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Temporal Graph 

• StaJc 
• Shortest path (A,G) = [A,B,D,E,G] 
• Shortest path length (A,G) = 4 hops 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Temporal Graph 

• StaJc 
• Shortest path (A,G) = [A,B,D,E,G] 
• Shortest path length (A,G) = 4 hops 

• Temporal 
• Shortest path (A,G) = [A,C,B,D,E,F,G] 
• Shortest path length (A,G) = 6 hops 
• Time=3 seconds 

t=1  t=2  t=3 



Computer Laboratory 

Temporal Metrics 

•                     Shortest Temporal Path Length 

•                     Shortest Path with temporal constraints           

•                     Temporal Efficiency 

dij =

d∗ij =

Eij =
1

dij



Computer Laboratory 

Temporal Metrics 

•  Average Temporal 

•  Average Temporal 

•  Average Efficiency 

L = 1
N(N−1)

∑
ij dij

L∗ = 1
N(N−1)

∑
ij d∗ij

Eglob = 1
N(N−1)

∑
ij Eij
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Does it really maXer? 

•  Infocom 2005 conference environment 

•  Bluetooth colocaJon scans 
•  5 Minute Windows 

•  Measure 24 hours starJng 12am 

Sta<c Temporal 

Day N <k> Ac<vity Contacts  L Eglob L* L Eglob 

1 37 25.73 6pm‐12pm  3668  1.291 0.856 4.090 19h 39m 0.003 

2 39 28.31 12am‐12pm  8357  1.269 0.870 4.556 9h 6m 0.024 

3 38 22.32  12am‐12pm  4217  1.420 0.798 4.003 10h 32m 0.018 

4 39 21.44  12am‐5pm  3024  1.444 0.781 4.705 9h 55m 0.013 
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Temporal Small World 

•  InvesJgate speed of evoluJon of temporal 
graphs vs. communicaJon efficiency 

•  IntuiFon: Slowly evolving graphs should be 
slow for data communicaJon 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StaJc SW Model 

•  StaJc 
– High local clustering 
– Some nodes provide short cut links 

[WaXs&Strogatz 1998] 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StaJc Clustering Coefficient 

A  B 

C  D E  F 

Node i 

2

sistence over time [5, 24]. For instance, people tend to en-
gage in relations for continuous intervals of time. Hence,
a given link has a higher probability to appear in graph
Gt if it was already present in graph Gt−1. To quantify
this effect, following Ref. [19] we compute C, the average
topological overlap of the neighbor set of a node between
two successive graphs in the sequence:

C =
∑

i Ci

N
Ci =

2
∑

j,k ajk

[(
∑

j aij) ∗ ((
∑

j aij)− 1)]
(1)

We name this metric the temporal-clustering coefficient
of G.
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sistence over time [5, 24]. For instance, people tend to en-
gage in relations for continuous intervals of time. Hence,
a given link has a higher probability to appear in graph
Gt if it was already present in graph Gt−1. To quantify
this effect, following Ref. [19] we compute C, the average
topological overlap of the neighbor set of a node between
two successive graphs in the sequence:

C =
∑

i Ci

N
Ci =

2
∑

j,k ajk

[(
∑

j aij) ∗ ((
∑

j aij)− 1)]
(1)

L(G) =
1

N(N − 1)
∗

∑

i,j

di,j (2)

For all j, k such as ai,j = 1 and aj,k = 1 We name this
metric the temporal-clustering coefficient of G.
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StaJc Small World  

•  Graphs which both are locally clustered but 
with small average delay 
– High local clustering => Lafce 
– Small average delay => Random 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Temporal SW Model 

•  N Random Walkers with Prob Jumping Pj 

Pj=0.0!

Pj=0.5!

Pj=1.0!
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Temporal CorrelaJon Coefficient 

A  B 

C  D E  F 

Node i 

t1 

A  B 

C  D E  F 

Node i 

t2 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gage in relations for continuous intervals of time. Hence,
a given link has a higher probability to appear in graph
Gt if it was already present in graph Gt−1. To quantify
this effect, following Ref. [19] we compute C, the average
topological overlap of the neighbor set of a node between
two successive graphs in the sequence:

C =
∑

i Ci

N
Ci =

1
T − 1

T−1∑

t=1

∑
j aij(t)aij(t + 1)

√
[
∑

j aij(t)][
∑

j aij(t + 1)]
(1)

We name this metric the temporal-clustering coefficient
of G.

