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This Talk

Motivation
There is a long history of algebraic approaches to solving path
problems in graphs.
Question : Can BGP be cast in a way that falls within this tradition?

Sources
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Shortest paths example, sp = (N∞, min, +)
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The adjacency matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞


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Shortest paths example, continued
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Bold arrows indicate the
shortest-path tree rooted at 1.

The routing matrix

R =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


Matrix R solves this global
optimality problem:

R(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths
from i to j .
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Semirings

A few examples

name S ⊕, ⊗ 0 1 possible routing use

sp N∞ min + ∞ 0 minimum-weight routing
bw N∞ max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

2W ∪ ∩ {} W shared link attributes?
2W ∩ ∪ W {} shared path attributes?

Path problems focus on global optimality

A∗(i , j) =
⊕

p∈P(i, j)

w(p)
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Recomended Reading
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What algebraic properties are associated with global
optimality?

Distributivity

L.D : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c),
R.D : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c).

What is this in sp = (N∞, min, +)?

L.DIST : a + (b min c) = (a + b) min (a + c),
R.DIST : (a min b) + c = (a + c) min (b + c).
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(Left) Local Optimality

Say that L is a left-locally optimal solution when

L = (A⊗ L)⊕ I.

That is, for i 6= j we have

L(i , j) =
⊕
q∈V

A(i , q)⊗ L(q, j) =
⊕

(i, q)∈E

w(i , q)⊗ L(q, j),

In other words, L(i , j) is the best possible value given the values
L(q, j), for all out-neighbors q of source i .
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(Right) Local Optimality

Say that R is a left-locally optimal solution when

R = (R⊗ A)⊕ I.

That is, for i 6= j we have

R(i , j) =
⊕
q∈V

R(i , q)⊗ A(q, j) =
⊕

(q, j)∈E

R(i , q)⊗ w(q, j),

In other words, R(i , j) is the best possible value given the values
R(q, j), for all in-neighbors q of destination j .
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With and Without Distributivity

With
For (well behaved) Semirings, the three optimality problems are
essentially the same — locally optimal solutions are globally optimal
solutions.

A∗ = L = R

Without
Suppose that we drop distributivity and A∗, L, R exist. It may be the
case they they are all distinct.
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A World Without Distributivity

Global Optimality
This has been studied, for example [LT91b,LT91a] in the context of
circuit layout. See Chapter 5 of [BT10]. This approach does not play
well with (loop-free) hop-by-hop forwarding (need tunnels!)

Left Local Optimality
At a very high level, this is the type of problem that BGP attempts to
solve!!

Right Local Optimality
This approach does not play well with (loop-free) hop-by-hop
forwarding (need tunnels!)
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Example

1

2

34 5

(5,1)

(5,1)

(5,4)

(5,1)

(10,5)

(10,1)

(5,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Left-locally optimal paths to node 2

1

2

34 5
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Right-locally optimal paths to node 2

1

2

34 5

5→ 2

1,3,4→ 2

5→ 23→ 2

4→ 2

4→ 23→ 2
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Functions on arcs

From (S, ⊕, ⊗, 0, 1) to (S, ⊕, F , 0, 1)

Replace ⊗ with F ⊆ S → S,
Replace

L.D : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)

with
D : f (b ⊕ c) = f (b)⊕ f (c)

Path weight is now

w(p) = g(v0, v1)(g(v1, v2) · · · (g(vk−1, vk )(1) · · · ))
= (g(v0, v1) ◦ g(v1, v2) ◦ · · · ◦ g(vk−1, vk ))(1)
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What accounts for loss of distributivity?

Algebras can be constructed from component algebras, and we
must be careful. EIGRP is an example [GS03].
Link weights may be a function of path weight. From

w(v0, v1, · · · , vk ) = w(v0, v1)⊗ w(v1, · · · , vk )

to

w(v0, v1, · · · , vk ) = g(v0, v1)(w(v1, · · · , vk ))⊗ w(v1, · · · , vk ).

This makes distributivity harder to maintain (especially given the
kinds of g’s natural in a routing context).
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What are the conditions needed to guarantee
existence of local optima?

For a non-distributed structure S = (S, ⊕, F , 0, 1), can be used to
find local optima when the following property holds.

Strictly Inflationary

S.INFL : ∀a, b ∈ S : a 6= 0 =⇒ a < b ⊗ a

where a ≤ b means a = a⊕ b.
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Useful properties

(S, ⊕, F , 0, 1)

property definition
D ∀a, b ∈ S, f ∈ F : f (a⊕ b) = f (a)⊕ f (b)

INFL ∀a ∈ S, f ∈ F : a ≤ f (a)

S.INFL ∀a ∈ S, F ∈ F : a 6= 0 =⇒ a < f (a)

K0 ∀a, b ∈ S, f ∈ F : f (a) = f (b) =⇒ (a = b ∨ f (a) = 0)

C0 ∀a, b ∈ S, f ∈ F : f (a) 6= f (b) =⇒ (f (a) = 0 ∨ f (b) = 0)

