* hide internal signals *)
(

(
(

CallInstances [Bill,Scp,Stat,User] (* call instances *)
|[User,Stat]| (* synchronise user/status messages *)

CallCoordinator [User,Stat] ({}) (* call coordinator *)
)

|[Scp]| (* synchronise service control messages *)
ServiceControl [Scp,Stat] (* service control point *)

)
|[Stat]| (* synchronise status messages *)

StatusManager [Bill,Stat] (0, Cress(Profiles)) (* generate subscriber profiles *)
)

|[Bill]| (* synchronise on billing messages *)
BillingSystem [Bill] (* billing system *)

ProcessCallInstances [Bill,Scp,Stat,User] (* call instances *)
Cress(Features) (* generate feature behaviour *)

ProcessCallCoordinator [User,Stat] (Addresses) (* call coordinator *)
ProcessServiceControl [Scp,Stat] (* service control point *)
ProcessStatusManager [Bill,Stat] (Time, Statuses) (* status manager *)
ProcessBillingSystem [Bill] (* billing system *)
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Node Type Node Visited Once Node Visited Earlier Node Visited Later

Graph Start instantiate top-level process, whose definition is then begun
Action translation is domain-specific
Input/Output event, interleaved if

events in parallel
call already defined
process

start new process definition, then
translate input/output as normal

Null start new process call already defined
process

start new process definition

Value Guard guard guard before call of al-
ready defined process

guard before call of new process,
whose definition is then begun

Event Guard start new event han-
dler process

not allowed not allowed

Graph End close off all process definitions

Fig. 6. Outline CRESS Denotation in LOTOS

5.2 Interpretation using LOTOS

The dynamic semantics of CRESS is handled by code generators for each target lan-
guage. Since graphs may be cyclic, a distinction is made between a behaviour node
that is visited once, one that is visited earlier in the graph, and one that is visited later.
When a code generator walks the graph, it recognises when it has already visited a node.
Different code is usually generated for the first and subsequent visits to a node.

A potential difficulty with any automatic code generation is relating the generated
code to the original source. In the case of CRESS, the code generators go to a lot of
trouble to create human-readable, well laid out code. In addition, virtually every line
of the generated code has automatically produced comments. These relate the code
directly to the diagram that created it. It is possible to use the generated code without
having to be aware of this. However for some purposes (e.g. simulation or verification),
the comments are useful for the expert to relate the code and the CRESS diagrams.

Fixed data types are defined by the specification architecture. Type definitions are
also automatically generated for signals and events defined by the plug-in domain. Ex-
pressions are translated to their LOTOS equivalents. If the domain requires user profiles,
these are translated into LOTOS from the CRESS system configuration diagram.

The specification architecture includes fixed process definitions. Diagram-defined
processes are generated from nodes according to the outline strategy in figure 6. This
gives an idea of the denotations (code skeletons) for various CRESS constructs; it is
not possible to define the full mapping here. In the main the translation to LOTOS is
straightforward except for the following points:

– Although LOTOS does not really distinguish inputs and outputs, they are translated
slightly differently since CRESS outputs must use only constants and variables with
defined values. The CRESS toolset performs a data-flow analysis to determine this.
A behaviour parameter with an undefined value becomes a ‘?’ event parameter in
LOTOS (like input), while a behaviour parameter with a defined value is prefixed
with ‘!’ (like output).
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– Normally a behaviour node is translated as the corresponding LOTOS event. If the
node contains parallel behaviours, these are translated as sequential or concurrent
events as defined by a code generator option.

– Behaviour nodes along a path usually become a sequence of LOTOS events. How-
ever if several paths lead to a node, a new LOTOS process is defined for the behav-
iour from that node. A branch to the node then becomes a call of this process.

– Value guards are translated into their direct LOTOS equivalents. An Elsebecomes
the logical complement of all the accumulated guards. If an Else is omitted, a code
generator option produces a dynamic check for the guards being unfulfilled.

– Event guards are very complex to translate into LOTOS. The problem is that the
name of a CRESS event may be constructed only dynamically. Where the event is
handled is also determined dynamically, as events may be caught at several levels
of a CRESS description. Event handling in a LOTOS specification must, however, be
defined statically. Fortunately it is possible to statically determine the scope of all
event handlers. This allows the translator to define a static process that dispatches
events according to their context. A node that follows an event guard will start a
new LOTOS process definition. When a CRESS event occurs dynamically, the event
dispatcher calls the appropriate process according to its context. More about the
event model can be found in [15].

6 Conclusion

The role of CRESS has been seen as a graphical notation for describing system behav-
iour, particularly for voice services but also for reactive systems generally. The nota-
tion, syntax, static semantics and dynamic semantics of CRESS have been discussed.
The notion of plug-in application domains makes CRESS very adaptable. CRESS is also
powerful in that the same diagrams can be given a formal interpretation or be used for
implementation. The use of CRESS has been briefly reviewed for Intelligent Networks,
Internet Telephony and Interactive Voice Response.
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