A fundamental concept in graph theory is that of
geodesic, or shortest path. In a static graph, a shortest
path between nodes i and j is defined as a path of min-
imal length between the two nodes. This is a sequence
of adjacent nodes starting at i, ending at j, and visiting
the minimum number of nodes. Finally, the distance be-
tween node i and node j is set equal to the length of the
shortest paths from i to j. Here, we introduce the con-
cepts of temporal shortest path and temporal distance to
generalize the definitions of shortest paths and of node
distance to the case of time-varying graphs. We illus-
trate the basic idea with the example shown in Fig. 1a.
Suppose node A wants to send a message in the fastest
possible way to the other nodes of the graph. We assume
that node A can start passing the message at time t = 1,
and the message has to be delivered by time t = 4. On
graph G1, node A can directly pass the message to nodes
B and D, which are therefore assigned temporal distance
1 from node A, since they can be reached in one unit of
time. There are also other temporal paths to go from
A to nodes B and D in three time units. For example,
we can go from A to D in the following way: A → B in
G1, B → D in G3. This is also a temporal path from
A to D, though it is not the shortest, since the fastest
way to go from A to D is to use the link A → D in G1.
Distance 3 is assigned to node C, since the message can
be passed from A to D in graph G1, and then from node
D to node C in G3, thus reaching C in three time units.
Node F can be reached in 4 time steps by means of three

FIG. 1: An example of a time-varying graph G with T = 4
(panel a), and its projection into a static graph (panel b).

alternative shortest paths: A → B in G1, B → F in G4;

A → D in G1, D → C in G3, C → F in G4; and A → D
in G1, D → B in G3, B → F in G4. Finally, there are no
temporal paths from A to E, hence we set the temporal
distance of E from A equal to ∞, and we say that E is
not reachable from A. This is an effect of the time order
of the links in a time-varying graph, and indeed node A
and E are connected in the aggregate graph shown in
Fig. 1b in which all links are considered as concurrent.

Notice also that, due to the time order of the links,
the temporal distances are not symmetric, even if the
time-varying graph consists of a sequence of undirected
graphs. For instance, while the temporal distance from
A to F is 4, the temporal distance from F to A is ∞
(because the links occur in the wrong time order to facil-
itate the passage from F to A). Conversely, in the static
graph in Fig. 1b, we have dAF = dFA = 2. In order
words, the main difference between a time-varying graph
G, as that shown in panel a), and its associated static
graph, reported in panel b), is that some of the short-
est paths of the static graph are not temporally valid
(in the sense that the links do not appear in the correct
time order) and, therefore, cannot be used to route mes-
sages. In general, in time-varying graphs there are more
disconnected node pairs, than in static ones. As an ex-
ample, the static graph in Fig. 1 is composed of a single
connected component, while if time is taken into consid-
eration, it is not possible to go from A to E, or from F
to A. In order to compute the temporal distances dij for
all node pairs i, j = 1, 2, ..., N of a generic graph G, we
have implemented a generalization of the breadth first
search algorithm [25]. The average temporal connectiv-
ity properties of G can be measured by the characteristic
temporal path length L:

L =
1

N(N − 1)

∑

ij

dij (2)

Alternatively, in order to avoid the potential diver-
gence due to pairs of nodes that are not temporally con-
nected, we can define the temporal global efficiency of G
as [15]:

E =
1

N(N − 1)

∑

ij

1
dij

(3)

Low values of L (high values of E) indicate that the nodes
of the graphs can communicate efficiently. In the follow-
ing, we will show that time-varying graphs from models
and real-world systems can be, at the same time, tempo-
rally clustered and still have small temporal distances be-
tween their nodes. Analogously to the small-world anal-
ysis in static graphs [14, 15], we will compare the actual
values of C, L and E of a given time-varying graph G,
with the corresponding values calculated by considering
an ensemble {Grand} of randomized versions of G. Each
sequence Grand is obtained by randomly reshuffling the
graphs in G, i.e., by destroying the time order (and cor-
relations) in the original sequence G1, G2, . . . , GT . More
precisely, we will show that some time-varying graphs

CA = 1/2
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Temporal Small World 

•  Graphs which evolve slowly over Jme can sJll 
exhibit high communicaJon efficiency 
– Highly temporal‐clustering => non‐jumping model 
–  Low temporal‐delay => fully‐jumping model 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Small‐world Behaviour in Real Data 

Brain network 

Bluetooth contacts 
(INFOCOM’06) 

(London network) 

3

can have a value of C much larger than the clustering
coefficient of the reshuffled sequence Crand, and, at the
same time a value of L as small as Lrand. We will refer
to this behavior as small-world behavior in time-varying
systems.

0.0001 0.001 0.01 0.1 1
p
j

0

0.5

1

L(p
j
)/L(0)

C(p
j
)/C(0)

FIG. 2: Characteristic temporal path length and temporal-
clustering coefficient of time-varying graphs produced by the
model of moving agents, as a function of the probability pj of
long-distance jumps. In the simulations we have set N = 100,
D = 100 m, v = 1 m/s, rc = 5 m and produced sequences of
length T = 500. The characteristic temporal path length of
the reshuffled sequences is reported as dashed line.