T. Griffin (cl.cam.ac.uk) Exploring the Stratified Shortest-Paths Problem June 2010 18 / 33



Stratified Shortest-Paths Metrics

Metrics

(s, d) or ∞

s 6=∞ is a stratum level in {0, 1, 2, . . . , m − 1},
d is a “shortest-paths” distance,
Routing metrics are compared lexicographically

(s1, d1) < (s2, d2) ⇐⇒ (s1 < s2) ∨ (s1 = s2 ∧ d1 < d2)
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Stratified Shortest-Paths Policies

Policy has form (f , d)

(f , d)(s, d ′) = 〈f (s), d + d ′〉

(f , d)(∞) = ∞

where

〈s, t〉 =

{
∞ (if s =∞)

(s, t) (otherwise)
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Constraint on Policies

(f , d)

Either f is inflationary and 0 < d ,
or f is strictly inflationary and 0 ≤ d .

Why?

(S.INFL(S) ∨ (INFL(S) ∧ S.INFL(T ))) =⇒ S.INFL(S ~×0 T ).
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All Inflationary Policy Functions for Three Strata

0 1 2 D K∞ C∞ 0 1 2 D K∞ C∞
a 0 1 2 ? ? m 2 1 2
b 0 1 ∞ ? ? n 2 1 ∞ ?
c 0 2 2 ? o 2 2 2 ? ?
d 0 2 ∞ ? ? p 2 2 ∞ ? ?
e 0 ∞ 2 ? q 2 ∞ 2 ?
f 0 ∞ ∞ ? ? ? r 2 ∞ ∞ ? ? ?

g 1 1 2 ? s ∞ 1 2 ?
h 1 1 ∞ ? ? t ∞ 1 ∞ ? ?
i 1 2 2 ? u ∞ 2 2 ?
j 1 2 ∞ ? ? v ∞ 2 ∞ ? ?
k 1 ∞ 2 ? w ∞ ∞ 2 ? ?
l 1 ∞ ∞ ? ? ? x ∞ ∞ ∞ ? ? ?
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Almost shortest paths

0 1 2 D K∞ interpretation
a 0 1 2 ? ? +0
j 1 2 ∞ ? ? +1
r 2 ∞ ∞ ? ? +2
x ∞ ∞ ∞ ? ? +3
b 0 1 ∞ ? ? filter 2
e 0 ∞ 2 ? filter 1
f 0 ∞ ∞ ? ? filter 1, 2
s ∞ 1 2 ? filter 0
t ∞ 1 ∞ ? filter 0, 2
w ∞ ∞ 2 ? filter 0, 1
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Shortest paths with filters, over INF3

1 2

3

4

5

(j, 1)

(s, 1)(a, 10) (a, 10)

(a, 1)

Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally
best path from node 5 to node 1. But in this case, poor node 5 is left
with no path! The locally optimal solution has R(5, 1) =∞.
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Both D and K0

This makes combined algebra distributive!

0 1 2
a 0 1 2
b 0 1 ∞
d 0 2 ∞
f 0 ∞ ∞
j 1 2 ∞
l 1 ∞ ∞
r 2 ∞ ∞
x ∞ ∞ ∞

Why?

(D(S) ∧ D(T ) ∧ K0(S)) =⇒ D(S ~×0 T )
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Example 1

〈0, 3〉 〈0, 4〉

〈0, 2〉 〈0, 2〉

〈0, 0〉 〈0, 1〉1 2

3 4

5 6

(d, 1)

(j, 1)

(a, 1)

(b, 1)(f, 1)

(f, 1)

(a, 1)

(f, 1)
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Example 2

〈2, 4〉 〈2, 3〉

〈2, 3〉 〈1, 2〉

〈0, 0〉 〈1, 1〉1 2

3 4

5 6

(f, 1)

(f, 1)

(l, 1)

(b, 1)

(d, 1)

(j, 1)
(f, 1)

(a, 1)
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BGP : standard view

0 is the type of a downstream route,
1 is the type of a peer route, and
2 is the type of an upstream route.

0 1 2
f 0 ∞ ∞
l 1 ∞ ∞
o 2 2 2
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“Autonomous” policies

0 1 2 D K∞
f 0 ∞ ∞ ? ?
h 1 1 ∞ ?
l 1 ∞ ∞ ? ?
o 2 2 2 ?
p 2 2 ∞ ?
q 2 ∞ 2
r 2 ∞ ∞ ? ?
t ∞ 1 ∞ ?
u ∞ 2 2
v ∞ 2 ∞ ?
w ∞ ∞ 2 ?
x ∞ ∞ ∞ ? ?
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Putting BGP in context, summary

Two main differences over previous work on algebraic path problems in
graphs.

Natural to think that link weights are not fixed but are instead a
function of the path (route) itself.

I Very difficult to perserve distributivity with “dependent” link weights.
When distributivity fails, look for local optimal solutions.

I This required some new theory.
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Open Problems

Complexity of solving for left-local solutions?
I Recent result by Sobrinho and Griffin [SG10] : O(V 3) with a greedy

algorithm.
I We know that “path vectoring” will find a solution, but still no known

bounds.

How could the > m! policies be expressed/implemented in BGP?
Can this be done without giving up some autonomy?
Other applications of local optimality.
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