Random-walkers network model.- We first illustrate
how this behavior can be obtained in a network model
of moving agents, as a result of simple motion rules. We
consider a system of N random walkers which move in
a two-dimensional square of linear size D with a fixed
velocity v, and additionally perform long-distance jumps
to randomly chosen position of the square with a jump
probability pj [4]. For each fixed value of pj ∈ [0, 1], the
time-varying network G is constructed by linking, every
second, all nodes having a distance in space smaller than
a given value rc (a similar idea was used to construct
physical networks of nanoparticles [26]). In Fig. 2 we
plot C and L as a function of pj. The values reported
are normalized to the maximum values of C and L ob-
tained for pj = 0, and respectively equal to C(0) = 0.91
and L(0) = 442.8. We observe that a small percent-
age of jumps is sufficient to create links between nodes
otherwise at large temporal distances and to produce a
large drop in the temporal L. When pj = 0.01, L has
reduced to one forth of L(0), and when pj = 0.1, L has
about the same value as for the reshuffled sequence. The
value of Lrand obtained as an average over 1000 realiza-
tions of Grand is reported as dashed line. While L(pj) is
rapidly decreasing, C(pj) is constant up to large values
of pj ∼ 0.1 so that for intermediate values of pj we have
time-varying graphs exibiting small-world behavior. Fi-
nally, notice also that, by approximating for each value
of pj the corresponding time-varying graph G as a static
graph, we obtain instead a value of static L which changes
by less than 15% in the whole range [0, 1] of pj . We thus
cannot capture the temporal small-world behavior with
the standard characteristic path length of a static graph.

Brain cortical networks.- We finally explore real-world
time-varying complex networks. We first consider time-
varying functional cortical networks extracted from a set
of high-resolution EEG recordings in a group of 5 normal
subjects performing a task consisting in a foot movement
[13]. For each subject, and for each of four frequency
bands (α, β, γ, θ), we considered a time period of 0.5 sec
corresponding to the final phase of execution of the foot
movement. Each time-varying graph has N = 16 nodes,
representing cortical regions of interest, and consists in
a time sequence of T = 100 directed unweighted graphs,
where the directed links represent causal influences be-
tween cortical regions (see Ref. [13] for details). We have

C Crand L Lrand E Erand

α 0.44 0.18 3.9 (100%) 4.2 (98%) 0.50 0.48

β 0.40 0.17 6.0 (94%) 3.6 (92%) 0.41 0.45

γ 0.48 0.13 12.2 (86%) 8.7 (89%) 0.39 0.37

δ 0.44 0.17 2.2 (100%) 2.4 (92%) 0.57 0.56

d1 0.80 0.44 8.84 (61%) 6.00 (65%) 0.192 0.209

d2 0.78 0.35 5.04 (87%) 4.01 (88%) 0.293 0.298

d3 0.81 0.38 9.06 (57%) 6.76 (59%) 0.134 0.141

d4 0.83 0.39 21.42 (15%) 15.55(22%) 0.019 0.028

Mar 0.044 0.007 456 451 0.000183 0.000210

Jun 0.046 0.006 380 361 0.000047 0.000057

Sep 0.046 0.006 414 415 0.000058 0.000074

Dec 0.049 0.006 403 395 0.000047 0.000059

TABLE I: Temporal-clustering, characteristic temporal path
length and efficiency for brain cortical networks (subject 1,
and four band frequencies) [13], for the social interaction
networks of INFOCOM’06 (time periods between 1pm and
2:30pm, four different days), and for messages over Facebook
online social network (three different months of year 2007)
[27]. Results are compared with those obtained for 1000 ran-
domized (shuffled) sequences of the same length.

computed the values of C, L and E for each real se-
quence and for the reshuffled ones. In Table I we re-
port the results for one of the subjects. The values in
parenthesis next to L and Lrand are the percentage of
pairs of nodes that are temporally connected. Discon-
nected node pairs are not considered in the average to
compute L and Lrand. For all the considered bands, the
real sequence exhibits small-world properties, having a
large value of C (larger than Crand) and, at the same
time, a small characteristic temporal path length (a high
efficiency), comparable to that observed in the shuffled
sequence. Similar results (not reported) were obtained
for the other four subjects.

Social interaction networks.- The second real case
study of our analysis is a time-varying social network
based on a dataset of contacts among participants of
INFOCOM’06, a major data communication conference
which took place in a hotel. The contacts were collected
by means of Bluetooth-enabled devices able to record in-
teractions among people that are in promixity [28]. The
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Summary of Talk 

•  Temporal Graphs & Distance Metrics 
–  StaJc shortest paths overesJmate available hops and 
hence underesJmate shortest path length 

•  Temporal Small World: 
–  Contrary to intuiJon, slowly evolving graphs can be 
very efficient for data disseminaJon 

•  Future Work 
–  IdenJfying important nodes 
– Malware propogaJon 

•  Best nodes for patching 
–  Spectral Analysis 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